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ABSTRACT

This paper develops the empirical likelihood (EL) inference procedure for parameters in autore-
gressive models with the error variances scaled by an unknown nonparametric time-varying
function. Compared with existing methods based on non-parametric and semi-parametric esti-
mation, the proposed test statistic avoids estimating the variance function, while maintaining
the asymptotic chi-square distribution under the null. Simulation studies demonstrate that the
proposed EL procedure (a) is more stable, i.e., depending less on the change points in the error
variances, and (b) gets closer to the desired confidence level, than the traditional test statistic.

1. Introduction

In the literature of the macroeconomics and financial
applications, the assumption of heteroscedasticity in
many time series models revealed the facts that ignor-
ing the issue of heteroscedasticity often leads to the
inefficient estimation and unreliable inference. Thus,
heteroscedasticity has been focused mainly on the effect
of violations of homoscedasticity, usually in two forms,
‘conditional heteroscedasticity’ and ‘unconditional het-
eroscedasticity’.

Non-constant volatility will be identified by ‘con-
ditional heteroscedasticity’, when future periods of
high and low volatility cannot be identified. Boller-
slev (1986) and Engle (1982) proposed ARCH or
GARCH models and provided the efficient estimation
of the mean function by quasi-maximum likelihood
based on other adaptive procedures. More complicated
GARCH models had been proposed to allow for con-
ditional heteroscedasticity, for instance, varying coeffi-
cient GARCH models (see Polzehl & Spokoiny, 2006)
and spline GARCH models (see Engle & Rangel, 2008).
The time-varying volatility is often used to describe the
conditional heteroscedasticity. Drees and Starica (2002)
and Starica (2003) made use of a non-stationary frame-
work to analyse time series of S&P 500 returns, and
found that this approach outperformed the GARCH-
type models.

‘Unconditional heteroscedasticity’ will be used,
when variables that have identifiable seasonal variabil-
ity, such as electricity usage, are discussed. Hansen
(1995) considered the linear regression model with
deterministically trending regressors only, in which the
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error is an AR(p) process scaled by a continuous func-
tion of time. Nesting autoregressive model is also a
special case when the conditional error variance of the
model is a function of a covariate that has a form of
a nearly integrated stochastic process with no deter-
ministic drift. For the constant coefficient autoregres-
sive model with time-varying variances (ARTV) which
will be discussed in this article, Phillips and Xu (2006)
utilised the ordinary least squares method and the non-
parametric estimation of the variance function to pro-
vide three heteroscedasticity-robust test statistics, and
proved their asymptotic standard normal distributions.
Xu and Phillips (2008) proposed the heteroscedasticity-
robust adaptive estimation for ARTV. Meanwhile, per-
formances of methods in Phillips and Xu (2006) and
Xu and Phillips (2008) relied on appropriately select-
ing the bandwidth used in the non-parametric function
estimation.

Motivated from the ‘empirical likelihood” (EL)
approach, this article aims to develop a test statis-
tic which is more stable, namely, depending less on
the change points in the error variances, and avoiding
the problem of selecting the bandwidth. In the litera-
ture, the EL approach was introduced by Owen (1988),
Owen (1990) and Owen (1991) to construct confi-
dence intervals in a nonparametric setting, which can
be seen in Owen (2001). Since an EL approach pos-
sesses nonparametric properties, the distribution for
the data is not required to be specified, and mean-
while more efficient estimates of the parameters can
be yielded. The EL approach allows data to decide
the shape of confidence regions without estimating the
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variance of the test statistic, and also is Bartlett cor-
rectable in DiCiccio et al. (1991). The EL approach
has been applied to various situations, such as gen-
eralised linear models in Kolaczyk (1994), local lin-
ear smoother in Chen and Qin (2000), partially lin-
ear models in Shi and Lau (2000), parametric and
semi-parametric models in multi response regression
in Chen and Ingrid (2009); linear regression with cen-
sored data in Zhou and Li (2008), plug-in estimates
of nuisance parameters in estimating equations in the
context of survival analysis in Li and Wang (2003)
and Qin and Jing (2001), heteroscedastic partially lin-
ear models in Lu (2009); GARCH models in Chan
and Ling (2006); variable selection in Han et al. (2013)
and Variyath and Chen (2010); analysis of longitudi-
nal data in Qiu and Wu (2015). Qin and Lawless (1994)
linked the EL with finitely many estimating equations,
which served as finitely many equality constraints. To
the best of our knowledge, there is no existing published
work in the literature using the EL approach in the
constant coeflicient autoregressive models with time-
varying variances. This article will also consider the
constant coeflicient autoregressive models with time-
varying innovation variance by using the EL approach.

