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A B S T R A C T   

While resistive pulse sensor (RPS) has been used to characterize the nano/micro-targets (cells, biomolecules, etc.) 
in biomedical research, one long standing drawback is its low throughput. Here we report a novel geometry 
modulation based RPS to improve the throughput without increasing the complexity of measurement electronics. 
The sensor consists of multiple parallel sensing channels whose geometries are uniquely designed based on 7-bit 
spreading sequences. Because of the unique geometry, when a particle passes a sensing channel, the voltage 
signal from this channel is encoded by a specific waveform. Only a DC source was applied, and only one com
bined signal from all sensing channels was collected. For demodulation, the maximum correlation coefficient 
between the combined signal and each template waveform was used to identify the passage of a particle from a 
specific sensing channel, and the occurring time of the passage. An iterative cancellation scheme was developed 
to extract the identified waveforms, by a series of subtractions of the identified waveforms with amplitudes from 
high to low, until the correlation coefficients between the remaining signal with all template waveforms became 
less than 0.4 (weak correlation). Mixtures of different-sized polystyrene particles were used to test the device. 
Results showed that the device is capable of accurately sizing and counting various microparticles with errors of 
5.8% and 5.2% while the throughput was improved 300%. With the simple structure and measurement setup, the 
geometry-modulated RPS has great potential for the detection and analysis of a variety of micro/nano bio- 
objects.   

1. Introduction 

Resistive pulse sensors (RPSs) are widely used for fast counting and 
sizing of micro/nano scale targets suspended in liquids (e.g. cells [1,2], 
protein [1,3,4], nucleic acids [5,6], and colloidal particles [7,8]). In 
RPS, two electrodes in the electrolyte solution are separated by a narrow 
sensing channel [9]. Passage of a single particle through the sensing 
channel displaces a volume of the electrolyte solution and changes the 
impedance of the sensing channel, generating current or voltage pulses. 
Counts and magnitudes of the electrical pulses reflect particles’ con
centrations and sizes [10]. Furthermore, the shapes and durations of the 
pulses can be used to infer the shape of the sensing channels [11,12] and 
the surface charge (or zeta potential) of target particles [13]. RPS can 
analyse individual particles even in extremely low abundance, and thus 
is attractive in many bio-related research. With advances in the micro 
and nano fabrication of micro/nano-scaled channels, RPS has been used 
in detecting bio-objects such as cells [14,15], viruses [16,17], single 

molecules [6,7], DNA [18,19], and antibody-antigen binding [11,20]. 
Recently, RPSs were utilized to detect biomolecules (e.g. nucleotides 
and target protein [5,21,22]) in combination with aptamer functional
ized nanoparticles [23,24]. Despite multiple advantages, one major 
limitation of RPSs with one sensing channel is their low throughput. The 
sensing channel must be fabricated sufficiently small for micro and 
nano-scaled objects to generate detectable signals. Thus only a limited 
amount of analyte solution can be analysed especially when targets are 
in nanoscale. Due to the short survival time of the bio-objects, quick 
analysis becomes necessary, which requires high throughput. 

To improve the throughput, researchers have developed devices with 
multiple microchannels. Song et al. [25] proposed a differential RPS 
(space modulation) using eight sensing channels. This device had higher 
throughput due to parallel sample analysis. However, implementing 
individual detecting electronics for each sensing channel is impractical 
when more channels are needed. Jagtiani et al. [26] invented a fre
quency division signal multiplexing on parallel RPS for cell counting. A 
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unique encoding frequency was applied to each sensing channel via a 
central electrode. The combined current signal was collected with a 
single pair of electrodes, which was subsequently demodulated by fast 
Fourier transform and frequency division. This method dramatically 
reduced the sampling data size and hardware complexity. However, the 
device needs to be operated within a narrow frequency range where the 
RPS channels are resistance dominant; only a limited number of sensing 
channels can be used. Liu et al. [27,28] demonstrated the microfluidic 
CODES (Coded Orthogonal Detection by Electrical Sensing) method for 
high throughput cell counting via multiple channels. When one cell 
passed through a channel, the resistive pulse signal was encoded by a 
specific spreading code waveform generated by the unique pattern of 
three sets of micro coplanar electrodes. The cell’s occurrence and size 
were determined by the peak correlation coefficient between the com
bined signal and the code waveforms. This waveform with desired 
amplitude was then subtracted. This process was repeated until corre
lation coefficients with all code waveforms were small. One concern is 
that it is difficult to estimate the cell size (and the desired amplitude of 
signals to be subtracted) from the correlation coefficient eventually may 
causing errors in cell sizing and counting [29–31]. Furthermore, Wang 
et al. [32] demonstrated a pattern recognition method, i.e. deep con
volutional neural networks, which can count particles via high density 
parallel channels. To train the networks, a large waveform database (e.g. 
over one million augmented non-interfering waveforms when 
various-sized particles passed through each channel at different speeds) 
was constructed. Deep learning-based algorithm was used to find the 
pattern match between the output signal and template waveforms, and 
thus to determine the particle sizes and occurrence time. The pattern 
recognition could be time-consuming because of the large size of the 
waveform library. Accuracy in sizing and counting particles could also 
be compromised due to indistinct features of the combined signal 
especially when multiple particles are present at the same time [33–36]. 
Furthermore, the above CODES methods required an AC excitation 
system and three sets of electrodes to generate the bipolar code signals. 
A lock-in amplifier was needed to extract the desired signals caused by 
the passage of particles, increasing the complexity of the device. 

