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ABSTRACT
This paper develops the empirical likelihood (EL) inference procedure for parameters in autore-
gressive models with the error variances scaled by an unknown nonparametric time-varying
function. Compared with existing methods based on non-parametric and semi-parametric esti-
mation, the proposed test statistic avoids estimating the variance function, while maintaining
the asymptotic chi-square distribution under the null. Simulation studies demonstrate that the
proposed EL procedure (a) is more stable, i.e., depending less on the change points in the error
variances, and (b) gets closer to the desired confidence level, than the traditional test statistic.
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1. Introduction

In the literature of the macroeconomics and financial
applications, the assumption of heteroscedasticity in
many time series models revealed the facts that ignor-
ing the issue of heteroscedasticity often leads to the
inefficient estimation and unreliable inference. Thus,
heteroscedasticity has been focusedmainly on the effect
of violations of homoscedasticity, usually in two forms,
‘conditional heteroscedasticity’ and ‘unconditional het-
eroscedasticity’.

Non-constant volatility will be identified by ‘con-
ditional heteroscedasticity’, when future periods of
high and low volatility cannot be identified. Boller-
slev (1986) and Engle (1982) proposed ARCH or
GARCH models and provided the efficient estimation
of the mean function by quasi-maximum likelihood
based on other adaptive procedures. More complicated
GARCH models had been proposed to allow for con-
ditional heteroscedasticity, for instance, varying coeffi-
cient GARCH models (see Polzehl & Spokoiny, 2006)
and spline GARCHmodels (see Engle & Rangel, 2008).
The time-varying volatility is often used to describe the
conditional heteroscedasticity. Drees and Starica (2002)
and Starica (2003) made use of a non-stationary frame-
work to analyse time series of S&P 500 returns, and
found that this approach outperformed the GARCH-
type models.

‘Unconditional heteroscedasticity’ will be used,
when variables that have identifiable seasonal variabil-
ity, such as electricity usage, are discussed. Hansen
(1995) considered the linear regression model with
deterministically trending regressors only, in which the

error is an AR(p) process scaled by a continuous func-
tion of time. Nesting autoregressive model is also a
special case when the conditional error variance of the
model is a function of a covariate that has a form of
a nearly integrated stochastic process with no deter-
ministic drift. For the constant coefficient autoregres-
sive model with time-varying variances (ARTV) which
will be discussed in this article, Phillips and Xu (2006)
utilised the ordinary least squares method and the non-
parametric estimation of the variance function to pro-
vide three heteroscedasticity-robust test statistics, and
proved their asymptotic standard normal distributions.
Xu and Phillips (2008) proposed the heteroscedasticity-
robust adaptive estimation for ARTV. Meanwhile, per-
formances of methods in Phillips and Xu (2006) and
Xu and Phillips (2008) relied on appropriately select-
ing the bandwidth used in the non-parametric function
estimation.

Motivated from the ‘empirical likelihood’ (EL)
approach, this article aims to develop a test statis-
tic which is more stable, namely, depending less on
the change points in the error variances, and avoiding
the problem of selecting the bandwidth. In the litera-
ture, the EL approach was introduced by Owen (1988),
Owen (1990) and Owen (1991) to construct confi-
dence intervals in a nonparametric setting, which can
be seen in Owen (2001). Since an EL approach pos-
sesses nonparametric properties, the distribution for
the data is not required to be specified, and mean-
while more efficient estimates of the parameters can
be yielded. The EL approach allows data to decide
the shape of confidence regions without estimating the
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variance of the test statistic, and also is Bartlett cor-
rectable in DiCiccio et al. (1991). The EL approach
has been applied to various situations, such as gen-
eralised linear models in Kolaczyk (1994), local lin-
ear smoother in Chen and Qin (2000), partially lin-
ear models in Shi and Lau (2000), parametric and
semi-parametric models in multi response regression
in Chen and Ingrid (2009); linear regression with cen-
sored data in Zhou and Li (2008), plug-in estimates
of nuisance parameters in estimating equations in the
context of survival analysis in Li and Wang (2003)
and Qin and Jing (2001), heteroscedastic partially lin-
ear models in Lu (2009); GARCH models in Chan
and Ling (2006); variable selection in Han et al. (2013)
and Variyath and Chen (2010); analysis of longitudi-
nal data in Qiu andWu (2015). Qin and Lawless (1994)
linked the EL with finitely many estimating equations,
which served as finitely many equality constraints. To
the best of our knowledge, there is no existing published
work in the literature using the EL approach in the
constant coefficient autoregressive models with time-
varying variances. This article will also consider the
constant coefficient autoregressive models with time-
varying innovation variance by using the EL approach.

The remainder of the paper proceeds as follows.
Section 2 describes the autoregressivemodel with time-
varying variances and discusses main assumptions.
Section 3 reviews the existingmethods. Section 4 devel-
ops the empirical likelihood inference procedure with
theoretical guarantees. Section 5 conducts simulation
studies to evaluate the finite sample performance of
the proposed method when compared with alterna-
tive methods. Section 6 briefly concludes. Technical
details and proofs of the main results are relegated to
Appendix.

