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Non-crop vegetation, such as hedgerows and cover crops, are important on-farm
diversification practices that support biodiversity and ecosystem services; however,
information about their rates and patterns of adoption are scarce. We used satellite
and aerial imagery coupled with machine learning classification to map the use of
hedgerows/windbreaks and winter cover crops in California’s Central Coast, a globally
important agricultural area of intensive fresh produce production. We expected that
adoption of both practices would be relatively low and unevenly distributed across
the landscape, with higher levels of adoption found in marginal farmland and in less
intensively cultivated areas where the pressure to remove non-crop vegetation may
be lower. Our remote sensing classification revealed that only ~6% of farmland had
winter cover crops in 2021 and 0.26% of farmland had hedgerows or windbreaks in
2018. Thirty-seven percent of ranch parcels had cover crops on at least 5% of the
ranch while 22% of ranches had at least one hedgerow/windbreak. Nearly 16% of
farmland had other annual winter crops, some of which could provide services similar
to cover crops; however, 60% of farmland had bare soil over the winter study period,
with the remainder of farmland classified as perennial crops or strawberries. Hotspot
analysis showed significant areas of adoption of both practices in the hillier regions
of all counties. Finally, qualitative interviews revealed that adoption patterns were
likely driven by interrelated effects of topography, land values, and farming models,
with organic, diversified farms implementing these practices in less ideal, lower-
value farmland. This study demonstrates how remote sensing coupled with qualitative
research can be used to map and interpret patterns of important diversification
practices, with implications for tracking policy interventions and targeting resources
to assist farmers motivated to expand adoption.
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diversified farming systems, non-crop vegetation, remote sensing, cover crops, hedgerows,
random forest, windbreaks

01 frontiersin.org


https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://www.frontiersin.org/journals/sustainable-food-systems#editorial-board
https://doi.org/10.3389/fsufs.2023.1052029
http://crossmark.crossref.org/dialog/?doi=10.3389/fsufs.2023.1052029&domain=pdf&date_stamp=2023-01-25
mailto:jennifer.thompson@zalf.de
https://doi.org/10.3389/fsufs.2023.1052029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsufs.2023.1052029/full
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Thompson et al.

Introduction

Non-crop vegetation plays important roles on farms. Non-
crop vegetation includes any non-harvested plants on the farm
including, but not limited to, isolated trees, hedgerows, windbreaks,
cover crops, floral strips, and riparian buffers. Planting non-crop
vegetation is an example of a diversification practice, or a practice that
brings biodiversity to an agroecosystem and helps support ecosystem
services. Planned, non-crop vegetation like winter cover crops and
hedgerows supports associated biodiversity including soil microbes,
pollinators, birds, and other taxa (Verboom and Huitema, 1997;
Pereira and Rodriguez, 2010; Morandin et al., 2011; Lecq et al., 2017).
In turn, both planted non-crop species and the biodiversity that they
support can provide critical ecosystem services (although disservices
can also result; Zhang et al., 2007). Such ecosystem services benefit
both farms and the surrounding environment (Kremen and Miles,
2012; Tamburini et al., 2020); for instance, by supporting bees, other
pollinators, pest predators, and parasitoids, hedgerows bolster crop
pollination and pest control services and, by doing so, may allow
for high yields with fewer agrochemical inputs (Cranmer et al,
2012; Morandin and Kremen, 2013; Long et al., 2017; Castle et al.,
2019; Ponisio et al., 2019; Albrecht et al., 2020). Similarly, cover
crops increase nutrient cycling and retention services and maintain
healthier soils, which may support yields with fewer inputs while
reducing harmful nutrient losses (Brennan and Smith, 2005; Heinrich
et al,, 2014; Biichi et al., 2018; Lugato et al., 2020). As such, non-crop
vegetation can help enhance farm viability by securing livelihoods
for farmers while reducing the negative environmental externalities
of agriculture (Kremen and Miles, 2012; Kremen et al., 2012).

Given the potential benefits of such diversification practices, it
is important to understand rates and patterns of farmer adoption
in order to target investments of research, technical assistance, and
policy interventions as well as track their impacts over time. Yet
such information is rarely available in the United States, including in
California, where multiple recent policies make baseline knowledge
of the extent of their usage particularly important. For example,
California’s Healthy Soils Program provides incentives to producers
for adopting practices that sequester carbon or reduce greenhouse
gas emissions (CDFA California Department of Food Agriculture,
2022), including planting non-crop vegetation. Similarly, California’s
Climate Scoping Plan (CARB California Air Resources Board, 2022)
highlights non-crop vegetation as a strategy for meeting goals
related to climate change mitigation in working landscapes. Regional
implementation of water quality regulations recognize cover crops
for their ability to scavenge nitrogen and reduce nitrate leaching
to groundwater (California Regional Water Quality Control Board:
Central Coast Region, 2021). Finally, recent state bans on the
pesticide chlorpyrifos make natural pest control services-like those
that may be provided by hedgerows-all the more critical (Alternatives
to Chlorpyrifos Work Group., 2020).