To overcome the above problems, we present a geometry modulation 
based resistive pulse sensor. In our strategy, each sensing channel has a 
unique multiple-segment geometry, which generates a unique waveform 
signal due to the passage of particle. The combined signal consists of 
signals from all individual sensing channels, which is collected, and is 
demodulated. The advantages of this sensor are: 1) The geometry 
modulation encodes signals by unique geometries without using com
plex electrodes and control signals, 2) While the counting throughput is 
improved multiple folds via its parallel sensing channels, only one DC 
source is needed, and only one combined signal is measured; the ge
ometry modulation is simple and scalable, more sensing channels can be 
easily added to significantly improve the throughput 3) Using a unique 
interactive cancellation procedure, the errors in counting and sizing the 
particles are significantly reduced. A proof of concept, a 4-channel de
vice was fabricated and tested to demonstrate the sensing principle. 
With simple structure and easy operation, the geometry-modulated RPS 
shows a great potential for rapid and enormous detection of micro/nano 
targets (e.g. blood cells or wastewater particles) in haematology and 
environmental applications. 

2. Material and methods 

2.1. Materials 

10 μm (product# 72,986), 15 μm (product# 74,964), and 20 μm 
(product# 74,491) diameter polystyrene particles were purchased from 
Sigma-Aldrich. Dulbecco’s phosphate-buffered saline (DPBS, 1X, prod
uct# MT21031CV, Thermo Fisher Scientific) was used to prepare the 
particle solution. Nonionic surfactant (CAS 9002–93–1, FisherBiotech) 
was used to avoid particle aggregation. 

2.2. Sensing principle 

To achieve multiplexed detection of different-sized microparticles, 
we designed a geometry modulation RPS with four sensing channels, as 
shown in Fig. 1a. The narrow segment has a larger resistance (or larger 
voltage), while the wide segment has a smaller resistance (or smaller 
voltage). Hence the narrow and wide segments can be used to represent 
bits of ’1’ and ’0’ respectively. For the design of sensing channels, each 
sensing channel has a unique geometry that matches one specific 
spreading sequence code. When a particle transits each sensing channel, 
the change in the channel resistance is detected, and voltage change is 
encoded with a unique waveform or spreading code. The ideal waveform 
for each sensing channel is shown in Fig. 1c (black curve). The actual 
waveforms representing the spreading codes are more complex, which 
are discussed in Fig. S1 in Supplementary Information. Fig. 1c (blue 
curve) shows the actual waveforms when a 10 µm particle passed 
through the four individual sensing channels (spreading code 1010110, 
1101100, 0111111, and 1110100) separately. For the multichannel 
device, the combined signal, consisting of signals from all sensing 
channels is collected. 

A DC Wheatstone bridge was used to measure the combined resistive 
pulse signal, as shown in Fig. 1b. Rch represents the resistance of the RPS, 
and R2 is the external adjustable resistance. R3 and R4 are fixed value 
resistors, and the values are set to be 1kΩ to form a Wheatstone bridge. 
Before each test, R2 was adjusted to be equal to Rch, so that the voltage 
drop between A and B (VAB) was zero. A DC voltage, Vin, is applied to the 
circuit. When particles transit the sensing channels, a resistance change 
in Rch is generated which causes a change in VAB. This voltage change is 
amplified and measured as Vout. 