The remainder of the paper proceeds as follows.
Section 2 describes the autoregressive model with time-
varying variances and discusses main assumptions.
Section 3 reviews the existing methods. Section 4 devel-
ops the empirical likelihood inference procedure with
theoretical guarantees. Section 5 conducts simulation
studies to evaluate the finite sample performance of
the proposed method when compared with alterna-
tive methods. Section 6 briefly concludes. Technical
details and proofs of the main results are relegated to
Appendix.

2. Autoregressive model with time-varying
variances

The constant coefficient autoregressive model with
time-varying variances is described as follows,

Ye=Bo+hiYi1+BoYeat -+ BpYVip+ s
=X/ ,B, + us, (1)

ur=or&, t=1,...,T, (2)

where T denotes transpose, X;—1 = (L,Y_1,...,
Yt_p)T € RP*! is the vector of covariates, and B, =
(Bo> B1s---» ,BP)T € RP*! is the true parameter vector
of interest, with B, # 0, and the lag order p finite and
known. We assume that {0} is a deterministic sequence
of time ¢, satisfying

or =g(t/T), 3)

and {&} is a martingale difference sequence with
respect to .%;, where .%; = o (g : s < t) is the o-field

generated by {e; : s <t} with E(sf | Fi_1) =1, as.,
for all t. Thus, the conditional variance of {u,} is fully
characterised by the multiplicative factor o; in (2), i.e.,

Ew? | Fo1) =0} =g (t/T), as. (4)

Suppose that the data are generated from mod-
els (1)-(2), and we observe a sample containing T + p
observations, denoted by {Y_p41,Y_p42,..., Y0, Y1,
..., Y7}. The main goals are to make inferences about
the true parameter vector 8, in models (1)-(2), i.e.,
testing the null hypothesis,

HO : ﬂo = bO’ (5)

where by = (b0, bo,1, - - > bop) € RP*! and construc-
ting a confidence region for .

Section 4 will present our proposed empirical likeli-
hood inference, after Section 3 describes the estimation
methods in Phillips and Xu (2006).

To facilitate the discussion of main results and com-
parison with related existing methods, the following
conditions provided in Phillips and Xu (2006); Xu
and Phillips (2008) are considered.

Conditions

(A1) g(-)in (3)and (4) is a measurable and strictly pos-
itive function on the interval (0, 1] such that 0 <
infre,11g(r) < supre(o,l]g(r) < 00, and g(r) sat-
isfies a Lipschitz condition except at a finite num-
ber of points of discontinuity;

Suppose that L is the lag operator. Then 0 = 1 —
BiL — Bol? — - — BpLF has all roots outside the
unit circle;

{e¢} satisfies E(g; | #—1) = 0, and E(¢? | F_1)
= 1,a.s., forall t;

(A4) sup, E(lef']) < oo for some v > 1.

(A2)

(A3)

Remark 2.1: (i) In condition (A1), the function g is
integrable on the interval (0, 1] to any finite order.
For brevity, we write [ ¢”(x) dx as [ ¢" for any
finite positive integer m > 1.

(ii) Condition (A2) satisfies the stability conditions
which, for a constant g(-) and homoskedastic {&;},
would ensure that {Y}} is stationary or asymptoti-
cally covariance-stationary. Under condition (A2),
the mean p of Y; is given by

_ Bo
1—Br—— B

and Y; has the Wold representation,

n

o0
Yi=pn+ Zaiut—b
i=1

where {«;} satisfies that

o — Praii —~--—ﬁp0li—p =0, asi>0,



and ) 70, || < 0o. Define © to be the matrix
with the (i,j)-th element yj;_j, where yx =
Yo diivk < 00.

(iii) Condition (A3) ensures that {g;} is a martingale
difference sequence and, at the same time, stipu-
lates E(u | Fi—1) = g*(t/T) doesn’t depend on
the past events, in other words, models (1)-(2) are
unconditional heteroscedastic.