2. Autoregressive model with time-varying

variances

The constant coefficient autoregressive model with
time-varying variances is described as follows,

Yt = β0 + β1Yt−1 + β2Yt−2 + · · · + βpYt−p + ut

= X�
t−1βo + ut , (1)

ut = σt εt , t = 1, . . . ,T, (2)

where � denotes transpose, Xt−1 = (1,Yt−1, . . . ,
Yt−p)

� ∈ R
p+1 is the vector of covariates, and βo =

(β0,β1, . . . ,βp)
� ∈ R

p+1 is the true parameter vector
of interest, with βp �= 0, and the lag order p finite and
known.We assume that {σt} is a deterministic sequence
of time t, satisfying

σt = g(t/T), (3)

and {εt} is a martingale difference sequence with
respect to Ft , where Ft = σ(εs : s ≤ t) is the σ -field

generated by {εs : s ≤ t} with E(ε2t | Ft−1) = 1, a.s.,
for all t. Thus, the conditional variance of {ut} is fully
characterised by the multiplicative factor σt in (2), i.e.,

E(u2t |Ft−1) = σ 2
t = g2(t/T), a.s.. (4)

Suppose that the data are generated from mod-
els (1)–(2), and we observe a sample containing T + p
observations, denoted by {Y−p+1,Y−p+2, . . . ,Y0,Y1,
. . . ,YT}. The main goals are to make inferences about
the true parameter vector βo in models (1)–(2), i.e.,
testing the null hypothesis,

H0 : βo = b0, (5)

where b0 = (b0,0, b0,1, . . . , b0,p) ∈ R
p+1, and construc-

ting a confidence region for βo.
Section 4 will present our proposed empirical likeli-

hood inference, after Section 3 describes the estimation
methods in Phillips and Xu (2006).

To facilitate the discussion of main results and com-
parison with related existing methods, the following
conditions provided in Phillips and Xu (2006); Xu
and Phillips (2008) are considered.

Conditions

(A1) g(·) in (3) and (4) is a measurable and strictly pos-
itive function on the interval (0, 1] such that 0 <

inf r∈(0,1] g(r) ≤ supr∈(0,1] g(r) < ∞, and g(r) sat-
isfies a Lipschitz condition except at a finite num-
ber of points of discontinuity;

(A2) Suppose that L is the lag operator. Then 0 = 1 −
β1L − β2L2 − · · · − βpLp has all roots outside the
unit circle;

(A3) {εt} satisfies E(εt | Ft−1) = 0, and E(ε2t |Ft−1)

= 1, a.s., for all t;
(A4) supt E(|ε4νt |) < ∞ for some ν > 1.

Remark 2.1: (i) In condition (A1), the function g is
integrable on the interval (0, 1] to any finite order.
For brevity, we write

∫ 1
0 gm(x) dx as

∫
gm for any

finite positive integerm ≥ 1.
(ii) Condition (A2) satisfies the stability conditions

which, for a constant g(·) and homoskedastic {εt},
would ensure that {Yt} is stationary or asymptoti-
cally covariance-stationary. Under condition (A2),
the mean μ of Yt is given by

μ = β0

1 − β1 − · · · − βp
,

and Yt has the Wold representation,

Yt = μ +
∞∑
i=1

αiut−i,

where {αi} satisfies that
αi − β1αi−1 − · · · − βpαi−p = 0, as i > 0,
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and
∑∞

i=1 |αi| < ∞. Define � to be the matrix
with the (i, j)-th element γ|i−j|, where γk =∑∞

i=0 αiαi+k < ∞.
(iii) Condition (A3) ensures that {εt} is a martingale

difference sequence and, at the same time, stipu-
lates E(u2t | Ft−1) = g2(t/T) doesn’t depend on
the past events, in other words, models (1)–(2) are
unconditional heteroscedastic.

3. Existingmethods

Regarding the estimation of βo in models (1)–(2),
Phillips and Xu (2006) reviewed the ordinary least
squares (OLS) estimator β̂ , and showed that under the
stated conditions, as T → ∞,

√
T(β̂ − βo) =

(
1
T

T∑
t=1

X�
t−1Xt−1

)−1

×
(

1√
T

T∑
t=1

X�
t−1εt

)
D→ N(0,	),

(6)

where D→ stands for converges in distribution, 	 =
�−1

1 �2�
−1
1 , �1 and �2 are defined as the (p + 1) ×

(p + 1) matrices,

�1 =
(

1 μ l�p
μ lp μ2 + (

∫
g2)�

)
,

�2 =
(

(
∫
g2) μ (

∫
g2) l�p

μ (
∫
g2) lp μ2 (

∫
g2) + (

∫
g4)�

)
, (7)

lp = (1, . . . , 1)� ∈ R
p is a vector of ones, and μ and �

are as defined in Remark 2.1.
Since g is typically unknown, the asymptotic covari-

ance matrix 	 in (6) must be estimated and this can
be done in several ways. First, by applying the weighted
sum of squared OLS residuals using kernel smooth-
ing, originally proposed by Nadaraya (1964) and Wat-
son (1964) for estimation of regression functions, they
proposed the consistent estimator of the function g2(r)
non-parametrically for r ∈ [0, 1],