Even with these emerging policies advocating for non-crop
vegetation, available estimates from government surveys or expert
opinion suggest it is rarely planted on California farms. Cover crops
have been grown on only ~5% of farmland in recent years (Brennan,
2017; USDA United States Department of Agriculture, 2019), while
statewide estimates for other non-crop vegetation practices, like
hedgerows and windbreaks, do not even exist. Qualitative studies
have documented significant barriers to adoption for hedgerows and
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cover crops, especially in California’s Central Coast (Esquivel et al.,
2021; Carlisle et al., 2022). This region produces mainly vegetables
and fruits that are often consumed raw (e.g., lettuce and strawberries),
and food safety concerns are paramount. Following a 2006 outbreak
of pathogenic E. coli on bagged spinach in which over 200 people
became ill and 3 died (Jay et al., 2007), leafy greens buyers required
growers to implement comprehensive new food-safety protocols
on farmers, intending to minimize the risk of crop contamination
with foodborne pathogens from wildlife vectors (Karp et al., 2015).
At least 32% of leafy green growers in California’s Central Coast
reported removing non-crop vegetation on their farms in a survey
following the 2006 E. coli outbreak (Beretti and Stuart, 2008). Nearly
a decade after the incident, ~45% of California produce growers still
reported clearing vegetation to create or expand bare-ground buffers
around their fields (Baur et al., 2016), despite evidence suggesting
the practice is ineffective at mitigating food-safety risks (Karp et al.,
2015; Sellers et al., 2018; Glaize et al., 2021; Weller et al., 2022).
Thus, growers often perceive that hedgerows and windbreaks pose
food safety risks in attracting and harboring wildlife, and additional
supply chain requirements from processors or retailers may actually
prohibit hedgerows in close proximity to crops like leafy greens
(Carlisle et al., 2022). Other barriers to hedgerow adoption include
high costs of initial installation and maintenance, and the relatively
long time to mature and provide pest control or pollination benefits,
unlike herbaceous non-crop vegetation like insectary strips (Long
etal., 2017), not to mention the cost of taking land out of production
for non-crop vegetation. Long-term gains are unlikely to motivate
adoption for the many growers in the Central Coast with shorter-
term land leases (Calo and De Master, 2016; Chapman et al., 2022).

Barriers to cover crop adoption on the Central Coast similarly
involve a combination of economic constraints, perceptions of risk,
technical challenges, and problems with policy programs and/or
incentives (Stuart, 2009). The main obstacle to growing cover crops
in the Central Coast is the high cost of land; Monterey and Santa
Cruz counties have the 4th and 5th highest agricultural land rents
of counties in California (NASS U.S. National Agricultural Statistics
Service, 2020). Growing cover crops that could interfere with cash
crop production is a major perceived opportunity cost (Carlisle
et al., 2022; Chapman et al., 2022). Farms often grow multiple cash
crops per year, which requires careful planning to stay on schedule,
especially with highly variable weather (Brennan, 2017). In the warm-
summer Mediterranean climate (Beck et al., 2020), which has highly
variable interannual precipitation, low rainfall reduces cover crop
germination and/or growth and discourages growers from planting
a cover crop in the first place, especially if additional irrigation
could be needed. Unpredictable rain patterns can delay the clearing
and incorporation of cover crop residue when soils are heavily
saturated late in the winter season (Hartz and Johnstone, 2006).
In turn, this delays cash crop planting as growers wait for soils to
dry before doing the significant soil and bed preparation operations
often used in vegetable and berry production. Residue management
is another obstacle to implementing cover crops, since large pieces
of plant residue can impede cultivation and planting of small-seeded
vegetables (Brennan, 2017).

While social science research has identified barriers to using
hedgerows, windbreaks, and cover crops, fine scale information on
the extent and patterns of adoption at regional or local landscape
scales is unavailable. Such information could identify hotspots and
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coldspots of hedgerow and cover crop adoption, which would
complement social science research and also identify where to
concentrate resources to support greater adoption.

Remote sensing offers an opportunity for detecting and
quantifying farming practices across wide areas, over time, and
at fine scales by using readily available satellite or aerial imagery.
Remote sensing of cover crop use to understand adoption patterns
and benefits has been successful in the U.S. Midwest (Hively et al.,
2009, 2015; Seifert et al., 2018; Kushal et al., 2021). Several studies
have also classified non-crop vegetation such as hedgerows and trees
via remote sensing (Ghimire et al., 2014; O’Connell et al., 2015).
However, previous studies have often focused on regions, such as
much of the Midwest, where just one or two crops dominate vast
areas of large fields with little natural habitat remaining. Areas like
the Central Coast of California pose additional challenges for remote
sensing of non-crop vegetation. As one of the most intensively-
cropped and productive agricultural regions in the U.S, the Central
Coast produces dozens of crops, including strawberries, leafy greens,
grapes, and other specialty crops (CDFA California Department of
Food Agriculture, 2022). Such crops can be grown nearly year-round
in the region’s climate, often on small, irregular fields surrounded
by varying levels of natural habitat. Remote sensing of non-crop
vegetation in agricultural regions like this requires dealing with
the many challenges of differentiating between crops, practices, and
features on such a biologically diverse and spatially varied landscape.

In this study, we used remote sensing and machine learning
to classify and quantify the extent of hedgerows, windbreaks,
and cover crops across the Central Coast of California. We
chose these diversification practices as they are important for
supporting biodiversity and ecosystem services on farms, both within
(cover crops) and around (hedgerows/windbreaks) areas of crop
production. They are also readily visible from aerial and satellite
imagery compared to other diversification practices like compost use
or very narrow floral insectary strips. We focused specifically on
winter cover crops as cover crops are most commonly used over the
winter in this region (Brennan, 2017), when they play a particularly
important role reducing nitrate leaching (Jackson et al., 1993). We
also coupled remote sensing observations with qualitative interviews
with 20 growers and 8 technical advisors to gain insight into patterns
of adoption. Our objectives were to provide baseline understanding
of practice adoption across a three-county region and to assess spatial
patterns of adoption. We expected that adoption of both practices
would be relatively low and unevenly distributed across the landscape
with higher levels of adoption found in marginal farmland and in less
intensively cultivated areas where the pressure to remove non-crop
vegetation may be lower. More broadly, our analysis represents a first
step toward tracking adoption of key diversification practices in one
of the most intensive agricultural regions in the world.

Materials and methods

Study area and data collection

Our study focused on farmland in San Benito, Santa Cruz, and
Monterey counties, encompassing 7,787 km? of California’s Central
Coast (USDA United States Department of Agriculture, 2019).
Farmland within each county was determined with ranch boundary
shapefiles provided by each county’s agricultural commissioner’s
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office. Here, ranch refers to an agricultural operation and can
include rangeland with livestock as well as orchards, annual cropping
operations, and mixed operations. The ranch boundaries represent
the entire property boundaries, not individual field boundaries.
Ranches composed entirely of rangeland, determined by land use
classifications provided by the county agricultural commissioners’
offices as well as visual inspection, were excluded from the study
areas, as many were covered in naturally growing shrubs that could
be mistaken for hedgerows in the analysis.