For the multiple channels connected in parallel, the combined signal 
is a sum of individual signals from all sensing channels. To demodulate 
the combined signal, the combined signal is correlated with the template 
waveform of each channel with a unique spreading code. If a particle 
passes one specific channel, the correlation coefficient with the desired 
code (i.e., the unique waveform of one sensing channel) is higher than 
those with other codes. Hence the signal of this channel can be isolated 
and subtracted from the combined signal. This procedure is continued 
until the correlation coefficient between the remaining signal with all 
spreading codes is low (e.g. <0.4, weak correlation) [37], indicating the 
remaining signal contains no obvious waveform of any sensing channel. 
Note that we used a peak correlation of 0.4 as the sign to evaluate the 
similarity between two signals. This sign was well studied and deter
mined by prior statistical research [37] and widely accepted by medical 
applications [38,39]. A larger than 0.4 correlation coefficient typically 
indicates a strong relation between signals, phenomena, or statistical 
variables [37,38]. 

2.3. Spreading sequences 

In this paper, 1010110, 1101100, 0111111, and 1110100 were used 
for the design of four sensing channels and encoding the electrical sig
nals from each sensing channel. These four codes were generated from a 
preferred pair of m-sequences (1001011 and 1110100), and then shifted 
one bit of the second m-sequence cyclically and performed XOR oper
ation [40]. 

To demodulate the combined signals, first, template waveforms 
generated by a standard particle (e.g. 10 μm particle) passing through 
each individual sensing channel (without the presence of any neigh
bouring sensing channel) were measured at one constant flow rate. Next, 
these four template waveforms were used as template waveforms to 
correlate with the detected combined signals. If one particle is present in 
a channel, the correlation with this channel’s sequence waveform will 
generate a high correlation coefficient. The correlation coefficient 
function between two series of data has been shown in Eq. (1) [41]. 
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rxy =

∑
(xi − xm)⋅(yi − ym)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xm)
2⋅(yi − ym)

2
√ (1)  

Where xi and yi represent each set of data, i from 1 to N (last element). xm 

and ym are the averages of data value (xm = N−1⋅
∑

xi and ym =

N−1⋅
∑

yi). The correlation coefficient value ranges between +1.0 
(perfect positive correlation) and −1.0 (perfect negative correlation). 

One challenge is that particles may pass one sensing channel at 
different speeds because of variations in their sizes, axial positions, or 
driving pressure. Hence the durations of the waveform patterns of these 
particles are different. On the other hand, when several particles are 
present in separate sensing channels, the combined signal has a longer 
duration than the template waveforms of each individual channel. To 
address this problem, the four template waveforms collected when one 
particle passes through each individual channel are processed by a 
custom MATLAB program to generate these waveforms with various 
durations. The duration can be shrunk or elongated by multiplying the 
time interval between two data points by a constant factor (e.g. from 0.5 
to 2 with an incremental interval of 0.1). To identify whether the 
combined signal contains the specific waveform, the combined signal is 
correlated with the generated template waveforms with different dura
tions. Only the maximum/peak correlation coefficient is considered. A 
peak coefficient larger than 0.4 indicates that at this moment, a particle 
passes the channel, so that the combined signal has a strong similarity 
with the waveform of this channel [37]. From the correlation analysis, 
the presence of particles in individual channels can be determined. 

Once the desired waveform is determined, it should be subtracted 

from the combined signals. However, due to the unknown sizes of par
ticles, the amplitude of the waveform is difficult to be determined. While 
researchers attempted to use the peak correlation coefficient to deter
mine the sizes [29–31], this method is likely to cause errors in particle 
sizes and counts because the presence of particles in the neighbouring 
channels significantly affects the correlation coefficient. An example is 
shown in Supplemental Information (Fig. S2). Here we use an interactive 
cancellation method. Since the template waveforms were obtained from 
a 10 µm particle, the amplitudes of the waveforms of each channel were 
defined as 1 × magnitude. In the interactive cancellation, once a 
waveform match is determined, only a fraction of the magnitude (e.g. 
0.8 × amplitude) is subtracted from the combined signal. After the 
subtraction, correlation analysis is conducted again; if the correlation 
coefficient is still larger than 0.4, additional subtraction of this wave
form with the 0.8 × amplitude is performed from the remaining signal. 
This process is repeated until the correlation coefficients between the 
remaining signal and four template waveforms are less than 0.4. How
ever, if after the latest subtraction, the correlation coefficient becomes 
high negative (<−0.4), this indicates an over subtraction of the wave
form. The 0.8 × subtraction needs to be replaced by a 0.4 × subtraction. 
If 0.4 × subtraction still causes a high negative correlation coefficient, a 
0.2 × subtraction should be used. This procedure is repeated until the 
absolute value of the peak correlation coefficient less than 0.4 is ach
ieved. In this paper, 0.4 is used as a threshold to judge the similarity 
between the combined signal and the template waveforms. When the 
absolute value of the correlation coefficient is less than 0.4, the simi
larity between the two signals is considered weak [37]. The size of the 
particle is then determined from the overall amplitude of this waveform 

