The International Journal of Advanced Manufacturing Technology
https://doi.org/10.1007/500170-022-10789-w

ORIGINAL ARTICLE ")

Check for
updates

Vibration compensation of delta 3D printer with position-varying
dynamics using filtered B-splines

Nosakhare Edoimioya’ - Cheng-Hao Chou' - Chinedum E. Okwudire’

Received: 14 September 2022 / Accepted: 28 December 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract

The delta robot can reach higher speeds than traditional serial-axis machines used in fused filament fabrication 3D printing.
However, like serial machines, delta printers suffer from undesirable vibration at high speeds which degrades the quality of
fabricated parts. This undesirable vibration has been suppressed in serial printers using linear model-inversion feedforward
control methods like the filtered B-splines (FBS) approach. However, techniques like the FBS approach are computationally
challenging to implement on delta 3D printers because of their coupled, position-dependent dynamics. In this paper, we
propose a methodology to address the computational bottlenecks by (1) parameterizing the position-dependent portions of
the dynamics offline to enable efficient computation of the model online, (2) computing models at sampled points (instead of
every point) along the given trajectory, and (3) employing QR factorization to reduce the number of floating-point arithmetic
operations associated with matrix inversion. In simulations, we report a computation time reduction of up to 23 x using the
proposed method when compared to using the computationally expensive exact LPV model—all while maintaining high
tracking accuracy. Accordingly, we demonstrate significant quality improvements on parts printed at various positions on
a commercial delta 3D printer using our proposed controller compared to a baseline alternative, which uses an LTI model
from one position. Acceleration measurements during printing show that the improvement in print quality of the proposed
controller is due to vibration reductions of up to 39% when compared to the baseline controller.

Keywords Delta robot - Position-varying dynamics - Filtered B-splines - Model-based control - 3D printing

1 Introduction

Delta robots suffer from vibration errors that are a result
of structural flexibilities in their kinematic chain [1] and
such vibration errors can adversely impact the quality of
3D printed parts. Promisingly, model-based feedforward
control techniques have been used to suppress vibration on
serial-axis 3D printers [2—-5], resulting in up to 2x increase
in productivity without sacrificing accuracy [5]. However,
the parallel-axis delta 3D printers have not yet benefited
from these methods because of the difficulty modeling
and controlling the delta’s coupled, nonlinear dynamics.
Previous work on modeling and controlling delta robots

< Chinedum E. Okwudire
okwudire @umich.edu

Department of Mechanical Engineering,
University of Michigan-Ann Arbor,
2350 Hayward Street, Ann Arbor, MI, 48104, USA

Published online: 27 January 2023

has largely focused on rotary-joint delta robots, which are
actuated with servo motors [6—16]. (Most commercial delta
3D printers are prismatic-joint delta robots and typically use
stepper motors). Due to the popularity of servo motor delta
robots, techniques for its tracking control have been studied
extensively in the literature. Although we will not cover all
the literature here, we will discuss relevant examples that
uncover the challenge of controlling delta 3D printers.
Most of the delta robot control literature can be
grouped in one of three categories: (1) PID control, (2)
adaptive/sliding-mode control, and (3) learned control.
Most of the early methods proposed rely on state mea-
surements to estimate servo errors for accurate compen-
sation. A PD or PID controller is usually a key element
of these compensation methods. However, since standalone
PD/PID controllers do not consider the dynamic coupling
of delta robots, their performance is affected by distur-
bance inputs from other kinematic chains. To address this
issue, Codourey [6] combined a lumped model of the delta
manipulator with a PD regulator in a computed torque
(CT) control implementation to improve the tracking error

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-10789-w&domain=pdf
mailto: okwudire@umich.edu

The International Journal of Advanced Manufacturing Technology

performance in pick-and-place tasks when compared with
a standalone PD regulator. Similarly, Angel and Viola [7]
proposed a fractional PID controller combined with a CT
controller. However, CT controllers need to have complete
knowledge of the robot’s dynamics, which can be challeng-
ing to obtain efficiently [17], and are sensitive to uncertain-
ties and disturbance inputs. For example, in [6], workspace
accelerations, which are necessary to calculate torques,
are computed as second derivatives of the direct-geometric
model of the robot (i.e., functions of joint positions). These
calculations can be problematic when there is noise or other
inaccuracies in the measurements. Perhaps, this explains
why no experiments implementing the controller on hard-
ware are presented in [7] (only simulations).

These challenges led to the development of other
techniques focused on adaptive control [8—14]. These
include methods like changing the PD gains online as a
function of servo error estimates [8], disturbance rejection in
the feedback loop using linear disturbance observers [9, 10],
injecting inputs learned by a neural network to compensate
errors that the feedback controller does not reject [11, 12],
and using synchronization control strategies to reject
coupling disturbances in each actuator from the other
actuators [13, 14]. Other similar approaches focus on tuning
trajectory-dependent controller gains offline to minimize
errors along a desired path that is known a priori [15, 16].
These gains provide reasonable tracking performance along
the trajectory but require a priori knowledge of the entire
trajectory. Some researchers have also employed sliding
mode controllers to improve tracking performance since
they are relatively insensitive to the disturbance inputs
[18-20].

The central theme of the methods discussed above is
the dependence on sensor measurements and feedback
regulation to compensate for inaccurate models of the delta
robot. However, most delta 3D printers cannot benefit
from feedback control because they do not have sensors.
Excluding expensive sensors keeps the cost of 3D printers
down which encourages adoption of the technology. Hence,
we must rely on accurate models that can be used in
feedforward control schemes.

Recently, machine learning-based methods—mostly
using artificial neural networks (ANNs)—have been
employed to model and control delta robots [21-25]. ANNs
are promising because of their ability to learn nonlinear
behaviors and to save time in computationally challeng-
ing problems—characteristics that are useful for controlling
delta 3D printers. Currently, the most promising direction
is using ANNs to generate a model for parameter vary-
ing dynamics. For example, Liu and Altintas [21] trained a
transfer learning model for a machine tool using two ANNs:
the first using abundant data from the simulated dynamics

@ Springer

of the machine, and the second with significantly less mea-
surements from the machine. The models were combined
to fine-tune the simulation model with the “real-world”
model. Despite the success of this technique, it requires the
laborious process of tuning hyperparameters during train-
ing. Additionally, since these models often lack physical
interpretation, designing stable controllers for them can be
challenging. In general, using ANNs to design low-level
control laws can be problematic because it is difficult to
guarantee their stability. Therefore, in practical applications,
ANNSs are typically used to generate adaptive controller
gains [22-25] instead of using their models in model-based
(feedback or feedforward) controllers or to directly generate
low-level control laws.

Inspired by the feedforward CT controllers in [6] and [7],
we recently proposed an efficient and accurate framework
to obtain physics-based, linear parameter-varying (LPV)
models of prismatic-joint delta robots commonly used in
3D printers [17]. The framework uses receptance cou-
pling (see [26, 27]) to split the full model of the delta
robot into sub-models that can be independently identi-
fied using empirical measurements and analytical deriva-
tions. In [17], we demonstrated that the model captures
dynamic variation across different locations in the robot’s
task space. Accordingly, this model enables a number of
feedforward model-based vibration control techniques to
be applied to the delta 3D printer. Among those, there is
a class of methods known as model-inversion [28] which
compensate vibration errors by using the inverse of the
system’s dynamics to pre-filter motion commands. Unlike
other feedforward control methods such as smooth com-
mand generation [29, 30] and input shaping [31], model-
inversion does not introduce time delays [32] and can
theoretically lead to perfect compensation [28]. In prac-
tice, perfect compensation is difficult to achieve due to
unmodeled errors [2] and the prevalence of nonminimum
phase zeros, which can cause oscillatory or unbounded
control inputs. Nevertheless, several “approximate” model-
inversion controllers have been employed in the literature
[28, 33, 34]. Of the available methods (as reviewed in [28]),
the filtered basis functions (FBF) approach has been shown
to be versatile, compared to others, regarding its applica-
bility to any linear system dynamics [2, 3, 32, 35-37].
The FBF approach expresses motion commands as a lin-
ear combination of basis functions, forward filters the basis
functions using the system’s dynamics, and optimizes the
basis functions coefficients to minimize motion errors. A
version of FBF commonly used for controlling manufactur-
ing machines is the filtered B-splines (FBS) method [2-5,
35, 37], where B-splines are selected as the basis functions
because they are amenable to the lengthy motion trajec-
tories common in manufacturing. FBS is implemented in

The International Journal of Advanced Manufacturing Technology

real-time by sequentially processing small windows of the
full trajectory [3].