To collect training data for classification algorithms, we
conducted “windshield surveys” for hedgerows in July 2019 and for
cover crops in January 2021. For each survey, we drove systematically
through farmland and recorded GPS points corresponding to several
types of crop and non-crop vegetation. Hedgerows were defined as
linear strips of shrubs or small trees at least 5m in length and longer
than it was wide. Windbreaks were defined similarly but instead
consisted of taller trees. As there was ambiguity between which
strips would be classified as hedgerows and others windbreaks, we
combined both into a single “hedgerow/windbreak” category. Based
on the windshield survey and additional expert image analysis, we
identified 98 hedgerows/windbreaks. For cover crops, we identified
bare fields (i.e., no plant cover, 171 points), cover crops (76 points),
and various winter cash crops (178 points, for full list of crops see
Supplementary material). Cover crops were predominantly grasses
or grain/vetch/radish/legume mixes with some single-species vetch,
mustard, legume, and radish cover crops also recorded. While some
crops (e.g., radishes or brassicas) can be both cash and cover crops,
we distinguished between them to the best of our ability by noting
bed and row formation as cash crops are planted in rows while cover
crops are broadcast seeded.

Hedgerow/windbreak classification

Object based image analysis (OBIA) (Blaschke, 2010) was used to
classify hedgerows/windbreaks. In OBIA, similar pixels are grouped
together as objects and are grown until the algorithm determines it
has reached a dissimilar pixel. The spectral, geometric, or textural
qualities of the object can be used for land-use classification. Previous
studies have had success in employing OBIA to identify small farm
elements, like hedgerows, as it eliminates error found in pixel-based
classification which could prevent small objects from being properly
classified (Sheeren et al., 2009; Tansey et al., 2009; Ghimire et al., 2014;
O’Connell et al., 2015).

We utilized pre-processed digital 4-band National Agriculture
Imagery Program (NAIP) imagery (NAIP, Aerial Photography Field
Office (AFPO), 2018) from 2018 with a spatial resolution of
60 cm?. We used a multiresolution segmentation algorithm in
the eCognition software (Trimble Geospatial Imaging, Munich,
Germany) to create image objects. For more detailed methods see
Supplementary material.

Once images were segmented, we used rule based classification
and 1,010 model training image objects from the windshield survey
and expert image analysis to classify the objects as one of the following
seven land-use: agriculture (row crops), hedgerows/windbreaks,
vineyards, non-linear (non-hedgerow) shrubs or trees, bare soil
and/or urban, orchards, and water. We used 98 hedgerow/windbreak
image objects, 116 orchard objects, 189 shrub/tree objects, 294
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vineyard objects, and 311 row crop objects. Objects with a normalized
difference vegetation index (NDVI) of <0.1 were classified as
bare/urban and excluded from the subsequent classification. While
0.2 is a common threshold for vegetative vs. bare or urban land
(Sobrino et al., 2001), we found that the OBIA sometimes included
pixels of the hedgerow/windbreak shadow on bare ground, which
subsequently lowered the NDVI. Thus, a more conservative threshold
was chosen to avoid excluding any possible hedgerows/windbreaks.
Objects with a normalized difference water index (NDWI) >0.3
were classified as water. For each remaining unclassified training
object, we exported image object information for 35 variables
representing object spectral (e.g., NDVI), geometric (e.g., length
to width ratio), and textural (e.g., spatial patterns between pixels
in a single object) information that could be used to classify
each vegetative class (Supplementary Table S1). Highly correlated
variables (R?> 0.75) were excluded from the classifier. The remaining
23 image object variables of each training object were used to
train a random forest classifier model using R statistical software
v4.1.2 (R Core Team, 2022) using the package randomforest (Liaw
and Wiener, 2002). The out-of-bag (OOB) error of the random
forest model, a measure of prediction error for machine learning
models, was 5.82%. Once the ideal classifier parameters were
established in R, we ran a random forest model in eCognition
using these parameters to classify all the segmented images. We
also distinguished between hedgerows/windbreaks and riparian
vegetation in our post-classification analysis. Riparian vegetation
can consist of shrubs, trees, and other plants with similar spectral
properties and shapes as hedgerows. Thus, to avoid over-classification
of riparian vegetation as hedgerows/windbreaks, we reclassified all
shrub and hedgerow/windbreak objects bordering water as riparian
vegetation and it was excluded from subsequent analysis.

After classification, 500 accuracy assessment points in the
classified images were randomly created in ArcGIS by equal stratified
random sampling. Each point was assigned one of the seven land
covers land cover classes based on expert image interpretation or
data from the windshield survey, if available, and compared to the
model’s predicted classification. The overall accuracy was 90.0% and
the kappa, another measure of model accuracy, was 0.89. As for
our class of interest, hedgerows/windbreaks, there was a producer’s
accuracy of 97% and a user’s accuracy of 63% indicating that the
model almost always classified a hedgerow/windbreak if it was
there but also tended to over classify other linear elements, such
as drainage ditches filled with vegetation, as hedgerows. Thus, to
have the most accurate classification possible, all objects classified
as hedgerows/windbreaks were manually inspected and reclassified
if needed.

Cover crop classification

We used Sentinel-2 satellite imagery for cover crop classifications
in Google Earth Engine (Gorelick et al., 2017). We chose Sentinel-
2 imagery for its high spatial (10m) and temporal resolution (5
day), ideal for capturing small fields and multiple dates of imagery.
We used temporal aggregation to create composite images by
combining multiple days of imagery useful in differentiating crops.
We pre-processed satellite imagery to remove cloud cover and create
clean images for analysis and added an NDVI band to allow for
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classifications. For the land use classification, we utilized a two-step
classification: threshold and random forest.