Fig. 1. Schematic of the microfluidic sensor for 
particle analysis. (a) Illustration of the geome
try modulation sensor with four parallel sensing 
channels and enlarged image of sensing chan
nel. A narrow segment represents bit ’1’ and a 
wide segment represent bit ’0’. (b) Diagram of 
circuit to measure the resistive changes gener
ated by particle transiting a sensing channel. 
The input voltage Vin was set to 1 V to avoid 
hydrolysis of DPBS. (c) Electrical waveforms 
when a particle transits through each sensing 
channel with a unique spreading sequence 
code. Spreading sequence codes (black) are 
used: 1010110, 1101100, 0111111, and 
1110100. Blue: measured electrical signals 
coming from particles passing through each 
channel.   
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subtracted from the combined signal. In the results and discussion sec
tion, we will use several cases where different-sized particles are present 
in different sensing channels to further illustrate the interactive 
cancellation process. 

The advantage of using the interactive cancellation is that it does not 
rely on the correlation coefficient to determine the particle size, which is 
likely to cause errors because the correlation coefficient is not only 
affected by the size of the particle present in the desired channel, but 
also affected by the presence of particles in neighbouring channels. 
Using the interactive method, the size of the particle can be accurately 
determined. 

2.4. Device fabrication 

The standard soft lithography method was used to fabricate the ge
ometry modulation sensor, as shown in Fig. 2. An SU-8 2025 (Micro
Chem, MA, USA) mould was fabricated, consisting of (1) four sensing 
channels with different geometries, (2) two Ag/AgCl electrode holes to 
place the electrodes to measure the resistance change caused by particles 
passing through the sensing channel, and (3) inlet/outlet reservoirs and 
connection channels. The seven segments of each sensing channel were 
designed based on the chosen spreading sequence codes. Each segment 
represents one bit. The length of each segment/bit is set to be 20 μm. 
Thus, the total length of one seven-bit sensing channel is 140 μm. The 
widths of the segment ’1’ and ’0’ (or bit) are 40 μm and 100 μm 
respectively. The height of the device is 30 μm everywhere. The 
microfluidic RPS was fabricated via pouring polydimethylsiloxane 
(PDMS, Dow Corning Sylgard 184 Silicone Elastomer Kit) onto the SU-8 
mould followed by degassing and curing the PDMS for 2 h at 70 ⁰C in a 
vacuum chamber. Then the inlet/outlet reservoirs and electrode holes 
were created by punching the PDMS slab with biopsy punches in 1.5 mm 
and 1 mm diameter respectively. Subsequently the PDMS slab was 
bonded onto a glass substrate after treatment with air plasma (200 
mTorr, 50 W, 50 s). The dimensions of the sensing channel measured by 
the profilometer (Dektak 150, Veeco Instrument, NY, USA) are 33.17 ±
1.35 μm (height), 138.15 ± 2.27 μm (length). The widths of segments 
’1’ and ’0’ are 41.59 ± 1.18 μm and 102.16 ± 1.87 μm. Finally, two Ag/ 
AgCl electrodes (1mm diameter) were placed into the electrode holes to 
measure the resistive pulses and complete the geometry modulation 
sensor. For each test, the particle solution was loaded into the inlet 
reservoir and driven through the sensor by a constant pressure of 2 kPa. 
A DC voltage (1 V) was applied across the Ag/AgCl electrodes to avoid 
hydrolysis of DPBS, resulting in the fluctuation of flow. The voltage 
pulse signals by the particles were amplified with a differential amplifier 
(AD620BN, analog Devices Inc, USA), recorded with an NI – DAQ board 
(PCI-6133, National Instrument USA) at a sampling rate of 500 kHz via 
data acquisition software (LabVIEW, National Instruments). The recor
ded signals were processed using a custom MATLAB program to denoise 
and analyse. 

3. Results and discussion 

3.1. Validation of geometry modulation method 

To demonstrate the principle of geometry modulation, the mixed 
solutions of three different-sized polystyrene particles including 10 μm 
(10 ± 0.2 μm), 15 μm (15 ± 0.2 μm), and 20 μm (20 ± 0.3 μm) were 
used, and loaded into the device. To validate the geometry modulation 
method, a high-speed camera (MU043M-FL, United Scope LLC) was used 
to capture the transits of particles through the sensing channels. These 
images were used to validate the presence and sizes of the particles. 
Before the demodulation, waveforms, when a 10 μm microparticle 
passed through each individual sensing channel, were collected as the 
template waveforms. These waveforms are shown in Fig. 1c (blue). 