3. Existing methods

Regarding the estimation of B, in models (1)-(2),
Phillips and Xu (2006) reviewed the ordinary least
squares (OLS) estimator ﬁ, and showed that under the
stated conditions, as T — o0,

T
VTB -8, = <% ;xtﬂxu)
T D
(T > ox[ 18t> = N(0, A),

(6)

-1

where 2 stands for converges in distribution, A =
Q'Y Q) and Q; are defined as the (p + 1) x
(p + 1) matrices,

o=y o )
T\, u+(fg)9

F9) w(fgHL] )
Q= P ,
? (M (f&Hl, 1w ([&H+([ghe @)

L=0@,..., 1)T € RP is a vector of ones, and p and
are as defined in Remark 2.1.

Since g is typically unknown, the asymptotic covari-
ance matrix A in (6) must be estimated and this can
be done in several ways. First, by applying the weighted
sum of squared OLS residuals using kernel smooth-
ing, originally proposed by Nadaraya (1964) and Wat-
son (1964) for estimation of regression functions, they
proposed the consistent estimator of the function g(r)
non-parametrically for r € [0, 1],

T
g = wyig, (8)
t=1

where @1 = Yy — ;'—_1 ﬁ is the OLS residual and the
weights wy;, t = 1,..., T, are defined as

-1
[Tr] —t
Wrt—{ZK( Tl’lT )} K(TT>, (9)

where the kernel function K(-) : R — [0, 00) is assu
med to satisfty 0 < K(z) < C; < oo uniformly in z and

o0
/ K(z)dz < C; < o0,

—00
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for some constant C; and Cp; hr is a bandwidth
parameter depending on T. The selection of bandwidth
parameter ht uses the cross-validation procedure, i.e.,
minimises the averaged squared prediction errors (see
Wong, 1983),

CV(b) = Z{u &/, (10)

with respect to b, where

§ : ~2
Wyt Uy

t=1,t#s

&=

Phillips and Xu (2006) suggested the following three
consistent estimators of the asymptotic covariance
matrix A when g is unknown.

e The first estimator of the asymptotic covariance
matrix is

T -l
A=T (thlel) (Z afxtlel>
t=1 t=1
-1

T
x (th_le_l) ) (11)
t=1

e The second estimator of the asymptotic covariance
matrix is

T
Ay = Q7! (Z afxt_lxj_l) QL 2
t=1

where the matrix Q; is defined as

1 fily

SAZ o T
T A, @2+(T12a3>9

t=1

where /i and  correspond to replacing 8,, in the
expressions of ¢ and €2 in Remark 2.1, with ;§ .

e The third estimator of the asymptotic covariance
matrix is

Ay = QL0 (13)
where the matrix sz is defined as

/& A Egn, )

S,—( /8 o "
? (u(fgz)lp 228D+ ([§9H8

Based on the above three estimators [\j of the true
covariance matrix A, Phillips and Xu (2006) con-
structed three test statistics t,j=1,2,3, for the true
parameter vector 8, stated as follows.

Lemma 3.1 ('l:heorem 2(ii) in Phillips and Xu (2006)):
Assume that B is the OLS estimator of B,. Then, under
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the above assumptions and null hypothesis (5), it follows
that
b
. V(B — box) 2 N,
(A2

where ([\j)kk is the (k, k)-th element of the matrix A,
j = 1,2, 3, defined in (11), (12) and (13), respectively.

as T — oo, (14)

Hence, a large sample level 100(1 — )% confidence
region for B, based on the above Normal approxima-
tion (14) is given by

Rig ={b:TB—-b)"
x [diag{(A )k = 0,1,...,p}1 " (B — b)
= Xﬁ;l—a}’ (15)

where diag{([\j)k,k, k=0,1,...
nal matrix of Aj,j =1,2,3,and Xﬁ;l—a denotes the

,p} is the main diago-

100(1 — «)th quantile of the chi-square distribution X;
with p degrees of freedom.

4. Proposed method

In terms of the practical performance of the three tests
tj in (14), however, simulation results reveal two major
issues arising from the estimation of the asymptotic
covariance matrix and the selection of the bandwidth.
In order to solve these problems, the proposed empiri-
cal likelihood approach will be applied to test parame-
ters in models (1)-(2).

