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We derive exact, modified geodesic equations for a system of nonspinning, self-gravitating interacting

bodies in a class of alternative theories of gravity to general relativity. We use a prescription proposed by

Eardley for incorporating the effects of self-gravity within gravitationally bound bodies, in which their

masses may depend on invariant quantities constructed from the auxiliary scalar, vector or tensor fields

introduced by such theories, evaluated in the vicinity of each body. The forms of the equations are

independent of the field equations of the chosen theory. In the case where the masses are strictly constant,

the equations reduce to the conventional geodesic equations of general relativity. These equations may be

useful tools for deriving equations of motion for compact bodies to high post-Newtonian orders in

alternative theories of gravity.
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I. INTRODUCTION

The motion of self-gravitating bodies in relativistic

gravitational theories such as general relativity is a problem

of both theoretical and observational interest. From a

theoretical point of view, the problem raises fundamental

questions of principle, such as how to separate internal

dynamics from the overall motion of the bodies [1], how to

define usable (if not entirely rigorous) “centers ofmass,” and

the efficacy of “point particles” as a tool for treating “small,”

well separated bodies. From an observational point of view

the problem has been important ever since Nordtvedt’s 1967

discovery that, in a broad class of alternative theories of

gravity, the acceleration of self-gravitating bodies in an

external gravitational field could depend on their gravita-

tional binding energy [2], thereby violating the principle of

equivalence (today called the strong equivalence principle

(SEP)), and providing an important test of gravitational

theories via studies of the Earth-Moon orbit in the field of the

Sun using lunar laser ranging [3].

The 1974 discovery of the binary pulsar B1913þ 16 [4]

made the problem more acute, because the self-gravity of

the neutron stars in the system involved strong gravitational

fields, in contrast to the weak fields that characterize the

Earth and the Moon’s internal structure. And indeed, in an

influential 1976 paper, Ehlers et al. [5] criticized the entire

state of work on the problem of motion as it stood at the

time, questioning among other things the use of delta

functions to treat small well-separated bodies in general

relativity. That paper, together with the emerging idea that

the inspiral of binary neutron stars or black holes might be

an important source of gravitational waves for the nascent

laser interferometric detectors, motivated a major effort by

many research groups to put the “problem of motion and

radiation” on a firmer theoretical foundation (see [6,7] for

reviews).

One aspect of that program was the development of

sophisticated regularization techniques (Hadamard regu-

larization, dimensional regularization) to handle the infin-

ities that go hand in hand with the use of delta functions to

describe the bodies. At the same time, it was shown that, at

least through second post-Newtonian (2PN) order in gen-

eral relativity (GR), for a system of small but finite-size

fluid balls, taking into account their internal gravitational

structure, isolating terms that scale as inverse powers of the

size of each body, and making a universal renormalization

of their masses through 2PN order to eliminate all such

seemingly singular terms, the equations of motion were

identical to those obtained using delta-function sources

with appropriate regularizations [8] (see also [9]). This gave

rise to the widely accepted assumption that the motion of

nonspinning bodies in GR would be independent of their

internal structure (up to tidal interactions), and would thus

be amenable to treatment using delta function sources, at

least to some high post-Newtonian order (Damour [1]

estimated that it might fail at 5PN order).

What about alternative theories of gravity? Because

many alternative theories introduce auxiliary long-range

gravitational fields (scalar, vector, tensor,…) in addition to

*
ftaherasghari@ufl.edu

†
cmw@phys.ufl.edu

PHYSICAL REVIEW D 106, 064021 (2022)

2470-0010=2022=106(6)=064021(7) 064021-1 © 2022 American Physical Society



the metric, the structure of self-gravitating bodies may

depend on the asymptotic values of these fields induced by

cosmology or even by nearby bodies in the system [3,10],

and in particular, their masses could depend on these

values. But if a body’s mass varies as it moves in the

field of other bodies, its acceleration must be modified

appropriately in order to preserve energy conservation (see

the classic cyclic gedanken experiment arguments by Dicke

[11], Nordtvedt [12], and Haugan [13]). These structure-

dependent modifications of the motion lead to violations

of the strong equivalence principle, as exemplified in the

Nordtvedt effect.