Fig. 3 shows the decoding procedures for a case where only one 
particle was present in a channel (Fig. 3 a1). The combined voltage 
signal is shown in Fig. 3 b1. To determine the sensing channel where the 
particle passed, correlations between the detected signal and the four 
template waveforms were conducted (Fig. 3 a2). The maximum corre
lation coefficient, occurred in channel 3, indicating the particle presence 
occurred in channel 3. Next, a 0.8 × waveform of channel 3 was sub
tracted from the detected signal. Fig. 3 b2 shows the remaining signal 
after the first subtraction. The correlation analysis was conducted again 
with all template waveforms, and the maximum correlation coefficient 
still occurred in channel 3 (Fig. 3 a3). A second 0.8 × subtraction of 
waveform 3 was processed (Fig. 3 b3), and the correlation coefficient 
between the remaining signal and four template waveforms became a 
large negative value (−1, absolute magnitude is larger than 0.4), as 
shown in Fig. 3 a4, implying an over subtraction occurred. Thus, a 0.4 ×
waveform 3 was subtracted to replace the 0.8 × subtraction (Fig. 3 b4), 
and a negative correlation coefficient (−1) still occurred (Fig. 3 a5). 
Next, we tried a 0.2 × waveform 3 subtraction (Fig. 3 b5), the remaining 
signal still generated a negative correlation coefficient less than −0.4 
(Fig. 3 a6). Hence a 0.1 × subtraction of waveform 3 was conducted 
(Fig. 3 b6); After the subtraction, the correlation coefficient with 
waveform 3 became positive but was still higher than 0.4 (Fig. 3 a7). 
Subsequently, a 0.05 × waveform 3 was subtracted (Fig. 3 b7). We did 
not subtract an additional 0.1 × waveform 3 because in the previous 
steps (Fig. 3 b5), subtracting a 0.2 × waveform 3 would cause an over 
subtraction (See Fig. 3 a6). After that the 0.05 × subtraction (Fig. 3. b7), 
all correlation coefficients became less than 0.4 but all positive (Fig. 3 
a8); the iterative cancellation procedures were completed. Overall a 
0.95 × waveform 3 was subtracted after no similarity was found be
tween the combined signal and all four template waveforms. While the 
magnitude of the waveform is proportional to the particle volume, the 
corresponding size of the particle was calculated to be 9.8 μm. Note that 
here we utilized 0.4 as a threshold value to determine where there is a 
similarity between the remaining signal and the template waveforms 
[37]. 

Fig. 4 a1 shows two different-sized particles passing through two 
sensing channels simultaneously. Fig. 4 b1 shows the combined signal 
from all channels. To demodulate the signal, first, the correlation be
tween the combined signal and each template waveform was conducted. 
Fig. 4 a2 shows the correlation coefficients with all four template 
waveforms, showing the maximum correlation occurred in channel 4. 
Next, a subtraction of 0.8 × waveform of channel 4 was operated from 
the combined signal. Fig. 4 b2 shows the remaining signal. A correlation 
analysis was conducted again with all channels’ waveforms (see Fig. 4 
a3), showing that the maximum correlation still occurred in channel 4. 
One more 0.8 × subtraction from the remaining signal was done, as 
shown in Fig. 4 b3. After three subtractions of 0.8 × of template 
waveform 4 (Fig. 4 b4), the maximum correlation coefficient occurred in 
channel 1 (see Fig. 4 a5). Hence a subtraction of 0.8 × of template 
waveform 1 was processed (Fig. 4 b5). After the subtraction, the 
maximum correlation occurred in channel 4 again (Fig. 4 a6). A sub
traction of 0.8 × waveform 4 was conducted (Fig. 4 b6), resulting in the 

