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We derive exact, modified geodesic equations for a system of nonspinning, self-gravitating interacting
bodies in a class of alternative theories of gravity to general relativity. We use a prescription proposed by
Eardley for incorporating the effects of self-gravity within gravitationally bound bodies, in which their
masses may depend on invariant quantities constructed from the auxiliary scalar, vector or tensor fields
introduced by such theories, evaluated in the vicinity of each body. The forms of the equations are
independent of the field equations of the chosen theory. In the case where the masses are strictly constant,
the equations reduce to the conventional geodesic equations of general relativity. These equations may be
useful tools for deriving equations of motion for compact bodies to high post-Newtonian orders in

alternative theories of gravity.
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I. INTRODUCTION

The motion of self-gravitating bodies in relativistic
gravitational theories such as general relativity is a problem
of both theoretical and observational interest. From a
theoretical point of view, the problem raises fundamental
questions of principle, such as how to separate internal
dynamics from the overall motion of the bodies [1], how to
define usable (if not entirely rigorous) “centers of mass,” and
the efficacy of “point particles” as a tool for treating “small,”
well separated bodies. From an observational point of view
the problem has been important ever since Nordtvedt’s 1967
discovery that, in a broad class of alternative theories of
gravity, the acceleration of self-gravitating bodies in an
external gravitational field could depend on their gravita-
tional binding energy [2], thereby violating the principle of
equivalence (today called the strong equivalence principle
(SEP)), and providing an important test of gravitational
theories via studies of the Earth-Moon orbit in the field of the
Sun using lunar laser ranging [3].

The 1974 discovery of the binary pulsar B1913 + 16 [4]
made the problem more acute, because the self-gravity of
the neutron stars in the system involved strong gravitational
fields, in contrast to the weak fields that characterize the
Earth and the Moon’s internal structure. And indeed, in an
influential 1976 paper, Ehlers et al. [5] criticized the entire
state of work on the problem of motion as it stood at the
time, questioning among other things the use of delta
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functions to treat small well-separated bodies in general
relativity. That paper, together with the emerging idea that
the inspiral of binary neutron stars or black holes might be
an important source of gravitational waves for the nascent
laser interferometric detectors, motivated a major effort by
many research groups to put the “problem of motion and
radiation” on a firmer theoretical foundation (see [6,7] for
reviews).

One aspect of that program was the development of
sophisticated regularization techniques (Hadamard regu-
larization, dimensional regularization) to handle the infin-
ities that go hand in hand with the use of delta functions to
describe the bodies. At the same time, it was shown that, at
least through second post-Newtonian (2PN) order in gen-
eral relativity (GR), for a system of small but finite-size
fluid balls, taking into account their internal gravitational
structure, isolating terms that scale as inverse powers of the
size of each body, and making a universal renormalization
of their masses through 2PN order to eliminate all such
seemingly singular terms, the equations of motion were
identical to those obtained using delta-function sources
with appropriate regularizations [8] (see also [9]). This gave
rise to the widely accepted assumption that the motion of
nonspinning bodies in GR would be independent of their
internal structure (up to tidal interactions), and would thus
be amenable to treatment using delta function sources, at
least to some high post-Newtonian order (Damour [1]
estimated that it might fail at SPN order).

What about alternative theories of gravity? Because
many alternative theories introduce auxiliary long-range
gravitational fields (scalar, vector, tensor, ...) in addition to
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the metric, the structure of self-gravitating bodies may
depend on the asymptotic values of these fields induced by
cosmology or even by nearby bodies in the system [3,10],
and in particular, their masses could depend on these
values. But if a body’s mass varies as it moves in the
field of other bodies, its acceleration must be modified
appropriately in order to preserve energy conservation (see
the classic cyclic gedanken experiment arguments by Dicke
[11], Nordtvedt [12], and Haugan [13]). These structure-
dependent modifications of the motion lead to violations
of the strong equivalence principle, as exemplified in the
Nordtvedt effect.