In 1975, while studying the implications of the binary

pulsar discovery for the alternative scalar-tensor theory of

gravity, Eardley [14] devised a prescription that incorpo-

rated violations of the SEP, permitted strong internal

gravitational fields, yet retained the simplifying aspects

of using delta-functions for the sources. He proposed to

write the matter action of a system of nonspinning, self-

gravitating “point” particles in the form

SM ¼ −
X

A

Z

mAðϕÞdτ; ð1:1Þ

where ϕ is the scalar field evaluated at the location of each

particle, and τ is proper time along the world line of each

particle. The resulting scalar-tensor field equations and

equations of motion then depended on what Eardley called

“sensitivities” of each particle’s mass to variations of the

scalar field, defined by

sA ≡

�

d lnmAðϕÞ
d lnϕ

�

: ð1:2Þ

With the use of Eardley’s prescription combined with

estimates of sensitivities for neutron stars using various

equations of state, bounds have been placed on alternative

theories of gravity using binary pulsar data, including

Rosen’s bimetric theory [15], massless and massive scalar-

tensor theory [16–20], and Einstein-Æther theory [21,22]. It

has been used to obtain equations of motion for compact

bodies in scalar-tensor gravity to 3PN order [23,24], the

gravitationalwaveforms to 2PNorder for tensorwaves and to

1.5PN order for scalar waves [25,26], and the energy flux to

1.5PN order [27]. It has also been used to obtain the 1PN

equations of motion in Einstein-Æther theory as well as the

leading radiative effects [22,28].

In an effort to investigate the range of validity of Eardley’s

prescription, Gralla [29,30] developed a more general and

rigorous theory of themotion of “small” bodies characterized

by such parameters as mass, spin and charge in an environ-

ment of external fields, andargued thatEardley’s prescription

is a special case of that general framework.

In this paper, we explore the practical implications of the

Eardley prescription for the equations of motion of compact

bodies in alternative theories of gravity. We consider a

system of “point” masses, where each mass is a scalar

quantity that depends one or more invariant quantities ψ

constructed from the auxiliary gravitational fields of the

theory, the spacetime metric, and the four-velocity of the

mass, evaluated “at” the location of each body. By “at,” we

mean more precisely that the quantities are evaluated at the

boundary of a region surrounding each body that is

sufficiently large that the metric of the body is approx-

imately asymptotically flat, yet sufficiently small compared

to the interbody distances that variations of the quantities

across the region may be ignored. In other words, we ignore

all tidal effects arising from the actual finite size of real

bodies. We also ignore spin effects.

The simplest example, of course, is a scalar field,

whereby the mass is a function of ϕ; in scalar-tensor

theories ϕ is directly related to the local value of Newton’s

constant, which clearly influences the body’s internal

structure and gravitational binding energy. For a timelike

vector auxiliary field Kμ, the mass might depend on K0̂,

the time component of Kμ as measured in the quasilocal

comoving inertial frame of the body (since the body is

assumed to be “spherical,” it is hard to see how the mass

could depend on a local spatial component Kj). The

invariant quantity whose value is K0̂ in the comoving

frame is −u
μ
AK

νgμν, where u
μ
A is the four-velocity of body A.

The mass could also depend on the magnitude KμKμ. For

this paper, we will consider a specific set of invariant

quantities arising from the auxiliary fields ϕ, Kμ and a

tensor field Cμν, divided into two categories: (A) invariants

constructed from the fields only, and (B) invariants involv-

ing the bodies’ four-velocities:

A∶ ϕ; −KμKμ; −Cμ
μ; CμνCμν; CμνCνμ;

B∶ − KμuAμ; CμνuAμuAν; CαμCα
νuAμuAν;

CαμCν
αuAμuAν: ð1:3Þ

We do not assume any a priori symmetry for the tensor

field Cμν. The negative signs are purely conventional. If we

assume that the vector Kμ and the tensor Cμν are “timelike”

in the sense that in the rest frame of a homogeneous

isotropic universe, they have no spatial components (apart

from a possible spatial δij) and have positive K0 or C00,

then the invariants will be positive in the vicinity of the

bodies.