Fig. 2. Images of the geometry modulation RPS. (a) Picture of the complete 
microfluidic device with four parallel detections. (b) Microscopic image of four 
sensing channels. 
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maximum correlation coefficient occurring in channel 1 (Fig. 4 a7). As 
shown in Fig. 4 b7, when the 2nd subtraction of 0.8 × of waveform 1 was 
attempted, the correlation coefficient became −0.8 (Fig. 4 a8), indi
cating this is an over subtraction. Then, a 0.4 × subtraction of waveform 
1 was used to replace 0.8 × subtraction (Fig. 4 b8). After that, the 
maximum correlation coefficient occurred in channel 4 (Fig. 4 a9). 
When subtracting 0.8 × waveform 4 was attempted (Fig. 4 b9), a large 
negative correlation coefficient occurred again (−0.85), as shown in 
Fig. 4 a10. Thus a 0.4 × subtraction of waveform 4 was tried to replace 
0.8 × subtraction (Fig. 4 b10), which still generated a large negative 
correlation coefficient, i.e. −0.7 (Fig. 4 a11). We further replaced the 0.4 
× subtraction with a 0.2 × subtraction (see the remaining signal in Fig. 4 
b11). After the subtraction, the absolute correlation coefficients with all 
template waveforms were less than 0.4 (Fig. 4 a12), indicating there is 

no similarity between the remaining signal and all four template 
waveforms. Note that the magnitude of the resistive pulse magnitude is 
proportional to the volume of the particle. From the overall subtracted 
magnitudes of channel 1 (1.2 × ) and channel 4 (3.4 × ), the particle 
sizes were estimated to be 10.6 μm and 15.04 μm in channel 1 and 
channel 4 respectively, which are in good agreement with the actual 
particle sizes (10 and 15 μm). The maximum error of particle size is 6%. 

Note that we also used the same interactive cancellation procedures 
to demodulate the combined signals for cases where three particles and 
four particles were present simultaneously in separate 3 and 4 sensing 
channels respectively. The optical image of the particles’ presence, the 
combined signal, and the demodulate results are shown in Fig. 5a and 
5b. The detailed demodulation procedures are shown in Supplementary 
Information (S3 and S4) due to the lengthy steps. For three particle case, 

Fig. 3. Iterative cancellation procedures for decoding the combined electrical signal generated by one single particle. During the cancellation, the combined signal 
was correlated with four template waveforms with different durations. Based on the correlation coefficient, the desired waveform of the sensing channel where the 
particle was present was determined. Next, the desired waveform with 0.8 × base amplitude was subtracted from the combined signal. This correlation-subtraction 
process was operated until all correlation coefficients between the remaining signal and four template waveforms became less than 0.4. Waveforms with smaller 
amplitude (e.g. 0.4 × , 0.2 × ,0.1 × , 0.05 × ) were subtracted in case a negative correlation coefficient (which indicates an over subtraction) was generated. 
Subtractions marked by red represented trial subtractions, which would cause an over subtraction, and were not conducted. Subtractions marked by black repre
sented actual subtractions from the combined signal. 
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Fig. 4. Iterative cancellation procedures for decoding the combined signal generated by two particles of different sizes. Subtractions marked by red represented trial 
subtractions, which would cause an over subtraction, and were not conducted. Subtractions marked by black represented actual subtraction from the com
bined signal. 
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the calculated particle sizes were 10.3 μm (channel 2), 14.73 μm 
(channel 3), and 19.9 μm (channel 4). For four particle case, the 
measured particle diameters are 15.03 μm (channel 1), 14.73 μm 
(channel 2), 15.3 μm (channel), and 14.73 μm (channel 4). The 
measured particle sizes are in good agreement with the actual particle 
sizes with a maximum error of 3%. 

Note that we chose an initial 0.8 × subtraction for the interaction 
cancellation to reduce the number of the interactions and to achieve the 
decent resolution for particle sizing. Other initial subtractions (e.g. 0.5 ×
, 0.3 × ) can also be used. We tried both 0.5 × and 0.3 × initial sub
tractions and obtained very similar particle counts and sizes. Also, since 
all waveforms used are not standard binary digital waveforms, the 
correlation coefficients between each of them were larger than 0.4. Only 
the maximum correlation coefficient was applied to judge the similarity 
with the desired waveform. The subtracted waveform for each round of 
cancellation was the one that generated the highest correlation coeffi
cient with the remaining combined signal. 

3.2. Demonstration of size and counting accuracy 

Three different mixed particle solutions were used to demonstrate 
the sizing and counting accuracy of the four-channel RPS. Each mixed 
solution was prepared by mixing the three-sized particles (10 ± 0.2 μm, 
15 ± 0.2 μm, 20 ± 0.3 μm) with different concentrations. Each particle 
mixture was loaded to the device; the combined signal was collected 
continuously, which was demodulated subsequently as described in 
Fig. 3 and 4. Particle counts and sizes were obtained. The particle con
centration was determined by dividing the particle counts by the flow 
rate. The measured particle concentrations and sizes are shown in Fig. 6. 
The error bar represents the standard deviation of three separate mea
surements of each solution with known particle concentrations. The 
measured concentrations were 58.1 ± 3.37 MP/μL (20 μm particles), 

Fig. 5. Results in decoding electrical signals generated by multiple particles of different sizes. Left: optical image for different-sized particles. Middle: detected 
combined electrical signal. Right: iterative cancellation results and the corresponding diameters. (a) three coincident particles. (b) four coincident particles. 

