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While resistive pulse sensor (RPS) has been used to characterize the nano/micro-targets (cells, biomolecules, etc.)
in biomedical research, one long standing drawback is its low throughput. Here we report a novel geometry
modulation based RPS to improve the throughput without increasing the complexity of measurement electronics.
The sensor consists of multiple parallel sensing channels whose geometries are uniquely designed based on 7-bit
spreading sequences. Because of the unique geometry, when a particle passes a sensing channel, the voltage
signal from this channel is encoded by a specific waveform. Only a DC source was applied, and only one com-
bined signal from all sensing channels was collected. For demodulation, the maximum correlation coefficient
between the combined signal and each template waveform was used to identify the passage of a particle from a
specific sensing channel, and the occurring time of the passage. An iterative cancellation scheme was developed
to extract the identified waveforms, by a series of subtractions of the identified waveforms with amplitudes from
high to low, until the correlation coefficients between the remaining signal with all template waveforms became
less than 0.4 (weak correlation). Mixtures of different-sized polystyrene particles were used to test the device.
Results showed that the device is capable of accurately sizing and counting various microparticles with errors of
5.8% and 5.2% while the throughput was improved 300%. With the simple structure and measurement setup, the
geometry-modulated RPS has great potential for the detection and analysis of a variety of micro/nano bio-
objects.

1. Introduction molecules [6,7], DNA [18,19], and antibody-antigen binding [11,20].

Recently, RPSs were utilized to detect biomolecules (e.g. nucleotides

Resistive pulse sensors (RPSs) are widely used for fast counting and
sizing of micro/nano scale targets suspended in liquids (e.g. cells [1,2],
protein [1,3,4], nucleic acids [5,6], and colloidal particles [7,8]). In
RPS, two electrodes in the electrolyte solution are separated by a narrow
sensing channel [9]. Passage of a single particle through the sensing
channel displaces a volume of the electrolyte solution and changes the
impedance of the sensing channel, generating current or voltage pulses.
Counts and magnitudes of the electrical pulses reflect particles’ con-
centrations and sizes [10]. Furthermore, the shapes and durations of the
pulses can be used to infer the shape of the sensing channels [11,12] and
the surface charge (or zeta potential) of target particles [13]. RPS can
analyse individual particles even in extremely low abundance, and thus
is attractive in many bio-related research. With advances in the micro
and nano fabrication of micro/nano-scaled channels, RPS has been used
in detecting bio-objects such as cells [14,15], viruses [16,17], single
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and target protein [5,21,22]) in combination with aptamer functional-
ized nanoparticles [23,24]. Despite multiple advantages, one major
limitation of RPSs with one sensing channel is their low throughput. The
sensing channel must be fabricated sufficiently small for micro and
nano-scaled objects to generate detectable signals. Thus only a limited
amount of analyte solution can be analysed especially when targets are
in nanoscale. Due to the short survival time of the bio-objects, quick
analysis becomes necessary, which requires high throughput.

To improve the throughput, researchers have developed devices with
multiple microchannels. Song et al. [25] proposed a differential RPS
(space modulation) using eight sensing channels. This device had higher
throughput due to parallel sample analysis. However, implementing
individual detecting electronics for each sensing channel is impractical
when more channels are needed. Jagtiani et al. [26] invented a fre-
quency division signal multiplexing on parallel RPS for cell counting. A
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unique encoding frequency was applied to each sensing channel via a
central electrode. The combined current signal was collected with a
single pair of electrodes, which was subsequently demodulated by fast
Fourier transform and frequency division. This method dramatically
reduced the sampling data size and hardware complexity. However, the
device needs to be operated within a narrow frequency range where the
RPS channels are resistance dominant; only a limited number of sensing
channels can be used. Liu et al. [27,28] demonstrated the microfluidic
CODES (Coded Orthogonal Detection by Electrical Sensing) method for
high throughput cell counting via multiple channels. When one cell
passed through a channel, the resistive pulse signal was encoded by a
specific spreading code waveform generated by the unique pattern of
three sets of micro coplanar electrodes. The cell’s occurrence and size
were determined by the peak correlation coefficient between the com-
bined signal and the code waveforms. This waveform with desired
amplitude was then subtracted. This process was repeated until corre-
lation coefficients with all code waveforms were small. One concern is
that it is difficult to estimate the cell size (and the desired amplitude of
signals to be subtracted) from the correlation coefficient eventually may
causing errors in cell sizing and counting [29-31]. Furthermore, Wang
et al. [32] demonstrated a pattern recognition method, i.e. deep con-
volutional neural networks, which can count particles via high density
parallel channels. To train the networks, a large waveform database (e.g.
over one million augmented non-interfering waveforms when
various-sized particles passed through each channel at different speeds)
was constructed. Deep learning-based algorithm was used to find the
pattern match between the output signal and template waveforms, and
thus to determine the particle sizes and occurrence time. The pattern
recognition could be time-consuming because of the large size of the
waveform library. Accuracy in sizing and counting particles could also
be compromised due to indistinct features of the combined signal
especially when multiple particles are present at the same time [33-36].
Furthermore, the above CODES methods required an AC excitation
system and three sets of electrodes to generate the bipolar code signals.
A lock-in amplifier was needed to extract the desired signals caused by
the passage of particles, increasing the complexity of the device.