To first differentiate perennial vs. annual vegetation, we utilized
a rule-based threshold classification. Any pixels that fell below 0.2
NDVT at some point between June 15th, 2020 and January 15th, 2021
were classified as non-perennial, while those that did not fall below
0.2 were classified as perennial as an NDVI below 0.2 indicated a
bare field and thus the harvest of an annual crop. We used 0.2 NDVI
as it is a common cutoff for differentiating between bare soil and
green vegetation (Sobrino et al., 2001). If the NDVTI of the pixel never
dropped below 0.2, then the soil was likely never bare and thus likely
contained a perennial crop. We clipped threshold classification to
ranch boundaries. The threshold classification was found to have an
overall accuracy of 85% based on an accuracy assessment. The non-
perennial class had a user’s accuracy of 79% and producer’s accuracy
of 100%, indicating that the model almost always correctly classified
non-perennial land, but included some perennial land in the non-
perennial class. This means that while it may include some perennial
land, the non-perennial boundaries used for subsequent classification
likely did not incorrectly exclude non-perennial land.

For the second part of the classification, we classified all the
remaining non-perennial vegetated land into the following classes:
cover crops, annual crops, strawberries, and bare-field classes from
the median pixel values of December 15, 2020 through February
28, 2021. We selected these dates as they are a common time for
winter cover crops in the region before the beds are prepared for
the spring crop and they also resulted in the highest model accuracy.
We used NDVI, the blue band, and green band as classification
variables in a random forest classifier of 100 classification trees.
We clipped this classification to the boundaries from the previous
threshold classification of non-perennial land, i.e., we only consider
these classification results in land determined to be non-perennial
agriculture. We used 80% of ground truth data points per class for
classifier training, while the remaining 20% were used for accuracy
testing (Shelestov et al., 2017). The cover crop classifier was found to
be 87% accurate with a kappa of 0.82. Here, we report on our class of
interest, cover crops, which had both a user’s accuracy of 87% and a
producer’s accuracy of 87%.

Statistical analysis

Hedgerow/windbreak and cover crop usage, calculated as the
percent of a ranch’s total area occupied by hedgerows/windbreaks
or cover crops, was calculated for every ranch within the boundary
shapefile provided. To determine the role of soil type/land quality
on diversification practice usage, farmland classification maps
were taken from the Natural Resource Conservation Services
and the presence of the practice per farmland type (ie., local
importance, statewide importance, grazing land, other land,
prime farmland, and unique farmland) was calculated (California
[n.d.]).

and cover

Department of Conservation. Spatial autocorrelation

of hedgerows/windbreaks determined
(Moran,
hedgerow/windbreak usage was analyzed using Getis-Ord*in
ArcGIS (Ord and Getis, 1995). Getis-Ord™* takes a features value,

here a ranchs hedgerow/windbreak or cover crop usage, and

crops was

using Moran’s i 1950) and hot spot analysis of

compares it to neighboring features; significant clustering of high

frontiersin.org


https://doi.org/10.3389/fsufs.2023.1052029
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Thompson et al.

values indicates a hot spot. Due to a large variation of ranch sizes,
as well as distance between ranches in each county, each county was
analyzed for hotspots separately to ensure that the appropriate scale
was used for the distance matrix needed to calculate the Getis-Ord*
statistic. When calculating spatial statistics, a key step is to determine
the distance or number of neighbors to compare each feature to
that is both appropriate for spatial statistics but also relevant to
the spatial context of the study. The distance band, defined as how
far away a ranch can be located to be considered another ranch’s
neighbor, for each county was calculated with the incremental
spatial autocorrelation tool in ArcGIS. This tool calculates the global
Moran’s i at increasing distances to determine a distance where one
can find peak clustering for the dataset. The distance band chosen
for each county for the hedgerow/windbreak hotspots was 8.37, 9.58,
and 4.43 km and for the cover crop hotspot analysis 8.73, 9.91, and
4.43km (Monterey, Santa Cruz, and San Benito, respectively). The
False Discovery Rate was applied which decreases the critical p-value
thresholds needed to indicate a hot spot in order to address issues
with spatial autocorrelation in the dataset which could inflate the
number or significance of hot or coldspots.

Qualitative interviews

In February 2019, we conducted semi-structured, in-depth
interviews with 20 farmers in the California Central Coast region
who grow organic lettuce as either their primary cash crop or part
of a diverse array of crops. We focused on lettuce because it is
the most economically valuable vegetable crop grown in the region
(CDFA California Department of Food Agriculture, 2022). Within
our interview sample, farms ranged in size from 4 acres to over
10,000 acres (mean: 1,935 acres; median: 100 acres) and spanned
four counties: Monterey (5 interviews), San Benito (4), Santa Cruz
(5), and Santa Clara (1), with 5 additional farmers spanning multiple
of these counties. Details of participant recruitment and interview
procedures can be found in Esquivel et al. (2021) and Carlisle et al.
(2022). Briefly, we selected a stratified sample of all organic farms
in these counties that listed organic lettuce as a crop and contacted
farmers that reflected ecological diversity (e.g., crop diversity) and
a diversity of farm scales (i.e., sizes), geographical locations within
the study region, and cultural backgrounds/first languages. Twenty
farmers agreed to participate and completed an interview. Because
we deliberately included farm types that are less common (highly
diversified, medium-sized, direct-market), our sample represents a
higher-than-average adoption of cover cropping and hedgerows. In
2020, we also interviewed five additional conventional wholesale
farmers in order to include the perspectives of larger, less-diversified
farmers who are more representative of the average farm type in our
study area.

To complement interviews with growers, in May 2019 we
conducted semi-structured, in-depth interviews with 8 technical
assistance providers whose names came up repeatedly in interviews
with growers. While this was not a systematically representative
sample of technical assistance providers in the region, interviewing
these individuals allowed us to verify and build on what we learned
from grower interviews about patterns of adoption of cover crops and
hedgerows. Because these technical assistance providers spoke from
their knowledge of the sector as a whole, they could both generalize
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FIGURE 1

Map of Monterey, San Benito, and Santa Cruz counties showing the
percent area of each ranch covered by hedgerows. Inset maps show
areas of higher (Santa Cruz) and lower (Monterey) hedgerow adoption.
Red ovals indicate significant hotspots of hedgerow adoption, while
blue ovals indicate coldspots.

across multiple operations and speak candidly about sensitive issues
that might not be comfortable topics to investigate in the context of
a specific operation. These interviews thus provided an opportunity
for us to test hypotheses about patterns of adoption that were implied
in our grower interviews.

