2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC) | 979-8-3503-2697-0/23/$31.00 ©2023 1IEEE | DOI: 10.1109/COMPSAC57700.2023.00085

2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)

A Small Leak Will Sink Many Ships: Vulnerabilities
Related to mini-programs Permissions

1% Jianyi Zhang
Beijing Electronic Science and
Technology Institute
Beijing, China
zjy @besti.edu.cn

4 Zixiao Xiang
Beijing Electronic Science and
Technology Institute
Beijing, China

Abstract—As a new format of mobile application, mini-
programs, which function within a larger app and are built with
HTML, CSS, and JavaScript web technology, have become the
way to do almost everything in China. Many researchers have
done the ecosystem or developing study, while the permission
problem has not been investigated yet. In this paper, we present
our studies on the permission management of mini-programs
and conduct a systematic study on 9 popular mobile host app
ecosystems that host over 7 million mini-programs. After testing
over 2,580 APIs, we extracted a common abstract model for
mini-programs’ permission control and revealed six categories
of potential security vulnerabilities due to improper permission
management. It is alarming that the current popular mobile app
ecosystems (i.e., host apps) under study have at least one security
vulnerability due to the mini-programs’ improper permission
management. We present the corresponding attack methods to
dissect these potential weaknesses further to exploit the discov-
ered vulnerabilities. To prove that the revealed vulnerabilities
may cause severe consequences in real-world use, we show three
kinds of attacks without privileges or cracking the host apps. We
have responsibly disclosed the newly discovered vulnerabilities,
and two CVEs were issued. Finally, we put forward systematic
suggestions to strengthen the standardization of mini-programs.

Index Terms—mini-programs, mini-apps, permission, API, mo-
bile apps

1. INTRODUCTION

Mini-programs are light applications (commonly 2-4 MB)
that run inside a specific mobile app (host app) [1]. As a
new mobile application form, leveraging web technologies like
HTML, CSS, and JavaScript, mini-programs are taking over
China’s iOS and Android app ecosystems. The mini-program
technology enables the “super app” to bundle features and
capabilities into a single mobile native APP, which allows
the users never need to leave this native app. We call the
native app a host app. Many host app vendors, such as Tencent
(WeChat), ByteDance (TikTok), and Alibaba (Alipay), provide

Partially supported by the NSF CNS-1650551, OIA-1946231, CNS-
2117785, OIA-2229752

2" Leixin Yang
Beijing Electronic Science and
Technology Institute
Beijing, China

3" Yuyang Han
Beijing Electronic Science and
Technology Institute
Beijing, China

51 Xiali Hei
University of Louisiana at Lafayette
Lafayette, US
xiali.hei @louisiana.edu

swipe down

l S e

auo’
Aimee

File Transfer

o=2m

< Mini Programs Q

v Model Y

My Mini Programs

@ e

Fig. 1. Tesla mini-program in WeChat. Two ways to access a WeChat mini-
program. The one on the upper left shows accessing a mini-program in the
WeChat recent menu and the lower left shows the main entry point (Main
page-Discover—mini-programs.

their unique framework to support the mini-programs [2].
There are various ways to launch a mini-program in these
host apps. Users can scan a QR code, directly search the
name in the host app, share with a group or friend, or even
launch it with a hyperlink from other mini-programs. As
an example, Figure 1 shows how to launch the Tesla mini-
program in WeChat. Mini-programs are easy to use, with
a clear interface and short loading time. People use mini-
programs daily without worrying about installing too many
apps. Using a mini-program, a user can complete many tasks
like paying bills, playing games, ordering a taxi, booking a
doctor’s appointment, etc. As of 2022, the number of monthly
active users (MAU) of WeChat is over 1.31 billion [3].
TikTok [4] and Alipay [5] has over 1 billion and 668 million
MAU, respectively. The total number of mini-program users
is close to that of Facebook, the most popular social network
worldwide, with about 2.96 billion MAUSs [6].

979-8-3503-2697-0/23/$31.00 ©2023 IEEE 595
DOI 10.1109/COMPSAC57700.2023.00085
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

Since the widespread use of mini-programs, any incorrect
permission granting or settings can result in serious security
and privacy problems. However, there is not much research
focused on this issue. That is not only because it is a new
mobile application format, but also, more importantly, the
permission structure of mini-programs is entirely different
from any other current permission-based security model. As
we know, the mobile operating system (OS) is responsible
for allowing or denying access to specific resources at the
app’s run time [7]. The developers should declare a list
of permissions that the user must grant before installing
or running an application. Then the OS uses this security
model to restrict every mobile app, native or hybrid, access to
advanced or dangerous functionality on the device [8]. Unlike
the current access control models and authorization methods,
the permissions of mini-programs are based on the host app
authorization. That is, Android or iOS decides whether or not
to allow the host apps to have some specific permissions,
and the host apps authorize the mini-program to obtain the
data. Therefore, from the view of OS, it is impossible to
control the permissions of mini-programs directly, meaning
mini-programs may request permissions from OS by using the
reputation of host apps. Improper management of the mini-
program’s permission may cause security problems [9].

The permission issues in mobile applications have been
thoroughly studied, and its permission management mecha-
nism is relatively complete and formal [10]-[18]. However,
the approaches proposed by these studies cannot solve the
security issues in the permission control of the mini-programs.
The mix of permissions that require user and API authorization
results in complex management. Although [19] shows a similar
problem, the target and runtime environments are different
from mini-programs. [20] and [21] describe the problem of
restricting access when the user and OS must both approve.
However, the main problem is the user and OS respond to
permission requests from different targets. So we cannot utilize
their research to solve our problems.

In this paper, we present our systematic studies of the
current mini-programs’ permission management, where we
dissect its framework, ecosystem, and potential vulnerabilities.
We refer to the definition of sensitive permission in Android
and iOS and conduct a series of examinations on mini-
programs. Specifically, we systematically studied 9 popular
mobile app ecosystems hosting more than 7 million mini-
programs. Then we establish an abstract model for existing
mini-programs’ unique permission request process. To present
a clear approach to discover the vulnerabilities, we define the
security principles that the mini-program should be enforced.
According to the abstract model and security principles, we
investigated more than 2,580 APIs and revealed six categories
of potential security vulnerabilities common in most mini-
programs we studied. We described three interesting cases
of APIs and illegal mini-programs to prove that the exposed
vulnerabilities may cause serious consequences on real-world
systems. Finally, we have listed security recommendations for
mini-programs, developers, and users to mitigate the threat of

596

el
App Service E
i |
JSCore 2 .
7] > >
- irequest . request
i :
o . :
View o Native ; oS
PR L
- R T data
£
WebView 4
P
T
................ * 'API
Mini Program
R Y R S P s i SR e HoslApp 3

permission request

allow the permission

Fig. 2. The common framework of mini-programs. If a mini-program wants
to obtain data, it will first request permission from host app, then the host
app request permission from OS. After the user grants the permission, the
mini-program gets the data from host app by calling APIs.

these vulnerabilities.