To construct an empirical likelihood function, the
estimation equations will be defined by means of,

W (b) — X/ b), (16)

for a generic model parameter b € R, According to
condition (A3), we have that

E(W:(B,))
=EX;18(t/T) &) = g(t/T) EXy—16) =0

holds for the true parameter vector 8. Based on (16),
we define the empirical likelihood for the parameter b

by

T T T
L)y =sup{[Ja:D a=1> aWib) =0
t=1 t=1 t=1

By using the Lagrange multiplier, we have

=Xi—1- (Yt

1 ~
ai(b) = (1 Wy, t=1,....T,

where A = i(b) € RP* is the solution of equations,
W (b
= Z t( ) _» (17)
t 1 1+l Wi(b)

We also note that ]_[[:1 qt»> subject to constraints g; > 0
and Zthl ¢ = 1, attains its maximum (1/T)7 at g, =

1/T. Thus, the empirical likelihood ratio at b is defined
by

T
—TTa+2" W

t=1

T
ELR(b) = [ [1q:® T}
t=1
Taking the log transformation of the above equation, we
get the corresponding empirical log-likelihood ratio,

T
by =2 log{1 +1 Wi(b)). (18)
t=1

In addition, Theorem 4.1 below provides the asymp-
totic null distribution of £(8,).

Theorem 4.1: Assume that conditions (A1)-(A4) hold.
Then, under the null hypothesis (5), the limiting distribu-
tion of £(B,) is the chi-square distribution with p degrees
of freedom, i.e.,

(B B ¥} asT — oo. (19)

According to Theorem 4.1, the empirical likelihood
ratio confidence interval for the true value B, can be
constructed as follows:

NeLe = {b: €b) < Xp 1o}, (20)

where X;;l—a is defined below (15). Combined with
(20), Theorem 4.1 implies Corollary 4.1.

Corollary 4.1: Under the conditions of Theorem 4.1,

1B, € NELw) > 11—, asT — oo.

5. Simulation evaluation

In this section, simulation studies are conducted to
compare the finite sample performance of five methods
described in Sections 3-4:

Ordinary least squares without the heteroscedasticity
correction (OLS),

ty, b, t3,

the proposed empirical likelihood (EL) procedure.

The zero-mean AR(1) with the time-varying vari-
ance is considered as follows:

Y: = Bo1Yi—1 +g(t/Tes,

where {&;} i N(0, 1). The kernel function K(-) is the
standard Normal density function,

£2
exp (——) , —00 <X < 00,

Kx) = >

1
21
and the bandwidth parameter is selected by the cross-

validation criterion (10). We consider Hy : fy1 = B1
with known values of B;.



Three kinds of the variance functions g*(r) are con-
sidered in the following simulations: a single abrupt
point model, two abrupt points model, continuous
function variance model as follows.

Model 1: A single abrupt point model,

gz(r) = 002 + (012 — 0’3) Liy=¢}» re€[0,1].

Model 1 corresponds to the case of a single abrupt
change of the error variance from o to o} at time
[« T], where « is the break point within the value set
{0.1,0.5,0.9}. The ratio of post-break and pre-break
standard deviations § = o /0y is within the value set
{0.2,1,5} where oy = 1.

Model 2: Two abrupt points model,

g () =07 + (0] —03) Lig<r=iy) + (05 — 06) Ty <rps
re [0,1].

Model 2 corresponds to the case of two abrupt points
model which has the change of the error variance from
002 to 012 and 012 to 022. The time break points (k¢, «1)
take the values (0.1,0.9); (ag, 012, 022) are from the set
{(0.2,5,0.2), (5,0.2,5)}.

Model 3: Continuous function variance model,

gz(r) = 002 + (012 — croz)rm, re [0,1].

Model 3 considers that the variance of the errors is the
continuous function from O‘g to 012. We suppose m to
be within the value set {1, 2} and § = o7 /0( within the
value set {0.2, 5} where 002 =1.
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Model 1 and Model 3 are the same as in Cava-
liere (2004), Cavaliere and Taylor (2007) and Phillips
and Xu (2006). Simulations are done when the param-
eter of interest B; increases on the set {0.1,0.5,0.9},
and the nominal size is 5%. The sample size T is from
{60,200} respectively. The number of Monte Carlo
replications is 5000.

Simulation results include two parts. The first part
displayed in Tables 1, 2 and 3 assesses the rejection rates
of five methods under the null hypothesis.