Interview

both
focused on diversification practices,

questions posed to groups
(Supplementary material)
crop and non-crop diversity, and how farm-level decisions were
shaped by various market and policy factors. We began by asking
open-ended questions (e.g., what practices do you currently use
to maintain or improve soil health on your farm?), and followed
with more specific questions (e.g., do you grow any non-crop plants
on your farm, such as hedgerows, buffers, or habitat for beneficial
insects?). Interviews were digitally recorded and transcribed
verbatim. We analyzed interview transcripts in NVivo 12, using
an iterative coding method following an open, axial, and selective
coding procedure (Corbin and Strauss, 1990). To identify key factors

influencing farmer adoption of cover crops and hedgerows, data
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TABLE 1 Moran’s i spatial autocorrelation assessment; significant values
indicate spatial autocorrelation of the practice within each county.

Moran’'si Expectedi Zscore P value
Hedgerow/
windbreaks
Monterey 0.009 —0.0005 4.952 <0.00001
San Benito 0.0283 —0.0008 9.984 <0.00001
Santa Cruz 0.0065 —0.0009 6.2814 <0.00001
Cover crops
Monterey 0.069 —0.0005 36.89 <0.00001
San Benito 0.049 —0.0083 16.96 <0.00001
Santa Cruz 0.027 —0.0009 24.39 <0.00001

»

were coded into thematic categories, such as “Land Costs,” “Pressures
from Buyers,” and “Peer Learning and Influence.”

Results

Hedgerows/windbreaks

Our study area included 4,371 ranches across 1,260 km?. Average
ranch size in each county was 0.5, 0.18, and 0.1 km? (or 124, 44,
and 24 acres) for Monterey, San Benito, and Santa Cruz counties,
respectively. Hedgerows/windbreaks were detected on 22% of the
ranches across all 3 counties (Figure 1), with 18% of ranches in
San Benito, 27% in Monterey, and 21% in Santa Cruz County
having hedgerows. The average length of a hedgerow/windbreak was
116 m. The total area covered in hedgerow/windbreaks across all
counties was 3.27 km? or 0.26% of the study area. Ranches with
hedgerows/windbreaks showed significant spatial autocorrelation
(Table 1), indicating that ranches with hedgerows/windbreaks were
near other ranches with hedgerows.

The Getis-Ord G* indicated that there are several significant
hotspots of hedgerow/windbreak usage. Most notably, these include
the most northeast section of San Benito County between (a) the CA-
156 highway and nearby hills, (b) the hillier part of the primary Santa
Cruz County agricultural region near the census-designated places of
Amesti and Freedom, and (c) a hotspot near the cities of Soledad and
Greenfield in Monterey County (Figure 1). There were no hotspots
detected in the large swath of prime agricultural land between
and directly surrounding the cities of Watsonville and Salinas and,
notably, a strong coldspot near Salinas in Monterey County.

Cover crops

We found that 74.9 km? of farmland across the three counties
in our study was planted with cover crops over the winter 2020-
2021 season. This represents only 5.9% of total farmland area with
37% of ranches having least 5% of their fields cover cropped at
this time. Santa Cruz County had the largest percentage of cover
cropped farmland at 15.4%, whereas 5.1% of land was cover cropped
in Monterey and 5.8% in San Benito (Table 2). In contrast, fields with

Frontiers in Sustainable Food Systems

10.3389/fsufs.2023.1052029

bare soil constituted the majority of Central Coast farmland (59.9%
of land; Supplementary Table S4).

Just as for hedgerows/windbreaks, significant spatial
autocorrelation was found between ranches that adopted cover
crops, indicating clustering of cover crop adoption (Table 1).
The Getis-Ord G* analysis indicated significant hotpots of cover
crop usage within each county. The hotspots in (a) Santa Cruz
and (b) San Benito were located in nearly the same areas as the
hedgerow/windbreak hotspots (Figure 2) while the cover crop
hotspot in (c) Monterey County was found in areas near the Pajaro
River and the census-designated place, Las Lomas. No other hotspots
were found in Monterey County but significant cold spots existed

near the cities of (d) Salinas, (e) Gonzales, and (f) Greenfield.

Adoption and farmland type

Nearly 60% of our study area was classified as “Prime Farmland”
but less than half of the total area classified as hedgerows/windbreaks
or cover crops was located in this prime farmland area (Table 3).
Prime farmland is defined as very important in meeting U.S. food,
feed, forage, and fiber needs due to ideal physical and chemical
characteristics such as water availability, soil type, and climate.
Conversely 16.8% of the area classified as hedgerows/windbreaks and
16.2% of cover crops were located on “Unique Farmland,” which
made up just 8.5% of the study area (Table 3). Unique farmland, like
prime farmland, has characteristics that make it valuable for growing
crops but specifically for more specialized and regional high-value
crops such as almonds, citrus, grapes, etc.

Patterns of adoption

The significant spatial autocorrelation in the locations of
hedgerows/windbreaks and cover crops suggests possible biophysical
and social mechanisms influencing their adoption, some of which we
were able to investigate through our interviews. Hotspots of adoption
for hedgerows/windbreaks and cover crops overlapped in Santa Cruz
and San Benito counties, coinciding with some of the hillier and
less attractive farmland. The only hedgerow/windbreak hotspot in
Monterey County was found at the southern end of the valley where
there are many vineyards that use windbreaks around and within
their fields as observed during the windshield surveys. Different
management considerations and supply chain pressures may make it
easier to establish and maintain hedgerows/windbreaks in vineyards
vs. intensive vegetable and berry production systems.

In our interviews with organic farmers and technical assistance
providers, we deliberately explored two hypotheses for the pattern of
lower cover crop and hedgerow/windbreak adoption on high-value
farmland in the flat areas of Monterey County. The first hypothesis
was that higher farmland rent discouraged producers from taking
any land out of cash crop production, due to financial pressures to
bring in enough revenue to cover these rents (Guthman, 2004). We
reasoned that these pressures connected to land rent would bear more
heavily on those farming high value lands in Monterey County, where
irrigated farmland rent averages US$2,050/acre, as compared with
those farming in San Benito County with rents of US$725/acre and in
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TABLE 2 Land use cover (in km?) in each county from the cover crop classifier.