Fig. 6. Comparison of measured and actual concentrations and diameters of 
micro particles in the mixed solution. (a) comparison of measured particle 
concentration vs actual particle concentration, (b) comparison of measured 
particle diameter vs actual particle diameter. Actual particle concentrations and 
sizes (represented by rectangular boxes with slash lines) were measured by 
AccuSizer™ 780 (Optical Particle Sizer). 
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132.2 ± 6.88 MP/μL (15 μm) and 525.7 ± 24.3 MP/μL (10 μm) for 
Sample 1; 40.9 ± 2.31 MP/μL (20 μm), 91.9 ± 3.88 MP/μL (15 μm) and 
354 ± 19.83 MP/μL (10 μm) for Sample 2; 34.7 ± 1.59 MP/μL (20 μm), 
67.3 ± 3.5 MP/μL (15 μm) and 260.3 ± 11.36 MP/μL (10 μm) for 
Sample 3. In comparison, the actual particle concentrations of all sam
ples were measured by AccuSizer™ 780 (Optical Particle Sizer). The 
actual concentrations were represented in Fig 6a as rectangular bars 
with slash lines. Apparently, the actual concentrations and the measured 
concentrations are in good agreement. The standard deviation of errors 
in particle counting is 5.8%. This is possible because polystyrene mi
croparticles used in the tests have a density (1.05 × 103 kg/m3) slightly 
higher than water, a small amount of particles may be deposited on the 
substrate due to gravity before passing the sensing channels. 

The particle size measurement result is shown in Fig. 6b. The 
measured microparticle sizes were 20.33 ± 0.57 μm, 14.94 ± 0.44 μm 
and 9.96 ± 0.52 μm for Sample 1; 19.89 ± 0.77 μm, 15.01 ± 0.49 μm 
and 9.9 ± 0.42 μm for Sample 2; 20.05 ± 0.43 μm, 14.92 ± 0.41 μm and 
10.05 ± 0.51 μm for Sample 3. The actual concentrations measured by 
AccuSizer™ 780 (Optical Particle Sizer) were 57 MP/μL (20 μm), 129 
MP/μL (15 μm) and 516 MP/μL (10 μm) for Sample 1; 38 MP/μL (20 
μm), 86 MP/μL (15 μm) and 344 MP/μL (10 μm) for Sample 2; 29 MP/μL 
(20 μm), 65 MP/μL (15 μm) and 258 MP/μL (10 μm) for Sample 3, which 
are plotted as rectangular bars with slash lines. Both measured particle 
sizes are in good agreement with the actual sizes, with a maximum error 
of 5.2%. The results further confirmed the accuracy of the device and 
demonstrated the feasibility of the geometry modulation principle. The 
standard deviation of errors in sizing is 5.2%. The errors of particle 
sizing may be attributed to the following three major reasons: 1) Mag
nitudes of resistive pulses could be affected by the off-axis position of 
microparticle [7,42]. Not all particles passed the sensing channel via the 
centerline. 2) The microparticles used in the experiments have standard 
deviation in sizes (i.e. 10 ± 0.2 μm, 15 ± 0.2 μm, 20 ± 0.3 μm), and 3) 
The flow fluctuation could induce noises to the measured signals [7,43, 
44], which may cause additional errors in sizing. 

The above tests demonstrated the utility of the geometry modulation 
based RPS in measuring the sizes ad counts of microparticles in a mixed 
solution. The sizes of the particles were determined by a new interactive 
correlation-cancellation process. The iterative cancellation method is 
based on an assumption that at one time only one particle is present in 
one sensing channel. The standard template is obtained when one par
ticle passes through each sensing channel. If multiple particles are pre
sent in one sensing channel at one time, the resistive pulse signal would 
not match well with the template waveforms. This may cause errors in 
determining the similarity between the actual signal and the template 
waveforms. It is worth mentioning that in geometry modulation, since 
each bit of the sequence code is enabled by only one channel segment, 
the channel length can be designed relatively short compared to CODES 
[27]. Hence the chance that simultaneous passage of multiple particles 
in a long channel is reduced; so is misjudgement of multiple small par
ticles as one large particle. One can also dilute particle solution to a 
lower concentration to further mitigate this problem. In addition, the 
iterative cancellation scheme can achieve the same accuracy in counting 
and sizing even if the sizes of the detected particles are unknown. In fact, 
during decoding the combined signal, the magnitude of the signal from 
each individual channel was unknown, which was determined by the 
total subtractions from the iterative cancellation scheme. The particle 
size was subsequently calculated from the signal magnitude. While the 
template waveforms from the sensing channels (with unique geome
tries) are non-standard binary digital signals, the experiment results still 
show decent match between the measured and actual sizes and con
centrations of particles. 