In 1975, while studying the implications of the binary
pulsar discovery for the alternative scalar-tensor theory of
gravity, Eardley [14] devised a prescription that incorpo-
rated violations of the SEP, permitted strong internal
gravitational fields, yet retained the simplifying aspects
of using delta-functions for the sources. He proposed to
write the matter action of a system of nonspinning, self-
gravitating “point” particles in the form

Sy = —;/m/&(fﬁ)dﬁ

where ¢ is the scalar field evaluated at the location of each
particle, and 7 is proper time along the world line of each
particle. The resulting scalar-tensor field equations and
equations of motion then depended on what Eardley called
“sensitivities” of each particle’s mass to variations of the
scalar field, defined by

.= <dln mA(¢)>
A7\ dmg )

(1.1)

(1.2)

With the use of Eardley’s prescription combined with
estimates of sensitivities for neutron stars using various
equations of state, bounds have been placed on alternative
theories of gravity using binary pulsar data, including
Rosen’s bimetric theory [15], massless and massive scalar-
tensor theory [16-20], and Einstein-ZAther theory [21,22]. It
has been used to obtain equations of motion for compact
bodies in scalar-tensor gravity to 3PN order [23,24], the
gravitational waveforms to 2PN order for tensor waves and to
1.5PN order for scalar waves [25,26], and the energy flux to
1.5PN order [27]. It has also been used to obtain the 1PN
equations of motion in Einstein-Ather theory as well as the
leading radiative effects [22,28].

In an effort to investigate the range of validity of Eardley’s
prescription, Gralla [29,30] developed a more general and
rigorous theory of the motion of “small” bodies characterized
by such parameters as mass, spin and charge in an environ-
ment of external fields, and argued that Eardley’s prescription
is a special case of that general framework.

In this paper, we explore the practical implications of the
Eardley prescription for the equations of motion of compact

bodies in alternative theories of gravity. We consider a
system of “point” masses, where each mass is a scalar
quantity that depends one or more invariant quantities y
constructed from the auxiliary gravitational fields of the
theory, the spacetime metric, and the four-velocity of the
mass, evaluated “at” the location of each body. By “at,” we
mean more precisely that the quantities are evaluated at the
boundary of a region surrounding each body that is
sufficiently large that the metric of the body is approx-
imately asymptotically flat, yet sufficiently small compared
to the interbody distances that variations of the quantities
across the region may be ignored. In other words, we ignore
all tidal effects arising from the actual finite size of real
bodies. We also ignore spin effects.

The simplest example, of course, is a scalar field,
whereby the mass is a function of ¢; in scalar-tensor
theories ¢ is directly related to the local value of Newton’s
constant, which clearly influences the body’s internal
structure and gravitational binding energy. For a timelike
vector auxiliary field K*, the mass might depend on K,
the time component of K* as measured in the quasilocal
comoving inertial frame of the body (since the body is
assumed to be “spherical,” it is hard to see how the mass
could depend on a local spatial component K7). The
invariant quantity whose value is K’ in the comoving
frame is —u/, K g,,,., where i/, is the four-velocity of body A.
The mass could also depend on the magnitude K*K,,. For
this paper, we will consider a specific set of invariant
quantities arising from the auxiliary fields ¢, K* and a
tensor field C*, divided into two categories: (A) invariants
constructed from the fields only, and (B) invariants involv-
ing the bodies’ four-velocities:

Ai g, —K'K,
B: — K uy,

Q v
cocC a’/‘A,MAu-

- ey, cve

Q v
C ﬂCa uAuqu

W >

CﬂyMAMMAy,

(1.3)

We do not assume any a priori symmetry for the tensor
field C*. The negative signs are purely conventional. If we
assume that the vector K* and the tensor C** are “timelike”
in the sense that in the rest frame of a homogeneous
isotropic universe, they have no spatial components (apart
from a possible spatial 57) and have positive K* or C%,
then the invariants will be positive in the vicinity of the
bodies.