10.3389/fsufs.2023.1052029

County Annual Ba Strawberry  Cove ps Perennial Total
crops crops

San Benito 31.02 140.01 21.63 12.74 15.89 221.29

Santa Cruz 26.40 20.29 9.26 13.90 20.36 90.21

Monterey 144.05 597.02 102.86 4824 61.64 953.81

Total 201.47 757.32 133.75 74.88 97.89 1,265.31

% cover crop
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I 50-100%
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FIGURE 2

Map of Monterey, San Benito, and Santa Cruz counties showing the
percent area of each ranch covered by cover crops. Inset maps show
areas of higher (Santa Cruz) and lower (Monterey) hedgerow adoption.
Red ovals indicate significant hotspots of hedgerow adoption while
blue ovals indicate coldspots.

hillier areas of Santa Cruz County (NASS U.S. National Agricultural
Statistics Service, 2020).

This hypothesis was widely confirmed in our interviews, with 11
of 20 growers and all 8 technical assistance providers citing higher
land rent costs as a significant discouragement to take any land
out of production by planting cover crops or hedgerows/windbreaks
(Table 4).

Frontiers in Sustainable Food Systems

TABLE 3 Percent of total study area and percent of mapped
hedgerow/windbreaks and cover crops found in each of the NRCS
important farmland classifications.

Farmland Study area Hedgerow/ Cover crops
type windbreaks

Prime 59.4 44.8 44.7
farmland

Statewide 14.9 12.4 18.1
importance

Grazing land 10.4 12.1 12.2
Unique 8.5 16.8 16.2
farmland

Other land 4.6 13.0 7.5
Local 2.2 1.0 14
importance

We also explored a related hypothesis, which speaks to the
complexity of social and ecological relationships in this agricultural
region. Growers on high-value farmland, we hypothesized, not
only faced pressures to maximize land in production; these same
financial pressures pushed these growers to scale their operations
into the hundreds of acres, which in turn forced them to work with
wholesale buyers. These wholesale buyers imposed stringent food
safety requirements, discouraging farmers from planting any non-
crop vegetation, and in some cases asking them to remove existing
hedgerows. At the same time, the rigid harvesting schedules required
by these buyers discouraged growers from planting cover crops, as
they were unwilling to take any risk of getting delayed with spring
planting. Buyers at this scale could also penalize growers for having
any “foreign material” in the field at the time of harvesting, with
cover crop residue counting as one such source of “foreign material.”
This hypothesis was also widely confirmed in our interviews, with
7 of 20 growers and all 8 technical assistance providers citing
discouragement from large scale buyers as a factor in decisions to
avoid cover crops and hedgerows/windbreaks (Table 4).

Additionally, two other patterns of adoption emerged
from our interviews, even though we did not design our
questions to deliberately explore these hypotheses. For one, a
number of farmers (n=6, Table4) reported that they prioritize
adoption of cover crops and hedgerows/windbreaks in hillier
areas prone to erosion, as well as other marginal lands. In
explaining why they did this, farmers typically cited their own
stewardship values, although we suspect some farmers may
also be motivated to avoid county penalties when sediment
accumulates on roads. Additionally, some remnant native vegetation
in hillier regions may be counted as hedgerows/windbreaks
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TABLE 4 Key themes and quotes helping to explain patterns of adoption of cover crops and hedgerow/windbreaks from interviews with 20 growers and 8

technical assistance providers in California’s Central Coast.

# of
farmers

# of TA
providers
discussing

discussing

Illustrative quotes

(N = 20)

(N=28)

Farmers prioritize adoption of cover crops 6 0
and hedgerow/windbreaks in hillier and
more marginal areas

“Erosion control is another thing. If we have steep slopes, then we'll intentionally plant
those with cover crops in the wintertime.” “A lot of the cover cropping does happen
on some of the poorer soils.” “The flat land is mostly in crop production, and then
anything that is more on a sloping portion of the land is mostly in native oak
woodland ... and we have put in hedgerows along the borders of the fields .... So
hedgerows, I think, play a really important role to kind of buffer those zones off and
protect the native habitat that we really like.” “When we first arrived, the low spot on
the property which receives most of the drainage from the front half of the farm had
been badly eroded .... We took that out of production and planted cuttings from
different riparian plants.”

Higher land rents on prime farmland 11 8
discourage adoption of
hedgerow/windbreaks and cover crops

“We do some cover cropping, but it’s challenging with our rent structure. Can I tell the
landlord, hey, don’t charge me this year because I'm going to grow a cover crop?”
“One of the tough things to balance with cover crops is because our rent is so high
here, that it’s hard to take the land out of production.” “The rental costs along the
coasts are high and people don’t think they can afford to cover crop as much as they
should or rotate as much as they should.”

The marketing relationships tied to prime 7 8
farmland discourage hedgerow/windbreaks
and cover crops due to stringent food safety
protocols and rigid supply chain

“I know from my time talking to bigger farmers ... that cover crops have the potential
to delay planting, and the big firms are on really tight planting schedules, right? So
that’s why they don’t do that.” “We have to be very careful. Like I said, we've never
experimented with hedgerows and stuff like that .... we don’t have any type of

hedgerow/windbreaks provide models for
neighbors who learn about the practices and
observe benefits

requirements hedgerows or anything like [smaller scale neighboring farmer with direct markets] has
out there ... That is tough because, in the eyes of fresh produce, food safety
sometimes trumps some of the ecosystem, right? Do this, or don’t grow this stuff for
us anymore. What do you do? Itss super challenging.”