These are the simplest possible couplings involving

scalar, vector or tensor fields. If a theory of gravity should

involve higher-rank or more exotic fields, or couplings

beyond quadratic order, then the methods described here

should be generalizable to more complicated cases. Starting

from a matter action of the form of Eq. (1.1) we derive a set

of exact, “modified geodesic equations” for each invariant,

in two ways, in Sec. II by applying the standard calculus of

variations to the action, and then in Sec. III by using the
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general covariance of the action to obtain a modified matter

“Bianchi identity” analogous to the general relativistic

vanishing of the divergence of the energy-momentum

tensor. Both methods yield the same modified geodesic

equations. Section IV makes concluding remarks.

II. COMPACT BODY EQUATION OF MOTION

FROM A POINT-MASS ACTION

Applying Eardley’s prescription, we write down the

action for a system of self-gravitating point masses,

SM ¼ −
X

A

Z

Q

P

mAðψÞð−gμνvμvνÞ1=2dλ; ð2:1Þ

where λ is a timelike integration variable along the world-

line of each particle, vμ ¼ dxμ=dλ, and ψ stands for one of

the invariant expressions in (1.3). All variables in SM are to

be evaluated at the location of body A. In theories where

there might be more than one auxiliary field, or where more

than one invariant might be involved in determining the

mass of body A, there might be several ψs: ψ1, ψ2, and so

on, but to keep the notation simple we will assume that only

one field and invariant is involved. Generalization to

multiple ψs is straightforward.

We now vary the path of each particle by δxαAðλÞ, with
δxαAðPÞ¼δxαAðQÞ¼0. Noting that ð−gμνvμvνÞ1=2 ¼ dτA=dλ,

where τA is proper time along the worldline of body A, and

expanding about the unperturbed worldline, we obtain, to

first order in the deviations δxα,

dτA

dλ
¼
�

dτA

dλ

�

0

−
1

2
gμν;αu

μ
Au

ν
A

�

dτA

dλ

�

0

δxαA−gανu
ν
A

d

dλ
δxαA;

mAðψÞ¼mAþm0
A

�

∂ψ

∂u
μ
A

δu
μ
Aþ

∂ψ

∂gμν
δgμνþ

∂ψ

∂ϕ
δϕ

þ ∂ψ

∂Kμ
δKμþ ∂ψ

∂Cμν
δCμν

�

; ð2:2Þ

where mA ≡mAðψ0Þ and m0
A ≡ ∂mA=∂ψ0, where the sub-

script 0 denotes evaluation along the unperturbed paths.

Note that

δu
μ
A ¼

�

dλ

dτA

�

0

ðδμα þ u
μ
AuAαÞ

d

dλ
δxαA þ 1

2
gβγ;αu

β
Au

γ
Au

μ
Aδx

α
A;

δgμν ¼ gμν;αδx
α
A;

δϕ ¼ ϕ;αδx
α
A;

δKμ ¼ Kμ
;αδx

α
A;

δCμν ¼ Cμν
;αδx

α
A: ð2:3Þ

Using these results to expand the action S to first order in

deviations of the worldline, integrating by parts to eliminate

dδxα=dλ, and demanding that δS ¼ 0 for arbitrary variations

δxαA, we obtain the equation of motion for each body A,

uνA∇ν

�

mAuAα −m0
A

∂ψ

∂u
μ
A

ðδμα þ u
μ
AuAαÞ

�

¼ −m0
A

�

∂ψ

∂ϕ
ϕ;α þ

∂ψ

∂gμν
gμν;α −

∂ψ

∂u
μ
A

Γ
μ
βαu

β

þ ∂ψ

∂Kμ
Kμ

;α þ
∂ψ

∂Cμν
C
μν
;α

�

; ð2:4Þ

where∇ν is the covariant derivativewith respect to themetric.

For the simple case of a scalar field, ψ ¼ ϕ, and the

modified geodesic equation becomes

uνA∇νðmAðϕÞuAαÞ ¼ −m0
Aϕ;α; ð2:5Þ

which is the classic scalar-tensor result in Eardley’s original

paper [Eq. (5) of [14] ].

For the couplings in category (A), ∂ψ=∂u
μ
A ¼ 0.