FBS has been implemented on serial-axis 3D printers,
which are modeled as linear time-invariant (LTI) systems
[2-5], as well as a parallel-axis LPV 3D printer [37]. In the
LTI (i.e., standard) implementation of FBS, B-splines are
filtered and inverted offline to enable fast computation of
their coefficients online [3]. For the LPV system in [37],
the authors modeled motion errors as linear relationships
between the x and y axes (and their LTI models).
Furthermore, they approximate the dynamics as decoupled,
resulting in independent computation of the B-spline
coefficients for each axis. Using these approximations,
the B-splines could also be filtered and inverted offline.
However, the delta 3D printer has a coupled kinematic chain
and its LPV model cannot be decoupled. Hence, its model
needs to be updated at each new position, rendering real-
time control with FBS computationally challenging: one
must compute the new model, use it to filter the B-splines,
and invert the filtered B-splines at every point along the
trajectory.

Vibration compensation with FBS can theoretically
improve the accuracy of delta 3D printers, but using FBS is
currently impractical due to the computational challenges.
Hence, this paper aims to mitigate those computational
challenges through the following contributions:

1. We parameterize expressions of the delta’s transfer
functions offline, which leads to fast computation of the
model online.

2. We select one point per window of the trajectory points
to generate a model used to control all points in the
window. This choice leads to faster computation and
lower memory allocation, but can lead to discontinuities

Fig. 1 From left to right: A
commercial delta 3D Printer
(Monoprice Delta Pro) with
labeled components, a
schematic of the belt-driven
carriage system, and the delta
manipulator configuration
showing the connections
between joints and links. The
print volume dimensions are
270 x 270 x 300 mm

Fixed Base

Universal
joint

(detachable)

Forearms

End-effector

Bed

in control inputs. Therefore, we also propose a
switching compensation method to preserve continuity
in the controller’s prediction of output trajectories.

3. We calculate the B-spline coefficients using QR
factorization instead of pseudoinversion, leading to
faster computations.

The layout of rest of the paper is as follows: Section 2
provides a review of the dynamic model developed in [17];
Section 3 gives an overview of the standard FBS approach
and describes the techniques we propose to enable real-
time control of delta 3D printers; Section 4 validates our
proposed approach through simulations and experiments;
and Section 5 concludes the paper, summarizing key
insights.

2 Overview of LPV model of delta 3D printer
2.1 Description of the delta 3D printer

As depicted in Fig. 1, the three pairs of forearms on the
delta 3D printer are connected to a carriage on one end, and
the end-effector on the other end. Each pair of forearms are
parallel and allowed to rotate freely about universal joints
on both ends. The parallelogram formed by each pair of
forearms guarantees that the end-effector and fixed base
remain co-planar. The carriages translate vertically on linear
guideways to position one end of the forearms, which leads
to the other end of the forearms translating the end-effector.
Hence, the relative vertical position of each carriage (i.e.,
the joint space) determines the Cartesian position of the 3-
DOF end-effector (i.e., the task space), which holds a nozzle
that deposits melted filament onto a stationary bed. For

Base
link

Carriage v‘ Prismatic joint

Carri
Timing Belt a]ri;l]ige

(prismatic

joint) Y‘ Universal joint
Linear ——— Forearm
guideway links
Stepper Universal joint
1n0}0r' End-
(fixed inside) q effector

@ Springer

The International Journal of Advanced Manufacturing Technology

actuation, each carriage is mounted to a timing belt, which
is, in turn, connected to a base-mounted stepper motor via a
motor pulley—forming the prismatic joint.

2.2 Linear parameter-varying model

The carriage output positions of the delta 3D printer, ¢;,
are a function of two inputs: (a) the commanded position
of each carriage g4, and (b) the forces F,, imposed on
each carriage due to the dynamics of the forearms and end-
effector, where i € {A, B, C} denotes the carriages labeled
A, B, and C (see Fig. 2). Formally, the carriage output
dynamics are given by

qi(s) = Gg,(5)qa;(s) + GFq(s) Fy (X, 5) ey

where s is the Laplace variable, G, (s) and Gp4(s) are
LTI systems representing the carriage position to position
transfer function (TF) and the external force to carriage
position TF, respectively, and X = [x y z]7 is the
end-effector’s position in the task space coordinates.

The coefficients of Gy, (s) and G f4(s) can be identified
from measurements on the printer. Additionally, an analyti-
cal model of Fy, (X, s) is obtained by considering the inertial
dynamics of the end-effector in the task space, which can
be transformed into joint space dynamics using the Jacobian
transpose matrix. The parameters of Fy; (X, s) (e.g., iner-
tia, stiffness, etc.) are also identified from measurements
and least squares estimation techniques. More details of this

" ><Carriage
" line-of-action

Fig. 2 Overhead view of the delta 3D printer showing the (x, y)-
coordinate locations of carriages A, B, and C, the end-effector’s
position in task space X, and the length of the forearms L. End-effector
motion along a carriage’s line-of-action results in significant change to
the carriage dynamics

@ Springer

process are given in [17], which also describes how the for-
mulation transforms Eq. 1 into the following expression:

TP
JEPs | W()Ja(s) ()
JePc

q(s) = Gy (5)9a(s) + Grg(s)

where G, (s) and Gpy(s) are 3 x 3 diagonal matrices
that contain G, (s) and Gfg,(s) as the diagonal entries,
respectively, ¢ = [ga g qc]’ is the carriage output
position vector, qu = [qa, qap qu]T is the desired
position vector, P; € R**3 is a matrix representing the
distribution of task space inertial forces associated with
carriage i, J; € R3*! is the column vector for carriage i
extracted from the linearized Jacobian matrix, denoted by J
(see [17] for details),

wye(s) O 0
W(s) = 0 wy(s) O , (3)
0 0 wz(s)

and wy(s), wy(s), and w,(s) are the flexible inertial
dynamics of the end-effector in the x-, y-, and z-axes
directions, respectively. The model in Eq. 2 can be
expressed simply as

q) = G(5)94(s) o)
where
ngA 11
6(s) = [1-Gry) | 1hPs | W] Gou().)
JePc

yielding a linear parameter-varying (LPV) model of the
delta 3D printer that can be used for linear model-inversion
feedforward control. Note that since there are no position
sensors, we assume the parameters of G(s) can be computed
using the desired configuration instead of the output
configuration, e.g., X instead of X, which was a reasonable
assumption in prior work [37].

3 Feedforward control with filtered B-splines
3.1 Overview of the standard FBS approach

The FBS approach (as presented in [3]) controls the lifted
system representation (LSR) of G(s) with a feedforward
controller (see Appendix for details on the LSR). Let
9% = lgi, () qi,(t1) qiy(tg)]" represent the
entire £ + 1 discrete time steps of the desired trajectory
of carriage i, which are processed in sliding windows.
Assume that time f; marks the beginning of the current
window and that the unknown modified motion command,

The International Journal of Advanced Manufacturing Technology

Yig.C = [igy @) i, 1)+~ Gigy, (hy L)1, is parame-
terized using B-splines such that
Qign (1) Dm,m (t) Pm+nm () pi
Gigm (tk+1) ¢m,m (tk—H) cee ¢m+n,m(tk+l) z.,m
Diam (tk+LC) ¢m,m(tk+Lc) o Pmtnm (fk+Lc) Pimn
Pi.c
@
(6)

where the (non-italicized) subscript C denotes the current
window, L¢ is the number of trajectory points considered
for each window, @ is the open-ended B-spline basis
functions matrix of degree m [3], ¢; n(¢) are real-valued
basis functions [38], j = m, m+1, ..., m+n, p; c is a vector
of n + 1 unknown coefficients (or control points), fy = kT
is the current time, and 7 is the sampling time (see [3] for
more details). To capture the coupling between carriages,

we define qa.c = [q}y, 45, cd¢, cl”» such that
QAy.C 0 0] pac
qdm.Cc = [4Bs,.c | =0 ® 0| [psC (7N
qum»C 0 0 (I) pC,C
————— ——
Nc Pc

Our aim is to minimize the tracking error which is defined

€e=qs—q=9qs—Np &
ep q4.p Ne 0 0 pp
éc | =|dqac|—|Nec Nc 0 | |pc (8
€F q4.F 0 Ncr Ne| | Pr

where subscripts P and F denote the past and future
windows, respectively, and the bar on the matrices and
vectors indicates that the impulse response of the transfer
function used for filtering the B-splines is truncated [3].
Note that the current output carriage motion is given by

qc = Ncpe + Npcpp 9)

Using local least squares, the optimal coefficients of the
current window can be computed as

pc = (NENo) ™ 'Ne (%,c - NPCf’P) (10
=N (a.c — Nechr) an

where pp denotes the coefficients calculated in the previous
window. The windows are designed to overlap such that n
coefficents are computed in each window but only nyp, < n
are updated [3].

For an LTI system, N¢ is pre-filtered and Npc and
NC are computed offline and stored for calculating the
optimal coefficients in every window using Eq. 11 (see
[3] for details on the offline computation). However, for
complex LPV systems like the delta, filtering and inverting

the (large) B-splines matrix must be done online, which
is computationally challenging to do at a fast enough rate
for real-time requirements on many hardware processors.
The rest of this section proposes techniques to optimize the
computation and memory resources required to apply FBS
to the delta 3D printer without significantly sacrificing the
improved accuracy performance when constrained by the
system’s computation and memory capabilities.