ĝ2(r) =
T∑
t=1

wr,t û2t , (8)

where ût = Yt − X�
t−1β̂ is the OLS residual and the

weights wr,t , t = 1, . . . ,T, are defined as

wr,t =
{ T∑

t=1
K

(
[T r] − t
ThT

)}−1

K
(
[T r] − t
ThT

)
, (9)

where the kernel function K(·) : R 
→ [0,∞) is assu
med to satisfy 0 ≤ K(z) ≤ C1 < ∞ uniformly in z and∫ ∞

−∞
K(z) dz < C2 < ∞,

for some constant C1 and C2; hT is a bandwidth
parameter depending on T. The selection of bandwidth
parameter hT uses the cross-validation procedure, i.e.,
minimises the averaged squared prediction errors (see
Wong, 1983),

CV(b) = 1
T

T∑
s=1

{û2s − ĝ2−s(s/T)}2, (10)

with respect to b, where

ĝ2−s(r) =
∑

t=1, t �=s

wr,t û2t .

Phillips and Xu (2006) suggested the following three
consistent estimators of the asymptotic covariance
matrix 	 when g is unknown.

• The first estimator of the asymptotic covariance
matrix is

	̂1 = T

( T∑
t=1

Xt−1X�
t−1

)−1 ( T∑
t=1

û2tXt−1X�
t−1

)

×
( T∑

t=1
Xt−1X�

t−1

)−1

. (11)

• The second estimator of the asymptotic covariance
matrix is

	̂2 = �̂−1
1

( T∑
t=1

û2t Xt−1X�
t−1

)
�̂−1

1 , (12)

where the matrix �̂1 is defined as

�̂1 =

⎛⎜⎝ 1 μ̂ l�p

μ̂ lp μ̂2 +
(
T−1

T∑
t=1

û2t

)
�̂

⎞⎟⎠ ,

where μ̂ and �̂ correspond to replacing βo, in the
expressions of μ and � in Remark 2.1, with β̂ .

• The third estimator of the asymptotic covariance
matrix is

	̂3 = �̂−1
1 �̃2�̂

−1
1 , (13)

where the matrix �̂2 is defined as

�̃2 =
( ∫

ĝ2 μ̂(
∫
ĝ2) l�p

μ̂(
∫
ĝ2) lp μ̂2(

∫
ĝ2) + (

∫
ĝ4)�̂

)
.

Based on the above three estimators 	̂j of the true
covariance matrix 	, Phillips and Xu (2006) con-
structed three test statistics tj, j = 1, 2, 3, for the true
parameter vector βo, stated as follows.

Lemma3.1 (Theorem2(ii) inPhillips andXu (2006)):
Assume that β̂ is the OLS estimator of βo. Then, under
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the above assumptions and null hypothesis (5), it follows
that

tj =
√
T(β̂k − b0,k)
((	̂j)kk)1/2

D→ N(0, 1), as T → ∞, (14)

where (	̂j)kk is the (k, k)-th element of the matrix 	̂j,
j = 1, 2, 3, defined in (11), (12) and (13), respectively.

Hence, a large sample level 100(1 − α)% confidence
region for βo based on the above Normal approxima-
tion (14) is given by

�j,α = {b : T(β̂ − b)�

× [diag{(	̂j)k,k, k = 0, 1, . . . , p}]−1(β̂ − b)

≤ χ2
p; 1−α}, (15)

where diag{(	̂j)k,k, k = 0, 1, . . . , p} is the main diago-
nal matrix of 	̂j, j = 1, 2, 3, and χ2

p; 1−α denotes the
100(1 − α)th quantile of the chi-square distribution χ2

p
with p degrees of freedom.

4. Proposedmethod

In terms of the practical performance of the three tests
tj in (14), however, simulation results reveal two major
issues arising from the estimation of the asymptotic
covariance matrix and the selection of the bandwidth.
In order to solve these problems, the proposed empiri-
cal likelihood approach will be applied to test parame-
ters in models (1)–(2).

To construct an empirical likelihood function, the
estimation equations will be defined by means of,

Wt(b) = Xt−1 · (Yt − X�
t−1b), (16)

for a generic model parameter b ∈ R
p+1. According to

condition (A3), we have that

E(Wt(βo))

= E(Xt−1 g(t/T) εt) = g(t/T)E(Xt−1 εt) = 0

holds for the true parameter vector βo. Based on (16),
we define the empirical likelihood for the parameter b
by

L(b) = sup

{ T∏
t=1

qt :
T∑
t=1

qt = 1,
T∑
t=1

qtWt(b) = 0

}
.

By using the Lagrange multiplier, we have

q̂t(b) = 1
T

{1 + λ̂
�
Wt(b)}−1, t = 1, . . . ,T,

where λ̂ = λ̂(b) ∈ R
p+1 is the solution of equations,

1
T

T∑
t=1

Wt(b)

1 + λ̂
�
Wt(b)

= 0. (17)

We also note that
∏T

t=1 qt , subject to constraints qt ≥ 0
and

∑T
t=1 qt = 1, attains its maximum (1/T)T at qt =

1/T. Thus, the empirical likelihood ratio at b is defined
by

ELR(b) =
T∏
t=1

{q̂t(b)T}−1 =
T∏
t=1

{1 + λ̂
�
Wt(b)}.