Furthermore, it is easy to see that the derivative ∂ψ=∂gμν
will generate terms involving either Kμ or Cμν that combine

with the remaining terms on the right-hand side of Eq. (2.4)

to produce a derivative of the original invariant. In other

words for all couplings in category (A), the modified

geodesic equation has the form

uνA∇νðmAðψÞuAαÞ ¼ −m0
Aψ ;α; ð2:6Þ

where ψ ¼ −KμKμ;−C
μ
μ; C

μνCμν, or C
μνCνμ.

For the couplings in category (B), ∂ψ=∂u
μ
A ≠ 0, and we

must consider each case in turn. For ψ ¼ −KμuAμ, we have

that ∂ψ=∂u
μ
A ¼ −Kμ, ∂ψ=∂Kμ ¼ −uμ, and ∂ψ=∂gμν ¼

−uðμKνÞ. It turns out that the three terms on the right-hand

side of Eq. (2.4) that involve these derivatives combine to

produce −uAμ∇αK
μ. Thus, for ψ ¼ −KμuAμ, the modified

geodesic equation has the form

uνA∇ν½mAuAα þm0
AK

μðgμα þ uAμuAαÞ�
¼ m0

AuAμ∇αK
μ: ð2:7Þ

At 1PN order, this agrees with the modified geodesic

equation used in Einstein-Æther theory for compact bodies

[see Eq. (21) of [28] ]. Note that, in Einstein-Æther theory,

there is no coupling to KμKμ, because that quantity is

constrained to be equal to −1.

For the tensor invariant ψ ¼ CμνuAμuAν, we have that

∂ψ=∂u
μ
A¼2CðβγÞuAγgμβ, ∂ψ=∂C

μν ¼ uAμuAν, and ∂ψ=∂gμν ¼
ðCðμδÞuνA þ CðνδÞuμAÞuAδ. Once again, the three terms on the

right-hand side of Eq. (2.4) that involve these derivatives

combine to produce −uAμuAν∇γC
μν. Thus, for ψ ¼

CμνuAμuAν the modified geodesic equation has the form
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uνA∇ν½mAuAα − 2m0
AC

ðβγÞuAγðgαβ þ uAβuAαÞ�
¼ −m0

AuAβuAγ∇αC
βγ: ð2:8Þ

For the remaining tensor invariants CβμCβ
νuAμuAν and

CβμCν
βuAμuAν, the calculation proceeds in a parallel

manner; for the first invariant, the result is

uνA∇ν½mAuAα − 2m0
AC

δβCδ
γuAγðgαβ þ uAαuAβÞ�

¼ −m0
AuAβuAγ∇αðCδβCδ

γÞ; ð2:9Þ

for the second invariant the result is the same, but with Cγ
δ

replacing Cδ
γ .

III. BIANCHI IDENTITIES AND COMPACT

BODIES

An alternative approach to obtaining equations of motion

for compact bodies is based on what are called “Bianchi

identities” for matter (not to be confused with the Bianchi

identities associated with the Riemann and Ricci tensors).

We begin by reviewing these identities for conventional

metric theories of gravity constructed from a covariant

action. In the matter sector, the action is assumed to depend

only on the variables qA of the nongravitational fields, and

on the spacetime metric gμν, in other words

SM ¼
Z

ffiffiffiffiffiffi

−g
p

LMd
4x; ð3:1Þ

where

LM ¼ LMðqA; qA;μ; gμν; gμν;βÞ; ð3:2Þ

where qA and qA;μ are the nongravitational fields and their

first partial derivatives, and gμν and gμν;β are the metric and

its derivatives. (The extension to second and higher

derivatives is straightforward.) This assumption is some-

times called “universal coupling,” a consequence of the

Einstein equivalence principle. The action principle δSM ¼
0 is covariant, thus, under a coordinate transformation, LM