Early adopters of cover crops and 5 4 “I think what becomes common practice does so by sort of personal diffusion of

information and experiences, whether that’s from technical assistance advisors or their
peers. So another barrier then would be if you're in a region where people aren’t using
those kinds of practices, then you don’t necessarily have what you need in order to
make the changes.” “For farmers to be able to go to places and see and hear from
others and to be able to see the results, I mean that’s probably the single most
important thing that could persuade a farmer to try something out. So however that
happens, whether it be demonstration farms or farmer-to-farmer learning networks,
things like that can be super helpful.” “I've definitely seen farmers that, oh, they saw
this thing at their neighbor’s place or on this field day that they managed to get to and
they want to try it. That can be huge.” “Over the years, there’s been a few people that
T've really valued their thinking on and have been able to interact with and share ideas
and I've gotten ideas. Whenever I go to somebody else’s farm, it doesn’t really matter
what they’re doing or what their specific crops are, something can pique your interest
that you can think about, “Yeah. Something like that might work on our farm.”

when in proximity to cropped areas-and several of the farmers
we spoke to mentioned deliberately maintaining this native
vegetation as part of their approach to farming adjacent
to wildlands.

Secondly, a of farmers (n = 5, Table4)
mentioned learning about practices like cover cropping and
hedgerows/windbreaks from watching fellow farmers, often their
neighbors. Half of the technical assistance providers we spoke to
mentioned this form of peer learning as a key factor in adoption
of these practices. This may partially explain the observed spatial
autocorrelation (and existence of hotspots) in hedgerow/cover
crop adoption.

In contrast, conventional growers (n = 5) discussed a trend of
moving away from cover cropping and hedgerows, practices that
were more widely used in the past. For these growers, like the large-
scale, wholesale organic growers, the quick turnover necessitated by
intensive planting schedules made cover cropping prohibitive. One
grower stated he plants cover crops only on 1% of winter acres
because of the non-stop planting of new crops. For conventional
farms, cover crops are used in special circumstances where they can

number
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help solve a problem in the field. For example, one conventional
farmer uses cover cropping on fields next to a river that is prone to
flooding. In this case, cover crops can help dry the area and prevent
flooding, which reduces the delay in accessing the field for planting.
Additionally, farmers who produce both organic and conventional
produce (split operations) reported using cover crops only on their
organic land.

Discussion

Our study shows that adoption of two key diversification
practices, hedgerows/windbreaks and winter cover crops, is low
and patchily distributed throughout the Central Coast agricultural
region of California. This remote sensing analysis provides the
first spatially-detailed information on the extent and pattern of
hedgerow/windbreak and cover crop presence in California. While
most ranches did not have any hedgerows/windbreaks (78%), the
identification of several hotspots of adoption suggests that particular
landscape and/or social factors and policies may encourage use of
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hedgerows. For winter cover crops, our finding of 5.9% are consistent
with literature estimates of about 5% of Central Coast total farmland
area cover cropped (Brennan, 2017), and also similar to the statewide
average of 4.8% of “available” farmland cover cropped (USDA
United States Department of Agriculture, 2019). While this figure
does not account for winter cash crops, some of which provide similar
ecosystem services as cover crops, ~60% of farmland in the Central
Coast was mapped as having bare soil between mid-December and
the end of February (Supplementary Table S4). Despite their many
benefits, adoption of non-crop vegetation like cover crops and
hedgerows/windbreaks is limited in California’s Central Coast due to
persistent structural and technical barriers.

Remote sensing of non-crop vegetation in
complex agricultural landscapes

Our study successfully identified hedgerows/windbreaks in a
heterogeneous agricultural landscape using easily accessible NAIP
imagery with 90.0% accuracy. Other studies have also used OBIA to
identify hedgerows and related vegetation in agricultural settings with
varying levels of accuracy (Vannier and Hubert-Moy, 2008; Sheeren
et al., 2009; Ghimire et al., 2014; O’Connell et al., 2015). The high
accuracy of our model is likely due to the high resolution of recent
NAIP imagery. Given that some hedgerows are quite narrow, fine-
scale imagery is necessary to distinguish hedgerows from other linear
elements in heterogeneous agricultural landscapes.

Our study also successfully mapped cover crops in a highly
complex agricultural landscape with dozens of cash crop types—
including overwintering crops like broccoli-as well as irregular
field sizes and the presence of different land uses (e.g., rangeland
and riparian areas) with 87% accuracy. Previous studies that have
leveraged the increasing availability of satellite data (e.g., Landsat and
Sentinel) alongside cloud computing resources (e.g., Google Earth
Engine) to map cover crops in agricultural landscapes have been
conducted in much more simplified agricultural landscapes (Howard
et al., 2012; Ok et al., 2012; Shelestov et al., 2017; Phan et al., 2020).
Higher accuracy has been reported when remote detection of winter
cover crops is based solely on vegetation presence (Seifert et al., 2018)
rather than needing to distinguish between cover crops and other
overwintering cash crops as in our study area.

There were several limitations to our study. Other papers
reported similar difficulties to those we encountered; most noticeably,
model confusion between hedgerows/windbreaks and other small
farm elements such as drainage ditches and shrubs. In our case,
this led to the over classification of other linear elements as
hedgerows, as noted by the lower user’s accuracy of the model,
which had to be manually checked, reducing some of the time
saving benefits of remote sensing. Additional ground-truth data
of hedgerows/windbreaks and other linear elements would likely
improve model accuracy in the future. Additional data for the cover
crop classification model would also be useful as certain crops like
carrots and fennel were not found in enough fields to generate the
recommended 40-120 training points needed per class (Mather and
Koch, 2011). Due to the limited number of ground truth points
for many of the cash crops, winter cash crops were grouped into
a single class with a high variation of spectral properties. This
made distinguishing the cash crop class from the cover crop class
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more difficult, though some cash crops grown over winter provide
similar ecosystem services as cover crops. For example, broccoli,
cauliflower, cabbage scavenge high amounts of nitrogen during
the winter that could reduce nitrate leaching (Smith et al., 2013).
Broccoli also leaves a significant amount of high-quality residue as
a nitrogen source for the subsequent crop, whereas other common
crops in rotation, like lettuce and spinach, have shallower root
systems and produce much less biomass and fewer residues. We
estimated annual cash crops (other than strawberries) covered 16%
of farmland (Supplementary Table 54), vs. 60% with bare soil, but we
could not distinguish crop species or varieties. Remote sensing that
could distinguish cash crops and map their cover would allow for a
more complete assessment of risks and opportunities for at least some
important services of winter plant cover.