Taking the log transformation of the above equation, we
get the corresponding empirical log-likelihood ratio,

�(b) = 2
T∑
t=1

log{1 + λ̂
�
Wt(b)}. (18)

In addition, Theorem 4.1 below provides the asymp-
totic null distribution of �(βo).

Theorem 4.1: Assume that conditions (A1)–(A4) hold.
Then, under the null hypothesis (5), the limiting distribu-
tion of �(βo) is the chi-square distribution with p degrees
of freedom, i.e.,

�(βo)
D→ χ2

p , as T → ∞. (19)

According to Theorem 4.1, the empirical likelihood
ratio confidence interval for the true value βo can be
constructed as follows:

�EL,α = {b : �(b) ≤ χ2
p; 1−α}, (20)

where χ2
p; 1−α is defined below (15). Combined with

(20), Theorem 4.1 implies Corollary 4.1.

Corollary 4.1: Under the conditions of Theorem 4.1,

¶(βo ∈ �EL,α) → 1 − α, as T → ∞.

5. Simulation evaluation

In this section, simulation studies are conducted to
compare the finite sample performance of five methods
described in Sections 3–4:

Ordinary least squares without the heteroscedasticity
correction (OLS),

t1, t2, t3,
the proposed empirical likelihood (EL) procedure.

The zero-mean AR(1) with the time-varying vari-
ance is considered as follows:

Yt = β0,1Yt−1 + g(t/T)εt ,

where {εt} i.i.d.∼ N(0, 1). The kernel function K(·) is the
standard Normal density function,

K(x) = 1√
2π

exp
(

−x2

2

)
, −∞ < x < ∞,

and the bandwidth parameter is selected by the cross-
validation criterion (10). We consider H0 : β0,1 = β1
with known values of β1.
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Three kinds of the variance functions g2(r) are con-
sidered in the following simulations: a single abrupt
point model, two abrupt points model, continuous
function variance model as follows.

Model 1: A single abrupt point model,

g2(r) = σ 2
0 + (σ 2

1 − σ 2
0 ) I{r≥κ}, r ∈ [0, 1].

Model 1 corresponds to the case of a single abrupt
change of the error variance from σ 2

0 to σ 2
1 at time

[κT], where κ is the break point within the value set
{0.1, 0.5, 0.9}. The ratio of post-break and pre-break
standard deviations δ = σ1/σ0 is within the value set
{0.2, 1, 5} where σ0 = 1.
Model 2: Two abrupt points model,

g2(r) = σ 2
0 + (σ 2

1 − σ 2
0 ) I{κ0<r≤κ1} + (σ 2

2 − σ 2
0 ) I{κ1<r},

r ∈ [0, 1].

Model 2 corresponds to the case of two abrupt points
model which has the change of the error variance from
σ 2
0 to σ 2

1 and σ 2
1 to σ 2

2 . The time break points (κ0, κ1)
take the values (0.1, 0.9); (σ 2

0 , σ
2
1 , σ

2
2 ) are from the set

{(0.2, 5, 0.2), (5, 0.2, 5)}.
Model 3: Continuous function variance model,

g2(r) = σ 2
0 + (σ 2

1 − σ 2
0 )rm, r ∈ [0, 1].

Model 3 considers that the variance of the errors is the
continuous function from σ 2

0 to σ 2
1 . We suppose m to

be within the value set {1, 2} and δ = σ1/σ0 within the
value set {0.2, 5} where σ 2

0 = 1.

Model 1 and Model 3 are the same as in Cava-
liere (2004), Cavaliere and Taylor (2007) and Phillips
and Xu (2006). Simulations are done when the param-
eter of interest β1 increases on the set {0.1, 0.5, 0.9},
and the nominal size is 5%. The sample size T is from
{60, 200} respectively. The number of Monte Carlo
replications is 5000.

Simulation results include two parts. The first part
displayed in Tables 1, 2 and 3 assesses the rejection rates
of five methods under the null hypothesis.

The second part includes Figures 1–3 to evalu-
ate the rejection rates of methods OLS, t1, t2, t3
and EL as the parameter β1 under the alternatives
increases.

From these simulations, we draw the following con-
clusions.

(a) First, the OLS-based test is the inefficient and
unreliable test under the heteroscedastic innova-
tions. From Table 1, the OLS-based test overre-
jects overwhelmingly the null hypothesis when
the null is true, and has the largest distorted
size under (κ , δ) ∈ {(0.1, 0.2), (0.9, 5)}. In addi-
tion, the distorted size doesn’t reduce except for
the homoscedastic innovations with the increas-
ing sample size which is also shown in Figures

Table 1. Comparison of the rejection rates of five methods in Model 1 for β1 ∈ {0.1, 0.5, 0.9}, κ ∈ {0.1, 0.5, 0.9}, δ ∈ {0.2, 1, 5} and
the sample size T ∈ {60, 200}, based on 5000 replications.