In summary, we have made the following contributions in
this paper:

o We thoroughly examined the current mini-program per-
missions. Our work deepens the understanding of per-
mission management’s complexity of mini-programs. We
summarize an abstract model of the mini-program per-
mission control and propose a simple security principle
to analyze or discover vulnerabilities more straightfor-
wardly. To the best knowledge, we systematically studied
the mini-programs’ permission management issues for the
first time.

We have detected more than 2,580 APIs. Through large-
scale tracking and analysis of sensitive permission APIs,
we have found six categories of potential security vulner-
abilities during processing sensitive permission requests
from mini-programs.

We conducted empirical research on the currently popular
9 host apps and revealed the security issues corresponding
to the 6 types of potential security vulnerabilities and 3
real-life attacks on the mini-program permissions. Two
of them were identified as CVEs.

To mitigate these potential vulnerabilities, based on the
security principles and access control framework, we put
forward suggestions to strengthen the standardization of
the entire mini-programs’ permission, thereby enhancing
user privacy.

II. BACKGROUND
A. Framework of Mini-programs

Mini-programs are a category of applications embedded in
host apps without the need for downloads and installation [22].
The flow of mini-program framework consists of two com-
ponents: View (the rendering layer) and App Service (the
logic layer), which are respectively managed by two separate
threads, as exhibited in Figure 2. The interface of View is

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

rendered by the WebView component, which handles page
displaying and the user event interaction behavior, while the
App Service employs JsCore threads to run JavaScript, for
controlling the generation and processing of mini-programs
data. The communication between two threads is relayed by
the Native app (which refers to the client).

The host app in the framework determines whether the mini-
program has permission to access the specific data through
the corresponding API. That is, as shown in Figure 2, OS
determines whether to allow host apps to have some specific
permissions, and host apps then can transmit authorized data
to the mini-program through the APIL. In other words, the
permission of mini-programs is inherited from the host app.
Hence, if a host app does not properly manage the data and
permission, data privacy and security issues will occur in its
mini-programs. In this paper, we will focus on the data privacy
leakage and wrong permission request authorization issues
incurred by improper management of a host app.

B. Mini-programs v.s. Web-based Apps

The mini-programs and their host apps are highly similar
to web apps and web browsers. Generally, web apps utilize
HTMLS APIs for permission management. It is a unified
framework for all web apps under different OS. However, the
host app manages the mini-programs’ permission. Different
vendors have their own APIs and schemes.

Similar to the mini-program, a progressive web app (PWA)
also adopts web technology. But differently, a PWA is a type of
webpage or website that runs in the browser and can be added
to the home screen. Hence, the host environment of the PWA
is the browser, and the OS manages the PWA’s permission
through the browser. Mini-programs can be considered as
one type of “Instant” app embedded in host apps. The host
environment is a platform with extra capabilities that can
support seamless service and access control for the user data.

Google’s instant app [23] is very similar to mini-programs.
Both of them allow users to access the application’s con-
tent without additionally installing the application. Thus, the
application space on the device could be saved. In essence,
Google’s instant app is still a native app and under the OS’s
permission control, while the mini-program is under the host
apps’ permission control.

C. Authorization

Permissions in mobile apps can be divided into two types,
install-time permissions and runtime permissions [24]. Here,
the runtime permission is also called dangerous permission,
which is related to users’ privacy and can access users’ private
data, such as location information, contact information, etc.
This information is considered sensitive and should acquire
user authorization for access. When requesting the runtime
permission, the system will display a prompt window, as
shown in Figure 3.

According to Section II-A, the framework provides rich
APIs to support the mini-programs to request a resource such
as user profiles, location information, payment functions, etc.

597

@ s Avoly

Use your camera

[P ——p——

Fig. 3. Under the iOS system, the system permission prompt is displayed
when the Alipay app requests runtime permission (left) and the pop-up
window when a mini-program in Alipay app requests permission from the
host app (right).

However, the user does not authorize the API directly. In mini-
program development, the framework divided the dangerous
APIs into multiple groups, which are named scope associated
with different permissions. The users can select scope to
authorize the permissions. After a scope is authorized by user,
all of the APIs in this scope can use the data directly, i.e., they
have the same permission.

D. Permission Control Abstract Model

We summarize an abstract model that is common to all mini-
programs’ permission control, depicted as follows.

Host App J

—— @ Request A ———»
@ Allow or Reject ?

Allow!

Request A
Allow!

Obtained Permission A Obtained Permission A

P
}
i

@ Request B ——pf
Allow!

Obtained Permission B
— @ RequestB —»|

. Reject!

<
Not Obtained Permission B

]@ Allow or Reject ? |

@ Request C———»
Reject!

y

&

<
Not Obtained Permission C

Fig. 4. The sensitive permission request process of mini-programs. Mini-
programs run in specific mobile applications (host apps), while mobile
applications run in the OS.

Mini-programs are “sub-applications” built on mature mo-
bile applications, which are built on the OS. So, mini-programs
need to pass two-layer authorization when requesting sensitive

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

permissions from users. When mini-programs need access to
sensitive information, they first need to request the authoriza-
tion of their host app, and then the host App needs to request
the authorization of OS. As shown in Figure 4, according to
whether the host app and OS permit or deny the application’s
permission request, we categorize the request process into the
following three cases:

o Both Host App and OS Allow If a mini-program
requests sensitive permission A, the host app will pop up
a window to ask whether the user is willing to grant the
permission. If the user grants the permission, the host app
will continue to request sensitive permission A to the OS,
and the OS will pop up a window. Once the user agrees,
the mini-program will successfully obtain the requested
sensitive permission. Later, when the users use the mini-
program again, they can directly call the interface and
obtain the data.

« Host App Reject but OS Allow In this case, the host app
has obtained permission B given by the OS, but when
the mini-program wants to request permission B, such
permission request is refused. Hence, the mini-program
should not be able to obtain permission B since the mini-
program does not inherit the host app’s permission. In
our later analysis in Section III, most vulnerabilities we
discovered belong to this category.

o OS Reject If the host app does not get the permission
C' given by the OS, neither the host app nor the mini-
programs in it can get this permission. It is worth noting
that when the program calls the API that requires per-
mission, the application will still send a notification and
ask for permission as normal. However, whether the user
permits or denies it, the mini-programs will not have this
permission.

III. SECURITY ANALYSIS
A. Security Principles

According to host-app vendors’ technical documents, we
define the security principles that the mini-program should be
enforced are: Any operations on the data related to a user’s
privacy need to require the user’s authorization, whether the
request is from the mini-program or host app. The form of
request permission can be a pop-up window or an interactive
user operation. If the mini-program can obtain sensitive data
when the user has no functions or rejects the requests, we
recognize that a mini-program has gained unauthorized per-
mission.

B. Access Control Framework

If the mini-program APIs access sensitive resources, a host
app enforces the mini-program permission by calling the mini-
program APIs. Although different host app vendors create
different APIs, according to Section II-C, we know that all
mini-programs use the traditional permission label, scope, an
assignment model to manage the permission.