3.2 Selecting a parameterized model
for B-splines filtering

Consider the problem of filtering each column of N through
G(s), reproduced below:

JiP4 1
G(s) = [I—qu(s) J;PB W(s)J] G, (). (12)
JcPc

G,

Note that G;l(s) € R3*3 depends on the configuration
through the Jacobian matrix J, while G, (s) is not position
dependent. Hence, we can derive symbolic expressions of
each transfer function in G;l (s) as functions of position.
This derivation leads to symbolic transfer functions of the
form

baa(x,y,2,94, 98, 9c)
J A A (s) = (13)
a(x,y,2,qA.98.4c-)
where baa(-) and a(-) are the numerator and denomina-
tor of the transfer function, respectively, and the subscript
“AA” denotes values pertaining to the A-to-A carriage
position dynamics. The other 8 transfer functions (G ;13 A
G ch A G;’IA 5(s), and so on) can be expressed similarly
with bga(+), bca(-), bap(:), and so on since all transfer
functions share the same denominator a(-). These param-
eterized transfer functions enable fast computations of the
coefficients of G;l(s) during real-time control by simply
substituting the corresponding values of x, y, z, g4, gp, and
gc into the symbolic expressions. Furthermore, we can pre-
filter N with G, (s) offline to obtain N,,. Then, for each
window of trajectory points processed, we filter Nq , With
the transfer functions in Eq. 13 to obtain

i NCAA | _NCBA 1 _NCCA]
) [Ncraa] [NcFga| LNCFea_
|:NC] — NCAB NCBB NCCB (14)
Ncr [Ncryp] [NcFgs | [NCEep |
NCAC NCBC NCCC
LINcF4c| [Ncrge] [Neree]

where [N(T:AA
columns of qu through G;’i\ 4> and so on for the other
blocks of the matrix.

Ng,, 1" is the result of filtering the

@ Springer

The International Journal of Advanced Manufacturing Technology

In practice, the current and future windows are over-
lapped for continuity during computation, but only L¢
points are updated during each sequence [3]. Each over-
lapped window has 2L trajectory points, meaning that
the time complexity for computing the transfer func-
tion coefficients is O(2Lc) (assuming parallel compu-
tation) and the space complexity is O(2L.u,), where
u, is the order of the transfer functions. Some comput-
ers may not have enough processing power to complete
these calculations while maintaining real-time printing—
especially the smaller micro-processors commonly used by
3D printer manufacturers. Additionally, allocating the mem-
ory resources required to store the coefficients may limit the
computer’s ability to allocate quick-access memory to other
important functions like storing the print trajectory.

To prevent such deleterious effects, we select one of
the first L¢ points from each window at which a time-
invariant transfer function G;gl(_.)(s) is computed, which
reduces the time and space complexity to O(1) and O (u,),
respectively. This trade-off is reasonable because: (a) only
the first L ¢ points will be commanded, and (b) L¢ generally
represents a small distance where the dynamics do not
change significantly. For example, L¢ typically ranges
from 100 to 200 points, which represents 100 to 200
ms for a standard sampling interval of 1 ms. For most
practical applications, the 3D printer will not cover large
enough distances in <200 ms to create significant dynamic
variation.

For our implementation of the single point selection
described above, we select the median point (i.e., the point
in the middle of the window) as the representative point.
One can select other points such as the mean point (i.e., the

@

Fig.3 Illustration of the
switching compensation
technique to maintain continuity
described in Section 3.3. The

B-spline coefficients (or control
points) from the previous -
window pp are approximated as

_ Desired

trajectory

Pp to maintain continuity when
the model is switched from
model 1 to model 2. Note that
Nl,pc pp does not have the
correct dynamics for the current
window and Nzpri)P creates a
discontinuity at the window
boundary. The difference
between the desired trajectory
and the approximate residual
motion is also shown as

qa4,c — Npcpp

Nl,Pf)P

Discontinuity

average point in the window for each configuration variable,
considered independently) or the point with the minimum
total Euclidean distance from all the other points in the
same window. In simulations, we found that the tracking
accuracy is not significantly different when any reasonable
central point is selected. In Section 4, we demonstrate that
selecting one point in each window does not significantly
degrade the accuracy of the controller through simulations
and experiments, especially when the technique for smooth
switching is added as discussed in the following subsection.

3.3 Smoothly switching models between windows

One drawback to selecting a different model for each
window is that switching models can lead to discontinuities
in the feedforward controller’s predicted output trajectories.
In the standard FBS approach, continuity of the predicted
trajectories is preserved by using the same LTI model for
every window [3].

To demonstrate what happens in the LPV case, suppose
we used model 1 for the past window and update it to
model 2 for the current window as shown in Fig. 3. When
we switch from model 1 to model 2, the prediction of the
output trajectory in the current window will be different
depending on if we use model 1 (i.e., NLPC[_)P as the
prediction) or model 2 (i.e., Nz,pcf)p as the prediction).
Since model 2 captures the dynamics in the current window
more accurately than model 1, Nz,pc should be used for
the prediction. However, using Ng,pc may result in a
discontinuity in the prediction of the machine’s motion
at the point where the window changes because the

/N'.Z.l’(‘-f)l’

Current ' Future

@ Springer

The International Journal of Advanced Manufacturing Technology

previous window’s control points, pp, were computed using
model 1.

To resolve this discrepancy, we compute an approximate
prediction by generating a set of approximate control
points that ensure continuity with the output from the past
window. The approximate control points are selected to
minimize the difference between the new prediction and the
original prediction while preserving continuity. We write the
optimization problem as

pp = argmin |[N2pcpp — NZ,PCI_)P”%
pp

s.t. N;pc(lk)ﬁp = N] pc(t)Pp 5)
N'; pc(t)Pp = N’} pc(t)Pp

where 1_117’ pc(t) and N{ pc(tx) are the first rows of
- - . . . - T
Nj pc and N pc in the window, respectively, N’ 1.pc (k)

and]_/’; pc(tx) are the first rows of N/lypc and N’z,pc,
respectively (which are the time derivatives of Nl,pc and
Nz’pc), and pp is the approximate control points. Note that
the products

N{pc(tpp and Nj pe(t)Pp (16)

represent positions at the window boundary, and

- T - =T A
N’y pc@)pp and N, pe(t)pp (I7)

and represent velocities at the boundary. Additional
kinematic constraints, such as acceleration and jerk, can
be included in the optimization problem from Eq. 15 by
taking additional derivatives of the B-splines as described in
[38] and [39]. More kinematic constraints leads to smoother
transitions when the dynamics change significantly or when
the window length is long. In our simulations of the machine
used in Section 4, we found that position and velocity
constraints led to similar tracking accuracy when compared
to optimizing Eq. 15 with acceleration and jerk constraints.
Hence, our implementation only uses the position and
velocity constraints for Eq. 15.

Using the approximate control points, the coefficients
that minimize the tracking error in the current window are
obtained by solving

_ _ T
pc = arg rgin[((qd,c — Npcpp) — NCf’C)
C

(((Id,c — Npcpp) — NCf’C)]- (18)

Solving the constrained optimization problem in Eq. 15
in real-time could be challenging. Similarly, we can speed
up the computation of Eq. 18 by using a least squares
optimization method that is faster than the pseudoinverse.
To ensure fast computations, we employ the LU and
QR factorization methods for solving Eqgs. 15 and 18,
respectively, as discussed in the following subsection.

3.4 Command generation with LU and QR
factorization

The optimization problem in Eq. 15 can be solved with a
number of gradient-based algorithms. For example, MAT-
LAB provides functions fmincon and Isqlin to solve con-
strained optimization problems. However, such algorithms
may require a large number of iterations to converge to a
solution, which can stall our controller. To circumvent this
problem, we can solve the constrained least squares problem
with LU factorization by leveraging properties of the filtered
B-splines. To simplify notation, we define the following
from Eq. 15:

A =Nopc, b=Nypcpp (19)
N pe (1) N pe (t)pp

C=| 3 | a=| PO (20)
N'5 pc (k) N’} pc(t)pp

Then, the problem can be written as

Pp =argmin [[App — bl
pp (21)
s.t. Cpp=d

We make two assumptions:

1. The stacked matrix

A
B

has linearly independent columns; and
2. C has linearly independent rows.

As discussed in [32], the filtered B-splines satisfy the above
assumptions with high probability and, in the case they do
not, the B-splines can be freely selected by the user to satisfy
the assumptions. Then, we can construct the Lagrangian,

. 1 .
Z(Pp, 2) & 5 IABP — bll3 + 27 (Cpp — @), (23)

where A is a set of Lagrange multipliers, and find where its
partial derivatives equal zero to obtain the following linear
system

ATA CTT[p ATb

] e
Note that the matrix
[ATA CTT]

c o0 (25)

is nonsingular when the above assumptions hold. Therefore,
the linear equation given by Eq. 24 can be efficiently solved
with LU factorization [40].