The 4-channel device presented here improved the counting 
throughput by 300% compared to a single channel device. The geometry 
modulation is simple and scalable; the throughput can be further 
improved by adding more sensing channels with unique geometries. 
Compared to other RPS modulation methods (space modulation [25], 

frequency division [26], CODES [27], pattern recognition [32]), this 
method has many advantages. Compared to space modulation method 
[25], a large number of sensing channels can be added for higher 
throughput without increasing the complexity of detection electronics. 
Compared to frequency modulation [26], our method does not need 
multiple external AC demodulation signals applied to each sensing 
channel, and a resistance-dominant frequency range for accurate parti
cle sizing; only one DC source was needed; the detection electronics 
were significantly simplified. Compared to CODES multiplexing (Liu 
et al. [27,28]), unique signal patterns were obtained using only one DC 
source with our method; only one pair of sensing electrodes was needed 
to encode and decode signals. In addition, as this method does not rely 
on the peak correlation coefficient to estimate the particle size, the 
particle counting and sizing accuracy were dramatically improved 
without worrying the influence of the neighbouring particles on corre
lation coefficient. Further, in comparison to the pattern recognition 
method developed by Wang et al. [32], this method does not need to 
train the networks with a large waveform database (e.g. over one million 
augmented non-interfering waveforms). Since our method only required 
a small number of waveforms, the signal processing time was much 
reduced. Errors in sizing and counting particles were also reduced 
because no complex pattern recognition was needed. 

Note that the sensor based on geometry modulation could achieve 
high-throughput counting for micro/nano targets. Compared to other 
methods (e.g. CODES [27], pattern recognition method [32]), the tem
plate library was small, which reduced the amount of correlations with 
the template waveforms. We conducted a test on the time required to 
decode one combined resistive pulse; the decoding took approximately 
0.3 ms to 0.5 ms using a desktop (Intel® Core™ i5–10,400 CPU @ 2.90 
GHz, 16GB Memory). The processing speed was sufficiently fast to 
analyse the micro/nanoparticles in real time, considering the pulse 
width of one combined pulse was approximately 1 ms to 2 ms. The 
simple structure and measurement setup make it suitable for rapid and 
enormous analysis of micro/nano-targets in several applications, 
including but not limited to blood cell detection in haematology [45, 
46], microsphere and cancer cell detections in pharmacology [47,48], 
wastewater particle analysis, pollen and algae detection in environ
mental monitoring [49–53]. 

4. Conclusions 

We presented a geometry modulation-based resistive pulse sensor 
that enabled high throughput counting and sizing of microparticles with 
its four parallel sensing channels. The geometry of each sensing channel 
was uniquely designed based on four different spreading codes. When 
particles passed through the sensing channel, the electrical signals from 
each sensing channel were encoded by specific waveform patterns. Only 
one DC source is needed. The combined signal consisting of four enco
ded signals from the parallel sensing channels was measured. The 
combined signal was then demodulated by correlating the combined 
signal with the template waveforms from each individual channel. The 
maximum correlation coefficient was utilized to identify the compo
nents of the specific waveforms and durations. A new iterative cancel
lation scheme was developed to subtract the specific waveforms with a 
series of magnitudes (from high to low) until all correlation coefficients 
between the remaining signal with all template waveforms were small 
(e.g. absolute value < 0.4). This scheme does not determine the parti
cle’s size based on the absolute value of the correlation coefficient, 
which typically causes errors in sizing and counting the particles. We 
validated the device with the mixed solutions of 10 µm, 15 µm, and 20 
µm polystyrene particles with known concentrations. With the standard 
deviation errors of 5.8% and 5.2% in concentration and size measure
ments, the results demonstrated the ability of the sensor in accurately 
measuring particles’ sizes and concentrations in a mixed solution. The 
geometry modulation sensor without complex components, showed 
great potential in the detection and analysis of micro/nano-targets with 
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high throughput and sensitivity. 
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