These are the simplest possible couplings involving
scalar, vector or tensor fields. If a theory of gravity should
involve higher-rank or more exotic fields, or couplings
beyond quadratic order, then the methods described here
should be generalizable to more complicated cases. Starting
from a matter action of the form of Eq. (1.1) we derive a set
of exact, “modified geodesic equations” for each invariant,
in two ways, in Sec. II by applying the standard calculus of
variations to the action, and then in Sec. III by using the
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general covariance of the action to obtain a modified matter
“Bianchi identity” analogous to the general relativistic
vanishing of the divergence of the energy-momentum
tensor. Both methods yield the same modified geodesic
equations. Section IV makes concluding remarks.

II. COMPACT BODY EQUATION OF MOTION
FROM A POINT-MASS ACTION

Applying Eardley’s prescription, we write down the
action for a system of self-gravitating point masses,

M:—;/ngw—

where 4 is a timelike integration variable along the world-
line of each particle, v* = dx*/dJ, and y stands for one of
the invariant expressions in (1.3). All variables in S;; are to
be evaluated at the location of body A. In theories where
there might be more than one auxiliary field, or where more
than one invariant might be involved in determining the
mass of body A, there might be several ys: v, w,, and so
on, but to keep the notation simple we will assume that only
one field and invariant is involved. Generalization to
multiple ys is straightforward.

We now vary the path of each particle by 6x5(4), with
8x%(P)=6x%(Q)=0. Noting that (—g,, v*v*)"/? = dt,/dJ,
where 7, is proper time along the worldline of body A, and
expanding about the unperturbed worldline, we obtain, to
first order in the deviations 6x%,

dTA dTA 1 Uy d 5 d6 a
—L=—=) —= uhu X uy x4
ar~ \an ), 29metata gy ) XA T Jmta g0t

Guvv)V2da,  (2.1)

oy oy oy
= ! 1) 1) —6
my(y) =my +m) <0uﬁ “A"’agw g’”+6(/’) [
oy oy
——6KH SCH 2.2
+aK/‘ +0C/‘” (2.2)

where my = m,(po) and m/y = dm, /dy,, where the sub-
script 0 denotes evaluation along the unperturbed paths.
Note that

dl d 1
Suly = (E)O((% + ity lipg) d/léx*‘ += gﬁyauﬁuAuAéxA,
59;41/ = g/,w,aéxf\’

o = ¢ 40x%,
SK* = K" 6x¢,

SCH = CH ,5x°. (2.3)

Using these results to expand the action S to first order in
deviations of the worldline, integrating by parts to eliminate

déx*/dA, and demanding that §S = 0 for arbitrary variations
ox%, we obtain the equation of motion for each body A,

dy
R, [t = iy 0 Gt )|
A

oy oy oy
:_mA|:a¢¢a+ ﬂb(l_a /Al—w/}a

9
+ W g c“;} , (2.4)

okF " ocm

where V, is the covariant derivative with respect to the metric.
For the simple case of a scalar field, w = ¢, and the
modified geodesic equation becomes

ugVy (ma(P)uag) = (2.5)

—m;ﬁb.a,
which is the classic scalar-tensor result in Eardley’s original
paper [Eq. (5) of [14]].

For the couplings in category (A), odw/dul; =0.
Furthermore, it is easy to see that the derivative dy/dg,,
will generate terms involving either K# or C*¥ that combine
with the remaining terms on the right-hand side of Eq. (2.4)
to produce a derivative of the original invariant. In other
words for all couplings in category (A), the modified
geodesic equation has the form
(2.6)

MZ vl/ (mA (l//) uAa) = _mgy/,a’

where y = -K*K,,-C*,,C*C,,, or C*C,,.