The host app designers believe that since all the APIs used
by the mini-program come from the host, the mini-program is

598

trustworthy. For interfaces involving user privacy, the user’s
authorization must be required. The vendors classify these
interfaces into several authorization scope such as location,
address, camera, etc. This permission scheme exists in all the
host apps we analyzed. Specifically, WeChat defines a scope
called “scope.camera”. In contrast, Ali defines a scope called
“my.scan”.

C. Adversary Model

In this paper, we assume that the adversary aims to steal all
kinds of users’ privacy by exploiting the improper manage-
ment of the mini-program’s permission. The research makes
the following assumptions. (i) We assume that the adversary
is the mini-programs or the developers of the mini-programs.
They want to steal the data without the user’s awareness. (ii)
The adversary can obtain all the official APIs and uses them
effectively. (iii) The adversary does not need malicious apps
installed on mobile phones and does not need privileges to
execute malicious codes. (iv) The adversary does not need
Android rooting or iOS jailbreaking. (v) The adversary is very
familiar with the directory structure of mini-programs.

D. Potential Vulnerabilities

Followed by our security principles, we conduct a large-
scale analysis of permission-related APIs from different host
apps. A total of 2,580 APIs are detected through manual
or semi-automatic [25] programming. Then we identify the
following six categories of potential security vulnerabilities in
mini-programs’ sensitive permission request process.

1) Reuse Cache Files: When a user quits or deletes the
mini-programs, the cache files in the corresponding path
should also be deleted to avoid being reused. However, when
we close a mini-program, either on iOS or Android, we find
that some host apps do not completely empty the cache files.
Although other mini-programs cannot access this cached file,
the malicious mini-program can still reuse this cached file after
another user logs in. This is not a high-level risk. However,
since reading these cache files does not require privileges, the
attackers can obtain the different users’ private data that is
stored in the cache file easily without the user’s awareness.
Hence, improper management of the cache files still brings
privacy risks to the user.

2) Permission Encapsulation in Leaked APIls: Some APIs
related to sensitive permissions do not encapsulate permissions
well (we refer to these APIs as PEL-API). This means that
any mini-program can directly call these APIs to obtain
the corresponding permissions, ignoring the need to request
permission within the host app. The security issue incurred
during the sensitive permission request process is illustrated
in Figure 6. When the host app obtains a dangerous permission
B from the OS, since some APIs are not encapsulated well by
host app vendors, in some cases, the mini-programs can obtain
the permission without giving the user a notification. Also, in
some cases, the mini-program can still get permission when
the user rejects it. We divide these vulnerabilities into four

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

Permission

Application Host App Allow, OS Allow

Permission Management Issues

Secretly Transfer Sensitive Data

| Vulnerabilities Reuse Cache Files

v ¥ [

Security Risks Collect and use user privacy, personal information abuse.

Host App Reject, OS Allow

Qudllfed Condmons anored Parameter Stings gnored>

Permission Encapsulauon Leaked API

Invalid Permission Sellmq

Contacts Attack

OS Reject

WebView Bypasses Permission Control

Permissions Difference in
Different Environments

F orgoncn API Undcr Permission Control

P

y A
Location Information Attack

A4
Clipboard Content Attack

Fig. 5. The vulnerabilities and attacks in the mini-programs’ permission granting process.

oS

]@ Allow or Reject ?

Host App }

Mini Program

@ Request B ——»|
Allow!

<
Obtained Permission B

—— ® RequestB ——>|
Reject!

<
<
Obtained Permission B

Fig. 6. When Host App Reject and OS Allow, mini-pr
the process of sensitive permissions.

rams illegally obtain

categories according to the reasons and methods of getting
permission.

Qualified Conditions Ignored. According to the description
in Section III-B, when the user must manually operate the
sensitive permissions like view, select, or transmit private
data, the mini-program will consider that the user has allowed
the use of rights in default, so that there will be no pop-up
window. In other words, these APIs do not belong to any scope
(mentioned in Section II-C). And as long as the OS gives the
relevant permissions to the host app, the mini-programs can
call these APIs directly and get data at will. It is not a design
fail since the user is aware of reading or processing private
data. At this time, sensitive data can only be used when the
user interacts with the mini-program, which means the user
controls his/her sensitive information by him/her-self. Mini-
programs cannot steal the user’s sensitive information through
this type of APIs.

However, we found that the host app designer may not
put the sensitive APIs into the scope. As a result, the mini-
program can obtain sensitive data directly without requesting
permission. For example, the host app vendors continue to
upgrade their software, and some new APIs will be added
during these upgrades. These newly added APIs may be
extensions of an old API or have similar functions. If the
old API does not belong to any scope for the above reason,
it is possible that these host app vendors do not put this
new API into scope, too. However, by this new API, the
mini-program may obtain sensitive data without the user’s

599

interactive operation, that is, the user’s awareness. So this new
API becomes a new privacy risk. We believe these APIs ignore
the qualification of sensitive permission (whether private data
will be stolen without the user’s awareness).

Forgotten API Under Permission Control. The host apps
handle whether the sensitive information can be passed to the
mini-program. For example, almost all host apps consider ob-
taining “location information” as dangerous permission. When
the user refuses the permission requests, the mini-program
itself cannot locate the user’s specific location, regardless of
whether the host app has obtained the permission. However,
the host app vendor neglected that some APIs should ask for
authorization before sending the location information to the
mini-programs. In other words, these APIs do not belong to
any scope and can be called without users’ authorization.
Parameter Settings Ignored. From the point of view of
its functions, some APIs may not actively obtain the user’s
sensitive permissions. However, the host app vendor neglects
the parameter settings in API, which will also steal users’
private data. For example, my.chooseCity in the Alipay mini-
programs is an API to open the city selection list. The
parameter showLocatedCity indicates whether to display the
currently located city. If it is set to true, the user’s current city
will be directly located regardless of whether the host program
grants the location permission for the mini-programs. If the
user does not do anything, we cannot see any content about
the location information in the background. However, as long
as the user selects the area located by the system, the host app
will return the current city, latitude, and longitude to the mini-
program in the background, even if the mini-program does not
have the location permission at this time.

Invalid Permission Setting. Some APIs’ permission settings
are inconsistent with their official documents’ descriptions.
To some extent, it shows that the API related to sensitive
permissions in mini-programs does not encapsulate permission
well. For example, wx.choosePoi in mini-programs hosted
by WeChat implements the function of opening the map
and selecting the location. It is indicated in the document
that the invocation of this API requires the authorization of
scope.userLocation. However, in the actual test, we found

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

that the location can be selected without users’ authorization;
and such a case is inconsistent with the official document
description. When the user chooses precise positioning, the
host app will return the latitude and longitude data of the
current user in the background.