The second part includes Figures 1-3 to evalu-
ate the rejection rates of methods OLS, t;, f, f3
and EL as the parameter B; under the alternatives
increases.

From these simulations, we draw the following con-
clusions.

(a) First, the OLS-based test is the ineflicient and
unreliable test under the heteroscedastic innova-
tions. From Table 1, the OLS-based test overre-
jects overwhelmingly the null hypothesis when
the null is true, and has the largest distorted
size under («,8) € {(0.1,0.2),(0.9,5)}. In addi-
tion, the distorted size doesn’t reduce except for
the homoscedastic innovations with the increas-
ing sample size which is also shown in Figures

Table 1. Comparison of the rejection rates of five methods in Model 1 for 81 € {0.1,0.5,0.9}, x € {0.1,0.5,0.9},§ € {0.2,1,5} and

the sample size T € {60, 200}, based on 5000 replications.

T =60 T =200

B K § OoLS t ty 3 EL OLS t t t3 EL
0.1 0.1 0.2 0.3386 0.1428 0.0560 0.1010 0.1724 0.3804 0.0972 0.0676 0.0840 0.0958
1 0.0558 0.0692 0.0560 0.0450 0.0658 0.0436 0.0510 0.0476 0.0414 0.0492
5 0.0644 0.0712 0.0628 0.0520 0.0654 0.0594 0.0558 0.0536 0.0464 0.0530
0.5 0.2 0.1480 0.0812 0.0486 0.0506 0.0750 0.1528 0.0636 0.0524 0.0590 0.0610
5 0.1526 0.0846 0.0682 0.0642 0.0798 0.1422 0.0608 0.0566 0.0528 0.0550
0.9 0.2 0.0666 0.0716 0.0520 0.0432 0.0700 0.0588 0.0552 0.0498 0.0468 0.0524
5 0.3400 0.1632 0.1624 0.1258 0.1712 0.3780 0.0966 0.0940 0.0754 0.0956
0.5 0.1 0.2 0.3146 0.1278 0.1066 0.1004 0.1632 0.3826 0.0924 0.0886 0.0884 0.0940
1 0.0528 0.0666 0.0762 0.0514 0.0646 0.0494 0.0554 0.0648 0.0540 0.0536
5 0.0622 0.0682 0.0822 0.0548 0.0644 0.0606 0.0564 0.0682 0.0560 0.0542
0.5 0.2 0.1452 0.0766 0.0830 0.0608 0.0752 0.1600 0.0650 0.0692 0.0640 0.0614
5 0.1396 0.0792 0.1014 0.0748 0.0736 0.1416 0.0572 0.0664 0.0552 0.0540
0.9 0.2 0.0654 0.0692 0.0720 0.0474 0.0658 0.0630 0.0590 0.0636 0.0558 0.0574
5 0.3232 0.1462 0.1952 0.1388 0.1638 0.3760 0.0948 0.01154 0.0796 0.0970
0.9 0.1 0.2 0.1954 0.0836 0.2328 0.1144 0.1278 0.3038 0.0664 0.1926 0.0914 0.0730
1 0.0544 0.0650 0.1950 0.1172 0.0600 0.0548 0.0584 0.1160 0.0756 0.0560
5 0.0596 0.0656 0.2086 0.1286 0.0604 0.0638 0.0570 0.1212 0.0792 0.0512
0.5 0.2 0.1250 0.0724 0.2288 0.1334 0.0714 0.1478 0.0654 0.1492 0.0980 0.0636
5 0.1442 0.0768 0.2552 0.1632 0.0728 0.1412 0.0580 0.1578 0.0982 0.0560
0.9 0.2 0.0618 0.0646 0.1844 0.1116 0.0618 0.0650 0.0588 0.1162 0.0808 0.0568
5 0.2778 0.1136 0.3962 0.2100 0.1454 0.3402 0.0780 0.2406 0.1108 0.0862

Table 2. Comparison of the rejection rates of five methods in Model 2 for 81 € {0.1,0.5,0.9}, ko, k11 = [0.1,0.9], [09, 01, 032] €
{[0.2,5,0.2],[5,0.2, 5]} and the sample size T € {60, 200}, based on 5000 replications.