For the couplings in category (B), ow/ouy # 0, and we
must consider each case in turn. For y = —K*u,,, we have
that oy /ouy = —-K,, oy/0K* = —u,, and dy/dg,, =
—uKY), Tt turns out that the three terms on the right-hand
side of Eq. (2.4) that involve these derivatives combine to
produce —u4,V,K*. Thus, for y = —K*u,,, the modified
geodesic equation has the form

uzvb [mA Upg + m,/AK” (g/m + uAyuAa)]

= mlyuy, VK. (2.7)
At 1PN order, this agrees with the modified geodesic
equation used in Einstein-Zther theory for compact bodies
[see Eq. (21) of [28] ]. Note that, in Einstein-ZAther theory,
there is no coupling to K¥K,, because that quantity is
constrained to be equal to —1.

For the tensor invariant y = C*uy,u,,, we have that
oy /ouly =2CPuy g,5, Oy /OCH = uy,uy,, and oy /dg,, =
(C (”5)u + CWly " )45 Once again, the three terms on the
right- hand side of Eq. (2.4) that involve these derivatives
combine to produce —uy,uy,V,C*. Thus, for y =
C" uy,uy, the modified geodesic equation has the form
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w4V, [myuy, — 2m) CP1) Upy (Gap + Uapling)]

= —m;‘uAﬂuAyvaCﬁy. (28)

For the remaining tensor invariants C#*C 5 Uputty, and
CP“C¥ guy,uy,, the calculation proceeds in a parallel
manner; for the first invariant, the result is

UiV, [myuy, —2ml, CéﬂC&’/MAy(gaﬁ + Uqltag)]

= —myuppuup, Vo(CPCS); (2.9)
for the second invariant the result is the same, but with C7
replacing Cs’.

II1. BIANCHI IDENTITIES AND COMPACT
BODIES

An alternative approach to obtaining equations of motion
for compact bodies is based on what are called “Bianchi
identities” for matter (not to be confused with the Bianchi
identities associated with the Riemann and Ricci tensors).
We begin by reviewing these identities for conventional
metric theories of gravity constructed from a covariant
action. In the matter sector, the action is assumed to depend
only on the variables g, of the nongravitational fields, and
on the spacetime metric s in other words

Sy = / V=9Lydx, (3.1)

where

‘CM = ‘CM(qA’ 9Au> uv- g/u/,ﬁ)’ (32)
where g4 and gy , are the nongravitational fields and their
first partial derivatives, and g,, and g,, 4 are the metric and
its derivatives. (The extension to second and higher
derivatives is straightforward.) This assumption is some-
times called “universal coupling,” a consequence of the
Einstein equivalence principle. The action principle 65, =
0 is covariant, thus, under a coordinate transformation, £,
must be unchanged in functional form, modulo a diver-
gence (see [31,32] for discussion). Consider the infinitesi-
mal coordinate transformation

X — Xt (3.3)
Then the metric changes according to
5.9;41/ = _g[l(lfa,l/ - gl/(léa,ﬂ - g;w,aéa' (34)

Assume that the matter and nongravitational field variables
change according to

561A = d/:\yéy,ﬂ - qA,l/é”’ (35)
where d',, are functions of x* and encode the tensorial
transformation properties of g4; the second term accounts
for the spacetime variation of g,. Under this transforma-

tion, \/—gL,, changes by
S (Mot
A an
0/—gL
+ ﬂ )
dg

)12

0\/—gL
qa + TM(S‘IA#)
A
0\/—gL
G + TM

. p

59”1,,/}. (36)

Substituting Eqgs. (3.4) and (3.5), integrating by parts,
dropping divergence terms, and demanding that £, be
unchanged for arbitrary functions £ yields the “Bianchi
identities”

1
(90a(=9)'*T"], = 3 Gl =0) T

5\/—gL 5\/—gL
_Z CIAa¢+ dﬁaﬁ =0, (3.7)
A T 0qa o H

qa

where §,/=gLy;/8q 4 is the “variational” derivative of L,
defined, for any variable g4, by

OV=9Lw _ 0V=9Lu _ % (L/__gﬁ’”), (3.8)