T = 60 T = 200

β1 κ δ OLS t1 t2 t3 EL OLS t1 t2 t3 EL

0.1 0.1 0.2 0.3386 0.1428 0.0560 0.1010 0.1724 0.3804 0.0972 0.0676 0.0840 0.0958
1 0.0558 0.0692 0.0560 0.0450 0.0658 0.0436 0.0510 0.0476 0.0414 0.0492
5 0.0644 0.0712 0.0628 0.0520 0.0654 0.0594 0.0558 0.0536 0.0464 0.0530

0.5 0.2 0.1480 0.0812 0.0486 0.0506 0.0750 0.1528 0.0636 0.0524 0.0590 0.0610
5 0.1526 0.0846 0.0682 0.0642 0.0798 0.1422 0.0608 0.0566 0.0528 0.0550

0.9 0.2 0.0666 0.0716 0.0520 0.0432 0.0700 0.0588 0.0552 0.0498 0.0468 0.0524
5 0.3400 0.1632 0.1624 0.1258 0.1712 0.3780 0.0966 0.0940 0.0754 0.0956

0.5 0.1 0.2 0.3146 0.1278 0.1066 0.1004 0.1632 0.3826 0.0924 0.0886 0.0884 0.0940
1 0.0528 0.0666 0.0762 0.0514 0.0646 0.0494 0.0554 0.0648 0.0540 0.0536
5 0.0622 0.0682 0.0822 0.0548 0.0644 0.0606 0.0564 0.0682 0.0560 0.0542

0.5 0.2 0.1452 0.0766 0.0830 0.0608 0.0752 0.1600 0.0650 0.0692 0.0640 0.0614
5 0.1396 0.0792 0.1014 0.0748 0.0736 0.1416 0.0572 0.0664 0.0552 0.0540

0.9 0.2 0.0654 0.0692 0.0720 0.0474 0.0658 0.0630 0.0590 0.0636 0.0558 0.0574
5 0.3232 0.1462 0.1952 0.1388 0.1638 0.3760 0.0948 0.01154 0.0796 0.0970

0.9 0.1 0.2 0.1954 0.0836 0.2328 0.1144 0.1278 0.3038 0.0664 0.1926 0.0914 0.0730
1 0.0544 0.0650 0.1950 0.1172 0.0600 0.0548 0.0584 0.1160 0.0756 0.0560
5 0.0596 0.0656 0.2086 0.1286 0.0604 0.0638 0.0570 0.1212 0.0792 0.0512

0.5 0.2 0.1250 0.0724 0.2288 0.1334 0.0714 0.1478 0.0654 0.1492 0.0980 0.0636
5 0.1442 0.0768 0.2552 0.1632 0.0728 0.1412 0.0580 0.1578 0.0982 0.0560

0.9 0.2 0.0618 0.0646 0.1844 0.1116 0.0618 0.0650 0.0588 0.1162 0.0808 0.0568
5 0.2778 0.1136 0.3962 0.2100 0.1454 0.3402 0.0780 0.2406 0.1108 0.0862

Table 2. Comparison of the rejection rates of five methods in Model 2 for β1 ∈ {0.1, 0.5, 0.9}, [κ0, κ1] = [0.1, 0.9], [σ0, σ1, σ2] ∈
{[0.2, 5, 0.2], [5, 0.2, 5]} and the sample size T ∈ {60, 200}, based on 5000 replications.

T = 60 T = 200

β1 σ0 σ1 σ2 OLS t1 t2 t3 EL OLS t1 t2 t3 EL

0.1 0.2 5 0.2 0.0520 0.0888 0.0278 0.0234 0.0712 0.0438 0.0546 0.0360 0.0340 0.0496
5 0.2 5 0.0570 0.0712 0.0628 0.0492 0.0664 0.0444 0.0504 0.0480 0.0418 0.0488

0.5 0.2 5 0.2 0.0514 0.0762 0.0408 0.0320 0.0714 0.0510 0.0570 0.0472 0.0426 0.0540
5 0.2 5 0.0548 0.0704 0.0812 0.0498 0.0544 0.0480 0.0558 0.0650 0.0548 0.0540

0.9 0.2 5 0.2 0.0550 0.0698 0.1302 0.0806 0.0640 0.0552 0.0566 0.0976 0.0676 0.0536
5 0.2 5 0.0522 0.0644 0.1996 0.1178 0.0598 0.0540 0.0598 0.1172 0.0752 0.0572



134 Y. HAN AND C. ZHANG

1 and 3. From Table 2, the OLS-based test has
better performance than Table 1, however, the
rejection rate reduces as the sample size increases.
The results of the OLS-based test in Table 3 are
similar to those in Table 1.

(b) Second, the performance of t2 and t3 depends on
the numerical value of the true parameter and
the pattern of the variance function. From Fig-
ures 1, 2, 3, an interesting phenomenon can be
found that the rejection rates of t2 and t3 are

Table 3. Comparison of the rejection rates of fivemethods inModel 3 for β1 ∈ {0.1, 0.5, 0.9},m ∈ {1, 2}, δ ∈ {0.2, 5} and the sample
size t ∈ {60, 200}, based on 5000 replications.