To overcome the above problems, we present a geometry modulation
based resistive pulse sensor. In our strategy, each sensing channel has a
unique multiple-segment geometry, which generates a unique waveform
signal due to the passage of particle. The combined signal consists of
signals from all individual sensing channels, which is collected, and is
demodulated. The advantages of this sensor are: 1) The geometry
modulation encodes signals by unique geometries without using com-
plex electrodes and control signals, 2) While the counting throughput is
improved multiple folds via its parallel sensing channels, only one DC
source is needed, and only one combined signal is measured; the ge-
ometry modulation is simple and scalable, more sensing channels can be
easily added to significantly improve the throughput 3) Using a unique
interactive cancellation procedure, the errors in counting and sizing the
particles are significantly reduced. A proof of concept, a 4-channel de-
vice was fabricated and tested to demonstrate the sensing principle.
With simple structure and easy operation, the geometry-modulated RPS
shows a great potential for rapid and enormous detection of micro/nano
targets (e.g. blood cells or wastewater particles) in haematology and
environmental applications.

2. Material and methods
2.1. Materials

10 pm (product# 72,986), 15 pm (product# 74,964), and 20 pm
(product# 74,491) diameter polystyrene particles were purchased from
Sigma-Aldrich. Dulbecco’s phosphate-buffered saline (DPBS, 1X, prod-
uct# MT21031CV, Thermo Fisher Scientific) was used to prepare the
particle solution. Nonionic surfactant (CAS 9002-93-1, FisherBiotech)
was used to avoid particle aggregation.
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2.2. Sensing principle

To achieve multiplexed detection of different-sized microparticles,
we designed a geometry modulation RPS with four sensing channels, as
shown in Fig. 1a. The narrow segment has a larger resistance (or larger
voltage), while the wide segment has a smaller resistance (or smaller
voltage). Hence the narrow and wide segments can be used to represent
bits of "1’ and 0’ respectively. For the design of sensing channels, each
sensing channel has a unique geometry that matches one specific
spreading sequence code. When a particle transits each sensing channel,
the change in the channel resistance is detected, and voltage change is
encoded with a unique waveform or spreading code. The ideal waveform
for each sensing channel is shown in Fig. 1c (black curve). The actual
waveforms representing the spreading codes are more complex, which
are discussed in Fig. S1 in Supplementary Information. Fig. 1c (blue
curve) shows the actual waveforms when a 10 um particle passed
through the four individual sensing channels (spreading code 1010110,
1101100, 0111111, and 1110100) separately. For the multichannel
device, the combined signal, consisting of signals from all sensing
channels is collected.

A DC Wheatstone bridge was used to measure the combined resistive
pulse signal, as shown in Fig. 1b. R¢p, represents the resistance of the RPS,
and Ry is the external adjustable resistance. R3 and R4 are fixed value
resistors, and the values are set to be 1kQ to form a Wheatstone bridge.
Before each test, Rp was adjusted to be equal to Ry, so that the voltage
drop between A and B (Vap) was zero. A DC voltage, Vi, is applied to the
circuit. When particles transit the sensing channels, a resistance change
in Rep, is generated which causes a change in Vap. This voltage change is
amplified and measured as V.