must be unchanged in functional form, modulo a diver-

gence (see [31,32] for discussion). Consider the infinitesi-

mal coordinate transformation

xμ → xμ þ ξμ: ð3:3Þ

Then the metric changes according to

δgμν ¼ −gμαξ
α
;ν − gναξ

α
;μ − gμν;αξ

α: ð3:4Þ

Assume that the matter and nongravitational field variables

change according to

δqA ¼ d
μ
Aνξ

ν
;μ − qA;νξ

ν; ð3:5Þ

where d
μ
Aν are functions of xα and encode the tensorial

transformation properties of qA; the second term accounts

for the spacetime variation of qA. Under this transforma-

tion,
ffiffiffiffiffiffi

−g
p

LM changes by

X

A

�

∂
ffiffiffiffiffiffi

−g
p

LM

∂qA
δqA þ ∂

ffiffiffiffiffiffi

−g
p

LM

∂qA;μ
δqA;μ

�

þ ∂
ffiffiffiffiffiffi

−g
p

LM

∂gμν
δgμν þ

∂
ffiffiffiffiffiffi

−g
p

LM

∂gμν;β
δgμν;β: ð3:6Þ

Substituting Eqs. (3.4) and (3.5), integrating by parts,

dropping divergence terms, and demanding that LM be

unchanged for arbitrary functions ξα yields the “Bianchi

identities”

½gμαð−gÞ1=2Tμν�
;ν
−
1

2
gμν;αð−gÞ1=2Tμν

−
X

A

�

qA;α
δ

ffiffiffiffiffiffi

−g
p

LM

δqA
þ
�

d
μ
Aα

δ
ffiffiffiffiffiffi

−g
p

LM

δqA

�

;μ

�

¼ 0; ð3:7Þ

where δ
ffiffiffiffiffiffi

−g
p

LM=δqA is the “variational” derivative of LM

defined, for any variable qA, by

δ
ffiffiffiffiffiffi

−g
p

LM

δqA
≡

∂
ffiffiffiffiffiffi

−g
p

LM

∂qA
−

∂

∂xμ

�

∂
ffiffiffiffiffiffi

−g
p

LM

∂qA;μ

�

; ð3:8Þ

and Tμν is the “energy-momentum tensor,” defined by

Tμν ≡
2
ffiffiffiffiffiffi

−g
p

δ
ffiffiffiffiffiffi

−g
p

LM

δgμν
: ð3:9Þ

Using the fact that ∂μð−gÞ1=2 ¼ ð−gÞ1=2Γαμα, we can rewrite
Eq. (3.7) in the form

∇νT
ν
α ¼ð−gÞ−1=2

X

A

�

qA;α
δ

ffiffiffiffiffiffi

−g
p

LM

δqA
þ
�

d
μ
Aα

δ
ffiffiffiffiffiffi

−g
p

LM

δqA

�

;μ

�

:

ð3:10Þ

However, the nongravitational field equations (e.g.,

Maxwell’s equations, electroweak field equations, quantum

chromodynamics) and equations of motion are obtained by

setting the variational derivative of LM with respect to each

matter field variable qA equal to zero, i.e.,

δ
ffiffiffiffiffiffi

−g
p

LM=δqA ¼ 0; ð3:11Þ

which by Eq. (3.10) is equivalent to ∇νT
ν
α ¼ 0. Thus, the

vanishing of the divergence of the energy-momentum tensor
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Tμν is a consequence of the nongravitational equations of

motion, and is valid in any metric theory of gravity.
1

Wenowwish to generalize this by including the possibility

that the bodies that make up the material source may be self-

gravitationally bound. Because their structure may depend

on the ambient values of any auxiliary fields of the theory, the

matter action will no longer be universally coupled, but will

include dependence on those fields. Accordingly, we now

write the matter Lagrangian [see Eq. (3.2)] in the form

LM ¼ LMðqA; qA;μ; gμν; gμν;β; QA; QA;μÞ; ð3:12Þ

where QA represents the auxiliary fields. Repeating the

calculation shown above, and imposing the nongravitational

field equations (3.11), we obtain the modified Bianchi

identity

∇νT
ν
α¼ð−gÞ−1=2

X

A

�

QA;α

δ
ffiffiffiffiffiffi

−g
p

LM

δQA

þ
�

D
μ
Aα

δ
ffiffiffiffiffiffi

−g
p

LM

δQA

�

;μ

�

;

ð3:13Þ

where D
μ
Aα is the analog of d

μ
Aα in Eq. (3.5).