T = 60 T = 200

β1 m δ OLS t1 t2 t3 EL OLS t1 t2 t3 EL

0.1 1 0.2 0.0820 0.0812 0.0604 0.0446 0.0826 0.0820 0.0550 0.0476 0.0518 0.0546
5 0.0780 0.0688 0.0624 0.0542 0.0632 0.0828 0.0582 0.0564 0.0540 0.0566

2 0.2 0.0756 0.0784 0.0548 0.0498 0.0628 0.0676 0.0544 0.0482 0.0464 0.0520
5 0.1200 0.0854 0.0778 0.0688 0.0716 0.1200 0.0620 0.0596 0.0582 0.0586

0.5 1 0.2 0.0800 0.0772 0.0780 0.0474 0.0782 0.0912 0.0620 0.0674 0.0620 0.0620
5 0.0872 0.0800 0.0926 0.0670 0.0682 0.0804 0.0560 0.0674 0.0564 0.0544

2 0.2 0.0766 0.0728 0.0728 0.0550 0.0656 0.0752 0.0602 0.0666 0.0598 0.0600
5 0.1196 0.0806 0.0104 0.0844 0.0718 0.1212 0.0604 0.0734 0.0640 0.0590

0.9 1 0.2 0.0672 0.06640 0.1972 0.1112 0.0644 0.0830 0.0642 0.1268 0.0822 0.0606
5 0.0789 0.0688 0.2238 0.1356 0.0578 0.0854 0.0564 0.1322 0.0850 0.0558

2 0.2 0.0652 0.0676 0.1866 0.1166 0.0562 0.0732 0.0640 0.1198 0.0818 0.0628
5 0.1258 0.0826 0.2572 0.1686 0.0668 0.1196 0.0622 0.1500 0.0958 0.0608

Figure 1. The relationship between the rejection rates of OLS, t1, t2, t3, EL and the true coefficient β1 in Model 1 (a single abrupt
point model). The abrupt point κ = 0.1, δ = 0.2. The true parameter β1 increases gradually from 0.1 to 0.9. (a) The sample T = 60;
(b) the sample T = 200.
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Figure 2. The relationship between the rejection rates of OLS, t1, t2, t3, EL and the true coefficient β1 in Model 2 (two abrupt points
model). The abrupt points κ1 = 0.1, κ2 = 0.9, [σ0, σ1, σ2] = [0.2, 5, 0.2]. The true parameter β1 increases gradually from 0.1 to 0.9.
(a) The sample T = 60; (b) the sample T = 200.

likely to be an increasing function of the param-
eter and grow bigger as β1 > 0.5. The rejection
rate of t2 is far greater than the nominal size 5%
when the numerical value of the parameter is close
to unity, namely β1 = 0.9. In particular, it is easy
to see that t2 and t3 overaccept the null hypothe-
sis when the parameter is less than or equal to 5%
when β1 < 0.5. On the contrary, t2 and t3 over-
reject the null hypothesis when β1 > 0.9. It also
has the similar conclusions from Tables 1–3. So
both t2 and t3 aren’t the stable test for the ARTV
model.

(c) Third, both EL and t1 are the stable tests for
the ARTV model and EL outperforms t1. From
Tables 1–3, we can find that EL and t1 overreject

the null hypothesis when the null is true. From
Figures 1–3, the rejection rate of EL is almost a
horizontal line and is closer to the nominal level
5% than t1 except Figure 1(a) when the sam-
ple size is 60. When the sample size is 200, EL’s
rejection rate is nearly a nominal size of 5% and
doesn’t depend on the numerical value of the
parameters even if the true value of β is close to
unity (β1 = 0.9). EL has the smallest size distor-
tion overall and avoids correcting the variance. The
simulation results generally support the asymp-
totic results. EL is more stable and has better
performance than OLS, t1, t2, t3 for testing the
parameters of ARTV. So EL seems to be the better
choice.
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Figure 3. The relationship between the rejection rates of OLS, t1, t2, t3, EL corresponding to the true coefficient β1 in Model 3
(continuous function variancemodel), andm = 1, δ = 0.2. The true parameterβ1 increases gradually from0.1 to 0.9. (a) The sample
T = 60; (b) the sample T = 200.

6. Conclusion

This article focuses on the empirical likelihood appro
ach for autoregressive models with error terms scaled
by an unknown nonparametric time-varying function.
The empirical likelihood ratio test statistic avoids esti-
mating the unknown variance function, in the presence
of heteroscedastic error terms. The results of simula-
tions of three different models show that the empirical
likelihood is more stable than the other four test statis-
tics. In addition, some extensions include improving
the efficiency of statistic based on the different equa-
tions, and locating the abrupt time points when they
exist.

Acknowledgments

The authors thank the editor, Prof. Jun Shao, and two
anonymous reviewers for helpful comments. Yu Han was

supported by the Scientific Research Foundation of Jilin Edu-
cation (JJKH20200102KJ). The work of C. Zhang was par-
tially supported by U.S. National Science Foundation grants
DMS-2013486 and DMS-1712418, and provided by the Uni-
versity of Wisconsin-Madison Office of the Vice Chancellor
for Research and Graduate Education with funding from the
Wisconsin Alumni Research Foundation.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

The authors thank the editor, Prof. Jun Shao, and two anony-
mous reviewers for helpful comments. YuHanwas supported
by the Scientific Research Foundation of Jilin Education
[grant number JJKH20200102KJ]. The work of C. Zhang
was partially supported by U.S. National Science Foundation
[grant numbers DMS-2013486 and DMS-1712418], and pro-
vided by the University of Wisconsin-Madison Office of the



STATISTICAL THEORY AND RELATED FIELDS 137

Vice Chancellor for Research and Graduate Education with
funding from the Wisconsin Alumni Research Foundation.