0qa 044 0G4

and 7" is the “energy-momentum tensor,” defined by

— 2 6/=9Lu |
N 5gﬂy

Using the fact that 9, (—g)'/? = (—g)'/?I'%,, we can rewrite
Eq. (3.7) in the form

(3.9)

V, T = (— 1/22[ Vi £M+(dg07‘sv‘gﬁM) }
59, "

(3.10)

However, the nongravitational field equations (e.g.,

Maxwell’s equations, electroweak field equations, quantum
chromodynamics) and equations of motion are obtained by
setting the variational derivative of £;; with respect to each
matter field variable g, equal to zero, i.e.,

0v/—9Ly/6q4 =0,

which by Eq. (3.10) is equivalent to V, 7% = 0. Thus, the
vanishing of the divergence of the energy-momentum tensor

(3.11)
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T* is a consequence of the nongravitational equations of
motion, and is valid in any metric theory of gravity.1

We now wish to generalize this by including the possibility
that the bodies that make up the material source may be self-
gravitationally bound. Because their structure may depend
on the ambient values of any auxiliary fields of the theory, the
matter action will no longer be universally coupled, but will
include dependence on those fields. Accordingly, we now
write the matter Lagrangian [see Eq. (3.2)] in the form

'CM = 'C'M(QAv 9A > 9> v ps QAv QA,ﬂ)v (312)

where Q, represents the auxiliary fields. Repeating the
calculation shown above, and imposing the nongravitational
field equations (3.11), we obtain the modified Bianchi
identity

1m0, BT (BT |
H

604
(3.13)

where D/, is the analog of &}, in Eq. (3.5).

We consider scalar, vector and tensor auxiliary fields, and
note that D(¢)y =0, D(KY)h = K84, and D(C"), =
CH8l + C*8Y. We then define the “energy-momentum”
quantities

1 5,/—g[,M
V-9 6p
T([():_ 1 5\/ EM
LT /=g oK+
T() 2 6y/— ['M
W =g sev

(3.14)

(note that Tf,? need not be symmetric if C* is not). We
substitute these relations into Eq. (3.13), convert the various

partial derivatives into covariant derivatives, demonstrate
|

oy oy d ., Oy _ s oy
L/—*E:/CZTA(S4 (x" = y(TA)>{<mA+mAa—uA Uplpg — M)y 209 g"“_aK“K _WC(S_W

oy

0
- ——Z [ anamta x“%“f*”(aﬂ + g VK + 505 Ve Cyﬁ)

that all quantities involving Christoffel symbols vanish, and
arrive finally at the covariant modified Bianchi identity

v (K 1 v C y(C
vl/ Ta +K T¢<1 ) _E(C 5T£{6> + C(s Tz(ia))

= .79 (VKT 4 (0,007 (315)
We reiterate that the fundamental equation of motion in
this class of metric theories is still V, T% = 0; the extra terms
in Eq. (3.15) arise from attempting to account, in an effective
field-theory manner, for the effect of auxiliary gravitational
fields on the motion of gravitationally self-bound bodies,
whose structure could be influenced by those fields.

As we have already discussed, one way to do this is to
invoke the Eardley prescription, whereby we assume that
the system consists of a set of “point” particles, whose
masses depend on the local values of invariant quantities
constructed from the auxiliary fields, with an action given
by Eq. (2.1). This can be converted into a spacetime action
using delta functions; inserting [ d*x8*(x" — x, (1)) = 1
into Eq. (2.1) and expressing the action in the form of
Eq. (3.1), we obtain

V=3 [mati-

a0 0!) 28} (7 — Xy (2))d.