For the multiple channels connected in parallel, the combined signal
is a sum of individual signals from all sensing channels. To demodulate
the combined signal, the combined signal is correlated with the template
waveform of each channel with a unique spreading code. If a particle
passes one specific channel, the correlation coefficient with the desired
code (i.e., the unique waveform of one sensing channel) is higher than
those with other codes. Hence the signal of this channel can be isolated
and subtracted from the combined signal. This procedure is continued
until the correlation coefficient between the remaining signal with all
spreading codes is low (e.g. <0.4, weak correlation) [37], indicating the
remaining signal contains no obvious waveform of any sensing channel.
Note that we used a peak correlation of 0.4 as the sign to evaluate the
similarity between two signals. This sign was well studied and deter-
mined by prior statistical research [37] and widely accepted by medical
applications [38,39]. A larger than 0.4 correlation coefficient typically
indicates a strong relation between signals, phenomena, or statistical
variables [37,38].

2.3. Spreading sequences

In this paper, 1010110, 1101100, 0111111, and 1110100 were used
for the design of four sensing channels and encoding the electrical sig-
nals from each sensing channel. These four codes were generated from a
preferred pair of m-sequences (1001011 and 1110100), and then shifted
one bit of the second m-sequence cyclically and performed XOR oper-
ation [40].

To demodulate the combined signals, first, template waveforms
generated by a standard particle (e.g. 10 pm particle) passing through
each individual sensing channel (without the presence of any neigh-
bouring sensing channel) were measured at one constant flow rate. Next,
these four template waveforms were used as template waveforms to
correlate with the detected combined signals. If one particle is present in
a channel, the correlation with this channel’s sequence waveform will
generate a high correlation coefficient. The correlation coefficient
function between two series of data has been shown in Eq. (1) [41].
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Fig. 1. Schematic of the microfluidic sensor for
particle analysis. (a) Illustration of the geome-
try modulation sensor with four parallel sensing
channels and enlarged image of sensing chan-
nel. A narrow segment represents bit '1” and a
wide segment represent bit *0’. (b) Diagram of
circuit to measure the resistive changes gener-
I ated by particle transiting a sensing channel.
The input voltage V;, was set to 1 V to avoid
hydrolysis of DPBS. (c) Electrical waveforms
when a particle transits through each sensing
channel with a unique spreading sequence
code. Spreading sequence codes (black) are
| used: 1010110, 1101100, 0111111, and
1110100. Blue: measured electrical signals
coming from particles passing through each
channel.
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Where x; and y; represent each set of data, i from 1 to N (last element). x,
and y, are the averages of data value (x, =N"!-3x; and y, =
-1, > ¥i). The correlation coefficient value ranges between +1.0
(perfect positive correlation) and —1.0 (perfect negative correlation).
One challenge is that particles may pass one sensing channel at
different speeds because of variations in their sizes, axial positions, or
driving pressure. Hence the durations of the waveform patterns of these
particles are different. On the other hand, when several particles are
present in separate sensing channels, the combined signal has a longer
duration than the template waveforms of each individual channel. To
address this problem, the four template waveforms collected when one
particle passes through each individual channel are processed by a
custom MATLAB program to generate these waveforms with various
durations. The duration can be shrunk or elongated by multiplying the
time interval between two data points by a constant factor (e.g. from 0.5
to 2 with an incremental interval of 0.1). To identify whether the
combined signal contains the specific waveform, the combined signal is
correlated with the generated template waveforms with different dura-
tions. Only the maximum/peak correlation coefficient is considered. A
peak coefficient larger than 0.4 indicates that at this moment, a particle
passes the channel, so that the combined signal has a strong similarity
with the waveform of this channel [37]. From the correlation analysis,
the presence of particles in individual channels can be determined.
Once the desired waveform is determined, it should be subtracted