Notes on contributors

Yu Han, received Ph.D. degree in mathematical statistics
from Jilin University in 2012. He is currently an associate
research fellow in the Educational Supervision and Evalu-
ation Center of Northeast Electrical Power University. His
current research interests are Time Series Analysis, Non-
parametric and semi-parametric estimation & inference. He
worked at Department of Statistics, Wisconsin University-
Madison between 2013 and 2014 as a visiting scholar. He
has published 12 papers. He has accomplished 3 projects
as a principle investigator and as a participator. One was
accomplished, and two are ongoing.

Chunming Zhang is Professor of Statistics at the University of
Wisconsin-Madison. Her research interests range from sta-
tistical learning and data mining, statistical methods with
applications to imaging data, neuroinformatics and bioinfor-
matics, multiple testing, large-scale simultaneous inference
and applications, statistical methods in financial economet-
rics, non- and semi-parametric estimation and inference, to
functional and longitudinal data analysis.

ORCID

Yu Han http://orcid.org/0000-0002-7728-6217
Chunming Zhang http://orcid.org/0000-0002-3153-2662

References

Bollerslev, T. (1986). Generalized autoregressive conditional
heteroskedasticity. Journal of Econometrics, 31, 307–327.
https://doi.org/10.1016/0304-4076(86)90063-1

Cavaliere, G. (2004). Unit root tests under time-varying vari-
ance shifts. Econometric Reviews, 23, 259–292. https://doi.
org/10.1081/ETC-200028215

Cavaliere, G., & Taylor, A. M. R. (2007). Testing for unit roots
in time series models with nonstationary volatility. Journal
of Econometrics, 140(2), 919–947. https://doi.org/10.1016/
j.jeconom.2006.07.019

Chan, N. H., & Ling, S. Q. (2006). Empirical likeli-
hood for Garch models. Econometric Theory, 3, 403–428.
https://doi.org/10.1017/S0266466606060208

Chen, S. X., & Ingrid, V. K. (2009). A review on empirical
likelihood methods for regression. Test, 18(3), 415–447.
https://doi.org/10.1007/s11749-009-0159-5

Chen, S. X., & Qin, Y. (2000). Empirical likelihood confi-
dence intervals for local linear smoothers. Biometrika, 87,
946–953. https://doi.org/10.1093/biomet/87.4.946

DiCiccio, T., Hall, P., & Romano, J. (1991). Empirical like-
lihood is Bartlett-Correctable. Annals of Statistics, 19(2),
1053–1061. https://doi.org/10.1214/aos/1176348137

Drees, H., & Starica, C. (2002).A simple non-stationarymodel
for stock returns (Working paper). Chalmers University of
Technology.

Engle, R. F. (1982). Autoregressive conditional heteroskedas-
ticity with estimates of the variance of U.K. inflation.
Econometrica, 50, 987–1008. https://doi.org/10.2307/191
2773

Engle, R. F., &Rangel, J. G. (2008). The spline-GARCHmodel
for low-frequency volatility and its global macroeconomic
causes. The Review of Financial Studies, 21(3), 1187–1222.
https://doi.org/10.1093/rfs/hhn004

Han, Y., Jin, Y. H., & Chen, M. (2013). Empirical likelihood-
based subset selection for partially linear autoregres-
sive models. Acta Mathematicae Applicatae Sinica, English
Series, 29(4), 793–808. https://doi.org/10.1007/s10255-
013-0256-9

Hansen, B. E. (1995). Regression with nonstationary volatil-
ity. Econometrica, 63, 1113–1132. https://doi.org/10.2307/
2171723

Kolaczyk, E. D. (1994). Empirical likelihood for gen-
eralized linear models. Statistica Sinica, 4, 199–218.
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A4n111.
pdf

Li, G., &Wang, Q. H. (2003). Empirical likelihood regression
analysis for right censored data. Statistica Sinica, 13, 51–68.
https://www.jstor.org/stable/24307094?seq=1

Lu, X. W. (2009). Empirical likelihood for heteroscedastic
partially linear models. Journal of Multivariate Analysis,
100, 387–396. https://doi.org/10.1016/j.jmva.2008.05.006

Nadaraya, E. A. (1964). On estimating regression. The-
ory of Probability and Its Applications, 9(1), 141–142.
https://doi.org/10.1137/1109020

Owen, A. B. (1988). Empirical likelihood ratio confidence
intervals for a single functional. Biometrika, 75, 237–249.
https://doi.org/10.1093/biomet/75.2.237

Owen, A. B. (1990). Empirical likelihood ratio confidence
regions. Annals of Statistics, 18, 90–120. https://doi.org/10.
1214/aos/1176347494

Owen, A. B. (1991). Empirical likelihood for linear models.
Annals of Statistics, 19(4), 1725–1747. https://doi.org/10.
1214/aos/1176348368

Owen, A. B. (2001). Empirical Likelihood. Chapman andHall.
Phillips, P. C. B., & Xu, K. L. (2006). Inference in autoregres-

sion under heteroskedasticity. Journal of Time Series Analy-
sis, 27, 289–308. https://doi.org/10.1111/jtsa.2006.27.issue
-2

Polzehl, J., & Spokoiny, V. (2006). Varying coefficient GARCH
versus local constant volatility modeling: Comparison of pre-
dictive power (Working paper). Weierstrass Institute for
Applied Analysis and Stochastics.