(3.16)
The energy momentum tensor is given by
1 oy
THY — d / a
5 ol i 25
< ul —2m;;‘”]54(xr—x7 (74)) (3.17)
g/w

The other energy-momentum quantities can be obtained
from Eqs. (3.14) and (3.16). Equation (3.15) then takes the

“)}

(3.18)

uv

'Numerous GR textbooks make the statement that the Riemannian Bianchi identity satisfied by the Einstein tensor implies the
vanishing divergence of the energy momentum tensor, and indeed Einstein felt that this was a crucial feature of his new theory. But it is
not true (or at best is irrelevant). The vanishing of the divergence of 7** holds in any theory of gravity with a covariant matter action with
universal coupling. The Riemannian Bianchi identity of the left-hand side of Einstein’s equations implies only that the field equations
provide no additional constraints on the motion beyond those arising from the matter action. In other words, the field equations are
compatible with the equations of motion. This is also true in any alternative theory of gravity, such as scalar-tensor theory or Einstein
ZAther theory, provided that the theory does not contain what Thorne et al. [32] call “absolute elements,” nondynamical fields such as a
fixed flat background metric 7,,, or an absolute time parameter 7. See [32] for details.
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We now examine the form of these equations for each of the invariants described in Sec. II. For the invariants in category
(A), oy /o’y = 0, and it turns out that the quantities within the second parentheses on the left-hand side of Eq. (3.18) cancel.

We are then left on the left-hand side with

v, [%__gz [ rama st o0 = 220

1
= \/——_gz / drpma () [uaqus ,6* (57 = Xy (74)) = Tawtup,uy 8 (x7 = x4 (7)),
A

- %__gz / dep sV, I (9 )iuna)8* (57 — 4 (21)).

We have used the fact that the partial derivative acts only
on the free x” in the delta function. Then u4d,8*(x"—
X (t4)) = —(d/dr,)5*(x¥ — x',(t4)); integrating by parts
over 7, and combining the result with the Christoffel symbol
term yields the final result in Eq. (3.19) (see [33] for details).
On the right-hand side, for invariants in this category, each
term reduces to a partial derivative of the invariant itself.
The modified geodesic equations then have the same form
as Eq. (2.6).

Turning to the invariants in category (B), it is simple to
show in each case that the quantity inside the second
parentheses on the left-hand side of Eq. (3.18) has the form
By, where B, =—-K, 2Csuy, 2C,C%uy5 and
2C,.,C%u,s, respectively. As in Eq. (3.19) we convert these
additional contributions to the left-hand side to the form
(~9) "2 Y [ deguV, [} B,)6* (37 = xy(z,)). On the
right-hand side of Eq. (3.18), for each invariant, the result
matches precisely the right-hand sides of Egs. (2.7) to (2.9).

IV. CONCLUSIONS

Using Eardley’s prescription for incorporating the effects
of self-gravity within gravitationally bound bodies in a
range of alternative theories of gravity, we have derived
exact, modified geodesic equations for a system of inter-
acting bodies. The equations are expressed in terms of the
masses m 4 (w) and their derivatives dmy (w)/dy, where y
is an invariant quantity constructed from the auxiliary
gravitational field of the theory in question, whose value
in the vicinity of each body affects its internal structure and

(3.19)

thereby its mass. The forms of the equations are indepen-
dent of the field equations of the chosen theory. The actual
theory will enter the final equations of motion in two ways:
(1) via solutions for the metric and the auxiliary field(s)
obtained from the field equations (using the Eardley
prescription to describe the compact-body matter sources)
and (2) via solutions for m4 (y) for compact bodies within
the chosen theory. For neutron stars, one must construct a
library of fully relativistic models, typically generated by
numerical means, for a range of viable equations of state, a
range of parameters such as central density, and a range of
asymptotic values of the field y. Similar solutions must
also be obtained for black holes in the chosen theory.

These equations may be useful tools for deriving
equations of motion for compact bodies to high post-
Newtonian orders in alternative theories of gravity.

We have confined our attention to nonspinning bodies.
For spinning bodies, there could be additional couplings to
the auxiliary fields, involving invariants such as u,,K,S",
C,S", and so on, where $* is the spin tensor. The
methods of this paper can be applied to these cases
straightforwardly, using well known delta-function meth-
ods adapted to spins.
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