3) Stealthily Transferring Sensitive Data: Vertical: Differ-
ent mini-programs under the same host app transmit sensitive
data. The request process for this vulnerability is shown
in Figure 6. When the mini-programs’ developer has some
relationships with the host app vendor, like acquired by the
host app vendor, the mini-program can obtain the users’ data
directly from the host apps without popping up permission
request. Then, the method shown in Figure 6 can bypass user
authorization for stealthily transmitting a user’s sensitive data.
Horizontal: Different mini-programs developed by the same
company may share user information. All the user’s sensitive
permissions acquired by the mini-programs should be made
visible to the user, and the user should have the right to
disallow the mini-program to acquire the sensitive permissions.
However, our empirical study found that some mini-programs
obtain and leverage the user information in their associ-
ated mini-programs by default, including account information,
shipping address, etc. This type of mini-programs skips the
permission request step, and the permission settings pop-up is
blank so that the user cannot revoke the relevant permissions.

4) Permission Management Issues: A mini-program may
continue to use sensitive permissions to collect users’ private
information even if a user wants to revoke the permissions
after using it. In particular, it can be divided into the following
three situations.

Permission Setting Page Disappears. The permission set-
ting page allows users to manage the permissions of mini-
programs. However, some mini-programs may obtain perma-
nent authorization after a one-time authorization due to the
disabled or disappeared permission setting page. In this case,
users cannot view what permissions they have granted to a
mini-program, and they cannot cancel the previously autho-
rized permission. As long as the host app is not uninstalled,
the permission authorization will remain valid. Thus, a mini-
program can use the previous authorization to continuously
gather and use the user’s personal information.

Permission Cannot be Revoked. Regarding the validity pe-
riod of authorization of mini-programs, once a user explicitly
agrees or rejects the authorization, such an authorization
relationship will be recorded in the background until the user
actively deletes the mini-programs. However, the permissions
of some mini-programs may not be able to be revoked, and
it can cause harmful consequences. These mini-programs will
be able to use the previous authorization to continue collecting
and using the user’s personal information.

Unable to Completely Revoked Permissions. The permission
settings of mini-programs should be revoked if the user
actively removes the mini-programs. However, some host
apps forget to clear these permission settings. So permission
settings of some sensitive personal information (such as ID
number) will be retained after the mini-program is re-installed.

600

Mini Program oS

Host App J

No Ask!
S

Obtained Permission C

@ Request C——»|

> Reject!

]@ Allow or Reject ?
<€
Not Obtained Permission C

Fig. 7.7 When OS Reject, niini-programs illegally Obtain the process of
sensitive permissions.

However, when the mini-program is re-installed again, the
setting options of related permissions will not be on the
mini-programs’ settings page, and the user cannot completely
remove the permission.

5) WebView Bypasses Permission Control: The mini-
programs can use the WebView component to carry HS web-
page. In this process, the loaded H5 page needs to manually
import JS files (i.e. a web development toolkit based on the
host apps for web developers) provided by each platform. In
this way, developers can use the capabilities provided by the
mobile phone, such as camera, Bluetooth, and GPS, to bring
users a better experience. After the empirical study, as shown
in Figure 7, we find that WebView component can bypass the
specified API when the mini-programs or host apps do not give
a pop-up for permission request or the user refuses permission
request after the notification.

There are two scenarios to illegally obtain sensitive permis-
sions for mini-programs after using the WebView component.
Scenario I: the mini-programs may completely ignore the
OS’s permission control over host apps and host apps’ per-
mission control. They can directly access any sensitive permis-
sions without notifying a user. Even when OS rejects sensitive
permission requests from a host app, the mini-programs can
still obtain such permissions through the WebView component.
Scenario II: only the OS’s permission control over host apps is
considered, while the host apps’ permission control over mini-
programs is ignored. The specific process is shown in Figure 6.
In this case, if the OS’s permission control on host apps is
disabled, the mini-programs will not obtain the corresponding
sensitive permissions. If the OS’s permission control on the
host app is enabled, a user allows host apps to use certain
sensitive permissions. Hence, any mini-program in host apps
can obtain sensitive permissions. We would like to remark that
both scenarios may result in the disclosure of user privacy.

6) Permission Issues in Different Environments: The mini-
program framework uses the same running codes for iOS and
Android. However, the processing details for some APIs are
not the same between different OS and versions. Since the
framework cannot handle these APIs differently, the same
operations or program codes will have different results under
different running environments. For example, apps can read
the clipboard contents without the user’s manually selecting
“Paste” when the user copies something. This is by design.
Nevertheless, if the user copies sensitive information and
leaves it on the clipboard, all apps can capture it and send
it to a remote server. Copying private data from a clipboard
is risky. Different versions of OS have different feedback on
this. The Android or old version of iOS will not inform the

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE LIST OF COLLECTED 9 HOST APPS.

Company Host App Monthly Active Users
Tencent ‘WeChat 1.31 l?il!ion [3]
Tencent QQ 574 million [26]
Alibaba Alipay 668 million [5]
TouTiao e [27]
ByteDance TouTiao speed Edition 731 million
TikTok 1+ billion [4]
Baidu Baidu 634 million [28]
Multi Vendors QuickAPP 130 million* [29]
China UnionPay UnionPay 10.6 million [30]

“ Only contains Huawei’s data.

user when an application reads the clipboard. Many host apps
will also be silent when the mini-program reads the clipboard.
If OS or host app does not consider the clipboard permission
dangerous, mini-programs with access to the clipboard can
steal the clipboard information of users in the background.
7) Clipboard Content Attack: Since the mini-program’s
framework does not restrict the apps from reading the clip-
board, developers only need a few lines of code to see
what users have just copied. If users copy an online banking
password to paste and leave this private information on the
clipboard, a malicious mini-program can read it in the back-
ground and see that data directly. The same goes for other
sensitive data like names, addresses, credit card numbers, or
even private photos. Mini-programs can capture everything
from a user’s clipboard and do whatever they want with it.
The copied texts could be sent to a remote server without a
user’s awareness. More details can be found in Section V-C.

IV. EMPIRICAL STUDY

This section presents our empirical study for analyzing the
current mini-programs permissions and examines the APIs for
potential vulnerabilities according to Section III. Our goal is
twofold. First, we collect the current popular mini-program
platforms (Table I), and then expose potential vulnerabilities
as outlined in Section III. We also exhibit the security issues
exposed in the real world through detection. Second, we con-
duct case studies to show some real attacks based on improper
permission management of mini-programs, to prove that the
revealed vulnerabilities may cause severe consequences in
real-world use.

A. Mini-programs Ecosystem

We select 9 popular host apps developed by 6 companies,
which are listed in Table I. Each host app has its development
tools. We use the respective development tools to test on
different host apps. Through empirical study, we discuss their
vulnerabilities and list them in Figure 8. The orange blocks
indicate that the host app has corresponding vulnerabilities;
green blocks indicate that the host app has fixed vulnerabil-
ities; gray block indicates that the host app does not have
such a vulnerability; and light yellow blocks indicate that it is
uncertain if there exists such a vulnerability.

B. Vulnerability Analysis

1) Vulnerable Caching Mechanism: Our study discovered
that in WeChat, when a user closes the used mini program

601

TABLE II
THE LIST OF COLLECTED PEL-APIs.