We also use QR factorization to efficiently compute
the control points. Using the pseudoinverse to solve the
optimization problem in Eq. 18 accumulates the following

@ Springer

The International Journal of Advanced Manufacturing Technology

{qA(,.I-" 10 q(;,.k}l_ —

| {/\:/,/(- i %/,k}

Inverse |: . -
i N tnematics 1—’ Desired position
Offline R e S o e e _i Offline
Generate B-splines | i¢| Deri boli
P Input buffer Input buffer Select pomtior | eirl\;zsss}i/;?lsc:) 1fc
! i1 > Gyl B0 -+ % | »| representative model || P ply
I [qli‘,k Lo ‘IM] D o 2 il {){“_’ Vw2 Do s G q(.‘r} i 7
el f ke
| ' Scc. III-B:
v !
Filter B-splines with I Filter B-splines with Computle model I Write model
— coefficients of le— coefficients as
G, : G" 3 |
L H J G . f({x’ Vi oeer G ‘]})
| 2 i c
sec_im-A Sec. TII-C A] (.......................................
I Ensure continuous Calculate modified | position
i switching with LU trajectory with QR i
i factorization factorization 1 {%‘M Gy ;W}

Fig. 4 Flowchart of FBS implementation on delta 3D printer. First,
the B-splines are generated offline and filtered with the carriage-only
position-to-position dynamics. G, as described Section 3.1 (left side).
Online, L¢ points from the desired Cartesian and joint coordinates
are buffered for a new window and a representative configuration is
selected from the buffer—the median configuration is used in this

number of floating-point operations (flops) for each step
[40]:

NgNC : Lcn2 flops (26)
(Nch)_1 cnd —|—Lcn2 flops 27)
Nc@a.c : n®+ Len® 4+ 2Len flops (28)

(Nch)_1 (Nc(]d,c) : n’+ Len® +4Len flops. (29)
where §q.c = qq.c — Npcpp. By factoring

Nc =QR (30)
with the modified Gram Schmidt algorithm [41], where
Q € REc*Lce js an orthogonal matrix (i.e., Q7 Q = I) and
R € RLC*" is an upper triangular matrix, the problem in
Eq. 18 can be written as

Rp.c = Q" qu.c (3D

which can be solved using backward substitution. The
number of operations accumulated using this method are

Nc =QR : L¢n® flops (32)
w=Q qsc : Lcn®+2Len flops (33)
Rp.c =w : n’>+ Len® +2Len flops. (34)

Note, from the last step in each method, that the QR
factorization solution is more efficient to compute than the
pseudoinverse.

Remark: The techniques described in Sections 3.2, 3.3,
and 3.4 have been implemented in MATLAB Simulink to
control the MP Delta Pro 3D printer like the implementation
of the standard FBS approach in [3]. Standard FBS
controllers have also been implemented on standalone
micro-controllers for 3D printers by a company called

@ Springer

paper. Then, the representative configuration {x4,,...gc, } is used
to compute the transfer function model coefficients of G;l (see
Section 3.2). This transfer function is then used to filter the offline
B-splines. Finally, we compute the approximate B-spline coefficients
from the previous window to maintain continuity during switching
(Section 3.3) and calculate the modified trajectory (Section 3.4)

Ulendo, which indicates that our techniques can also
be applied to similar micro-controllers. As a visual
representation, Fig. 4 shows a flowchart of the code
implementation. In the following section, simulations and
experiments are used to characterize and validate the
proposed advantages of efficient computation and improved
tracking accuracy.

4 Simulation and experimental validation
4.1 Simulation validation

In this subsection, we simulate the measured dynamics of
the MP Delta Pro 3D printer with a variety of controllers
to compare the computation time and accuracy of the
controller proposed in Section 3 to that of potential
alternatives. We evaluate the performance of following
controllers:

1. a LPV FBS controller where the transfer functions are
computed in matrix form using Eq. 4 at every point in
each window and the coefficients are calculated with
the pseudoinverse;

2. a controller that is the same as controller (a),
except the transfer functions are computed using the
parameterized model from Section 3.2;

3. a controller that is the same as controller (b), except
the transfer functions are computed for only one point
in the window—without the switching compensation
discussed in Section 3.3;

4. acontroller that is the same as controller (c), except with
the switching compensation; and

The International Journal of Advanced Manufacturing Technology

Fig.5 Trajectories of (a) a
square and (b) a butterfly used
for simulations overlaid on the
task space of the delta 3D
printer. The square has a side
length of 140 mm and is
centered at the origin. The
butterfly spans x € [—82, 82]
mm and y € [—77, 23] mm.
Both trajectories have with a
maximum motion speed of 150
mm/s and a maximum
acceleration of 20 m/s?

Y [mm]

-100

-100 -50 50 100
[mm]

@

5. a controller that is the same as controller (d), except
the coefficients are calculated with QR factorization as
described in Section 3.4.

By adding the modifications one at a time, we
can distinguish the effects on computational efficiency
and accuracy of each modification. Each controller’s
performance is also compared to a baseline controller—the
standard FBS controller that uses an LTI model measured at
(x, ¥) = (0, 0) mm for the carriages. We use (0, 0) because
the model at the origin is a reasonable choice for the LTI
model for FBS when the control designer does not have a
model for the position-dependent dynamics.

The simulations are conducted using two trajectories:

1. the trajectory of a square shown in Fig. 5(a) with a side
length of 140 mm and its center at the origin; and

2. the trajectory of a butterfly shown in Fig. 5(b), which
spans x € [—83,83] mm and y € [—77, 23] mm.

Both trajectories have a maximum speed of 150 mm/s and a
maximum acceleration of 20 m/s”. The square is selected to
emphasize straight-line motions and sharp 90° turns which
are prone to vibration. The butterfly trajectory is selected to
emphasize curved motions with tight corners that are prone

100

N Start

Y [mm]

(b)

to contour errors. Each trajectory lasts about 5 s with a
sample time of 1 ms. To simulate the system’s response, the
LSR of G(s) is computed using the known trajectory points.
Parameter-varying compensation for all points (controllers
(a) and (b)) is implemented by computing a point-by-point
LSR matrix for each window. In other words, we compute
the transfer function at each point in the window and
compute its impulse response, which becomes the time-
shifted columns of the LSR matrix (see Appendix). For the
single point compensation (controllers (c)—(e)), we compute
the transfer function and impulse response for the median
point in the window, whose time-shifted impulse response is
repeated to construct the LSR matrix for each window. All
controllers use B-spline basis functions of degree m = 5,
a window length L = 196 points, number of B-spline
coefficients n = 44, and number of updated coefficients
nyy = 22 (see [3] for details). The window length is
determined by the amount of time required for the impulse
response of the transfer function used for filtering (i.e., IIR
filter) to settle close to zero. Since the transfer functions
vary with position, we select the window length for the delta
3D printer using a one-time offline procedure: we construct
a grid of positions in the reachable workspace that are 5
mm apart, compute the impulse response for the transfer

Table 1 Simulation results comparing the total computation time and accuracy of different controllers for generating modified trajectories of the

square and butterfly

Computation time

RMS contour error Accuracy improvement from baseline

(*) Baseline LTI, standard FBS controller

(a) Matrix TFs, all points, pseudoinverse

(b) Parameterized TFs, all points, pseudoinverse
(c) Parameterized TFs, single point, pseudoinverse 8.17/9.86s
(d) Same as above with switching compensation

(e) Same as above with QR factorization 9.19/9.65s

0.014/0.044 s
671.55/820.06 s
181.16/226.30 s

12.28 /13.46 s

594/11.13 um -

0.32/0.38 um 94.6 / 96.6%
0.32/0.38 um 94.6 / 96.6%
0.64/3.21 um 89.3/71.1%
0.34/0.53 um 94.3/95.3%
0.34/0.53 um 94.37/95.3%

Results are listed as [Square / Butterfly]

@ Springer

The International Journal of Advanced Manufacturing Technology

Fig.6 Contour error of the 80 i
modified “square” trajectory

generated by the baseline i o Baseline
controller (solid blue line) and —60 -

controllers (a/b) using all i

trajectory points (solid purple 'g 501

line), (c) a single point without G_]: i

switching compensation (dotted 5 (a/b) All points

red line), and (d/e) a single point g 30+

with switching compensation 3

(dash-dotted yellow line) 2

2 3
Time [s]

function at each position, and use the worst-case settling
time to determine the window length. The number of B-
spline coefficients is computed from the window length as
described in [3].