from the combined signals. However, due to the unknown sizes of par-
ticles, the amplitude of the waveform is difficult to be determined. While
researchers attempted to use the peak correlation coefficient to deter-
mine the sizes [29-31], this method is likely to cause errors in particle
sizes and counts because the presence of particles in the neighbouring
channels significantly affects the correlation coefficient. An example is
shown in Supplemental Information (Fig. S2). Here we use an interactive
cancellation method. Since the template waveforms were obtained from
a 10 um particle, the amplitudes of the waveforms of each channel were
defined as 1 x magnitude. In the interactive cancellation, once a
waveform match is determined, only a fraction of the magnitude (e.g.
0.8 x amplitude) is subtracted from the combined signal. After the
subtraction, correlation analysis is conducted again; if the correlation
coefficient is still larger than 0.4, additional subtraction of this wave-
form with the 0.8 x amplitude is performed from the remaining signal.
This process is repeated until the correlation coefficients between the
remaining signal and four template waveforms are less than 0.4. How-
ever, if after the latest subtraction, the correlation coefficient becomes
high negative (<—0.4), this indicates an over subtraction of the wave-
form. The 0.8 x subtraction needs to be replaced by a 0.4 x subtraction.
If 0.4 x subtraction still causes a high negative correlation coefficient, a
0.2 x subtraction should be used. This procedure is repeated until the
absolute value of the peak correlation coefficient less than 0.4 is ach-
ieved. In this paper, 0.4 is used as a threshold to judge the similarity
between the combined signal and the template waveforms. When the
absolute value of the correlation coefficient is less than 0.4, the simi-
larity between the two signals is considered weak [37]. The size of the
particle is then determined from the overall amplitude of this waveform



R. Xu et al.

subtracted from the combined signal. In the results and discussion sec-
tion, we will use several cases where different-sized particles are present
in different sensing channels to further illustrate the interactive
cancellation process.

The advantage of using the interactive cancellation is that it does not
rely on the correlation coefficient to determine the particle size, which is
likely to cause errors because the correlation coefficient is not only
affected by the size of the particle present in the desired channel, but
also affected by the presence of particles in neighbouring channels.
Using the interactive method, the size of the particle can be accurately
determined.

2.4. Device fabrication

The standard soft lithography method was used to fabricate the ge-
ometry modulation sensor, as shown in Fig. 2. An SU-8 2025 (Micro-
Chem, MA, USA) mould was fabricated, consisting of (1) four sensing
channels with different geometries, (2) two Ag/AgCl electrode holes to
place the electrodes to measure the resistance change caused by particles
passing through the sensing channel, and (3) inlet/outlet reservoirs and
connection channels. The seven segments of each sensing channel were
designed based on the chosen spreading sequence codes. Each segment
represents one bit. The length of each segment/bit is set to be 20 pm.
Thus, the total length of one seven-bit sensing channel is 140 pm. The
widths of the segment 1’ and 0’ (or bit) are 40 pm and 100 pm
respectively. The height of the device is 30 pm everywhere. The
microfluidic RPS was fabricated via pouring polydimethylsiloxane
(PDMS, Dow Corning Sylgard 184 Silicone Elastomer Kit) onto the SU-8
mould followed by degassing and curing the PDMS for 2 h at 70 °C in a
vacuum chamber. Then the inlet/outlet reservoirs and electrode holes
were created by punching the PDMS slab with biopsy punches in 1.5 mm
and 1 mm diameter respectively. Subsequently the PDMS slab was
bonded onto a glass substrate after treatment with air plasma (200
mTorr, 50 W, 50 s). The dimensions of the sensing channel measured by
the profilometer (Dektak 150, Veeco Instrument, NY, USA) are 33.17 +
1.35 pm (height), 138.15 + 2.27 pm (length). The widths of segments
1’ and ’0’ are 41.59 + 1.18 pm and 102.16 + 1.87 pm. Finally, two Ag/
AgCl electrodes (1mm diameter) were placed into the electrode holes to
measure the resistive pulses and complete the geometry modulation
sensor. For each test, the particle solution was loaded into the inlet
reservoir and driven through the sensor by a constant pressure of 2 kPa.
A DC voltage (1 V) was applied across the Ag/AgCl electrodes to avoid
hydrolysis of DPBS, resulting in the fluctuation of flow. The voltage
pulse signals by the particles were amplified with a differential amplifier
(AD620BN, analog Devices Inc, USA), recorded with an NI - DAQ board
(PCI-6133, National Instrument USA) at a sampling rate of 500 kHz via
data acquisition software (LabVIEW, National Instruments). The recor-
ded signals were processed using a custom MATLAB program to denoise
and analyse.

Fig. 2. Images of the geometry modulation RPS. (a) Picture of the complete
microfluidic device with four parallel detections. (b) Microscopic image of four
sensing channels.
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3. Results and discussion
3.1. Validation of geometry modulation method

To demonstrate the principle of geometry modulation, the mixed
solutions of three different-sized polystyrene particles including 10 pm
(10 £ 0.2 pm), 15 pm (15 £ 0.2 pm), and 20 pm (20 + 0.3 pm) were
used, and loaded into the device. To validate the geometry modulation
method, a high-speed camera (MU043M-FL, United Scope LLC) was used
to capture the transits of particles through the sensing channels. These
images were used to validate the presence and sizes of the particles.
Before the demodulation, waveforms, when a 10 pm microparticle
passed through each individual sensing channel, were collected as the
template waveforms. These waveforms are shown in Fig. 1c (blue).

Fig. 3 shows the decoding procedures for a case where only one
particle was present in a channel (Fig. 3 al). The combined voltage
signal is shown in Fig. 3 b1. To determine the sensing channel where the
particle passed, correlations between the detected signal and the four
template waveforms were conducted (Fig. 3 a2). The maximum corre-
lation coefficient, occurred in channel 3, indicating the particle presence
occurred in channel 3. Next, a 0.8 x waveform of channel 3 was sub-
tracted from the detected signal. Fig. 3 b2 shows the remaining signal
after the first subtraction. The correlation analysis was conducted again
with all template waveforms, and the maximum correlation coefficient
still occurred in channel 3 (Fig. 3 a3). A second 0.8 x subtraction of
waveform 3 was processed (Fig. 3 b3), and the correlation coefficient
between the remaining signal and four template waveforms became a
large negative value (—1, absolute magnitude is larger than 0.4), as
shown in Fig. 3 a4, implying an over subtraction occurred. Thus, a 0.4 x
waveform 3 was subtracted to replace the 0.8 x subtraction (Fig. 3 b4),
and a negative correlation coefficient (—1) still occurred (Fig. 3 a5).
Next, we tried a 0.2 x waveform 3 subtraction (Fig. 3 b5), the remaining
signal still generated a negative correlation coefficient less than —0.4
(Fig. 3 a6). Hence a 0.1 x subtraction of waveform 3 was conducted
(Fig. 3 b6); After the subtraction, the correlation coefficient with
waveform 3 became positive but was still higher than 0.4 (Fig. 3 a7).
Subsequently, a 0.05 x waveform 3 was subtracted (Fig. 3 b7). We did
not subtract an additional 0.1 x waveform 3 because in the previous
steps (Fig. 3 b5), subtracting a 0.2 x waveform 3 would cause an over
subtraction (See Fig. 3 a6). After that the 0.05 x subtraction (Fig. 3. b7),
all correlation coefficients became less than 0.4 but all positive (Fig. 3
a8); the iterative cancellation procedures were completed. Overall a
0.95 x waveform 3 was subtracted after no similarity was found be-
tween the combined signal and all four template waveforms. While the
magnitude of the waveform is proportional to the particle volume, the
corresponding size of the particle was calculated to be 9.8 pm. Note that
here we utilized 0.4 as a threshold value to determine where there is a
similarity between the remaining signal and the template waveforms
[371.

Fig. 4 al shows two different-sized particles passing through two
sensing channels simultaneously. Fig. 4 b1l shows the combined signal
from all channels. To demodulate the signal, first, the correlation be-
tween the combined signal and each template waveform was conducted.
Fig. 4 a2 shows the correlation coefficients with all four template
waveforms, showing the maximum correlation occurred in channel 4.
Next, a subtraction of 0.8 x waveform of channel 4 was operated from
the combined signal. Fig. 4 b2 shows the remaining signal. A correlation
analysis was conducted again with all channels’ waveforms (see Fig. 4
a3), showing that the maximum correlation still occurred in channel 4.
One more 0.8 x subtraction from the remaining signal was done, as
shown in Fig. 4 b3. After three subtractions of 0.8 x of template
waveform 4 (Fig. 4 b4), the maximum correlation coefficient occurred in
channel 1 (see Fig. 4 a5). Hence a subtraction of 0.8 x of template
waveform 1 was processed (Fig. 4 b5). After the subtraction, the
maximum correlation occurred in channel 4 again (Fig. 4 a6). A sub-
traction of 0.8 x waveform 4 was conducted (Fig. 4 b6), resulting in the
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Fig. 3. Iterative cancellation procedures for decoding the combined electrical signal generated by one single particle. During the cancellation, the combined signal
was correlated with four template waveforms with different durations. Based on the correlation coefficient, the desired waveform of the sensing channel where the
particle was present was determined. Next, the desired waveform with 0.8 x base amplitude was subtracted from the combined signal. This correlation-subtraction
process was operated until all correlation coefficients between the remaining signal and four template waveforms became less than 0.4. Waveforms with smaller
amplitude (e.g. 0.4 x , 0.2 x ,0.1 x, 0.05 x ) were subtracted in case a negative correlation coefficient (which indicates an over subtraction) was generated.
Subtractions marked by red represented trial subtractions, which would cause an over subtraction, and were not conducted. Subtractions marked by black repre-

sented actual subtractions from the combined signal.

maximum correlation coefficient occurring in channel 1 (Fig. 4 a7). As
shown in Fig. 4 b7, when the 2" subtraction of 0.8 x of waveform 1 was
attempted, the correlation coefficient became —0.8 (Fig. 4 a8), indi-
cating this is an over subtraction. Then, a 0.4 x subtraction of waveform
1 was used to replace 0.8 x subtraction (Fig. 4 b8). After that, the
maximum correlation coefficient occurred in channel 4 (Fig. 4 a9).
When subtracting 0.8 x waveform 4 was attempted (Fig. 4 b9), a large
negative correlation coefficient occurred again (—0.85), as shown in
Fig. 4 al0. Thus a 0.4 x subtraction of waveform 4 was tried to replace
0.8 x subtraction (Fig. 4 b10), which still generated a large negative
correlation coefficient, i.e. —0.7 (Fig. 4 al1). We further replaced the 0.4
x subtraction with a 0.2 x subtraction (see the remaining signal in Fig. 4
b11). After the subtraction, the absolute correlation coefficients with all
template waveforms were less than 0.4 (Fig. 4 al2), indicating there is

no similarity between the remaining signal and all four template
waveforms. Note that the magnitude of the resistive pulse magnitude is
proportional to the volume of the particle. From the overall subtracted
magnitudes of channel 1 (1.2 x ) and channel 4 (3.4 x ), the particle
sizes were estimated to be 10.6 pm and 15.04 pm in channel 1 and
channel 4 respectively, which are in good agreement with the actual
particle sizes (10 and 15 pm). The maximum error of particle size is 6%.

Note that we also used the same interactive cancellation procedures
to demodulate the combined signals for cases where three particles and
four particles were present simultaneously in separate 3 and 4 sensing
channels respectively. The optical image of the particles’ presence, the
combined signal, and the demodulate results are shown in Fig. 5a and
5b. The detailed demodulation procedures are shown in Supplementary
Information (S3 and S4) due to the lengthy steps. For three particle case,
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Fig. 5. Results in decoding electrical signals generated by multiple particles of different sizes. Left: optical image for different-sized particles. Middle: detected
combined electrical signal. Right: iterative cancellation results and the corresponding diameters. (a) three coincident particles. (b) four coincident particles.

the calculated particle sizes were 10.3 pm (channel 2), 14.73 pm
(channel 3), and 19.9 pm (channel 4). For four particle case, the
measured particle diameters are 15.03 pm (channel 1), 14.73 pm
(channel 2), 15.3 pm (channel), and 14.73 pm (channel 4). The
measured particle sizes are in good agreement with the actual particle
sizes with a maximum error of 3%.

Note that we chose an initial 0.8 x subtraction for the interaction
cancellation to reduce the number of the interactions and to achieve the
decent resolution for particle sizing. Other initial subtractions (e.g. 0.5 x
, 0.3 x ) can also be used. We tried both 0.5 x and 0.3 x initial sub-
tractions and obtained very similar particle counts and sizes. Also, since
all waveforms used are not standard binary digital waveforms, the
correlation coefficients between each of them were larger than 0.4. Only
the maximum correlation coefficient was applied to judge the similarity
with the desired waveform. The subtracted waveform for each round of
cancellation was the one that generated the highest correlation coeffi-
cient with the remaining combined signal.

3.2. Demonstration of size and counting accuracy

Three different mixed particle solutions were used to demonstrate
the sizing and counting accuracy of the four-channel RPS. Each mixed
solution was prepared by mixing the three-sized particles (10 + 0.2 pm,
15 + 0.2 pm, 20 + 0.3 pm) with different concentrations. Each particle
mixture was loaded to the device; the combined signal was collected
continuously, which was demodulated subsequently as described in
Fig. 3 and 4. Particle counts and sizes were obtained. The particle con-
centration was determined by dividing the particle counts by the flow
rate. The measured particle concentrations and sizes are shown in Fig. 6.
The error bar represents the standard deviation of three separate mea-
surements of each solution with known particle concentrations. The
measured concentrations were 58.1 + 3.37 MP/uL (20 pm particles),

@ ~
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=
E 400 w10 pm
N
=
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=
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=]
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Fig. 6. Comparison of measured and actual concentrations and diameters of
micro particles in the mixed solution. (a) comparison of measured particle
concentration vs actual particle concentration, (b) comparison of measured
particle diameter vs actual particle diameter. Actual particle concentrations and
sizes (represented by rectangular boxes with slash lines) were measured by
AccuSizer™ 780 (Optical Particle Sizer).
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132.2 + 6.88 MP/pL (15 pm) and 525.7 + 24.3 MP/pL (10 pm) for
Sample 1; 40.9 £ 2.31 MP/pL (20 pm), 91.9 + 3.88 MP/pL (15 pm) and
354 + 19.83 MP/pL (10 pm) for Sample 2; 34.7 & 1.59 MP/pL (20 pm),
67.3 + 3.5 MP/pL (15 pm) and 260.3 + 11.36 MP/pL (10 pm) for
Sample 3. In comparison, the actual particle concentrations of all sam-
ples were measured by AccuSizer™ 780 (Optical Particle Sizer). The
actual concentrations were represented in Fig 6a as rectangular bars
with slash lines. Apparently, the actual concentrations and the measured
concentrations are in good agreement. The standard deviation of errors
in particle counting is 5.8%. This is possible because polystyrene mi-
croparticles used in the tests have a density (1.05 x 10% kg/m?) slightly
higher than water, a small amount of particles may be deposited on the
substrate due to gravity before passing the sensing channels.

The particle size measurement result is shown in Fig. 6b. The
measured microparticle sizes were 20.33 £ 0.57 pm, 14.94 + 0.44 pm
and 9.96 + 0.52 pm for Sample 1; 19.89 £ 0.77 pm, 15.01 £ 0.49 ym
and 9.9 + 0.42 pm for Sample 2; 20.05 + 0.43 pm, 14.92 + 0.41 pm and
10.05 £ 0.51 pm for Sample 3. The actual concentrations measured by
AccuSizer™ 780 (Optical Particle Sizer) were 57 MP/pL (20 pm), 129
MP/pL (15 pm) and 516 MP/pL (10 pm) for Sample 1; 38 MP/uL (20
pm), 86 MP/pL (15 pm) and 344 MP/pL (10 pm) for Sample 2; 29 MP/pL
(20 pm), 65 MP/pL (15 pm) and 258 MP/pL (10 pm) for Sample 3, which
are plotted as rectangular bars with slash lines. Both measured particle
sizes are in good agreement with the actual sizes, with a maximum error
of 5.2%. The results further confirmed the accuracy of the device and
demonstrated the feasibility of the geometry modulation principle. The
standard deviation of errors in sizing is 5.2%. The errors of particle
sizing may be attributed to the following three major reasons: 1) Mag-
nitudes of resistive pulses could be affected by the off-axis position of
microparticle [7,42]. Not all particles passed the sensing channel via the
centerline. 2) The microparticles used in the experiments have standard
deviation in sizes (i.e. 10 & 0.2 pm, 15 + 0.2 pm, 20 + 0.3 pm), and 3)
The flow fluctuation could induce noises to the measured signals [7,43,
44], which may cause additional errors in sizing.

The above tests demonstrated the utility of the geometry modulation
based RPS in measuring the sizes ad counts of microparticles in a mixed
solution. The sizes of the particles were determined by a new interactive
correlation-cancellation process. The iterative cancellation method is
based on an assumption that at one time only one particle is present in
one sensing channel. The standard template is obtained when one par-
ticle passes through each sensing channel. If multiple particles are pre-
sent in one sensing channel at one time, the resistive pulse signal would
not match well with the template waveforms. This may cause errors in
determining the similarity between the actual signal and the template
waveforms. It is worth mentioning that in geometry modulation, since
each bit of the sequence code is enabled by only one channel segment,
the channel length can be designed relatively short compared to CODES
[27]. Hence the chance that simultaneous passage of multiple particles
in a long channel is reduced; so is misjudgement of multiple small par-
ticles as one large particle. One can also dilute particle solution to a
lower concentration to further mitigate this problem. In addition, the
iterative cancellation scheme can achieve the same accuracy in counting
and sizing even if the sizes of the detected particles are unknown. In fact,
during decoding the combined signal, the magnitude of the signal from
each individual channel was unknown, which was determined by the
total subtractions from the iterative cancellation scheme. The particle
size was subsequently calculated from the signal magnitude. While the
template waveforms from the sensing channels (with unique geome-
tries) are non-standard binary digital signals, the experiment results still
show decent match between the measured and actual sizes and con-
centrations of particles.

The 4-channel device presented here improved the counting
throughput by 300% compared to a single channel device. The geometry
modulation is simple and scalable; the throughput can be further
improved by adding more sensing channels with unique geometries.
Compared to other RPS modulation methods (space modulation [25],
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frequency division [26], CODES [27], pattern recognition [32]), this
method has many advantages. Compared to space modulation method
[25], a large number of sensing channels can be added for higher
throughput without increasing the complexity of detection electronics.
Compared to frequency modulation [26], our method does not need
multiple external AC demodulation signals applied to each sensing
channel, and a resistance-dominant frequency range for accurate parti-
cle sizing; only one DC source was needed; the detection electronics
were significantly simplified. Compared to CODES multiplexing (Liu
et al. [27,28]), unique signal patterns were obtained using only one DC
source with our method; only one pair of sensing electrodes was needed
to encode and decode signals. In addition, as this method does not rely
on the peak correlation coefficient to estimate the particle size, the
particle counting and sizing accuracy were dramatically improved
without worrying the influence of the neighbouring particles on corre-
lation coefficient. Further, in comparison to the pattern recognition
method developed by Wang et al. [32], this method does not need to
train the networks with a large waveform database (e.g. over one million
augmented non-interfering waveforms). Since our method only required
a small number of waveforms, the signal processing time was much
reduced. Errors in sizing and counting particles were also reduced
because no complex pattern recognition was needed.

Note that the sensor based on geometry modulation could achieve
high-throughput counting for micro/nano targets. Compared to other
methods (e.g. CODES [27], pattern recognition method [32]), the tem-
plate library was small, which reduced the amount of correlations with
the template waveforms. We conducted a test on the time required to
decode one combined resistive pulse; the decoding took approximately
0.3 ms to 0.5 ms using a desktop (Intel® Core™ i5-10,400 CPU @ 2.90
GHz, 16GB Memory). The processing speed was sufficiently fast to
analyse the micro/nanoparticles in real time, considering the pulse
width of one combined pulse was approximately 1 ms to 2 ms. The
simple structure and measurement setup make it suitable for rapid and
enormous analysis of micro/nano-targets in several applications,
including but not limited to blood cell detection in haematology [45,
46], microsphere and cancer cell detections in pharmacology [47,48],
wastewater particle analysis, pollen and algae detection in environ-
mental monitoring [49-53].

4. Conclusions

We presented a geometry modulation-based resistive pulse sensor
that enabled high throughput counting and sizing of microparticles with
its four parallel sensing channels. The geometry of each sensing channel
was uniquely designed based on four different spreading codes. When
particles passed through the sensing channel, the electrical signals from
each sensing channel were encoded by specific waveform patterns. Only
one DC source is needed. The combined signal consisting of four enco-
ded signals from the parallel sensing channels was measured. The
combined signal was then demodulated by correlating the combined
signal with the template waveforms from each individual channel. The
maximum correlation coefficient was utilized to identify the compo-
nents of the specific waveforms and durations. A new iterative cancel-
lation scheme was developed to subtract the specific waveforms with a
series of magnitudes (from high to low) until all correlation coefficients
between the remaining signal with all template waveforms were small
(e.g. absolute value < 0.4). This scheme does not determine the parti-
cle’s size based on the absolute value of the correlation coefficient,
which typically causes errors in sizing and counting the particles. We
validated the device with the mixed solutions of 10 ym, 15 pym, and 20
um polystyrene particles with known concentrations. With the standard
deviation errors of 5.8% and 5.2% in concentration and size measure-
ments, the results demonstrated the ability of the sensor in accurately
measuring particles’ sizes and concentrations in a mixed solution. The
geometry modulation sensor without complex components, showed
great potential in the detection and analysis of micro/nano-targets with
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high throughput and sensitivity.
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