Vulnerabilities | Host App API
Ignore ‘WeChat wx.searchContacts
MapContext.moveToLocation
Forgotten QQ MapContext.getCenterLocation
Parameter Alipay my.chooseCity
Invalidation ‘WeChat wx.choosePoi

but not being deleted from the recent use) list, and reopens
the mini-program, the previously cached temporary files still
exist. Because the local temporary file path can be obtained
in the background, and reading this file does not require
privileges, the temporary file can be reused without the user’s
awareness before being recycled. In QQ and ByteDance, as
long as the user exits the mini programs or reopens the
previously used mini-programs, the previous temporary files
will be automatically deleted. Hence, they do not have this
vulnerable caching concern. Meanwhile, we are not sure if
this vulnerability exists in other host apps since we did not
find the cache files of the mini-programs in the local folder or
if the mini-program does not support personal testing. So this
vulnerability has not been found temporarily in mini-programs
of other host apps. We will keep an eye on this problem. (See
Figure 8 “Cache-related issues”.)

2) Vulnerable APIs: As discussed in Section III-D2, this
kind of issue comes from those APIs that are related to
sensitive permissions but cannot encapsulate permissions well.
In order to find APIs with such vulnerabilities, according to the
security principles mentioned in Section III-A, we set two cri-
teria for analysis: 1) Whether the permission request needs to
be granted by the user under the Android and iOS permission
policy. 2) Whether there is human interaction in the process
of private data acquisition. Suppose the user must manually
operate to view, select or transmit private data. In that case, the
mini-programs will consider that the user is aware of this pro-
cess and allowed permission without notification. Otherwise,
a permission popup should be displayed. Table II summarizes
the APIs that we have found so far that are related to sensitive
permissions but do not encapsulate permissions well. (See
Figure 8 “Ignore, “Forgotten”, ‘“Parameter”, “Invalidation”.)

3) Vulnerable Permissions Transfer: Vertical: The mini-
program “Amap” in the Alipay host app can be opened directly
to precisely locate the user, ignoring the mini-program’s re-
quest for the user’s location permission. Although Alipay and
AMap have reached an in-depth cooperative relationship (both
belong to Alibaba Group) [31], this does not mean that their
operations can bypass the user’s willingness. No abnormality
is found in the public test code of “official demo” provided by
Alipay, but using this mini-program alone can directly locate
users precisely. It shows that there may be an inconsistency
between the source code of “demo” and the public test code
provided. The attackers may use other ways to bypass the user
authorization to transmit the user’s location secretly.
Horizontal: Some companies may share user information
among different mini-programs. For example, after logging
in to the “Pinduoduo” mini-program in WeChat, the same

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

WeChat

QQ %
TikTok ;////%
T(fuTlaO j//%

st 1)

Cache-related

" Ignore
issues

Forgotten

Existed Vulnerability

Parameter

I Ficcd Vulnerability after Our Report 7/ Non-existent

7

7
9
W,

Permission
management

Environmental
differences

Web-view

Invalidation
bypasses

Secretly transfer

Unknown or No Discovery Yet Cell format: Left Android Right iOS

Fig. 8. The vulnerabilities distributions in the collected 9 host apps, where the vertical axis lists the names of host apps and the horizontal axis lists the
vulnerabilities that we have discussed in Section 3. The left part of the cell is the analysis result on Android, and the right is iOS.

login information is displayed directly when the user first uses
another mini-program named “Pinduoduo Coupon”, which is
from the same company. This type of mini-program skips
the permission request, and there is no configurable option
on the permission setting. So the user cannot revoke the per-
mission to access these data. Thus, users cannot fully control
the dissemination of their personal information. It will lead
to the continuous accessibility of personal information and
pose personal information at risk of being used in unknown
circumstances. The issue can be called cross-mini-program
authorization.

It’s common to share the login credential between mobile
apps like Single sign-on (SSO). However, we found that the
information shared between mini-programs from the same
developer/company includes not only login credentials but also
user information, even data that requires access permissions,
such as location. Although we did not discuss their isolation
in this paper, the information sharing still needs to notify the
user. (See Figure 8 “Secretly transfer”.)

4) Insecure Permission Management: The permission man-
agement of UnionPay mini-programs is rather messy. Since
the security of UnionPay is mainly related to user identity
information and payment, it is not very strict to consider
other sensitive permissions such as microphones, geographic
locations, cameras, and photo albums. On the privacy settings
page of the UnionPay APP, we can see the permission setting
options for mini-programs. However, only the authorization
of the phone number and identity information (name, ID
number) is displayed. In contrast, permissions on other sen-
sitive information such as location, access to mobile phone
albums, and the camera are ignored, and there is no permission
setting page inside mini-programs. When a user grants mini-
programs hosted by UnionPay sensitive permission, such as a
microphone, geographical location, camera, and photo album,
as long as the UnionPay app is not uninstalled, the other
mini-programs hosted by UnionPay can always access these

602

permissions.

We found that, in ByteDance, the permission of mini-
programs cannot be removed with the deletion of the mini-
programs. In ByteDance’s official document, there is no clear
explanation of the validity period of the authorization and
whether the authorization will remain valid after deleting mini-
programs. Hence, mini-programs hosted by ByteDance may
use previous authorizations to continuously access and collect
user personal information.

Although the authorized sensitive permission of Alipay
mini-programs can be deleted after a user actively deletes
the mini-program, the sensitive personal information involved
before (such as ID number) will be retained by certain mini-
programs. We have canceled the authorization and removed
the mini-program, but the relevant information can still be
accessed when entering the mini-programs again after a certain
period. At this time, the permission setting of the mini-
program becomes empty, and the user cannot set the permis-
sion on the setting page. This situation indicates that after the
user revokes the permission, the related mini-programs do not
update the permission information in time and may continue
to collect and use the user’s sensitive information. (See Figure
8 “Perimission management”.)

5) Insecure WebView Component: Some mini-programs
can carry webpages through the WebView component. The
communication between the webpage and mini-programs is
implemented by the interface provided by the webpage de-
velopment kit, which is based on host apps provided by each
platform.

In WeChat, for Android, the user’s stored data can be
obtained using the WebView components provided by the
host app. The mini-programs can completely bypass the
normal permission control under Scenario I described in
Section III-D5. Different from that, for iOS, the mini-programs
can obtain the user’s album permission under Scenario I and
can access camera data under Scenario II. In Alipay, no

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

WeChat

('data""This is an example of
getting the contents of the system
clipboard "ertMsg"“getClipboardDa
ta:ok’}

Cancel ok

Alipay
MeProgranDemo Raquest

Pasted from your clipboard
{"data""This is an
En example of getting the

contents of the system

Deny

clipboard.’}

Cancel

ok
Message

Clipboard

TikTok

TouTi

TouTiao Speed
Edition

Quick APP
HUAWED)
{text"This is an example of getting!
the contents of the system clipboard.}

Cancel

PERMISSIONS

None

Fig. 9. Examples of getting clipboard contents in Android. Only @ and @
will pop up a window to the user when the mini-programs get the contents
of the user’s clipboard.

matter for Android or iOS, the mini-programs can bypass
the standard permission control under Scenario II, to obtain
the data such as the user’s camera, photo album, location,
etc. When users reject these sensitive permissions, the data
can still be obtained by using the WebView component. In
Baidu, the mini-programs can obtain the camera permission
to take pictures for iOS under Scenario II. And the mini-
programs of QuickApp in Huawei can obtain the users’ stored
data (pictures, audio, videos, documents, etc.) under Scenario
II. The malicious mini-programs in QuickApp will get users’
precise locations without their awareness. (See Figure 8 “Web-
view bypass”.)

6) Vulnerable Clipboard Mechanism: After the i0S 14
upgrade, a pop-up will inform the user when an app reads
the clipboard’s contents. Hence, there will be a notification
when the mini-programs read the clipboard, no matter which
host apps they run inside.

Android is more complex since there are multiple versions.
For example, Xiaomi MIUI is a third-party mobile phone
OS, which is deeply optimized, customized, and developed by
Xiaomi based on Android. One version of it, Xiaomi MIUI12,
divides the access permission of the clipboard into finer granu-
larity, and users can monitor each request’s reading and writing
behavior. However, in other Android phones (such as Huawei,
Vivo, etc.), users cannot involve the clipboard’s permission
control because they will not get a notification. Under these
OS versions, we test the clipboard permission management
on different host apps in the Android environment, and check
their corresponding prompts, with results shown in Figure 9.
To exhibit that the mini-programs have obtained the contents
of a user’s clipboard, we display a modal dialog box. We
found that 6 out of the 8 host apps (cases 1, 4, 5, 6 in
Figure 9) did not give any prompt to the user when obtaining

603

the clipboard information, which may be vulnerable to the
clipboard content theft described in Section V-C. Cases 2 and 3
in Figure 9 show a design example that the mini-programs will
prompt when obtaining a user’s clipboard contents. However,
for Android and iOS, case 2 only reminds the user that the
mini-programs have obtained the clipboard’s contents through
a pop-up, but the user cannot block the accessing to the
clipboard. In case 3, obtaining the clipboard’s content is set
as the user’s permission to proceed. The user must select
“Allow” before the mini-program can obtain the corresponding
information. We consider these designs with the best security
usability practice.

It should be noted that, although it is set as the user’s
permission to operate in case 3, there is still an issue with
Alipay. In version 10.2.26.8000, Alipay will pop up a window
to ask the user “Request to obtain the contents of your
clipboard”. However, the clipboard contents have been pasted
on the page before clicking “Reject” or “Allow” (this is
equivalent to the mini-program still being able to obtain the
clipboard information after the user refuses the permission
authorization). While in version 10.2.23.7100, users cannot
get any content after clicking “Reject”. (See Figure 8 “Envi-
ronmental differences”.)

V. CASE STUDIES

In this section, we present our case study of some represen-
tative APIs and privacy issues in mini-programs.

A. Stealing Location Information

In the QQ mini-program, the index.js file uses
qq.createMapContext to create a MapContext object. After
the user use MapContext.moveToLocation to move the map
center to the current location, the malicious mini-program
can use MapContext.getCenterLocation to get the latitude and
longitude of the current map center. In the whole process,
the user’s geographic location, latitude, and longitude can
be accurately obtained in the background without the user’s
authorization. When using Tencent’s location service [32], the
attacker can obtain the user’s precise location. We confirmed
that the QQ mini-programs could obtain the center point
of the current location without the user’s authorization,
regardless of the Android or iOS system, and successfully
transfer the data, specific location, and other information
to the mini-program. Once the mini-program associates
the location information with the account information, the
user’s personal information will be completely exposed. The
malicious mini-program can further obtain the user’s location
continuously and then calculate the user’s physical traces
easily.

Hence, the QQ example is not a missing authorization
check. The main reason is the vendor of QQ, Tencent, did
not put some location-related APIs in the scope. If the mini-
program uses these APIs, without permission management
since it is not in scope, it can obtain the local directly without
the user’s authorization.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

B. Stealing Contacts

The API provided by the WeChat mini-programs,
wx.searchContacts, is to find the contacts and match a sim-
ilar mobile phone number. This API does not specify the
number of calls within a period. When the phoneNumber
parameter (i.e., the number to be searched) is written in a
loop, most information in the user contacts can be obtained
by traversing in sequence. Specifically, if a mini-program sets
a button in index.wxml to bind an event and writes the API
wx.searchContacts into this event in the index.js file. When a
user clicks this button, the mini-program will get the data about
the user’s contacts in the background. If the host app (i.e.,
WeChat) has already obtained the contacts’ permission, the
mini-programs can obtain partial contact information without
the user’s awareness. After testing, we have confirmed that
WeChat mini-programs can use this method to obtain the
users’ contacts and successfully transmit the obtained data to
the mini-programs’ background process, whether in Android
or 108, without the user’s authorization and the user’s aware-
ness. Attackers can take advantage of this vulnerability and
bind wx.searchContacts to an inductive button to entice users
to click. Sensitive data in the user’s address book may be
read and uploaded in the background, resulting in information
leakage.

C. Stealing Clipboard Information

Take the WeChat mini-programs as an example. During
the test, we write wx.getClipboardData in the onload event
in the JS code so that the clipboard content can be easily
obtained without the user’s awareness. Even if it is not written
in the onload event, binding this API to the button control
event can also trigger it. In the real world, mini-programs
can write some inductive slogans on the button to induce the
user to click and then obtain the user’s clipboard contents.
After a large number of tests, we have confirmed that many
host apps (e.g., WeChat, ByteDance, Baidu, QuickAPP) can
obtain user clipboard information and successfully transfer
the obtained data into the mini-programs in the background
without the user’s authorization and awareness. Suppose the
copied content is not destroyed after the user pastes it into an
application. In that case, the content can still be obtained when
the user opens a mini-program, thus causing the leakage of the
user’s sensitive information. For example, when a user copies
the name of a certain product, after opening a shopping mini-
program, it can read the user’s clipboard content and upload
the private information in the background. The developers of
this mini-program will know the user may want to buy this
product and push similar commodities or analyze the user’s
behavior to push advertisements precisely.

D. Responsible Disclosure

To ensure that the mini-programs’ mechanism of different
host apps had sufficient time to fix the vulnerabilities, we
contacted them individually about the vulnerabilities sev-
eral months before submitting this manuscript. This allowed
several different host apps to finish patching the reported

604

vulnerabilities. We reported the results of our investigation
to the Tencent Security Response Center as well as to CVE
(CVE-2021-33057, CVE-2021-40180).

VI. DISCUSSION

A. Seriousness of the Vulnerabilities

Some vulnerabilities look like bugs and are easy to be fixed
by the vendor. Take the disappearance of the setting page
(IV-B4) as an example. It is a bug; meanwhile, we also think it
is a serious vulnerability because it is a design flaw in the mini-
program’s framework, and all the mini-programs operated by
this host app will be affected. The mini-program users can do
nothing but watch the malicious apps steal the data.

B. Limitations and Future Works

We conducted a series of mini-programs’ permission tests
based on personal accounts. In other words, the tested APIs
are all for individuals. According to our statistics, the number
of APIs open to non-individual developers is 4.6% of the
number of the total APIs. This type of interface usually
includes obtaining the user’s mobile phone number, motion
data, etc. Different host apps have different attitudes towards
such interfaces. For example, the WeChat mini-programs allow
individual developers to obtain users’ motion data, while
in the Alipay mini-programs, this interface is only open to
corporate users. Generally, those interfaces that are only open
to enterprise users will be more strictly managed by host apps
since these can obtain more data. Therefore, it is very difficult
to examine the APIs used by enterprise accounts. In the future,
we will cooperate with enterprises to test and research these
APIs.

C. Mitigation Measures

Our empirical analysis aimed to draw people’s attention to
the neglected security issue of the improper use of sensitive
permissions in mini-programs. First, the lack of isolation
between mini-programs for some specific permissions like
reading/writing clipboard is one of the design flaws. Besides,
due to inheritance, the permissions of mini-programs are the
subset of the host App’s permissions. When the host App is
not able to manage the permission properly, the mini-program
may obtain more permissions than it needs. This violates
the principle of Least Privilege in the security area. We
call on the host app’s vendors to consider privacy protection
and follow the security principles when designing the mini-
programs’ APIs and access control framework. Users should
also increase their security awareness to protect their personal
information when using mini-programs, and should be vigilant
against mini-programs of unknown origin. Everyone should
not quickly authorize their private information to the mini-
programs to prevent it from being illegally collected and
leaked.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

VII. RELATED WORK

There has not been much research relevant to mini-programs
in the current academic circles regarding the privacy issues
related to permissions. Lu et al. [33] propose their study on the
resource management in mini-program and reveal some high-
impact security flaws. Zhang et al. [25] research the identity
confusion problem in the mini-program ecosystems.

Since mini-programs are built and run on mature mobile
applications (such as WeChat, Alipay, etc.), there are a lot of
studies on security related to mobile application permissions
for us to learn from [34]-[37]. In this section, we introduce
them from the following two aspects.

A. Permission Management Concerns in Mobile Apps

Almomani et al. [38] demonstrated, discussed, and com-
pared the latest technologies in the field of Android permis-
sions, and conducted the latest research on Android permis-
sions, revealing that Android permissions face various security
issues. Fang et al. [39] investigate the arising issues in Android
security, including coarse granularity of permissions, incom-
petent permission administration, insufficient permission doc-
umentation, over-claim of permissions, permission escalation
attack, and TOCTOU (Time of Check to Time of Use) attack
and put forward several methods to further reduce Android
security risks. Reardon et al. [13] searched for sensitive data
being sent over the network for which the sending app did not
have permissions to access it by mechanisms to monitor the
application’s runtime behavior and network traffic. They found
that apps can circumvent the permission model and gain access
to protected data without user consent by using both covert and
side channels and determined how this unauthorized access
occurs. Mujahid et al. [40] implements a technique in a tool
called PERMLYZER, which automatically detects permission
issues from apps APK.

B. Inappropriate Permission Detection in Mobile Apps

In Android, the most common is the permission manage-
ment mechanism of Android [34], [35], [41], [42]. DroidNet
[12] is an Android permission control and recommendation
system, which is an Android permission control framework
based on crowdsourcing. It provides recommendations on
whether to accept or reject the permission requests based
on decisions from peer expert users, which can help users
implement low-risk resource access control for untrusted ap-
plications and protect users’ privacy. HybridGuard [43], a
framework based on the subject authority and fine-grained
policy execution for web mobile applications, can accurately
monitor all web codes to ensure the security of mobile
applications, in which an interception and policy code is
implemented in a single JavaScript file, and whether to in-
tercept them is determined by wrapping API about device
resource access and DOM operation and checking the policy.
M-Perm [11] is a detection tool that combines string analysis
and static analysis to identify normal, dangerous, and third-
party permission requests in applications to detect permission
abuse. Cusper [44] is a new modular design in the Android

605

permission model, which separates the management of system
permissions from custom permissions declared by untrusted
third-party applications. It introduces backward compatible
naming conventions for custom permissions to systematically
eliminate and prevent the loopholes of custom permissions.
The mainstream approach for enhancing the Android per-
mission mechanism is to identify over-declared permissions
requested by an app [45]-[48], and recommend appropriate
permissions for an app [49], [50]. TERMINATOR [16] pro-
vides a safe, reliable, yet non-disruptive approach to protect
mobile users against permission misuses. Liu et al. proposed a
Personalized Privacy Assistant (PPA) for mobile applications,
which can manage mobile permissions of mobile applications
and predict the privacy settings that users want by asking some
questions, and proposed a method to learn the privacy profile
of permission settings [14]. Bao et al. also proposes two novel
approaches to realize permission recommendations [51] .

VIII. CONCLUSION

The mini-program is a new mobile application format that
runs inside a mobile app. Although these mini-programs are
taking over the traditional mobile OS and have become the
way to do almost everything in China, there is little research
on these mini-programs, especially regarding their potential se-
curity and privacy issues. In this paper, we conducted a large-
scale analysis of mini-programs in different host apps for the
first time. We have conducted empirical research on 9 currently
popular host apps, revealing the security issues corresponding
to the 6 types of potential security vulnerabilities we have
discovered in the real world. We propose corresponding attack
methods to analyze these potential weaknesses to exploit the
discovered vulnerabilities. In addition, we also showed three
real attacks on the mini-program’s permissions to prove that
the revealed vulnerabilities may cause severe consequences in
real-world use. Following the practice of responsible disclo-
sure, we have also reported newly discovered vulnerabilities
to relevant security platforms, among which the more severe
vulnerabilities obtained CVE numbers. Lastly, we put forward
a series of suggestions for the future deployment of mini-
programs to protect users’ privacy.

REFERENCES

[

“Mini program platforms 2021: Wechat vs. alibaba vs. baidu,” https:
/Iwww.chinainternetwatch.com/30749/mini-program-platforms/.
“Miniapp standardization ~white paper,” https://www.w3.org/TR/
mini-app-white-paper/.

“Number of monthly active wechat users from 2nd quarter
2011 to 3rd quarter 2022, https://www.statista.com/statistics/255778/
number-of-active- wechat- messenger-accounts/#statisticContainer.
“Tiktok statistics — updated jan 2023,” https://wallaroomedia.com/blog/
social-media/tiktok-statistics/.

“Number of monthly users of alipay mini pro-
grams in china from september 2020 to septem-
ber 2022, https://www.statista.com/statistics/1359311/
china-number-of-alibaba-alipay- mini- program-monthly-users/.
“Number of monthly active facebook users worldwide as of
3rd quarter 2022 https://www.statista.com/statistics/264810/
number-of-monthly-active-facebook-users- worldwide/.

2

[3]

[4

[5]

[6]

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

(71

[8

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

D. Barrera, H. G. Kayacik, P. C. Van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th ACM
conference on Computer and communications security, 2010, pp. 73-84.
W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” IEEE security & privacy, vol. 7, no. 1, pp. 50-57, 2009.

X. Ma, “App store killer? the storm of wechat mini programs swept
over the mobile app ecosystem,” Retrieved November, vol. 15, p. 2019,
2019.

K. W. Y. Au, Y. FE Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 217—
228.

P. Chester, C. Jones, M. W. Mkaouer, and D. E. Krutz, “M-perm: A
lightweight detector for android permission gaps,” in 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). 1EEE, 2017, pp. 217-218.

B. Rashidi, C. Fung, A. Nguyen, T. Vu, and E. Bertino, “Android
user privacy preserving through crowdsourcing,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 3, pp. 773-787, 2017.
J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in 28th {USENIX}
Security Symposium ({USENIX} Security 19), 2019, pp. 603-620.

B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang,
N. Sadeh, Y. Agarwal, and A. Acquisti, “Follow my recommendations:
A personalized privacy assistant for mobile app permissions,” in Tivelfth
Symposium on Usable Privacy and Security, 2016, pp. 27-41.

I. Mohamed and D. Patel, “Android vs ios security: A compara-
tive study,” in 2015 12th International Conference on Information
Technology-New Generations. 1EEE, 2015, pp. 725-730.

A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek, “A
temporal permission analysis and enforcement framework for android,”
in Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 846-857.

M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisger-
ber, “On demystifying the android application framework: Re-visiting
android permission specification analysis,” in 25th {USENIX} security
symposium ({USENIX} security 16), 2016, pp. 1101-1118.

P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on con-
textual integrity,” in 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 499-514.

L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile os
updating,” in 2014 IEEE symposium on security and privacy. IEEE,
2014, pp. 393-408.

F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission granting
in modern operating systems,” in 2012 IEEE Symposium on Security
and Privacy. 1EEE, 2012, pp. 224-238.

G. Petracca, Y. Sun, A. Atamli-Reineh, P. D. McDaniel, J. Grossklags,
and T. Jaeger, “Entrust: Regulating sensor access by cooperating pro-
grams via delegation graphs.” in USENIX Security Symposium, 2019,
pp- 567-584.

L. Hao, F. Wan, N. Ma, and Y. Wang, “Analysis of the development of
wechat mini program,” in Journal of Physics: Conference Series, vol.
1087, no. 6. IOP Publishing, 2018, p. 062040.

“What is instant app (google android instant app)?”
searchmobilecomputing.techtarget.com/definition/instant-app.
“Permissions on android,” https://developer.android.google.cn/guide/
topics/permissions/overview.

L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang., “Identity confusion in webview-based mobile
app-in-app ecosystems,” in In 31st USENIX Security Symposium, 2022,
pp. 1597-1613.

“Number of monthly active qq users from 3rd quarter 2019
to 3rd quarter 2022 https://www.statista.com/statistics/227352/
number-of-active-tencent-im-user-accounts-in-china/.

“Number of monthly active users of popular short video apps in
china in november 2022, https://www.statista.com/statistics/910633/
china-monthly-active-users-across-leading-short-video-apps/.

“Baidu q3 2022 on ai, autonomous driving; baidu app mau up 5%,”
https://www.chinainternetwatch.com/31413/baidu-quarterly/.

https:/

606

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

“The monthly active users of quick app,” https:/twitter.com/Huawei_
devs/status/1398270846481965063.

“Top payment apps in china in 2021,” https://ecommercedb.com/news/
top-payment-apps-in-china-in-2021/3238.

“Introduce of autonavi software,” https://en.wikipedia.org/wiki/
AutoNavi.
“Tencent location service,” https://lbs.qq.com/service/webService/

webServiceGuide/webServiceGceoder.

H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang,
“Demystifying resource management risks in emerging mobile app-in-
app ecosystems,” in Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security, 2020, pp. 569-585.

A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and quali-
tative comparison of program analysis techniques for security assessment
of android software,” IEEE Transactions on Software Engineering,
vol. 43, no. 6, pp. 492-530, 2016.

D. J. Tan, T.-W. Chua, and V. L. Thing, “Securing android: a survey,
taxonomy, and challenges,” ACM Computing Surveys (CSUR), vol. 47,
no. 4, pp. 1-45, 2015.

M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis, and
J. Polakis, “Reaper: real-time app analysis for augmenting the android
permission system,” in Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy, 2019, pp. 37-48.

J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, “An android application
risk evaluation framework based on minimum permission set identifica-
tion,” Journal of Systems and Software, vol. 163, p. 110533, 2020.

I. M. Almomani and A. Al Khayer, “A comprehensive analysis of the
android permissions system,” JEEE Access, vol. 8, pp. 216 671-216 688,
2020.

Z. Fang, W. Han, and Y. Li, “Permission based android security: Issues
and countermeasures,” computers & security, vol. 43, pp. 205-218,
2014.

S. Mujahid, R. Abdalkareem, and E. Shihab, “Studying permission
related issues in android wearable apps,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 1EEE,
2018, pp. 345-356.

E. Alepis and C. Patsakis, “Unravelling security issues of runtime
permissions in android,” Journal of Hardware and Systems Security,
vol. 3, no. 1, pp. 45-63, 2019.

Y. Zhang, M. Yang, G. Gu, and H. Chen, “Rethinking permission
enforcement mechanism on mobile systems,” [EEE Transactions on
Information Forensics and Security, vol. 11, no. 10, pp. 2227-2240,
2016.

P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar, “Hybrid-
guard: A principal-based permission and fine-grained policy enforcement
framework for web-based mobile applications,” in 2017 IEEE Security
and Privacy Workshops (SPW). 1EEE, 2017, pp. 147-156.

G. S. Tuncay, S. Demetriou, K. Ganju, and C. Gunter, “Resolving the
predicament of android custom permissions,” 2018.

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th international
conference on software engineering, 2014, pp. 1025-1035.

J. Wang and Q. Chen, “Aspg: Generating android semantic permissions,”
in 2014 IEEE 17th International Conference on Computational Science
and Engineering. 1EEE, 2014, pp. 591-598.

Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Au-
tocog: Measuring the description-to-permission fidelity in android ap-
plications,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 1354-1365.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “{WHYPER}:
Towards automating risk assessment of mobile applications,” in 22nd
{USENIX} Security Symposium ({USENIX} Security 13), 2013, pp.
527-542.

K. Huang, J. Han, S. Chen, and Z. Feng, “A skewness-based framework
for mobile app permission recommendation and risk evaluation,” in
International Conference on Service-Oriented Computing. — Springer,
2016, pp. 252-266.

Z. Liu, X. Xia, D. Lo, and J. Grundy, “Automatic, highly accurate app
permission recommendation,” Automated Software Engineering, vol. 26,
no. 2, pp. 241-274, 2019.

L. Bao, D. Lo, X. Xia, and S. Li, “Automated android application per-
mission recommendation,” Science China Information Sciences, vol. 60,
no. 9, pp. 1-17, 2017.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 10:46:10 UTC from IEEE Xplore. Restrictions apply.