The simulations are run in MATLAB (version R2022a)
on a 64-bit Microsoft Surface Book with an Intel Core i5-
6300U CPU processor and 8§ GB of RAM. The computation
time of the entire modified trajectory and the root-mean-
square (RMS) contour error for each trajectory and each
controller is reported in Table 1. The percent difference of
the RMS contour error of other controllers compared to the
RMS contour error of the baseline controller simulation is
also reported as “Accuracy improvement from baseline.”
Time-series plots of the contour error comparisons are
shown in more detail in Figs. 6 and 7 for the square
and butterfly trajectories, respectively. For the butterfly
trajectory, the RMS contour error of the baseline controller
is 11.13 um and the trajectory is computed in 44 ms since
the filtering and inversion is completed offline. However,
note that the RMS error of the exact LPV model is almost
30 times less than the baseline at 0.38 pm, although the
computation of the matrix model online is much longer (820
s), which is also about 4 times greater than the computation
time of the parameterized model (226 s) without any change

Fig.7 Contour error of the 70

(c) Single point (w/o
.. switching comp.)

(d/e) Single point (w/
switching comp.)

__

in the RMS error. When we compute the model for a
single point in each window, we can reduce the computation
time by about 20x (to ~10 s) but at a cost of about 10x
increase in RMS contour error (to 3.21 um). The accuracy
is improved to only be about 1.3 x worse than the exact LPV
model (about 0.5 um) when the switching compensation
is implemented, which indicates that we can significantly
reduce the computation time while maintaining relatively
high accuracy with controller (e). The results for the square
trajectory follow a similar trend to the butterfly trajectory.
The baseline controller starts with less absolute contour
error compared to the butterfly because the trajectory is
mostly composed of straight lines which are less prone
to contour errors when compared to the butterfly’s curved
paths. Hence, we have less relative loss of accuracy using
controller (c) for the square (~5% from 94.6 to 89.3%)
when compared to the butterfly (~25% from 96.6 to
71.1%). However, we see a similar order of magnitude
reduction in computation time from controller (a) to
controllers (c) and (e) between the two trajectories, which
indicates that the computational benefit of the proposed
methodology is trajectory-agnostic. Furthermore, Table 2
reports the average (mean) computation time per window
using each controller for both trajectories. Note that there is

modified “butterfly” trajectory
generated by the baseline
controller (solid blue line) and

D
<

= Baseline

. (c) Single point
controllers (a/b) using all 50 (wlo switching 1
trajectory points (solid purple " comp.) /

line), (c) a single point without 401

switching compensation (dotted
red line), and (d/e) a single point
with switching compensation
(dash-dotted yellow line)

|(a/b) All points

comp.)

Contour Error [um]
(]
(=]

Time [s]

@ Springer

(d’e) Single point
(w/ switching

The International Journal of Advanced Manufacturing Technology

Table 2 Mean computation time per window for generating modified
trajectories using each controller

Mean computation time per window

457 x 1074 /7.04 x 1074 s
24.87/35.52's

Baseline controller
Controller (a)

Controller (b) 6.71/12.27 s
Controller (¢) 0.30/041s
Controller (d) 0.46/0.52s
Controller (e) 0.38/0.41 s

Results are listed as [Square / Butterfly]

a similar order of magnitude reduction in computation time
when comparing the parameterized, single-point controller
(controller (c)) to the exact LPV controller (controller (a)).
Shifting focus to the accuracy, we note a spike in
the contour error of controller (c) around 2 s into the
motion in Fig. 7. The spike represents a difficult portion
of the butterfly trajectory—the bottom right of the butterfly
wing—where a switch in models occurs for controllers (c)-
(e). Here, the points are close to the far side of carriage B’s
line of action (see Figs. 2 and 5) which, as discussed in [17],
is prone to larger dynamic variation. (The symmetric points
on the bottom left side of the butterfly are not on the far side
of carriage C’s line of action and, thus, have less dynamic
variation). Similarly, controller (c) leads to small spikes in
error throughout the square trajectory that are not present for
controller (d) as shown in Fig. 6. The spikes are exacerbated
when a switch in windows coincides with a 90° corner on
the square, which can be seen about 1.7 s into the motion.
Generally, the contour error increases for all single point
controllers (c), (d), and (e) when compared to the all-point
controllers ((a) and (b)), but they are worse for controller
(c) which does not include switching compensation. Finally,
note that the total computation time is reduced by 28% for
the butterfly trajectory and 25% for the square trajectory
using QR factorization instead of the pseudoinversion
(controller (e)). Overall, the accuracy of the single point
approach is worse than using all the points in a window,
but the overall accuracy improvement is acceptable given
the (up to) 23x decrease in computation time compared
to using the parameterized exact LPV controller (b), which
is challenging to implement on hardware in real-time, as
discussed in the following subsection on experiments.

4.2 Experimental validation

To study the impact of the proposed methodology on
fabricated parts, we printed a “calibration cube”! and
an extruded butterfly on the delta 3D printer using two

IThe standard XYZ calibration cube used in this paper can be found
at: https://www.thingiverse.com/thing: 1278865

control strategies: the baseline controller and controller (e)
above. We focus most of our attention on the calibration
cube since it is a well-known benchmark to characterize
vibration in the 3D printing industry. Some layers of the
cube’s trajectory have square paths like those studied in
the simulations. The cube also contains letter indentations
which create additional sources of accuracy error. The
butterfly is printed to evaluate the impact of each controller
on curved layer parts. Our aim is to demonstrate the utility
of our contributions by comparing (a) the quality of parts
printed with our controller and the baseline controller at
different positions and (b) acceleration amplitudes of the
carriages during the execution of each print to understand
the effects of the proposed methodology.

We position the center of each part at the following
locations: (x, y) = (0, 0), (—80, 0), (40, —69), and (40, 69)
mm. Each position, except the origin, is chosen to target
each carriage independently; they are located 80 mm
from the origin along the far side of the respective
carriage’s line-of-action. As shown in Figs. 2 and 8, the
position (—80, 0) mm primarily tests variation in carriage
A’s dynamics, (40, —69) mm primarily tests variation in
carriage B’s dynamics, and (40, 69) mm primarily tests
variation in carriage C’s dynamics [17]. The maximum
speed and acceleration for both parts are 150 mm/s and
20 m/s?, respectively. Both the baseline controller and
controller (e) are implemented in MATLAB Simulink,
which sends the motion commands through a dSPACE
MicroLabBox to Pololu DRV8825 stepper motor drivers
to move the stepper motors on the delta 3D printer.
Using the dSPACE hardware and Simulink interface,
only controller (e) compiles successfully for real-time
implementation. Successful compilation of the program
means that the commands will be sent to the machine at
the MicroLabBox’s command frequency of 1 kHz. In other
words, despite the increase in each window’s computation
time for the proposed method compared to the baseline,
there is no difference in the production time for the same
part using the either method.

To quantify the quality differences between cubes
printed at different positions, we use a laser scanner—the
Romer Absolute Arm from Hexagon Metrology (model
#7525S)—to scan a face from each part. We chose to
scan a flat face (without letter indentations) to isolate the
vibration errors. (Unfortunately, some of the fine features
of the butterfly cannot be captured accurately by the laser
scanner so we only use it for the cube). Figure 9 shows
a color map of three scanned parts which are all printed
at (—80, 0) mm using different compensation techniques.
The uncompensated part has a clear vibration mark on
the left side that is largely eliminated when using FBS
compensation. The baseline FBS compensation leads to
larger variations of surface position when compared to the

@ Springer

https://www.thingiverse.com/thing:1278865

The International Journal of Advanced Manufacturing Technology

Carriage A

Carriage B

Carriage C

10 b 10

= 0 __—-muh:f:: 5

=, (Meas.) (0,0) mm 0
D10 |= = (-80,0))
> (40,-69) 3

......... (40,69) e -5

-20 [| = === (Baseline fit) (0,0) Y
? -10
10 10° 10

0

-100

-200

-300

-400

-100

-200

-300

1

1

10 10

Frequency [Hz]

Fig.8 Measured frequency response functions of the carriage position
dynamics at (x, y) = (0, 0) mm (blue solid lines), (—80, 0) mm (red
dashed lines), (40, —69) mm (yellow dash-dotted lines), and (40, 69)
mm (indigo dotted lines) of the Monoprice Delta Pro 3D printer. The
black dashed lines indicate the fitted transfer functions of the base-
line model (at (x,y) = (0,0) mm) that is used for the baseline

proposed controller. This rougher surface of the baseline
FBS part can also be seen in Figs. 10 and 11, which
show the respective images of the X and Y lettered faces
of the calibration cube at all locations. To conserve page
space, the color map images and point cloud data from the
laser scans of the remaining parts are not shown but are
publicly available on Github.? Here, we report the standard
deviation of the point cloud surface for each scanned part in
Table 3. Note that the proposed controller has lower point
cloud surface variance across all the measured parts, which
corresponds to smoother surfaces with less vibration errors.

For comparison, we also show the cube printed without
vibration compensation in Figs. 10 and 11. A visual
inspection of the all the fabricated parts reveals the
following observations:

1. In the uncompensated parts, there are vibration marks
at the edges where there is a change of direction, which
are largely eliminated with FBS compensation.

2. The quality of the parts printed at (0, 0) mm are similar
for both the baseline and proposed controllers.

Zhttps://github.com/nosaedoimioya/delta- printer-experiments. git

@ Springer

Frequency [Hz]

-400
10!

Frequency [Hz]

controller. Note that the carriage dynamics vary most on the far side
of the carriages line of action (see Fig. 2): carriage A’s dynamics vary
significantly at position (—80, 0) mm, carriage B’s dynamics vary sig-
nificantly at position (40, —69) mm, and carriage C’s dynamics vary
significantly at position (40, 69) mm

3. The surface quality of the part printed at (—80, 0) mm
with the baseline controller is worse than the quality of
the part printed with the proposed controller.

4. The quality of the parts printed at (40, —69) mm are
similar for both controllers.

5. The part printed at (40,69) mm with the baseline
controller drifts from its starting position in the middle
of the print, while the part printed with the proposed
controller stays aligned.

6. The quality of the parts printed with the proposed
controller are always either similar to or better than the
parts printed with the baseline controller.

Observation 2 is expected since the baseline controller
performs optimally at (0,0) mm and observation 3 is
expected due to the model mismatch. However, observation
4 appears to be an anomaly. A closer look at carriage B’s
FRFs in Fig. 8 reveals that the measured FRFs from (0, 0)
and (40, —69) mm have similar resonance frequencies.
Also note that carriages A and C have measured FRFs
from (0,0) and (40, —69) mm that also have similar
resonance frequencies. Hence, the baseline controller is
able to adequately compensate vibrations while printing
at (40, —69) mm. The drifting signal in observation

https://github.com/nosaedoimioya/delta-printer-experiments.git

The International Journal of Advanced Manufacturing Technology

Uncompensated Baseline

Proposed
= 1. 1.
0.2 0.2
0 0
-0.2 0.2
-0.4 -0.4

-0.6

-0.6 -0.6

Fig.9 Laser scanned color map of parts printed at (—80, 0) mm. The scanning shows that the surface quality of the uncompensated and baseline
FBS strategies are worse than the surface quality of the proposed strategy, indicating improved surface accuracy

5 is due to the baseline controller overcompensating
for the fast changes in acceleration on the top half
of the Y-face of the cube. Note that the bottom half
of the Y-face only has one indentation, while the top
half has two indentations in succession, which increases
the high frequency content of the acceleration profile.
Figure 12 shows the modified motion commands of
the baseline and proposed controllers in this region of
the print, which shows that the commanded motion of
the baseline controller drifts from the desired command

(0,0)

(-80,0) — Car. 4

while the proposed controller does not. Overcompensation
occurs because the baseline model for carriage C (at
(0,0) mm in Fig. 8) shows that the amplitude of high
frequency content is reduced. Hence, the baseline controller
attempts to increase the input of the high frequency
commands to achieve the desired motion. However, we
know from the measured FRF at (40, 69) that the command
does not need to be amplified. Thus, the proposed
controller, with more accurate dynamics, can compensate
correctly.

(40,-69) — Car. B (40,69) — Car. C

Uncompensated

Baseline

Proposed

Fig. 10 X-axis face of calibration cubes fabricated with the baseline and proposed controllers centered at different positions that target different

carriages

@ Springer

The International Journal of Advanced Manufacturing Technology

(0,0)

(-80,0) — Car. 4

(40,-69) — Car. B (40,69) — Car. C

Uncompensated

Baseline

Proposed

Fig. 11 Y-axis face of calibration cubes fabricated with the baseline and proposed controllers centered at different positions that target different

carriages

Similar behavior is observed on the printed butterfly
part. Figure 13 shows a comparison of the butterfly
printed at (0, 0) and (40, 69) mm using both compensation
strategies. The part that uses the baseline FBS compensation
at (40, 69) drifts in a similar fashion to the cube. The
other butterfly parts printed at different locations do not
have such stark visual differences between the baseline
FBS compensation and compensation with the proposed
controller.> Hence, to quantify the reduction of vibration-
induced acceleration, we also measure the acceleration of
the carriages during each print using the vertical axis of an
ADXIL.335 3-axis accelerometer from Sparkfun Electronics
and compare the acceleration for both controllers to the
acceleration of the desired trajectories for both the cube
and butterfly. Tables 4 and 5 give the RMS and maximum
values of the carriage acceleration, respectively, measured
over the course of a few layers of the calibration cube print.
In absolute terms, the proposed controller accelerations
are closer to desired acceleration in all cases, illustrating
reduction in vibration errors. The maximum difference of
deviation reduction between the proposed controller and the

3The butterfly images are also publicly available online to conserve
space: https://github.com/nosaedoimioya/delta-printer-experiments.git

@ Springer

baseline controller is 8.9% for carriage C at (40, 69) in the
RMS acceleration and 20.8% for carriage A at (—80, 0)
in the maximum acceleration. Following the result from
observation 4, we note that the least deviation from the
desired acceleration occurs for carriage B at (40, —69) for
both RMS and maximum acceleration. Tables 6 and 7 give
the RMS and maximum values of the carriage acceleration
for a few layers of the butterfly print. The proposed
method’s acceleration measurements are also closer to
desired acceleration in all cases for the butterfly part. The
butterfly part also has the maximum difference of deviation
reduction between the proposed controller and the baseline
controller occurring at (40, 69) for the RMS acceleration
and at (—80, 0) for the maximum acceleration. Here, the
deviation is reduced by 39.1% and 39.6%, respectively.

Table 3 Standard deviation of point cloud data on the surface of
scanned calibration cubes printed at various positions using different
compensation strategies

(0,0 (—80,0) (40,—69) (40,69)
Uncompensated 80 um 72 pm 160 um 122 pm
Baseline 74 um 83 um 143 um 772 pm
Proposed 53 um 36 um 130 um 72 pum

https://github.com/nosaedoimioya/delta-printer-experiments.git

The International Journal of Advanced Manufacturing Technology

T T

Bascline

55 = === Proposed
= = Desired

0 100 200 300 0 100
Time [s]

Fig. 12 Commanded motion from the baseline (blue solid line) and
proposed (red dash-dot line) controller during the drifting motion for
the baseline controller while fabricating the part at (x, y) = (40, 69)
mm (triggering carriage C). Note that the baseline model commands
increasing deviations from the nominal position (yellow dashed line),

Time [s]

200 300 0 100 200 300
Time [s]

which leads to the drifting part in Figs. 10 and 11. The baseline
controller creates the drifting commands because of the differences
between the baseline frequency response function and the actual
frequency response function at (40, 69) mm

(0,0

(40,69) — Car. C

Baseline

Proposed

Fig. 13 Examples of the butterfly part printed at (0, 0) and (40, 69) mm using the baseline FBS and proposed compensation strategies. A drift in
trajectory can be seen in the part printed at (40, 69) using the baseline FBS strategy, similar to the drifts seen in the calibration cube in Figs. 10

and 11

Table 4 Root mean square (RMS) acceleration of carriages during
print of the calibration cube

Table 6 Root mean square (RMS) acceleration of carriages during
print of the butterfly

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

(—80,0) —Car. A 3.73 (+0.38)
(40, —69) — Car. B 4.04 (+0.08)
(40,69) - Car. C ~ 4.16 (+0.35)

324(—0.11) 335
3.95(=0.01) 3.96
382 (+0.01) 3.81

(—80,0)—Car. A 4.31 (+1.38)
(40, —69) — Car. B 2.96 (—0.13)
(40, 69) — Car. C ~ 4.29 (+1.35)

3.63(+0.70) 2.93
2.82(=027) 3.09
274 (-020) 294

Table 5 Maximum acceleration of carriages during print of the
calibration cube

Table 7 Maximum acceleration of carriages during print of the
butterfly

Baseline [m/sZ] Proposed [m/sz] Desired [m/s2]

Baseline [m/52] Proposed [m/sz] Desired [m/s2]

(—80,0) —Car. A 22.46 (+4.57) 17.04(-0.85) 17.89
(40, —69) — Car. B 24.67 (+0.81) 24.05 (+0.19) 23.86
(40,69) —Car. C 2553 (+1.67) 23.68 (—0.18) 23.86

(—80,0)—Car. A 30.20 (+8.64) 21.47(-0.09) 21.56
(40, —=69) — Car. B 19.19 (—=2.39) 21.41(-0.17) 21.58
(40,69) —Car. C 21.14 (+2.65) 19.38 (+0.89) 18.49

@ Springer

The International Journal of Advanced Manufacturing Technology

5 Conclusions

This paper proposes practical techniques to enable real-
time, accurate vibration compensation on the prismatic-joint
delta 3D printer. Previous work on improving accuracy of
delta manipulators has focused on servo motor actuated
machines and has relied on sensor measurements and
feedback control. For most delta 3D printers, feedback
sensors are not available so we must use feedforward
control with an accurate dynamic model. Machine learning
models have been recently adopted to model parameter
varying machines and tune their controller gains, but
their impact as end-to-end controllers is limited due to
the difficulty of tuning hyper-parameters and guaranteeing
stability. Here, we use an accurate physics-based LPV
model of the delta 3D printer recently proposed in
[17] with the feedforward model-based FBS approach.
FBS can theoretically reduce vibration on delta 3D
printers but the need to recompute the model and
controller at each new position during real-time control
is computationally challenging. Therefore, we propose
the following techniques to decrease the computational
burden: (1) parameterization and pre-filtering of portions
of the model for fast online operations, (2) computation
of the model at sampled points along the trajectory (while
preserving continuity of the controller’s predictions when
the model changes), and (3) utilization of matrix methods
that yield faster matrix inversion.

Simulations are used to assess the trade-off between
computation time and accuracy. We report that the
techniques presented in this paper result in a 23x
reduction in computation time from the exact parameter
varying controller which re-computes the model/controller
at every point. Thus, our approximations save significant
computational effort while only increasing contour errors
by up to about 1.3 x compared to the exact LPV controller.
Printed parts from our experiments, which are pictured and
scanned, also show an overall improvement in the quality
of parts printed at different locations using the proposed
controller compared to using a baseline controller that is
optimized for the center of the workspace. Furthermore,
acceleration measurements during printing show more
than 39% reduction of vibration-induced accelerations for
the proposed controller when compared to the baseline.
This work shows that we can take advantage of the
high speed motion of the delta 3D printer (compared to
traditional 3D printers) and apply feedforward controllers
like FBS to maintain accuracy during vibration-prone
motion. This paper’s contributions bring us one step closer
to the promise of high speed and high quality additive
manufacturing.

@ Springer

Appendix: Lifted system representation
of a digital filter

As discussed in [32], consider digital filter p, input signal
u, and output signal y defined as:

p ={p-2p-1pop1p2} (35)
u = {uouius} (36)
y = {yoyiyl} (37)

Signals y and u and filter p are related by the convolution
operator as follows:

y=uxp (38)
From Eqgs. 35 to 38,

Yo = pouo + p—1u1 + p—u (39)
y1 = piuo + pour + p—1u2 (40)
Y2 = paug + pruy + pous (41)

This can be expressed in matrix form as

Yo pPo P-1 P2 uo
yi|=1|pr1 po p-1||u (42)
y2 P2 P1 po uz

Note that the main diagonal element (pg) represents the
influence of the current input on the current output; the first
upper diagonal element (p_;) represents the influence of
the succeeding input on the current output and the second
upper diagonal element (p_;) represents the influence of the
second succeeding input on the current output. Similarly,
the first (p1) and second lower (p») elements represent
the influence of the first and second preceding inputs on
the current output, respectively. Hence, the discrete time
transform of p obtained from Eq. 42 is given by

P2z + 1z 4 po’ + poiz! + poad? (43)

which is in accordance with the time-domain definition
given in Eqgs. 35-37.

Author contribution All authors contributed to the study conception
and design. Material preparation, data collection and analysis were
performed by Nosakhare Edoimioya. Conception and implementation
of QR factorization for FBS was performed by Cheng-Hao Chou. The
first draft of the manuscript was written by Nosakhare Edoimioya and
all authors commented on previous versions of the manuscript. All
authors read and approved the final manuscript.

Funding This work was supported in part by the National Science
Foundation [grant numbers 2054715 and DGE 1256260] and a
Michigan Space Grant Consortium (MSGC) graduate fellowship from
the National Aeronautics and Space Administration (NASA), under
award number 8ONSSC20M0124.

The International Journal of Advanced Manufacturing Technology

Declarations

Conflict of interest Authors N. Edoimioya and C.-H. Chou declare
they have no financial interests. A company founded by C.E.
Okwudire holds a commercial license for the filtered B-splines (FBS)
algorithm.

References

10.

11.

12.

13.

14.

. Zakharov OV, Pugin KG, Ivanova TN (2022) Modeling and

analysis of delta kinematics FDM printer. J. Physics: Conf. Series,
vol. 1:2182. https://doi.org/10.1088/1742-6596/2182/1/012069

. Ramani KS, Edoimioya N, Okwudire CE (2020) A robust filtered

basis functions approach for feedforward tracking control —
with application to a vibration-prone 3D printer, IEEE/ASME
Trans. Mechatronics 25(5):2556-2564. https://doi.org/10.1109/
TMECH.2020.2983680

. Duan M, Yoon D, Okwudire CE (2018) A limited-preview fil-

tered B-spline approach to tracking control — with application to
vibration-induced error compensation of a 3D printer. Mechatron-
ics 56:287-296. https://doi.org/10.1016/j.mechatronics.2017.09.
002

. Kim H, Okwudire CE (2020) Simultaneous servo error pre-

compensation and feedrate optimization with tolerance constraints
using linear programming. Int. J. of Adv. Manufac. Tech. 109(3-
4):809-821. https://doi.org/10.1007/s00170-020-05651-w

. Okwudire CE, Huggi S, Supe S, Huang C, Zeng B (2018) Low-

level control of 3D printers from the cloud: a step toward 3D
printer control as a service. Inventions 3(3):56. https://doi.org/
10.3390/inventions3030056

. Codourey A (1998) Dynamic modeling of parallel robots

for computed-torque control implementation. Int. J. Robot.
Res. 17(18):1325-1336. https://doi.org/10.1177/02783649980170
1205

. Angel L, Viola J, Fractional order PID (2018) For tracking control

of a parallel robotic manipulator type delta. ISA Trans 79:172—
188. https://doi.org/10.1016/j.isatra.2018.04.010

. Boudjedir CE, Boukhetala D, Bouri M (2018) Nonlinear PD plus

sliding mode control with application to a parallel delta robot. J
Electr Eng 69(5):329-336. https://doi.org/10.2478/jee-2018-0048

. Ramirez-Neria M, Sira-Ramirez H, Luviano-Juédrez A, Rodriguez-

Angeles A (2015) Active disturbance rejection control applied to
a delta parallel robot in trajectory tracking tasks. Asian J. Control
17(2):636-647. https://doi.org/10.1109/ACC.2012.6314934
Castaneda LA, Luviano-Juarez A, Chairez I (2015) Robust
trajectory tracking of a delta robot through adaptive active
disturbance rejection control. IEEE Trans Control Syst Technol
23(4):1387-98. https://doi.org/10.1109/TCST.2014.2367313
Escorcia-Hernandez JM, Aguilar-Sierra H, Aguilar-Mejia O,
Chemori A, Arroyo-Nunez JH (2019) An intelligent compensation
through B-spline neural network for a delta parallel robot. In:
Proc. 6th Int. Conf. Control, Decis. Inf. Technolo. (CoDIT),
pp 361-366. https://doi.org/10.1109/CoDIT.2019.8820472

Pham P-C, Kuo Y-L (2022) Robust adaptive finite-
time synergetic tracking control of delta robot based on
radial basis function neural networks. Appl Sci 12:10861.
https://doi.org/10.3390/app122110861

Su Y, Sun D, Ren L, Mills JK (2006) Integration of sat-
urated PI synchronous control and PD feedback for control
of parallel manipulators. IEEE Trans. Robot. 22(1):202-207.
https://doi.org/10.1109/TRO.2005.858852

Chiacchio P, Pierrot F, Sciavicco L, Siciliano B (1993) Robust
design of independent joint controllers with experimentation on

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

a high-speed parallel robot. IEEE Trans Ind Electron 40(4):393—
403. https://doi.org/10.1109/41.232228

Zhiyong Y, Tian H (2004) A new method for tuning PID param-
eters of a 3 DoF reconfigurable parallel kinematic machine. Proc
IEEE Int Conf Robot Autom 2249-2254. http://doi.org/10.1109/
ROBOT.2004.1307396

. Zhou Q, Panfeng W, Jiangping M (2015) Controller param-

eter tuning of delta robot based on servo identification.
Chinese J Mech Eng 28(2):267-275. https://doi.org/10.3901/
CIME.2014.1117.169

Edoimioya N, Okwudire CE (2022) A generalized and efficient
control-oriented modeling approach for vibration-prone delta 3D
printers using receptance coupling, Trans. Autom. Science Eng
(TASE). https://doi.org/10.1109/TASE.2022.3197057

Begon P, Pierrot F, Dauchez P (1995) Fuzzy sliding mode control
of a fast parallel robot. Proc IEEE Int Conf Robot Autom 1178-
1183. https://doi.org/10.1109/ROBOT.1995.525440

Yang W, Liu W (2021) Delta robot trajectory tracking based on
fuzzy adaptive sliding mode controller, Proc IEEE China Autom.
Cong. (CAC) 7041-7046. https://doi.org/10.1109/CAC53003.
2021.9727620

Azad FA, Rahimi S, Yazdi MRH, Masouleh MT (2020) Design
and evaluation of adaptive and sliding mode control for a 3-DOF
Delta parallel robot. Proc. IEEE 28th Iranian Conf Elec Eng 1-7.
https://doi.org/10.1109/ICEE50131.2020.9261040

Liu Y-P, Altintas Y (2022) Predicting the position-dependent
dynamics of machine tools using progressive network. Precis Eng
73:409-422. https://doi.org/10.1016/j.precisioneng.2021.10.010
Patifio HD, Carelli R, Kuchen BR (2002) Neural networks for
advanced control of robot manipulators. IEEE Trans Neural
Networks 13(2):343-354. https://doi.org/10.1109/72.991420
Carelli R, Camacho EF, Patifio HD (1995) A neural network based
feedforward adaptive controller for robots. IEEE Trans Syst Man
Cybernetics 25(9):1281-1288. https://doi.org/10.1109/21.400506
Cheng L, Hou Z-G, Tan M (2009) Adaptive neural network
tracking control for manipulators with uncertain kinematics,
dynamics and actuator model. Automatica 45(10):2312-2318.
https://doi.org/10.1016/j.automatica.2009.06.007

Rahimi S, Jalali H, Yazdi MRH, Kalhor A, Masouleh MT
(2772) Design and practical implementation of a neural net-
work self-tuned inverse dynamic controller for a 3-DoF delta
parallel robot based on arc length function for smooth trajec-
tory tracking. Mechatonics 84(10):2022. https://doi.org/10.1016/
j-mechatronics.2022.102772

Park SS, Altintas Y, Movahhedy M (2003) Receptance cou-
pling for end mills. Int J Mach Tools Manuf 43(9):889-896.
https://doi.org/10.1016/S0890-6955(03)00088-9

Law M, Ihlenfeldt S (2015) A frequency-based substructuring
approach to efficiently model position-dependent dynamics in
machine tools. Proceedings of the Institution of Mechanical
Engineers Part K: Journal of Multi-body Dynamics, 229(3):304—
317. https://doi.org/10.1177/1464419314562264

van Zundert J, Oomen T (2018) On inversion-based approaches
for feedforward and ILC. Mechatronics 50:282-291. https://doi.
org/10.1016/j.mechatronics.2017.09.010

Erkorkmaz K, Altintas Y (2001) High speed CNC system
design. Part I: jerk limited trajectory generation and quintic
spline interpolation. Int. J. Mach. Tools Manuf. 41(9):1323-1345.
https://doi.org/10.1016/S0890-6955(01)00002-5

Tajima S, Sencer B (2022) Online interpolation of 5-axis
machining toolpaths with global blending. Int J Mach Tools Manuf
175:103862. https://doi.org/10.1016/j.ijjmachtools.2022.103862
Singhose W (2009) Command shaping for flexible systems: a
review of the first 50 years. Int J Precis Eng Manuf 10(4):153-168.
https://doi.org/10.1007/s12541-009-0084-2

@ Springer

https://doi.org/10.1088/1742-6596/2182/1/012069
https://doi.org/10.1109/TMECH.2020.2983680
https://doi.org/10.1109/TMECH.2020.2983680
https://doi.org/10.1016/j.mechatronics.2017.09.002
https://doi.org/10.1016/j.mechatronics.2017.09.002
https://doi.org/10.1007/s00170-020-05651-w
https://doi.org/10.3390/inventions3030056
https://doi.org/10.3390/inventions3030056
https://doi.org/10.1177/027836499801701205
https://doi.org/10.1177/027836499801701205
https://doi.org/10.1016/j.isatra.2018.04.010
https://doi.org/10.2478/jee-2018-0048
https://doi.org/10.1109/ACC.2012.6314934
https://doi.org/10.1109/TCST.2014.2367313
https://doi.org/10.1109/CoDIT.2019.8820472
https://doi.org/10.3390/app122110861
https://doi.org/10.1109/TRO.2005.858852
https://doi.org/10.1109/41.232228
http://doi.org/10.1109/ROBOT.2004.1307396
http://doi.org/10.1109/ROBOT.2004.1307396
https://doi.org/10.3901/CJME.2014.1117.169
https://doi.org/10.3901/CJME.2014.1117.169
https://doi.org/10.1109/TASE.2022.3197057
https://doi.org/10.1109/ROBOT.1995.525440
https://doi.org/10.1109/CAC53003.2021.9727620
https://doi.org/10.1109/CAC53003.2021.9727620
https://doi.org/10.1109/ICEE50131.2020.9261040
https://doi.org/10.1016/j.precisioneng.2021.10.010
https://doi.org/10.1109/72.991420
https://doi.org/10.1109/21.400506
https://doi.org/10.1016/j.automatica.2009.06.007
https://doi.org/10.1016/j.mechatronics.2022.102772
https://doi.org/10.1016/j.mechatronics.2022.102772
https://doi.org/10.1016/S0890-6955(03)00088-9
https://doi.org/10.1177/1464419314562264
https://doi.org/10.1016/j.mechatronics.2017.09.010
https://doi.org/10.1016/j.mechatronics.2017.09.010
https://doi.org/10.1016/S0890-6955(01)00002-5
https://doi.org/10.1016/j.ijmachtools.2022.103862
https://doi.org/10.1007/s12541-009-0084-2

The International Journal of Advanced Manufacturing Technology

32.

33.

34.

35.

36.

37.

Ramani KS, Duan M, Okwudire CE, Ulsoy AG (2017) Tracking
control of linear time-invariant nonminimum phase systems
using filtered basis functions. J. Dyn. Syst. Meas. Control
139(1):01,1001. https://doi.org/10.1016/j.cirp.2016.04.100
Rigney BP, Pao LY, Lawrence DA (2009) Nonminimum phase
dynamic inversion for settle time applications. IEEE Trans
Control Syst Technol 17(5):989-1005. https://doi.org/10.1109/
TCST.2008.2002035

Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009)
A review of feedforward control approaches in nanopositioning
for high-speed SPM. J Dyn Syst Meas Control 131(6):06,1101.
https://doi.org/10.1115/1.4000158

Okwudire CE, Ramani KS, Duan M (2016) A trajectory
optimization method for improved tracking of motion commands
using CNC machines that experience unwanted vibration, CIRP.
Ann Manuf Technol 65(1):373-376. https://doi.org/10.1016/
j.cirp.2016.04.100

Kasemsinsup Y, Romagnoli R, Heertjes M, Weiland S, Butler H
(2017) Reference-tracking feedforward control design for linear
dynamical systems through signal decomposition. Am Control
Conf 2387-2392. https://doi.org/10.23919/ACC.2017.7963310
Edoimioya N, Ramani KS, Okwudire CE (2021) Software
compensation of undesirable racking motion of H-frame

@ Springer

38.

39.

40.

41.

3D printers using filtered B-splines. Additive Manuf 47.
https://doi.org/10.1016/j.addma.2021.102290

Piegl L, Tiller W (1995) The NURBS book, Heidelberg. Springer,
Berlin

Duan M, Okwudire C (2016) Minimum-time cornering for
CNC machines using an optimal control method with NURBS
parameterization. Int J Adv Manuf Technol 85:1405-1418.
https://doi.org/10.1007/s00170-015-7969-2

Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn.
The Johns Hopkins University Press, Baltimore

Schwarz HR, Rutishauser H, Stiefel E (1973) Numerical analysis
of symmetric matrices, translation of Numerik symmetrischer
Matrizen, Prentice-Hall, Englewood Cliffs N.J.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1016/j.cirp.2016.04.100
https://doi.org/10.1109/TCST.2008.2002035
https://doi.org/10.1109/TCST.2008.2002035
https://doi.org/10.1115/1.4000158
https://doi.org/10.1016/j.cirp.2016.04.100
https://doi.org/10.1016/j.cirp.2016.04.100
https://doi.org/10.23919/ACC.2017.7963310
https://doi.org/10.1016/j.addma.2021.102290
https://doi.org/10.1007/s00170-015-7969-2

	Vibration compensation of delta 3D printer with position-varying dynamics using filtered B-splines
	Abstract
	Introduction
	Overview of LPV model of delta 3D printer
	Description of the delta 3D printer
	Linear parameter-varying model

	Feedforward control with filtered B-splines
	Overview of the standard FBS approach
	Selecting a parameterized model for B-splines filtering
	Smoothly switching models between windows
	Command generation with LU and QR factorization

	Simulation and experimental validation
	Simulation validation
	Experimental validation

	Conclusions
	Appendix A Lifted system representation of a digital filter
	Declarations
	References