T =60 T = 200
B og o1 (op) OLS t t EL OLS t t t3 EL
0.1 0.2 5 0.2 0.0520 0.0888 0.0278 0.0234 0.0712 0.0438 0.0546 0.0360 0.0340 0.0496
5 0.2 5 0.0570 0.0712 0.0628 0.0492 0.0664 0.0444 0.0504 0.0480 0.0418 0.0488
0.5 0.2 5 0.2 0.0514 0.0762 0.0408 0.0320 0.0714 0.0510 0.0570 0.0472 0.0426 0.0540
5 0.2 5 0.0548 0.0704 0.0812 0.0498 0.0544 0.0480 0.0558 0.0650 0.0548 0.0540
0.9 0.2 5 0.2 0.0550 0.0698 0.1302 0.0806 0.0640 0.0552 0.0566 0.0976 0.0676 0.0536
5 0.2 5 0.0522 0.0644 0.1996 0.1178 0.0598 0.0540 0.0598 0.1172 0.0752 0.0572
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1 and 3. From Table 2, the OLS-based test has (b) Second, the performance of t; and f3 depends on

better performance than Table 1, however, the the numerical value of the true parameter and
rejection rate reduces as the sample size increases. the pattern of the variance function. From Fig-
The results of the OLS-based test in Table 3 are ures 1, 2, 3, an interesting phenomenon can be
similar to those in Table 1. found that the rejection rates of f, and f3 are

Table 3. Comparison of the rejection rates of five methods in Model 3 for 81 € {0.1,0.5,0.9}, m € {1,2},§ € {0.2, 5} and the sample
size t € {60,200}, based on 5000 replications.

T =60 T = 200
B m ) oLS t t t3 EL OLS t [5) t3 EL
0.1 1 0.2 0.0820 0.0812 0.0604 0.0446 0.0826 0.0820 0.0550 0.0476 0.0518 0.0546
5 0.0780 0.0688 0.0624 0.0542 0.0632 0.0828 0.0582 0.0564 0.0540 0.0566
2 0.2 0.0756 0.0784 0.0548 0.0498 0.0628 0.0676 0.0544 0.0482 0.0464 0.0520
5 0.1200 0.0854 0.0778 0.0688 0.0716 0.1200 0.0620 0.0596 0.0582 0.0586
0.5 1 0.2 0.0800 0.0772 0.0780 0.0474 0.0782 0.0912 0.0620 0.0674 0.0620 0.0620
5 0.0872 0.0800 0.0926 0.0670 0.0682 0.0804 0.0560 0.0674 0.0564 0.0544
2 0.2 0.0766 0.0728 0.0728 0.0550 0.0656 0.0752 0.0602 0.0666 0.0598 0.0600
5 0.1196 0.0806 0.0104 0.0844 0.0718 0.1212 0.0604 0.0734 0.0640 0.0590
0.9 1 0.2 0.0672 0.06640 0.1972 0.1112 0.0644 0.0830 0.0642 0.1268 0.0822 0.0606
5 0.0789 0.0688 0.2238 0.1356 0.0578 0.0854 0.0564 0.1322 0.0850 0.0558
2 0.2 0.0652 0.0676 0.1866 0.1166 0.0562 0.0732 0.0640 0.1198 0.0818 0.0628
5 0.1258 0.0826 0.2572 0.1686 0.0668 0.1196 0.0622 0.1500 0.0958 0.0608
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Figure 1. The relationship between the rejection rates of OLS, t1, t;, t3, EL and the true coefficient 87 in Model 1 (a single abrupt
point model). The abrupt point k = 0.1, § = 0.2. The true parameter 7 increases gradually from 0.1 to 0.9. (a) The sample T = 60;
(b) the sample T = 200.
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Figure 2. The relationship between the rejection rates of OLS, t1, to, t3, EL and the true coefficient 87 in Model 2 (two abrupt points
model). The abrupt points k1 = 0.1, k3 = 0.9, [00, 01, 02] = [0.2,5,0.2]. The true parameter 1 increases gradually from 0.1 to 0.9.
(a) The sample T = 60; (b) the sample T = 200.

(c)

likely to be an increasing function of the param-
eter and grow bigger as B; > 0.5. The rejection
rate of t, is far greater than the nominal size 5%
when the numerical value of the parameter is close
to unity, namely g; = 0.9. In particular, it is easy
to see that f, and f3 overaccept the null hypothe-
sis when the parameter is less than or equal to 5%
when B; < 0.5. On the contrary, t, and t3 over-
reject the null hypothesis when g; > 0.9. It also
has the similar conclusions from Tables 1-3. So
both t, and t3 aren’t the stable test for the ARTV
model.

Third, both EL and t; are the stable tests for
the ARTV model and EL outperforms #;. From
Tables 1-3, we can find that EL and #; overreject

the null hypothesis when the null is true. From
Figures 1-3, the rejection rate of EL is almost a
horizontal line and is closer to the nominal level
5% than t; except Figure 1(a) when the sam-
ple size is 60. When the sample size is 200, EL’s
rejection rate is nearly a nominal size of 5% and
doesn’t depend on the numerical value of the
parameters even if the true value of § is close to
unity (81 = 0.9). EL has the smallest size distor-
tion overall and avoids correcting the variance. The
simulation results generally support the asymp-
totic results. EL is more stable and has better
performance than OLS, f;, t, t3 for testing the
parameters of ARTV. So EL seems to be the better
choice.
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Figure 3. The relationship between the rejection rates of OLS, t1, t;, t3, EL corresponding to the true coefficient 81 in Model 3
(continuous function variance model),and m = 1,§ = 0.2. The true parameter S; increases gradually from 0.1 to 0.9. (a) The sample

T = 60; (b) the sample T = 200.

6. Conclusion

This article focuses on the empirical likelihood appro
ach for autoregressive models with error terms scaled
by an unknown nonparametric time-varying function.
The empirical likelihood ratio test statistic avoids esti-
mating the unknown variance function, in the presence
of heteroscedastic error terms. The results of simula-
tions of three different models show that the empirical
likelihood is more stable than the other four test statis-
tics. In addition, some extensions include improving
the efficiency of statistic based on the different equa-
tions, and locating the abrupt time points when they
exist.
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Appendix. Proofs of main results

Before proving Theorem 4.1, we first show Lemmas A.1-A.2.
To simplify notations, we denote L=1(8 o) and W, =
Wl’ (ﬂo) .

Lemma A.1: Assume that conditions (A1)-(A4) hold. Then

T
1 D
7 D Wi NO,Q), (A1)
t=1
1 T P
T d>oww/! > @, (A2)

t=1
P : 0
where — denotes converges in probability.

Proof: According to Phillips and Xu (2006) (Lemma 1(iii)
—(iv)), the proof of Lemma A.1 completes. |

Lemma A.2: Assume that conditions (A1)-(A3) hold. Then

X =0og(T713.
Proof: From (17), we have
T T T
1 1 wWWwW, -«
D
t=1 =1 1+A1 W;
By (A1) of Lemma 3.1,
a T
A
IAll2 Z wwT
L+ IRl max (Wil | T 5
wa = 0y(T™2).

According to conditions (Al) and (A4), we have E(|Y{|[*") <
oo for some v > 1, and then

max Well2

= max | X1 (Ye = Bg Xe1)ll2 = max [ Xeyuel2

= max [ X;-1g(¢/ T)ecll2 = oy (T%). (A3)

From (A2) of Lemma A.1 and a similar argument used in
Owen (1991), the proof of Lemma A.2 is completed. |

Proof: Noticing that if B, is the true parameters, applying
Taylor’s expansion to (18), we have

T
(B =23 log(1+i Wy

t=1

T
AT 1 .7
zzz{x Wt—i(x W2t +rr, (A4)
t=1

where 77, in probability, satisfies the following inequality in
light of Lemma A.1 (A2) and Lemma A.2 for some constant
C>0,

T
AT
rrl <CY I W,
t=1

T

= CIAIS max [Will2 3 IWell3 = oy (1.
t=1

By Lemma A.1 (A2), Lemma A.2 and similar arguments as
above, we have

T AT
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S AW _ . (A5)
=1 1+A W;

By (17), we obtain

T XT T L.
0=Y ST =3d w3 d Wy
t=1 1+)~ Wy =1 =1
iTwy?
t=1 1+1 W,
By (A5) and (A6), we obtain
T T

S A W =@ W) + og(1). (A7)

t=1 t=1

Again by (17), we obtain
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By Lemma A.1 and (A3), we have
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Thus, we have
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By substituting X of the above equation into (A4) and (A7),
we have

T
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The proof of Theorem 4.1 is completed by using Lemma A.1.
|