We consider scalar, vector and tensor auxiliary fields, and

note that DðϕÞμα ¼ 0, DðKνÞμα ¼ Kμδνα, and DðCγδÞμα ¼
Cμδδ

γ
α þ Cγμδδα. We then define the “energy-momentum”

quantities

TðϕÞ ≡
1
ffiffiffiffiffiffi

−g
p

δ
ffiffiffiffiffiffi

−g
p

LM

δϕ
;

T
ðKÞ
μ ≡ −

1
ffiffiffiffiffiffi

−g
p

δ
ffiffiffiffiffiffi

−g
p

LM

δKμ
;

T
ðCÞ
μν ≡

2
ffiffiffiffiffiffi

−g
p

δ
ffiffiffiffiffiffi

−g
p

LM

δCμν
ð3:14Þ

(note that T
ðCÞ
μν need not be symmetric if Cμν is not). We

substitute these relations into Eq. (3.13), convert the various

partial derivatives into covariant derivatives, demonstrate

that all quantities involving Christoffel symbols vanish, and

arrive finally at the covariant modified Bianchi identity

∇ν

�

Tν
α þ KνT

ðKÞ
α −

1

2
ðCνδT

ðCÞ
αδ þ CδνT

ðCÞ
δα Þ

�

¼ ϕ;αT
ðϕÞ − ð∇αK

νÞTðKÞ
ν þ 1

2
ð∇αC

γδÞTðCÞ
γδ : ð3:15Þ

We reiterate that the fundamental equation of motion in

this class of metric theories is still∇νT
ν
α ¼ 0; the extra terms

in Eq. (3.15) arise from attempting to account, in an effective

field-theory manner, for the effect of auxiliary gravitational

fields on the motion of gravitationally self-bound bodies,

whose structure could be influenced by those fields.

As we have already discussed, one way to do this is to

invoke the Eardley prescription, whereby we assume that

the system consists of a set of “point” particles, whose

masses depend on the local values of invariant quantities

constructed from the auxiliary fields, with an action given

by Eq. (2.1). This can be converted into a spacetime action

using delta functions; inserting
R

d4xδ4ðxγ − x
γ
AðλÞÞ ¼ 1

into Eq. (2.1) and expressing the action in the form of

Eq. (3.1), we obtain

ffiffiffiffiffiffi

−g
p

LM ¼ −
X

A

Z

mAðψÞð−gαβvαvβÞ1=2δ4ðxγ − x
γ
AðλÞÞdλ:

ð3:16Þ

The energy momentum tensor is given by

Tμν ¼ 1
ffiffiffiffiffiffi

−g
p

X

A

Z

dτA

��

mAðψÞ þm0
A

∂ψ

∂uαA
uαA

�

× u
μ
Au

ν
A − 2m0

A

∂ψ

∂gμν

�

δ4ðxγ − x
γ
AðτAÞÞ: ð3:17Þ

The other energy-momentum quantities can be obtained

from Eqs. (3.14) and (3.16). Equation (3.15) then takes the

form

∇ν

�

1
ffiffiffiffiffiffi

−g
p

X

A

Z

dτAδ
4ðxγ − x

γ
AðτAÞÞ

��

mA þm0
A

∂ψ

∂u
μ
A

u
μ
A

�

uνAuAα −m0
A

�

2
∂ψ

∂gμν
gμα −

∂ψ

∂Kα
Kν −

∂ψ

∂Cαδ
Cνδ −

∂ψ

∂Cδα
Cδν

���

¼ −
1
ffiffiffiffiffiffi

−g
p

X

A

Z

dτAm
0
Aδ

4ðxγ − x
γ
AðτAÞÞ

�

∂ψ

∂ϕ
ϕ;α þ

∂ψ

∂Kμ
∇αK

μ þ ∂ψ

∂Cγδ
∇αC

γδ

�

: ð3:18Þ

1
Numerous GR textbooks make the statement that the Riemannian Bianchi identity satisfied by the Einstein tensor implies the

vanishing divergence of the energy momentum tensor, and indeed Einstein felt that this was a crucial feature of his new theory. But it is
not true (or at best is irrelevant). The vanishing of the divergence of Tμν holds in any theory of gravity with a covariant matter action with
universal coupling. The Riemannian Bianchi identity of the left-hand side of Einstein’s equations implies only that the field equations
provide no additional constraints on the motion beyond those arising from the matter action. In other words, the field equations are
compatible with the equations of motion. This is also true in any alternative theory of gravity, such as scalar-tensor theory or Einstein
Æther theory, provided that the theory does not contain what Thorne et al. [32] call “absolute elements,” nondynamical fields such as a
fixed flat background metric ημν, or an absolute time parameter T. See [32] for details.
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We now examine the form of these equations for each of the invariants described in Sec. II. For the invariants in category

(A), ∂ψ=∂u
μ
A ¼ 0, and it turns out that the quantities within the second parentheses on the left-hand side of Eq. (3.18) cancel.

We are then left on the left-hand side with

∇ν

�

1
ffiffiffiffiffiffi

−g
p

X

A

Z

dτAmAðψÞuAαuνAδ4ðxγ − x
γ
AðτAÞÞ

�

¼ 1
ffiffiffiffiffiffi

−g
p

X

A

Z

dτAmAðψÞ½uAαuνA∂νδ4ðxγ − x
γ
AðτAÞÞ − Γ

μ
ανuAμu

ν
Aδ

4ðxγ − x
γ
AðτAÞÞ�;

¼ 1
ffiffiffiffiffiffi

−g
p

X

A

Z

dτAu
ν
A∇ν½mAðψÞuAα�δ4ðxγ − x

γ
AðτAÞÞ: ð3:19Þ

We have used the fact that the partial derivative acts only

on the free xγ in the delta function. Then uνA∂νδ
4ðxγ−

x
γ
AðτAÞÞ ¼ −ðd=dτAÞδ4ðxγ − x

γ
AðτAÞÞ; integrating by parts

over τA and combining the result with the Christoffel symbol

term yields the final result in Eq. (3.19) (see [33] for details).

On the right-hand side, for invariants in this category, each

term reduces to a partial derivative of the invariant itself.

The modified geodesic equations then have the same form

as Eq. (2.6).

Turning to the invariants in category (B), it is simple to

show in each case that the quantity inside the second

parentheses on the left-hand side of Eq. (3.18) has the form

Bαu
ν
A, where Bα ¼ −Kα, 2CðαδÞu

δ
A, 2CϵαC

ϵδuAδ, and

2CϵαC
δϵuAδ, respectively. As in Eq. (3.19) we convert these

additional contributions to the left-hand side to the form

ð−gÞ−1=2
P

A

R

dτAu
ν
A∇ν½m0

ABα�δ4ðxγ − x
γ
AðτAÞÞ. On the

right-hand side of Eq. (3.18), for each invariant, the result

matches precisely the right-hand sides of Eqs. (2.7) to (2.9).

IV. CONCLUSIONS

Using Eardley’s prescription for incorporating the effects

of self-gravity within gravitationally bound bodies in a

range of alternative theories of gravity, we have derived

exact, modified geodesic equations for a system of inter-

acting bodies. The equations are expressed in terms of the

masses mAðψÞ and their derivatives dmAðψÞ=dψ , where ψ
is an invariant quantity constructed from the auxiliary

gravitational field of the theory in question, whose value

in the vicinity of each body affects its internal structure and

thereby its mass. The forms of the equations are indepen-

dent of the field equations of the chosen theory. The actual

theory will enter the final equations of motion in two ways:

(1) via solutions for the metric and the auxiliary field(s)

obtained from the field equations (using the Eardley

prescription to describe the compact-body matter sources)

and (2) via solutions for mAðψÞ for compact bodies within

the chosen theory. For neutron stars, one must construct a

library of fully relativistic models, typically generated by

numerical means, for a range of viable equations of state, a

range of parameters such as central density, and a range of

asymptotic values of the field ψ . Similar solutions must

also be obtained for black holes in the chosen theory.

These equations may be useful tools for deriving

equations of motion for compact bodies to high post-

Newtonian orders in alternative theories of gravity.

We have confined our attention to nonspinning bodies.

For spinning bodies, there could be additional couplings to

the auxiliary fields, involving invariants such as uAμKνS
μν,

CμνS
μν, and so on, where Sμν is the spin tensor. The

methods of this paper can be applied to these cases

straightforwardly, using well known delta-function meth-

ods adapted to spins.
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