In addition, typical crop classification distinguishes crops based
on unique NDVI values (Foerster et al., 2012; Howard et al., 2012).
Many cover crops found in the region were a mixture rather than
a sole crop, often comprised of species also grown as cash crops
(e.g., brassicas), which makes distinguishing by NDVI values more
difficult. Finally, since cover crop classifications have pixel noise,
field-based or OBIA classification could provide higher classification
accuracy (Ok et al,, 2012; Li et al., 2015), but a dataset with accurate
field boundaries is not available for this region where fields often
contain several different crops planted in blocks or are managed in
distinct sections.

Patterns of adoption

Integrating qualitative interviews with remote sensing allowed
for interpreting patterns of adoption and provided insight into
biophysical and socio-economic drivers of adoption patterns. Our
remote sensing of hedgerows/windbreaks found significant clustering
of the practice, with strong hotspots of use in the hillier, less
intensively farmed areas of San Benito and Santa Cruz counties.
Similar patterns were found for cover crops with a hotspot in the
more marginal farmland of Monterey County. A study of farms
across 20 counties in Indiana found that cover cropped fields were
significantly steeper than non-cover cropped fields, likely for erosion
control, and that farms that cover cropped were often smaller (Lira
and Tyner, 2018), much like the mid-sized farms in our region that
have reported using similar diversification practices (Esquivel et al.,
2021). This was also supported in our interviews where many farmers
reported maintaining hedgerows/windbreaks and cover crops in hilly
or less prime farmland to prevent erosion. The paucity of cover
crops and hedgerows/windbreaks in areas like the prime flatland
area of Monterey County likely also stems from high rents and
pressures growers in intensively managed farms face to keep as much
land in production as possible as well as maintain “clean” fields for
buyers. While Prime Farmland made up about 60% of our study area,
<45% of both cover crops and hedgerows/windbreaks were found
on Prime Farmland. Conversely, both practices were overrepresented
in Unique Farmland and “Other” farmland, which can be marginal
land. Landscape elements (hedgerows, tree clusters, riparian buffers)
have been found to be inversely correlated with the presence of
intensively farmed land (often with livestock) (Klimek et al., 2014).
We also noted many hedgerows/windbreaks and windbreaks in
vineyards during our windshield survey. Vineyards are commonly
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found on land classified as Unique Farmland, especially in the south
of Monterey County, which could explain the hedgerow/windbreak
hotspot in this area. Moreover, farmers we interviewed who were
raising crops on “Unique Farmland” tended to be small or mid-sized
and more likely to sell their produce through regional grocery stores,
community supported agriculture, farmers markets, or regional
aggregators—alternative agri-food networks that could help offset the
costs of using these practices while also imposing less pressure to meet
supply chain requirements (Esquivel et al., 2021).

Social mechanisms can influence the formation of hotspots. Early
adopters could provide models for neighbors who learn about the
practices and observe benefits. Peer influence and localized farming
norms may also support diffusion. In California’s Sacramento Valley,
farmers reported that other farmers were the most important source
of knowledge regarding edge plantings on their farms (Garbach and
Long, 2017), while several farmers in our interviews also mentioned
learning about such practices from their neighbors.

In general, organic farmers are more likely to wuse
hedgerows/windbreaks and cover crops than conventional growers,
given their greater reliance on the ecosystem services, rather than
synthetic inputs, as well as organic certification guidelines, which
encourage these practices. In this region, these practices are more
common among smaller to mid-scale organic farms (Esquivel et al.,
2021). Santa Cruz County had the highest percentage of cover
cropped fields, has a high percentage of organic production (12%
of acres), and it also has the smallest average farm size (102 acres;
USDA United States Department of Agriculture, 2019) compared
to San Benito County and Monterey County (853 and 1,214 acres,
respectively). This indicates a greater prevalence of large-scale
agricultural production in the latter counties, which may explain
the lower levels of cover cropping. This is consistent with our
interviews that large-scale farms working with wholesale buyers
are disincentivized to plant cover crops and hedgerows. Cold spots
in the counties may represent large areas of intensive, commercial

conventional farming.

Conclusions: Remote sensing of agricultural
practices to track and support policy goals

A number of federal and state policies depend on adoption of
agricultural practices like hedgerows/windbreaks and cover cropping
to help meet goals related to climate change mitigation, water
quality, pollination, and more. For instance, California’s Healthy Soils
Program pays farmers and ranchers to adopt agricultural practices,
including cover crops and hedgerows, known to reduce greenhouse
gas emissions or increase soil carbon. It also funds demonstration
projects meant to enhance adoption through regionally specific
practice implementation. Yet the state currently has no means
of tracking the efficacy of the Healthy Soils Program, especially
whether adoption is maintained following the three-year grants or
if demonstration projects spur adoption beyond direct grantees. At
the state and national level, there is also no mechanism in place to
track impacts of federal programs like the Environmental Quality
Incentives Program and the Conservation Stewardship Program,
both of which provide support for farmers to adopt these and
other practices and have been recently expanded with passage of the
Inflation Reduction Act (Inflation Reduction Act, 2022).
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Our regional analysis reveals that aerial and satellite imagery
can be used to map adoption of hedgerows/windbreaks and cover
crops with a high degree of accuracy even in complex agricultural
landscapes. The overall percentage of cover crops (~5%) matches
past expert estimates for the study region and statewide adoption
rates. Future work should distinguish and map winter cash crops
that could provide similar services. We also provide new data on
hedgerow/windbreak crop adoption in the Central Coast. Relative
to other methods of tracking adoption like surveys, this approach is
also able to identify spatial patterns, including the existence of hot
and coldspots of adoption. Coupling remote sensing with qualitative
interviews provided insights into the drivers behind these patterns,
including interrelated factors related to topography, land values, and
farming model that either enabled or hindered adoption. In turn, this
understanding could inform creation of enabling policies while using
remote sensing tools to evaluate progress.
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