Qiu, J., &Wu, L. (2015). Amoving blocks empirical likelihood
method for longitudinal data. Biometrics, 71, 616–624.
https://doi.org/10.1111/biom.12317

Qin, G., & Jing, B. Y. (2001). Empirical likelihood for cen-
sored linear regression. Scandinavian Journal of Statistics,
28, 661–673. https://doi.org/10.1111/sjos.2001.28.issue-4

Qin, J., & Lawless, J. (1994). Empirical likelihood and gen-
eral estimating equations.Annals of Statistics, 22, 300–325.
https://doi.org/10.1214/aos/1176325370

Shi, J., & Lau, T. S. (2000). Empirical likelihood for par-
tially linearmodels. Journal of Multivariate Analysis, 72(1),
132–148. https://doi.org/10.1006/jmva.1999.1866

Starica, C. (2003). Is GARCH (1, 1) as good a model as
the Nobel prize accolades would imply (Working paper).
Chalmers University of Technology.

Xu, K. L., & Phillips, P. C. B. (2008). Adaptive estimation of
autroregressive models with time-varying variances. Jour-
nal of Econometrics, 142, 265–280. https://doi.org/10.1016/
j.jeconom.2007.06.001

Variyath, A. M., & Chen, J. H. (2010). Abraham B. Empiri-
cal likelihood based variable selection. Journal of Statistical
Planning and Inference, 140, 971–981. https://doi.org/10.
1016/j.jspi.2009.09.025

Watson, G. S. (1964). Smooth regression analysis. Sankhya
Series A, 26, 359–372.

Wong, W. H. (1983). On the consistency of cross validation
in kernel nonparametric regression.Annals of Statistics, 11,
1136–1141. https://doi.org/10.1214/aos/1176346327



138 Y. HAN AND C. ZHANG

Zhou,M., & Li, G. (2008). Empirical likelihood analysis of the
Buckley-James estimator. Journal of Multivariate Analysis,
99, 649–664. https://doi.org/10.1016/j.jmva.2007.02.007

Appendix. Proofs of main results

Before proving Theorem 4.1, we first show Lemmas A.1–A.2.
To simplify notations, we denote λ̂ = λ̂(βo) and Wt =
Wt(βo).

Lemma A.1: Assume that conditions (A1)–(A4) hold. Then

1√
T

T∑
t=1

Wt
D→ N(0,�2), (A1)

1
T

T∑
t=1

WtW�
t

P→ �2, (A2)

where P→ denotes converges in probability.

Proof: According to Phillips and Xu (2006) (Lemma 1(iii)
–(iv)), the proof of Lemma A.1 completes. �

Lemma A.2: Assume that conditions (A1)–(A3) hold. Then

λ̂ = O¶(T−1/2).

Proof: From (17), we have

0 = 1
T

T∑
t=1

Wt − 1
T

T∑
t=1

WtW�
t

1 + λ̂
�
Wt

λ̂.

By (A1) of Lemma 3.1,

‖λ̂‖2
1 + ‖λ̂‖2 maxt ‖Wt‖2

∥∥∥∥∥ 1
T

T∑
t=1

WtW�
t

∥∥∥∥∥
≤

∥∥∥∥∥ 1
T

T∑
t=1

Wt
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2

= O¶(T−1/2).

According to conditions (A1) and (A4), we have E(|Yt|4ν) <

∞ for some ν > 1, and then

max
t

‖Wt‖2
= max

t
‖Xt−1(Yt − β�

o Xt−1)‖2 = max
t

‖Xt−1ut‖2

= max
t

‖Xt−1g(t/T)εt‖2 = o¶(T
1
4ν ). (A3)

From (A2) of Lemma A.1 and a similar argument used in
Owen (1991), the proof of Lemma A.2 is completed. �

Proof: Noticing that if βo is the true parameters, applying
Taylor’s expansion to (18), we have

�(βo) = 2
T∑
t=1

log(1 + λ̂
�
Wt)

= 2
T∑
t=1

{
λ̂

�
Wt − 1

2
(λ̂

�
Wt)

2
}

+ rT , (A4)

where rT , in probability, satisfies the following inequality in
light of Lemma A.1 (A2) and Lemma A.2 for some constant
C> 0,

|rT | ≤ C
T∑
t=1

|λ̂�
Wt|3

≤ C‖λ̂‖32 max
1≤t≤T

‖Wt‖2
T∑
t=1

‖Wt‖22 = o¶(1).

By Lemma A.1 (A2), Lemma A.2 and similar arguments as
above, we have
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By (17), we obtain
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By (A5) and (A6), we obtain
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Again by (17), we obtain
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By Lemma A.1 and (A3), we have
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By substituting λ̂ of the above equation into (A4) and (A7),
we have
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The proof of Theorem 4.1 is completed by using Lemma A.1.
�


