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Abstract
Statistical data analysis and machine learning heavily rely on error measures for regression,
classification, and forecasting. Bregman divergence (BD) is a widely used family of error
measures, but it is not robust to outlying observations or high leverage points in large- and
high-dimensional datasets. In this paper, we propose a new family of robust Bregman
divergences called “robust-BD” that are less sensitive to data outliers. We explore their
suitability for sparse large-dimensional regression models with incompletely specified
response variable distributions and propose a new estimate called the “penalized robust-
BD estimate” that achieves the same oracle property as ordinary non-robust penalized least-
squares and penalized-likelihood estimates. We conduct extensive numerical experiments to
evaluate the performance of the proposed penalized robust-BD estimate and compare it with
classical approaches, and show that our proposed method improves on existing approaches.
Finally, we analyze a real dataset to illustrate the practicality of our proposed method. Our
findings suggest that the proposed method can be a useful tool for robust statistical data
analysis and machine learning in the presence of outliers and large-dimensional data.
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1 Introduction

Advancements in high-throughput technologies have made it possible to collect sophisti-
cated, high-dimensional datasets, such as microarray data, genome-wide human SNP data,
high-frequency financial data, functional data, and brain imaging data. In comparison to
conventional datasets, where there are fewer variables than observations, large-dimensional
datasets involve variables that could be as many as, or even more than, observations. These
scenarios correspond to pn � n, pn � n, and pn � n, respectively, with pn being the number
of variables and n being the number of observations. A fundamental problem common to
any large-dimensional dataset is that observations are more prone to outliers in either the
covariate space or the response space than those in low-dimensional datasets. In such
settings, outliers can lead to possible erroneous conclusions concerning statistical estima-
tion, but the mechanism of contamination can be quite complex and intractable in general. It
can also be difficult or even impossible to spot outliers in large-dimensional or highly
structured data. Hence, exploring and developing robust statistical estimation and inference
procedures that are resistant to outliers in large-dimensional data becomes increasingly
important.

In recent years, much attention has been focused on developing penalized estimates of
parameters in regression models with a large number of parameters. Examples include the
Lasso (Tibshirani, 1996), the SCAD (Fan & Peng, 2004), the adaptive Lasso (Zou, 2006),
the Dantzig selector (Candes & Tao, 2007), and the group Lasso (Meier et al., 2008), among
others. These penalized least-squares estimates or penalized-likelihood estimates are
obtained using a quadratic loss function or require full knowledge of the likelihood function.
The penalized “classical-BD” estimation was proposed in Zhang et al. (2010) for pn � n
and pn � n, where the error measure BD includes the quadratic loss, the exponential family
of distributions, the (negative) quasi-likelihood, and many others as special cases. However,
these non-robust estimates do not handle outlying observations. General tools for investi-
gating the robustness properties of penalized estimates, especially when pn � n and pn � n,
seem to be much less developed.

It is well-known that the influence functions of classical (non-penalized) regression
estimates based on the quadratic loss function and likelihood are unbounded. Large devi-
ations of the response from its mean, as measured by the Pearson residuals, or outlying
points in the covariate space, can have a significant influence on the estimates. While robust
procedures in Bianco et al. (1996), Künsch et al. (1989), Stefanski et al. (1986) control
outliers for the generalized linear model (GLM), these procedures are limited to finite- and
low-dimensional problems. It remains unclear to what extent they are useful in large- and
high-dimensional settings. The works (Boente et al., 2006; Cantoni & Ronchetti, 2001)
developed robust quasi-likelihood estimates of finite-dimensional parameters. However, the
robust quasi-likelihood procedure is not available for other types of error measures, such as
the hinge loss for the support vector machine (SVM) (Vapnik, 1996) and the exponential
loss for AdaBoost (Freund & Schapire, 1997), which are commonly used in classification
procedures and machine learning practice. This is because these error measures do not fall
into the (negative) quasi-likelihood category.

This paper aims to investigate the applicability of robust statistical inference for
regression estimation and classification procedures in large-dimensional (pn � n) and high-
dimensional (pn � n) settings, where the distribution of the response variable given
covariates may be incompletely specified. The proposed work is not a simple endeavor and
does not aim to solve all possible issues stemming from the combination of the “robustness
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property coupled with large-dimensionality”. The paper identifies major challenges and
presents new results below.

● In Sect. 2, we contribute to constructing a new class of robust error measures called
“robust-BD”. This is motivated by Bregman divergence (BD), which plays an important
role in quantifying error measures for regression estimates and classification procedures.
The quadratic loss function and negative quasi-likelihood are two widely used error
measures that, along with many others, belong to the family of BD. This newly proposed
“robust-BD” method broadens the scope of penalized estimation methods, greatly
facilitating the investigation of their asymptotic behavior in a systematic way. The new
method is applicable to all aforementioned error measures (e.g., the hinge loss and
exponential loss, which fail to be (negative) quasi-likelihood but belong to BD). The
“robust-BD” benefits from the flexibility and extensibility offered by BD. Nonetheless,
unlike the “classical-BD”, the “robust-BD” entails a bias-correction procedure that
complicates theoretical derivations as well as practical implementations; see concrete
examples in Sect. 2.3. Moreover, when pn\n, justifying the influence function of a
“robust-BD” estimate for a pn -dimensional parameter calls for re-examination and re-
derivation beyond the framework of Hampel et al. (1986), confined to a fixed-
dimensional parameter.

● In Sects. 3 and 4, we study the consistency and oracle property of the proposed
“penalized robust-BD estimates” in pn � n and pn � n settings, respectively. It is shown
that the new estimate, combined with an appropriately weighted L1 penalty, achieves the
same oracle property as the ordinary non-robust penalized least-squares and penalized-
likelihood estimates, but is less sensitive to outliers, a very desirable property in many
applications. It will be seen that the robust counterpart eliminates the finiteness
assumption of some higher-order moments of the response variable Y, typically assumed
in the non-robust case. Nonetheless, dealing with large-dimensionality in the robust case
will face many more theoretical and computational challenges than in the non-robust
case. For example, the oracle property in the case pn � n could not be directly extended
to the case pn � n without requiring more technical assumptions and invoking more
careful mathematical treatments. For practical implementation, two data-driven selection
procedures for penalty weights, PMR and MR, will be proposed and justified for both
pn � n and pn � n. Unlike the selection method in Zhang et al. (2010) for penalty
weights which deals with pn � n and requires EðXÞ ¼ 0 for the pn -dimensional predictor

vector X ¼ ðX1; . . .;Xpn ÞT , both the methods and theory developed in the current work
do not impose such a requirement, thus are more widely applicable. In the context of
large-dimensional inference, we demonstrate that the Wald-type test statistic based on the
“penalized robust-BD estimates” will be asymptotically distribution-free, whereas the
likelihood ratio-type test statistic will fail to be.

● In Sect. 5, we devise “penalized robust-BD classifiers” based on the proposed
“penalized robust-BD estimates” in large- and high-dimensional binary classification.
We demonstrate that if a parameter estimate possesses the sparsity property and is
consistent at an appropriate rate, then the induced classifier attains classification
consistency. Hence, even for data contaminated with outliers, the choice of loss functions
for regression estimates invoked in the classifier has an asymptotically relatively
negligible impact on classification performance.
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There is a diverse and extensive literature on robust procedures for model selection. For
instance, Zou and Yuan (2008) proposed the composite quantile regression and the oracle
model selection theory for linear models. Theorem 3 of Zhang et al. (2009) shows that the
quantile loss function does not belong to the class of BD. Therefore, the “robust-BD” and
the quantile loss, as two operationally different robust alternatives, work in non-overlapping
frameworks with different motivations and demand theoretically distinct manipulations. The
work (Dupuis & Victoria-Feser, 2011) developed a fast algorithm for robust forward
selection procedure in linear regression, where pn\n.

The rest of the paper is organized as follows. Section 6 presents simulation comparisons
of the penalized “robust-BD” estimates with the classical ones, including classical-SVM and
robust-SVM for Bernoulli responses, to assess the performance in statistical model fitting,
variable selection, and classification rules. Section 7 analyzes a real dataset. Limitations and
open questions are discussed in Sect. 8. Notations, technical and algorithmic details, fig-
ures and tables, and additional analysis are collected in Appendix 1 (in the supplementary
materials).

2 Proposed robust penalized regression estimation

Let fðX1; Y1Þ; . . .; ðXn; YnÞg be a sample of independent observations from some underlying

population, ðX; Y Þ, where X ¼ ðX1; . . .;Xpn ÞT 2 Rpn is the input vector and Y is the output
variable. We assume the parametric model for the conditional mean function,

mðxÞ ¼ EðY j X ¼ xÞ ¼ F�1ðb0;0 þ xTb0Þ; ð1Þ
together with the conditional variance function

varðY j X ¼ xÞ ¼ V ðmðxÞÞ; ð2Þ
where Fð�Þ is a known link function, F�1 denotes the inverse function of F, b0;0 2 R1 and

b0 ¼ ðb1;0; . . .; bpn ;0Þ
T 2 Rpn are the unknown true intercept and regression parameters, and

the functional form of V ð�Þ is known. It is worth noting that (1)–(2) include the GLM as a
special case. Moreover, they allow the conditional distribution of Y given X to be incom-
pletely (or partially) specified.

Let qqðy; lÞ be a robust loss function (to be proposed in Sect. 2.1) which aims to guard
against outlying observations in the response space. We define the “penalized robust-

BD estimate” ðbb0; bbÞ as the minimizer of the criterion function,

‘nðb0; bÞ ¼
1

n

Xn
i¼1

qqðYi;F�1ðb0 þ XT
i bÞÞwðXiÞ þ kn

Xpn
j¼1

wn;jjbjj; ð3Þ

over b0 2 R1 and b ¼ ðb1; . . .; bpn Þ
T 2 Rpn , where wð�Þ� 0 is a given bounded weight

function that downweights high leverage design points in the pn -dimensional covariate
space, fwn;jg represent non-negative weights for the penalty terms, and kn � 0 serves as a
regularization parameter. In practice, the weight function wð�Þ can be chosen in various
ways, such as through prior knowledge or data-driven methods. An empirical choice of wð�Þ
is provided at the beginning of Sect. 6. Data-driven procedures for properly selected penalty
weights fwn;jg will be carefully developed in Sects. 3.5 and 4. Optimization solutions of (3)
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will be discussed in Sect. 6. Hereafter, we write eX ¼ ð1;XT ÞT and eb ¼ ðb0; bT ÞT to sim-
plify notations.

2.1 Construction of robust loss functions qqð�, � )

We propose a class of robust loss functions qq, which is motivated from Bregman divergence
(BD), a notion commonly used in the machine learning applications. The original form of BD,
which is a bivariate function introduced by Brègman (Brègman, 1967), is defined by

Qqðm; lÞ ¼ �qðmÞ þ qðlÞ þ ðm� lÞq0ðlÞ; ð4Þ
where qð�Þ is a given concave differentiable function. For an extensive literature on BD, see
Altun and Smola (2006), Efron (1986), Gneiting (2011), Grünwald and Dawid (2004), Laf-
ferty et al. (1997), Lafferty (1999), Vemuri et al. (2011) and references therein. The BD is
suitable for a broad array of error measuresQq. For example, qðlÞ ¼ al� l2 for any constant

a yields the quadratic loss Qqðy; lÞ ¼ ðy� lÞ2. For a binary response variable y, qðlÞ ¼
minfl; ð1� lÞg gives the misclassification loss Qqðy; lÞ ¼ Ify 6¼ Iðl[ 1=2Þg, where Ið�Þ
denotes the indicator function; qðlÞ ¼ �2fl logðlÞ þ ð1� lÞ logð1� lÞg gives the Ber-
noulli deviance-based loss Qqðy; lÞ ¼ �2fy logðlÞ þ ð1� yÞ logð1� lÞg; qðlÞ ¼
2minfl; ð1� lÞg results in the hinge loss; qðlÞ ¼ 2flð1� lÞg1=2 yields the exponential loss
Qqðy; lÞ ¼ exp½�ðy� :5Þ logfl=ð1� lÞg�. In the cases of pn � n and pn � n, Zhang et al.
(2010) developed the penalized “classical-BD” estimation.

Despite a wide range of applications of BD in many different domains, its original form,
including the quadratic loss used in the ordinary least squares estimates for regression models,
yields estimates not resistant to outliers. The robust loss functions for boosting was studied in
Kanamori et al. (2007). To the best of our knowledge, there is very little work in the literature
on systematically developing robust forms of BD and related inference, in the presence of
outliers. In the present work, we describe the construction of a “robust-BD”. In accordance

with the conditional variance function in (2), let rðy; lÞ ¼ ðy� lÞ= ffiffiffiffiffiffiffiffiffiffi
V ðlÞp

denote the Pearson
residual, which reduces to the standardized residual for linear models. Following (4), we get
partial derivatives oQqðy; lÞ=ol ¼ ðy� lÞq00ðlÞ, which can be rewritten as

o
ol

Qqðy; lÞ ¼ rðy; lÞfq00ðlÞ
ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p
g:

To guard against outliers with large Pearson residuals, we replace rðy; lÞ bywðrðy; lÞÞ, where
wð�Þ is chosen to be a bounded, odd function. There is a wide class of functionswð�Þ satisfying
these requirements; feasible choices include the Huber w-function (Huber, 1964) defined by

wðrÞ ¼ r Iðjrj 	 cÞ þ c signðrÞ Iðjrj[ cÞ; ð5Þ

and the Tukey biweight function formed by wðrÞ ¼ rf1� ðr=cÞ2g2 Iðjrj 	 cÞ; where c is a
positive constant. The proposed robust version of BD, qq, is formed by

qqðy; lÞ ¼
Z l

y
wðrðy; sÞÞfq00ðsÞ

ffiffiffiffiffiffiffiffiffiffi
V ðsÞ

p
gds� GðlÞ; ð6Þ

where the bias-correction term, GðlÞ, serves to entail the “conditional zero-mean property”
(see part (b) of Sect. 2.2) of a non-penalized and low-dimensional parameter estimate (i.e.
minimizing (3) in the case of kn ¼ 0 and pn\n) and satisfies
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G0ðlÞ ¼ g1ðlÞfq00ðlÞ
ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p
g;

with

g1ðmðxÞÞ ¼ EfwðrðY ;mðxÞÞÞ j X ¼ xg: ð7Þ
See Sect. 2.3 for explicit expressions of GðlÞ for Bernoulli responses. We call qqð�; �Þ defined
in (6) the “robust-BD”, and call the resulting parameter estimate which minimizes (3) the
“penalized robust-BD estimate”. An illustrative plot of “robust-BD”, as compared with the
classical-BD, is displayed in Fig. 1.

As a specific example of the class qq of “robust-BD” in (6), the robust (negative) quasi-
likelihood inBoente et al. (2006) andCantoni andRonchetti (2001) can be recovered by setting
the generating q-function of BD to be qðlÞ ¼ R l

a ðs� lÞ=V ðsÞds, where a is a finite constant
such that the integral is well-defined. More generally, the availability of the necessary and
sufficient conditions as given in Theorem 3 of Zhang et al. (2009) for an error measure to be a
BD enables the construction of the corresponding “robust-BD” from expression (6).

2.2 General properties of “robust-BD” qq

We make the following comments regarding features of the “robust-BD”. To facilitate the
discussion, we first introduce some necessary notation. Assume that the quantities
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Fig. 1 Plots of qqðy;lÞ (left panels), p1
ðy; hÞ (middle panels) and p

2
ðy; hÞ (right panels) for the Bernoulli

response y ¼ 1. In each panel, solid line: using “robust-BD”with Huber w-function (5) and c ¼ 1:345; dashed
line: using “classical-BD”. Top panels: deviance loss used as the BD; bottom panels: exponential loss used
as the BD
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p
j
ðy; hÞ ¼ oj

ohj
qqðy;F�1ðhÞÞ;j ¼ 0; 1; . . .; ð8Þ

exist finitely up to any order required. Then we have the following expressions,

p
1
ðy; hÞ ¼ fwðrðy; lÞÞ � g1ðlÞgfq00ðlÞ

ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p
g=F 0ðlÞ;

p
2
ðy; hÞ ¼ A0ðy; lÞ þ fwðrðy; lÞÞ � g1ðlÞgA1ðlÞ;

p
3
ðy; hÞ ¼ A2ðy; lÞ þ fwðrðy; lÞÞ � g1ðlÞgA0

1ðlÞ=F 0ðlÞ;
ð9Þ

where l ¼ F�1ðhÞ,

A0ðy; lÞ ¼ �
h
w0ðrðy; lÞÞ

n
1þ y� lffiffiffiffiffiffiffiffiffiffi

V ðlÞp 
 V 0ðlÞ
2

ffiffiffiffiffiffiffiffiffiffi
V ðlÞp o

þ g01ðlÞ
ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p i q00ðlÞ
fF 0ðlÞg2 ;

A1ðlÞ ¼ ½fqð3ÞðlÞ ffiffiffiffiffiffiffiffiffiffi
V ðlÞp þ 2�1q00ðlÞV 0ðlÞ= ffiffiffiffiffiffiffiffiffiffi

V ðlÞp gF 0ðlÞ �q00ðlÞ ffiffiffiffiffiffiffiffiffiffi
V ðlÞp

F 00ðlÞ�= fF 0ðlÞ
g3, and A2ðy; lÞ ¼ ½oA0ðy; lÞ=olþ ofwðrðy; lÞÞ � g1ðlÞg=olA1ðlÞ�=F 0ðlÞ. Particularly,
p
1
ðy; hÞ contains wðrÞ; p

2
ðy; hÞ contains wðrÞ, w0ðrÞ, and w0ðrÞr; p

3
ðy; hÞ contains wðrÞ,

w0ðrÞ, w0ðrÞr, w00ðrÞ, w00ðrÞr, and w00ðrÞr2, where r ¼ rðy; lÞ ¼ ðy� lÞ= ffiffiffiffiffiffiffiffiffiffi
V ðlÞp

denotes the
Pearson residual. Accordingly, fp

j
ðy; hÞ : j ¼ 1; 2; 3g depend on y through wðrÞ and its

derivatives coupled with r.

(a) Relation between the “robust-BD” qq and “classical-BD” Qq. For the par-
ticular choice of wðrÞ ¼ r, it is clearly noticed from (7) that g1ð�Þ ¼ 0 and thus G0ð�Þ ¼ 0. In
such a case, the proposed robust qqðy; lÞ in (6) reduces to the conventional form, Qqðy; lÞ,
of BD; similarly, p

j
ðy; hÞ reduces to q

j
ðy; hÞ, where

q
j
ðy; hÞ ¼ oj

ohj
Qqðy;F�1ðhÞÞ;j ¼ 0; 1; . . .: ð10Þ

Accordingly, q
j
ðy; hÞ is linear in y for fixed h. As a comparison,

q
1
ðy; hÞ ¼ ðy� lÞqð2ÞðlÞ=Fð1ÞðlÞ;

q
2
ðy; hÞ ¼ �qð2ÞðlÞ=fFð1ÞðlÞg2 þ ðy� lÞA1;qðlÞ;

q
3
ðy; hÞ �A2ðlÞ þ ðy� lÞA3ðlÞ;

where A1;qðlÞ ¼ fqð3ÞðlÞFð1ÞðlÞ � qð2ÞðlÞFð2ÞðlÞg=fFð1ÞðlÞg3, A2ðlÞ ¼ f�2qð3ÞðlÞFð1Þ

ðlÞ þ 3qð2ÞðlÞFð2ÞðlÞg=fFð1ÞðlÞg4, and A3ðlÞ ¼ ½qð4ÞðlÞfFð1ÞðlÞg2 � 3qð3ÞðlÞFð1ÞðlÞFð2Þ

ðlÞ � qð2ÞðlÞFð1ÞðlÞFð3ÞðlÞþ 3qð2ÞðlÞfFð2ÞðlÞg2�=fFð1ÞðlÞg5. In addition, assuming that

q
2
ðy; hÞ[ 0 for all h 2 R and all y in the range of Y ; ð11Þ

we see that QqðY ;F�1ðeXT ebÞÞ is strictly convex in eb.
(b) “Conditional zero-mean property”. For the proposed class of “robust-BD” qq

induced by the classical-BD Qq, it follows from the expression of p
1
ðy; hÞ in (9) that

Efp
1
ðY ; eXT eb0Þ j Xg ¼ 0.
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(c) Bounded influence function. When kn ¼ 0 in (3) and pn\n, the “robust-
BD estimate” defined by minimizing (3) is characterized by the score function and influence
function below,

wqq
ðY ;XÞ ¼ p

1
ðY ; eXT eb0ÞwðXÞeX ; ð12Þ

IFðY ;X;wqq
Þ ¼ fMðwqq

Þg�1
wqq

ðY ;XÞ; ð13Þ

where Mðwqq
Þ ¼ �Efowqq

ðY ;XÞ=oeb0g ¼ �Efp
2
ðY ; eXT eb0ÞwðXÞeX eXTg;note that justify-

ing the influence function of a “robust-BD” estimate for a pn -dimensional parameter calls
for re-examination and re-derivation beyond the framework of Hampel et al. (1986) for a
fixed-dimensional parameter. Thus, the boundedness of wð�Þ and the weight function wð�Þ
ensure a bounded influence function. In contrast, for non-robust counterparts, with wðrÞ ¼ r
and wð�Þ � 1, the influence function is unbounded. As to the score function, the “condi-
tional zero-mean property” in part (b) ensures that under the parametric model (1),
Efwqq

ðY ;XÞg ¼ 0 holds for the proposed class of “robust-BD” qq induced by the classical-

BD Qq.

(d) Conditions under which Efp
2
ðY ; eXT eb0Þ j Xg� 0. This is a very minimal con-

dition relevant to discussing Theorems 1 and 2, assumption (19) and numerical mini-

mization of (3). First, as observed from (9), the sign of Efp
2
ðY ; eXT eb0Þ j Xg is invariant

with the choice of generating q-functions of BD. Second, one sufficient condition for

Efp
2
ðY ; eXT eb0Þ j Xg� 0 is that the conditional distribution of Y given X is symmetric about

mðXÞ. Third, another sufficient condition for Efp
2
ðY ; eXT eb0Þ j Xg� 0 is that

E½wðrðY ;mðXÞÞÞ o
omðXÞ logff ðY j X;mðXÞÞg j X� � 0, which holds for wðrÞr� 0 (applicable

to Huber and Tukey w-functions), and the conditional distribution of Y given X belongs to
the exponential family, where f denotes the conditional density or probability of Y given X.
Fourth, in the particular choice of wðrÞ ¼ r, which is unbounded, a direct computation gives

that Efp
2
ðY ; eXT eb0Þ j Xg ¼ �q00ðmðXÞÞ=fF 0ðmðXÞÞg2 � 0, for any conditional distribution

of Y given X.

2.3 Difference between “robust-BD” and “classical-BD”

To better distinguish between the “robust-BD” and “classical-BD”, we derive below their
closed-form expressions for the Bernoulli responses, using the canonical link
h ¼ logfl=ð1� lÞg, Huber w-function, and the deviance loss and the exponential loss as
the BD. In that case, assume c� 1 in the Huber w-function (5), and define two constants
C1 ¼ 1=ð1þ c2Þ and C2 ¼ 1� C1. Results in the case of 0\c\1 can be similarly
obtained.
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For the deviance loss employed as the BD, the “robust-BD” in (6) takes the form,

qqðy; lÞ ¼ p�ðy; lÞ � GðlÞ;
where

p�ðy; lÞ ¼

�2 logð1� lÞð1� yÞ � ½4cfsin�1ð ffiffiffi
l

p Þ � sin�1ð ffiffiffiffiffiffi
C1

p Þg
þ2 logðC1Þ�y; if 0	 l	C1;

�2 logð1� lÞð1� yÞ � 2 logðlÞy; if C1\l\C2;

�2 logðlÞyþ ½4cfsin�1ð ffiffiffi
l

p Þ � sin�1ð ffiffiffiffiffiffi
C2

p Þg
�2 logðC1Þ�ð1� yÞ; if C2 	 l	 1;

8>>>>>><
>>>>>>:

GðlÞ ¼
�2ð1� lÞ � 2cfsin�1ð ffiffiffi

l
p Þ � sin�1ð ffiffiffiffiffiffi

C1
p Þ � ffiffiffiffiffiffiffiffiffiffi

V ðlÞp g; if 0	 l	C1;

0; if C1\l\C2;

�2lþ 2cfsin�1ð ffiffiffi
l

p Þ � sin�1ð ffiffiffiffiffiffi
C2

p Þ þ ffiffiffiffiffiffiffiffiffiffi
V ðlÞp g; if C2 	 l	 1:

8><
>:

The two related derivative quantities are

p
1
ðy;hÞ ¼

�2ðy�lÞflþ c
ffiffiffiffiffiffiffiffiffiffi
V ðlÞp g; if 0	l	C1;

�2ðy�lÞ; if C1\l\C2;

�2ðy�lÞfð1�lÞþ c
ffiffiffiffiffiffiffiffiffiffi
V ðlÞp g; if C2	l	1;

8><
>:

p
2
ðy;hÞ ¼

2
ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p
fð2l� yÞ

ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p
þ c=2ðl� yÞð1� 2lÞþ cV ðlÞg;

2V ðlÞ; if C1\l\C2;

2
ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p
fð1� 2lþ yÞ

ffiffiffiffiffiffiffiffiffiffi
V ðlÞ

p
þ c=2ðl� yÞð1� 2lÞþ cV ðlÞg;

:

8>>><
>>>:

The “classical-BD” is Qqðy;lÞ ¼�2 logð1�lÞð1� yÞ� 2 logðlÞy; and the two related
quantities are q

1
ðy;hÞ ¼�2ðy�lÞ and q

2
ðy;hÞ ¼ 2V ðlÞ.

Analogously, for the exponential loss used as the BD, the “robust-BD” counterpart is
represented by qqðy; lÞ ¼ p�ðy; lÞ � GðlÞ; where

p�ðy;lÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ð1�lÞp ð1�yÞ�c=2flogðl=ð1�lÞÞþ2logðcÞ�2gy; if 0	l	C1;

flð1�yÞþð1�lÞyg= ffiffiffiffiffiffiffiffiffiffi
V ðlÞp

; ifC1\l\C2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�lÞ=lp
yþc=2flogðl=ð1�lÞÞ�2logðcÞþ2gð1�yÞ; ifC2	l	1;

8><
>:

GðlÞ ¼
fsin�1ð ffiffiffi

l
p Þ�sin�1ð ffiffiffiffiffiffi

C1
p Þgþc=2flogð1�lÞ� logðC2Þg; if 0	l	C1;

0; ifC1\l\C2;

�fsin�1ð ffiffiffi
l

p Þ�sin�1ð ffiffiffiffiffiffi
C2

p Þgþc=2flogðlÞ� logðC2Þg; ifC2	l	1:

8><
>:

The two related derivative quantities are

p
1
ðy;hÞ¼

�ðy�lÞf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ð1�lÞp þcg=2; if 0	l	C1;

�ðy�lÞ=f2 ffiffiffiffiffiffiffiffiffiffi
V ðlÞp g; ifC1\l\C2;

�ðy�lÞf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�lÞ=lp þcg=2; ifC2	l	1;

8><
>:

p
2
ðy;hÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ð1�lÞp ð1�yÞ=4�ð1�2lÞ ffiffiffiffiffiffiffiffiffiffi

V ðlÞp
=4þc=2V ðlÞ; if 0	l\C1;

flð1�yÞþð1�lÞyg=f4 ffiffiffiffiffiffiffiffiffiffi
V ðlÞp g; ifC1\l\C2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�lÞ=lp

y=4þð1�2lÞ ffiffiffiffiffiffiffiffiffiffi
V ðlÞp

=4þc=2V ðlÞ; ifC2\l	1:

8><
>:
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The “classical-BD” is Qqðy;lÞ¼flð1�yÞþð1�lÞyg= ffiffiffiffiffiffiffiffiffiffi
V ðlÞp

; and the two related quan-

tities are q
1
ðy;hÞ¼�ðy�lÞ=f2 ffiffiffiffiffiffiffiffiffiffi

V ðlÞp g and q
2
ðy;hÞ¼flð1�yÞþð1�lÞyg=f4 ffiffiffiffiffiffiffiffiffiffi

V ðlÞp g.
In summary, for both types of “classical-BD”, which are unbounded, the corresponding

versions of “robust-BD” are bounded. See the left panels of Fig. 1 with the response y ¼ 1,
where the “classical-BD” goes to infinity as l approaches zero. (The case of y ¼ 0 will be
similar.) From the middle and right panels, p

1
ðy; hÞ and p

2
ðy; hÞ associated with the “robust-

BD” are always bounded. In contrast, for the exponential loss, the non-robust counterparts
for the “classical-BD” are unbounded. Moreover, we observe from each panel that the
“robust-BD” and “classical-BD” differ at lower and upper tails of l, but coincide at the
intermediate values of l.

3 Robust estimation with large-dimensions: pn � n

This section investigates the statistical properties of the “penalized robust-BD estimate”
defined by minimizing (3) in sparse large-dimensional parametric models with pn � n.
Throughout the paper, it is assumed that some entries in b0 are exactly zero. Without loss of

generality, write X ¼ ðXðIÞT ;XðIIÞT ÞT and b0 ¼ ðbðIÞT0 ; b
ðIIÞT
0 ÞT , where the bðIÞ0 part collects all

non-zero coefficients, and bðIIÞ0 ¼ 0. Let sn denote the number of non-zero coordinates of b0,

and set eb0 ¼ ðb0;0; bT0 ÞT . Correspondingly, write eX ðIÞ ¼ ð1;XðIÞT ÞT and ebðIÞ ¼ ðb0; bðIÞT ÞT .
It will be demonstrated that the impact of penalty weights fwn;jg in (3) on the penalized

“robust-BD” estimate is primarily captured by two quantities, defined by

wðIÞ
max ¼ max

1	 j	 sn
wn;j; wðIIÞ

min ¼ min
snþ1	 j	 pn

wn;j:

3.1 Consistency

Theorem 1 guarantees the existence of a
ffiffiffiffiffiffiffiffiffi
n=sn

p
-consistent local minimizer of (3). In par-

ticular, Theorem 1 allows the dimension to diverge with n at the rate pn ¼ ofnð3þdÞ=ð4þdÞg
for any d[ 0, as long as the number of truly non-zero parameters fulfills that
sn ¼ Ofn1=ð4þdÞg.

Theorem 1 (existence and consistency: pn � n) Assume Conditions A0, A1, A2, A4, A5,

A6, A7 in Appendix 1.1, wðIÞ
max ¼ OPf1=ðkn

ffiffiffi
n

p Þg and there exists a constant M 2 ð0;1Þ
such that limn!1 PðwðIIÞ

minkn [MÞ ¼ 1. If s4n=n ! 0 and snðpn � snÞ ¼ oðnÞ, then there

exists a local minimizer beb of (3) such that kbeb � eb0k2 ¼ OPð
ffiffiffiffiffiffiffiffiffi
sn=n

p Þ, where k � k2 denotes
the Euclidean norm.

To clarify the distinction between Theorem 5 of Zhang et al. (2010) and Theorem 1 of this
paper, we make the following comparison. (i) Theorem 5 of Zhang et al. (2010) uses the
classical-BD, corresponding to wðrÞ ¼ r in (6), and assumes the finiteness of some moments
of Y. (ii) Condition A5 of our Theorem 1 uses the robust-BD and assumes the boundedness
of wðrÞ, thus excluding wðrÞ ¼ r, but avoids the moment assumption. Thus, our Theorem 1
is not applicable to the case of wðrÞ ¼ r in (6) associated with a classical-BD of Zhang et al.
(2010).
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3.2 Oracle property

To investigate the asymptotic distribution of the penalized robust-BD estimate beb , we define
three square matrices of size ðsn þ 1Þ by WðIÞ

n ¼ diagð0;wn;1; . . .;wn;snÞ and

XðIÞ
n ¼ Efp2

1
ðY ; eXðIÞT ebðIÞ

0 Þw2ðXÞeXðIÞ eXðIÞTg;
HðIÞ

n ¼ Efp
2
ðY ; eXðIÞT ebðIÞ

0 ÞwðXÞeXðIÞ eX ðIÞTg:

Both XðIÞ
n and HðIÞ

n depend on the choice of BD, weight function wð�Þ, and the w-function
wð�Þ.

Following Theorems 1, 2 obtains the oracle property of the
ffiffiffiffiffiffiffiffiffi
n=sn

p
-consistent local

minimizer. Namely, if the “robust-BD” is used as the loss function for parameter estimation,
then the penalized robust-BD estimates of the zero parameters take exactly zero values with
probability tending to one, and the penalized robust-BD estimates of the non-zero param-
eters are asymptotically Gaussian with the same means and variances as if the zero coef-
ficients were known in advance.

Theorem 2 (oracle property: pn � n) Assume Conditions A0, A1, A2, A4, A5, B5, A6, A7
in Appendix 1.1.

ðiÞ If s2n=n ¼ Oð1Þ and wðIIÞ
minkn

ffiffiffi
n

p
=

ffiffiffiffiffiffiffiffi
snpn

p �!P 1 as n ! 1, then any
ffiffiffiffiffiffiffiffiffi
n=sn

p
-consistent

local minimizer
beb ¼ ðbeb ðIÞT

; bbðIIÞT ÞT of (3) satisfies PðbbðIIÞ ¼ 0Þ ! 1.
ðiiÞ Moreover, if wðIÞ

max ¼ OPf1=ðkn
ffiffiffi
n

p Þg, s5n=n ! 0 and min1	 j	 sn jbj;0j=
ffiffiffiffiffiffiffiffiffi
sn=n

p ! 1,

then for any fixed integer k and any k
 ðsn þ 1Þ matrix An such that AnAT
n ! G for a

k
 k nonnegative-definite symmetric matrix G, then
ffiffiffi
n

p
AnðXðIÞ

n Þ�1=2½HðIÞ
n fbeb ðIÞ

�ebðIÞ
0 g þ knWðIÞ

n signfebðIÞ
0 g��!L Nð0;GÞ, where signfebðIÞ

0 g ¼ ð signðb0Þ; signðb1Þ;
. . .; signðbsnÞÞT .

Remark 1 In Theorem 2, Condition B5 extends the positive-definiteness assumption of

EfeXðIÞ eX ðIÞTg in the non-robust and fixed-dimensional case to the robust and large-dimen-

sional case. The assumption min1	 j	 sn jbj;0j=
ffiffiffiffiffiffiffiffiffi
sn=n

p ! 1 is relevant to the magnitude of
coefficients for significant variables which can be selected, and is fulfilled when
min1	 j	 sn jbj;0j �Cn�4=5 for a constant C[ 0.

3.3 Comparison with the penalized “classical-BD” estimate

Comparisons are made between the penalized “robust-BD” and “classical-BD” estimates. (I)
The penalized “classical-BD” estimate in Zhang et al. (2010) requires EðY 2Þ\1 for the
consistency and requires finiteness of some higher-order moments of Y for the oracle
property. These requirements are avoided in the “robust-BD” counterpart. (II) The two types
of penalized estimates appear to share similar forms of the asymptotic distribution, except

that matrices XðIÞ
n and HðIÞ

n for the “classical-BD” estimate are given by
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Efq2
1
ðY ; eXðIÞT ebðIÞ

0 ÞeX ðIÞ eXðIÞTg; Efq
2
ðY ; eX ðIÞT ebðIÞ

0 ÞeX ðIÞ eX ðIÞTg;
respectively. Hence, the differences are captured by the distinction between the robust

versions, fp
j
ðy; hÞg2j¼1 (defined in (8)) and weight function wð�Þ, used in the penalized

“robust-BD” estimate and the non-robust counterparts, fq
j
ðy; hÞg2j¼1 (defined in (10)) and

wð�Þ � 1, used in the penalized “classical-BD” estimate.
As observed from (12)–(13), a bounded function p

1
ðy; hÞ is introduced from a bounded

function wðrÞ to control deviations in the Y-space, and leverage points are down-weighted
by the weight function wðXÞ. In contrary, q

1
ðy; hÞ is not guaranteed to be bounded. It is then

clear that for penalized “robust-BD” estimates of non-zero parameters, the choice of a
bounded score function ensures robustness by putting a bound on the influence function.
Such property is not possessed by the penalized “classical-BD” counterparts.

3.4 Hypothesis testing

We consider the hypothesis testing about ebðIÞ
0 formulated as

H0 : An
ebðIÞ
0 ¼ 0versus ð14Þ

where An is a given k
 ðsn þ 1Þ matrix such that AnAT
n equals a k
 k positive-definite

matrix G. This form of linear hypotheses allows one to simultaneously test whether a subset
of variables used are statistically significant by taking some specific form of the matrix An;
for instance An ¼ ½Ik; 0k;snþ1�k� yields AnAT

n ¼ Ik for a k
 k identity matrix.
In the context of non-robust penalized-likelihood estimation, Fan and Peng (2004)

showed that the likelihood ratio-type test statistic asymptotically follows a chi-squared
distribution under the null. It is thus natural to explore the extent to which the likelihood
ratio-type test can feasibly be extended to the “robust-BD”. Our derivations (with details
omitted) indicate that the resulting asymptotic null distribution is generally not chi-squared,
but a sum of weighted chi-squared variables, with weights involving unknown quantities,
thus not distribution free, and holds under restrictive conditions.

To ameliorate this undesirable property, we propose a robust generalized Wald-type test
statistic of the form,

Wn ¼ nfAn
beb ðIÞgTfAnð bHðIÞ

n Þ�1 bXðIÞ
n ð bHðIÞ

n Þ�1AT
n g�1fAn

beb ðIÞg;

where bXðIÞ
n ¼ n�1

Pn
i¼1 p

2
1
ðYi; eXðIÞT

i
beb ðIÞÞw2ðXiÞeX ðIÞ

i
eXðIÞT
i and

bHðIÞ
n ¼ n�1

Pn
i¼1 p2

ðYi; eX ðIÞT
i

beb ðIÞÞwðXiÞeXðIÞ
i
eX ðIÞT
i . This test is asymptotically distribu-

tion-free, as Theorem 3 justifies that under the null, Wn is asymptotically chi-squared with k
degrees of freedom.

Theorem 3 (Wald-type test under H0 based on robust-BD: pn � n) Assume Conditions A0,

A1, A2, C4, A5, B5, A6, A7 in Appendix 1.1, and wðIÞ
max ¼ o

P
f1=ðkn ffiffiffiffiffiffiffi

nsn
p Þg. If s5n=n ! 0

and min1	 j	 sn jbj;0j=
ffiffiffiffiffiffiffiffiffi
sn=n

p ! 1 as n ! 1, then Wn�!L v2k under the null H0 in (14).
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Since the influence function of beb ðIÞ
is bounded, Proposition 2 of Cantoni and Ronchetti

(2001) can be modified to show that the asymptotic level of the robust test statistic Wn under
a sequence of �-contaminations is bounded. Similarly, the asymptotic power is stable under
contamination. Details are omitted for lack of space.

3.5 Proposed selection for penalty weights

In practice, the weights fwn;jg in the penalty part of (3) need to be selected and their validity
also needs to be justified. To accommodate the general error measures, we propose two
procedures. The first one, called the “penalized marginal regression” (PMR) method, selects
the data-dependent penalty weights bwn;j, for each individual j ¼ 1; . . .; pn , according to

bwn;j ¼ 1=jbbPMR

j j; ð15Þ

where bbPMR

j satisfies that ðbaPMR
j ; bbPMR

j Þ 2 R2 minimize the criterion function

‘PMR
n;j ða; bÞ ¼ 1

n

Xn
i¼1

QqðYi;F�1ðaþ Xi;jbÞÞ þ jnjbj ð16Þ

over ða; bÞ, with some sequence jn [ 0, and Xi;j denoting the jth variable in the ith sample.

An alternative procedure, called the “marginal regression” (MR) method, selects the
penalty weights bwn;j, for each individual j ¼ 1; . . .; pn , by means of

bwn;j ¼ 1=jbbMR

j j; ð17Þ

where bbMR

j satisfies that ðbaMR
j ; bbMR

j Þ 2 R2 minimize the criterion function

‘MR
n;j ða; bÞ ¼

1

n

Xn
i¼1

QqðYi;F�1ðaþ Xi;jbÞÞ ð18Þ

over ða; bÞ.
Note that (16) and (18) each involves a univariate predictor with the intercept term. Thus

fast bivariate optimization solutions of (16) and (18) would be feasible even when pn [ n.
Compared with the PMR method, the MR method gains computational superiority with less
computational cost.

Theorems 4 and 5 indicate that under the assumptions on the correlation between the
predictor variables and the response variable, the penalty weights selected by either the
PMR or MR method satisfy the conditions on fwn;jg in Theorem 1.

Theorem 4 (PMR for penalty weights: pn � n) Assume (11) and Conditions A0, A1, A2,
B3, A4, A6, A7 in Appendix 1.1. Assume E1 in Appendix 1.1, where An ¼ kn

ffiffiffi
n

p
, An=jn !

1 and Bn=jn ¼ Oð1Þ for jn in (16). Suppose kn
ffiffiffi
n

p ¼ Oð1Þ, kn ¼ oðjnÞ and

logðpnÞ ¼ oðnj2nÞ. Then there exist local minimizers fbbPMR

j gpnj¼1 of (16) such that the penalty

weights fbwn;jgpnj¼1 defined in (15) satisfy that bwðIÞ
max ¼ OPf1=ðkn

ffiffiffi
n

p Þg and bwðIIÞ
minkn�!

P 1 as

needed in Theorem 1, where bwðIÞ
max ¼ max1	 j	 sn bwn;j and bwðIIÞ

min ¼ minsnþ1	 j	 pn bwn;j.
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Theorem 5 (MR for penalty weights: pn � n) Assume (11) and Conditions A0, A1, A2, B3,
A4, A6, A7 in Appendix 1.1. Assume E2 and E1 in Appendix 1.1, where An ¼ kn

ffiffiffi
n

p
and

Bn ¼ kn. Suppose kn
ffiffiffi
n

p ¼ Oð1Þ, kn ! 0, knn=sn ! 1 and s2n logðpnÞ ¼ oðk2nn2Þ. Then
there exist local minimizers bbMR

j of (18) such that the penalty weights bwn;j defined in (17)

satisfy that bwðIÞ
max ¼ OPf1=ðkn

ffiffiffi
n

p Þg and bwðIIÞ
minkn�!

P 1 as needed in Theorem 1.

It should be pointed out that the PMRmethod here differs from theweights selectionmethod in
Zhang et al. (2010), which is restricted to pn � n, excludes the intercept term in (16) and
requires EðXÞ ¼ 0 to satisfy the conditions on fwn;jg in Theorem 1. In contrast, the PMR
method here removes that requirement and will also be applicable to pn � n; see Theorem 7.

4 Robust estimation with high-dimensions: pn � n

This section explores the behavior of penalized robust-BD estimates in sparse high-dimen-
sional parametric models when pn is allowed to grow faster than n. Evidently, the technical
conditions (e.g., in Theorem 1) on pn in Sect. 3 are violated for pn � n. Thus, directly carrying
through the proofs in Sect. 3 to the counterpart of pn � n is infeasible. To facilitate the study in
the case of pn � n, we impose a convexity assumption on the “robust-BD”:

p
2
ðy; hÞ[ 0 for all h 2 R and all y in the range of Y : ð19Þ

Under this assumption, qqðY ;F�1ðeXT ebÞÞ is strictly convex in eb.
Apparently, assumption (19) is stronger than Efp

2
ðY ; eXT eb0Þ j Xg� 0 discussed in

Sect. 2.2; relaxing (19) will be desirable but is not pursued in this paper. We consider here
particular cases where assumption (19) is practically/approximately achievable and theo-
retically relevant for high-dimensional settings.

Case 1: For any observation ðX; Y Þ such that the conditional distribution of Y given X is
symmetric about mðXÞ, the use of a quadratic loss function combined with an
identity link, and a constant conditional variance ensures that p

2
ðy; hÞ ¼ 2w0ðr

ðy; hÞÞ� 0, for a monotone non-decreasing w-function. Thus, the Gaussianity
assumption on the conditional distribution of Y given X is relaxed.

Case 2: Recall that if wðrÞ ¼ r, then p
j
ðy; hÞ ¼ q

j
ðy; hÞ, and thus condition (19) is

equivalent to condition (11). Indeed, condition (11) holds broadly for nearly all
commonly used BD. Examples include the quadratic loss function, the deviance-
based loss and exponential loss functions for the Bernoulli responses, and the
(negative) quasi-likelihood for over-dispersed Poisson responses, among many
others. The implication is that for high-dimensional data, if we are most
concerned with dealing with outliers arising from the explanatory variables, we
may employwðrÞ ¼ r for Yalone while retaining the weight functionwð�Þ on the
covariates X. This is particularly relevant to samples with Bernoulli or Binomial
responses, where both the parameter space and the response space are bounded,
and thus is applicable to a wide class of classification procedures.

Theorem 6 states that the oracle property remains true, under suitable conditions, for the
penalized robust-BD estimates in the pn � n settings. Due to the technical challenge from
pn � n, Theorem 6 contains stronger assumptions than those in Theorem 2 (with pn � n).
Lemma 4 in Appendix 1.1 provides key proofs for Theorem 6.
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Theorem 6 (oracle property: pn � n) Assume (19) and Conditions A0, A1, A2, A4, A50,
B5, A6, A7 in Appendix 1.1. Suppose s4n=n ! 0, logðpn � snÞ=n ¼ Oð1Þ, logðpn � snÞ=fnk2n
ðwðIIÞ

minÞ2g ¼ o
P
ð1Þ and min1	 j	 sn jbj;0j=

ffiffiffiffiffiffiffiffiffi
sn=n

p ! 1. Assume wðIÞ
max ¼ OPf1=ðkn

ffiffiffi
n

p Þg and

wðIIÞ
minkn

ffiffiffi
n

p
=sn�!P 1.

ðiÞ Then there exists a global minimizer beb of (3) such that PðbbðIIÞ ¼ 0Þ ! 1.
ðiiÞ Moreover, if s5n=n ! 0, then for any fixed integer k and any k
 ðsn þ 1Þ matrix An

such that AnAT
n ! G for a k
 k nonnegative-definite symmetric matrix G, thenffiffiffi

n
p

AnðXðIÞ
n Þ�1=2½HðIÞ

n ðbeb ðIÞ � ebðIÞ
0 Þ þ knWðIÞ

n signfebðIÞ
0 g��!L Nð0;GÞ.

The conditions s5n=n ¼ oð1Þ, logðpn � snÞ ¼ OðnÞ and logðpn � snÞ=fðwðIIÞ
minÞ2k2nng ¼ o

P
ð1Þ

impose the constraints on sn and pn simultaneously. To illustrate, take sn ¼ na, where

0\a\1=5. Then we can take wðIIÞ
min ¼ nb=ðkn

ffiffiffi
n

p Þ for b[ a, namely, nk2nfwðIIÞ
ming2 ¼ n2b. A

sufficient condition for the model dimension pn is that logðpn � snÞ ¼ OðnÞ and
logðpn � snÞ ¼ oðn2bÞ. So logðpn � snÞ ¼ minfoðn2bÞ;OðnÞg. This indicates that Theorem 6
allows pn ¼ expfoðn2bÞ ^ OðnÞg, which grows nearly exponentially fast with n.

Regarding the selection of penalty weights, the PMR and MR methods proposed in
Sect. 3.5 with pn � n continue to work well for selecting weights with pn � n. The validity
is presented in Theorems 7 and 8, which again do not require EðXÞ ¼ 0.

Theorem 7 (PMR for penalty weights: pn � n) Assume (11) and Conditions A0, A1, A2,
B3, A4, A6, A7 in Appendix 1.1. Assume E1 in Appendix 1.1, where An ¼ kn

ffiffiffi
n

p
,

An=jn ! 1, and Bn=jn ¼ Oð1Þ for jn in (16). Suppose kn
ffiffiffi
n

p ¼ Oð1Þ, kn ffiffiffi
n

p
=sn ¼ oðjnÞ

and logðpnÞ ¼ oðnj2nÞ. Then there exist local minimizers bbPMR

j of (16) such that the penalty

weights bwn;j defined in (15) satisfy that bwðIÞ
max ¼ OPf1=ðkn ffiffiffi

n
p Þg and bwðIIÞ

minkn
ffiffiffi
n

p
=sn�!P 1 as

needed in Theorem 6.

Theorem 8 (MR for penalty weights: pn � n) Assume (11) and Conditions A0, A1, A2,
B3, A4, A6, A7 in Appendix 1.1. Assume E2 and E1 in Appendix 1.1, where An ¼ kn

ffiffiffi
n

p
and Bn ¼ kn

ffiffiffi
n

p
=sn. Suppose kn

ffiffiffi
n

p ¼ Oð1Þ, kn ffiffiffi
n

p
=sn ! 0, knn=sn ! 1 and s2n logðpnÞ

¼ oðk2nn2Þ. Then there exist local minimizers bbMR

j of (18) such that the penalty weights bwn;j

defined in (17) satisfy that bwðIÞ
max ¼ OPf1=ðkn ffiffiffi

n
p Þg and bwðIIÞ

minkn
ffiffiffi
n

p
=sn�!P 1 as needed in

Theorem 6.

5 Robust estimation in classification: pn � n, pn � n

This section deals with the binary response variable Y which takes values 0 and 1. In this
case, the mean regression function mðxÞ in (1) becomes the class label probability,

PðY ¼ 1 j X ¼ xÞ. From the penalized robust-BD estimate beb proposed in either Sect. 3 or

Sect. 4, we can construct the “penalized robust-BD classifier”, b/ðxÞ ¼ IfbmðxÞ[ 1=2g; for
a future input variable x, where bmðxÞ ¼ F�1ðexT bebÞ.
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In the classification literature, the misclassification loss of a classification rule / at a
sample point ðx; yÞ is lðy;/ðxÞÞ ¼ Ify 6¼ /ðxÞg. The risk of / is the expected misclassifi-
cation loss, Rð/Þ ¼ EflðY ;/ðX ÞÞg ¼ Pð/ðXÞ 6¼ Y Þ. The optimal Bayes rule, which min-
imizes the risk over /, is /BðxÞ ¼ IfmðxÞ[ 1=2g. For a test sample ðXo; YoÞ, which is an
i:i:d: copy of samples in the training set T n ¼ fðXi; YiÞ : i ¼ 1; . . .; ng, the optimal Bayes
risk is then Rð/BÞ ¼ Pð/BðXoÞ 6¼ YoÞ. Meanwhile, the conditional risk of the classification

rule b/ is Rðb/ j T nÞ ¼ Pðb/ðXoÞ 6¼ Yo j T nÞ.
Theorem 9 demonstrates that b/ attains the classification consistency, provided that the

estimate beb possesses the sparsity property and is consistent at an appropriate rate. As
observed, the conclusion of Theorem 9 is applicable to penalized robust-BD estimates in
both Theorem 2(i) with pn � n and Theorem 6(i) with pn � n.

Theorem 9 (consistency of the penalized robust-BD classifier) Assume Conditions A0, A1

and A4 in Appendix 1.1. Suppose that the estimate beb ¼ ðbeb ðIÞT
; bbðIIÞT ÞT satisfies PðbbðIIÞ ¼

0Þ ! 1 and kbeb ðIÞ � ebðIÞ
0 k2 ¼ OPðrnÞ. If rn ffiffiffiffi

sn
p ¼ oð1Þ, then the classification rule b/ con-

structed from
beb is consistent in the sense that ðiÞ EfRðb/ j T nÞg � Rð/BÞ ! 0 as n ! 1,

which in turn yields ðiiÞ Rðb/ j T nÞ�!P Rð/BÞ.

6 Simulation study

We conduct simulation studies to evaluate the performance of the penalized robust-BD
estimates in the absence and presence of outliers. The Huber w-function is used with
c ¼ 1:345. For practical applications, we suggest an empirical choice of the weight function,

wðxÞ ¼ 1=f1þPpn
j¼1ðxj�m�;j

s�;j
Þ2g1=2, where x ¼ ðx1; . . .; xpn ÞT , m�;j and s�;j denote the sample

median and sample median absolute deviation of fXi;j : i ¼ 1; . . .; ng respectively,
j ¼ 1; . . .; pn . This form of wðxÞ is a generalization of a weight function used on page 2864
of Boente et al. (2006) for a one-dimensional covariate. The classical non-robust counter-
parts correspond to wðrÞ ¼ r and wðxÞ � 1. In the simulation, pn ¼ 50 and 500 are treated
respectively.

For illustrative purpose, 4 types of penalization techniques combined with the loss term
in (3) are compared: (I) the SCAD penalty, with an accompanying parameter a ¼ 3:7,
combined with the local linear approximation; (II) the L1 penalty; (III) the weighted-L1
penalty with weights selected by the proposed MR method; (IV) the weighted-L1 penalty
with weights selected by the proposed PMR method. For comparison, the oracle (non-
penalized) estimator (abbreviated as “Oracle”) of parameters using the true model con-
taining truly significant variables is included. The tuning constants kn in each simulation for
methods (I)–(III) are selected separately by minimizing the classical-BD (for non-robust
methods) and “robust-BD” (for robust methods) on a test set of size n; kn and jn for method
(IV) are searched on a surface of grid points. Numerical algorithms for the proposed
penalized estimator in (3) are given in Appendix 1.3.

The number of Monte Carlo runs is 500. To measure the performance of a parameter

estimate beb through simulation, we use the average value and standard deviation (sd) of

estimation errors, EEðbebÞ ¼ kbeb � eb0k2. Variable selection is assessed by C-Z, the average
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number of regression coefficients which are correctly estimated to be zero when the true
coefficients are zero, and C-NZ, the average number of coefficients which are correctly
estimated to be non-zero when the true coefficients are non-zero. For binary responses,
MCR denotes the average of the misclassification rates on a test set of size 5000.

6.1 Overdispersed Poisson responses

We generate overdispersed Poisson counts fYigni¼1 with n ¼ 100, satisfying

varðYi j Xi ¼ xiÞ ¼ 2mðxiÞ. In the predictor Xi ¼ ðXi;1;Xi;2; . . .;Xi;pn ÞT ; Xi;1 ¼ i=n� 0:5;
for j ¼ 2; . . .; pn , Xi;j ¼ UðZi;jÞ � 0:5, where U is the standard Gaussian distribution func-

tion, and ðZi;2; . . .; Zi;pn ÞT 
Nð0;Rpn�1Þ, with Rpn�1ðj; kÞ ¼ 0:2jj�kj, j; k ¼ 1; . . .; pn � 1.

The link function is logfmðxÞg ¼ b0;0 þ xTb0, with b0;0 ¼ 2:5 and b0 ¼ ð2; 2; 0; . . .; 0ÞT .
The (negative) quasi-likelihood with V ðlÞ ¼ l is utilized as the BD.

Study 1 (raw data without outliers). For simulated data without contamination, the results
are summarized in Table 1. The lose of efficiency (at the true model) from classical to robust
estimates using the (non-penalized) oracle estimation method can be seen from the increase

of EEðbebÞ. For penalized methods, the robust estimates exhibit similar performance to those
of the non-robust counterparts, with little loss in estimation efficiency and selecting relevant
and irrelevant variables. Thus, there is no serious adverse effect of applying penalized robust
estimation to clean datasets.

Study 2 (contaminated data with outliers). For each data set generated from the model,
we create a contaminated data set, where 8 data points ðXi;j; YiÞ are subject to contamination:
They are replaced by ðX �

i;j; Y
�
i Þ, where Y �

i ¼ Yi IðYi [ 100Þ þ A IðYi 	 100Þ with A ¼ 50,

i ¼ 1; . . .; 8,

X �
1;1 ¼ :5 signðU1 � 0:5Þ; X �

2;2 ¼ :5 signðU2 � 0:5Þ; X �
3;3 ¼ :5 signðU3 � 0:5Þ;

X �
4;5 ¼ :5 signðU4 � 0:5Þ; X �

5;7 ¼ :5 signðU5 � 0:5Þ; X �
6;8 ¼ :5 signðU6 � 0:5Þ;

X �
7;9 ¼ :5 signðU7 � 0:5Þ;

with fUig 
i:i:d:Uniformð0; 1Þ. Table 2 summarizes the results over 500 sets of contaminated
data. A comparison of each penalized quasi-likelihood estimate across Tables 1 and 2

indicates that the presence of contamination substantially increases EEðbebÞ. Among the 4
penalized estimates, the L1 penalty tends to have higher false positive rates. As observed
from Table 2 with contaminated cases, the non-robust estimates are more sensitive to
outliers than the robust counterparts. This lends support to Theorems 2 and 6. To provide a

closer view of the estimates, Fig. 2 draws the boxplots of biases ðbbj � bj;0Þ, j ¼ 0; 1; . . .; 5,
corresponding to results in Tables 1 and 2, using the PMR selection method for penalty
weights in the weighted-L1 penalty.

6.2 Bernoulli responses

We generate samples fðXi; YiÞgni¼1 with n ¼ 200 from the model, Yi j Xi ¼ xi 
Bernoulli

fmðxiÞg; where logitfmðxÞg ¼ b0;0 þ xTb0 with b0;0 ¼ 2 and b0 ¼ ð2; 2; 0; . . .; 0ÞT . The
predictor Xi 
Nð0;Rpn Þ, with Rpn ðj; kÞ ¼ 0:1jj�kj, j; k ¼ 1; . . .; pn . Both the deviance and
exponential loss functions are employed as the BD.
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Study 1 (raw data without outliers). For simulated data without contamination, the results
are summarized in Table 3. The robust estimates perform as well as the non-robust coun-
terparts, with respect to parameter estimation, variable selection and classification accuracy.
Indeed, the optimal Bayes rule gives misclassification rates 0.137 for pn ¼ 50, and 0.138 for
pn ¼ 500. Thus, the choice of loss functions has an asymptotically relatively negligible
impact on classification performance. This agrees with results of Theorem 9 on the
asymptotic classification consistency.

Study 2 (contaminated data with outliers). For each data set generated from the model,
we create a contaminated data set. The contamination scheme is to replace the original 8
data points ðXi;j; YiÞ by ðX �

i;j; Y
�
i Þ, where Y �

i ¼ 1� Yi, i ¼ 1; . . .; 8,

X �
1;1 ¼ 3 signðU1 � 0:5Þ; X �

2;1 ¼ 3 signðU2 � 0:5Þ; X �
3;1 ¼ 3 signðU3 � 0:5Þ;

X �
4;3 ¼ 3 signðU4 � 0:5Þ; X �

5;5 ¼ 3 signðU5 � 0:5Þ; X �
6;9 ¼ 3 signðU6 � 0:5Þ;

X �
7;9 ¼ 3 signðU7 � 0:5Þ;

with fUig 
i:i:d:Uniformð0; 1Þ. Table 4 summarizes the results over 500 sets of contaminated data.
Regarding the robustness-efficiency tradeoff, analogous conclusions to Sect. 6.1 can be reached.
Moreover, comparing Tables 3 and 4 reveals that (i) contamination increases the misclassifi-
cation rates of all 5 methods; (ii) for contaminated cases in Table 4, robust procedures tend to
reduce themisclassification rates; (iii) for robust estimation, the deviance loss is computationally

Table 1 (Simulation study: overdispersed Poisson responses, n ¼ 100) Summary results for Study 1 (raw
data without outliers)

Regression Variable selection

Procedure pn Method EEðbebÞ (sd) C-Z (sd) C-NZ (sd)

non-robust 50 SCAD 0.205 (0.1) 45.8 (3.6) 3.0 (0.0)

L1 0.415 (0.1) 39.8 (5.4) 3.0 (0.0)

wL1, MR 0.250 (0.1) 46.0 (3.0) 3.0 (0.0)

wL1, PMR 0.202 (0.1) 46.9 (2.6) 3.0 (0.0)

Oracle 0.178 (0.1) 48.0 (0.0) 3.0 (0.0)

500 SCAD 0.205 (0.1) 494.0 (7.0) 3.0 (0.0)

L1 0.581 (0.1) 479.7 (12.2) 3.0 (0.0)

wL1, MR 0.314 (0.1) 494.9 (3.5) 3.0 (0.0)

wL1, PMR 0.205 (0.1) 496.7 (3.1) 3.0 (0.0)

Oracle 0.172 (0.1) 498.0 (0.0) 3.0 (0.0)

robust 50 SCAD 0.244 (0.2) 47.5 (1.2) 3.0 (0.0)

L1 0.411 (0.1) 39.4 (5.8) 3.0 (0.0)

wL1, MR 0.242 (0.1) 45.7 (3.6) 3.0 (0.0)

wL1, PMR 0.208 (0.1) 46.6 (3.1) 3.0 (0.0)

Oracle 0.202 (0.1) 48.0 (0.0) 3.0 (0.0)

500 SCAD 0.443 (0.4) 495.8 (4.0) 3.0 (0.2)

L1 0.587 (0.2) 477.6 (12.5) 3.0 (0.0)

wL1, MR 0.297 (0.1) 494.9 (3.7) 3.0 (0.0)

wL1, PMR 0.215 (0.1) 496.5 (3.1) 3.0 (0.0)

Oracle 0.193 (0.1) 498.0 (0.0) 3.0 (0.0)

123

3378 Machine Learning (2023) 112:3361–3411



more stable yielding relatively lower misclassification rates than the exponential loss, see also
Fig. 1, and thus the deviance loss is recommended for practical applications.

For the penalized methods, the tuning parameter kn is searched in the interval
[0.0034, 0.1975], and jn is searched in the interval ½1=28; 1=25�. To compare the classifi-
cation performance with methods such as the classical-SVM and robust-SVM (using either
the linear or Gaussian kernel, combined with auxiliary parameters c� and/or s) in Wu and
Liu (2007), Table 5 summarizes the results under the same set-ups as in Tables 3 and 4.
Compared with classical- and robust-SVMs (in Table 5), the robust-BD method (in Tables 3,
4) clearly lowers MCRs.

6.3 Gaussian responses

To further illustrate the benefits of the robust method relative to the non-robust method,
Appendix 1.2 gives additional simulation studies for Gaussian responses.

7 Real data application

To illustrate the application of the penalized robust-BD methods for classifying high-di-
mension low sample size data, we consider the Lymphoma data studied in Alizadeh et al.
(2000), which identified two molecularly distinct forms of diffuse large B-cell Lymphoma

Table 2 (Simulation study: overdispersed Poisson responses, n ¼ 100) Summary results for Study 2
(contaminated data with outliers)

Regression Variable selection

Procedure pn Method EEðbebÞ (sd) C-Z (sd) C-NZ (sd)

non-robust 50 SCAD 1.955 (0.3) 40.9 (4.6) 2.9 (0.3)

L1 2.012 (0.2) 40.2 (5.2) 2.9 (0.3)

wL1, MR 1.912 (0.3) 44.3 (3.7) 2.8 (0.4)

wL1, PMR 1.846 (0.3) 45.8 (3.4) 2.7 (0.4)

Oracle 1.455 (0.2) 48.0 (0.0) 3.0 (0.0)

500 SCAD 2.246 (0.2) 482.4 (12.4) 2.7 (0.5)

L1 2.292 (0.2) 484.8 (12.3) 2.6 (0.5)

wL1, MR 2.194 (0.2) 493.1 (6.1) 2.4 (0.5)

wL1, PMR 2.105 (0.2) 495.6 (5.2) 2.3 (0.5)

Oracle 1.475 (0.2) 498.0 (0.0) 3.0 (0.0)

robust 50 SCAD 0.309 (0.2) 47.6 (1.1) 3.0 (0.0)

L1 0.689 (0.2) 39.0 (6.1) 3.0 (0.0)

wL1, MR 0.603 (0.3) 43.6 (4.1) 3.0 (0.1)

wL1, PMR 0.558 (0.3) 44.3 (4.3) 3.0 (0.1)

Oracle 0.242 (0.1) 48.0 (0.0) 3.0 (0.0)

500 SCAD 0.799 (0.5) 494.5 (3.2) 2.9 (0.3)

L1 1.093 (0.3) 481.8 (11.7) 3.0 (0.0)

wL1, MR 1.037 (0.5) 491.6 (5.4) 2.9 (0.3)

wL1, PMR 0.996 (0.5) 491.6 (5.5) 2.9 (0.3)

Oracle 0.255 (0.1) 498.0 (0.0) 3.0 (0.0)
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(DLBCL). These two forms, called “germinal centre B-like (gc-B)” DLBCL and “activated
B-like (a-B)” DLBCL, had gene expression patterns indicative of different stages of B-cell
differentiation.
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Fig. 2 (Simulation study: overdispersed Poisson responses, n ¼ 100, pn ¼ 50 (left panel) and pn ¼ 500 (right

panel)) Boxplots of ðbbj � bj;0Þ, j ¼ 0; 1; . . .; 5, corresponding to results in Tables 1 and 2, using
the PMR selection method for penalty weights in the weighted-L1 penalty. The first row: raw data and
using non-robust method; the second row: raw data and using robust method; the third row: contaminated
data and using non-robust method; the fourth row: contaminated data and using robust method
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Table 3 (Simulation study: Bernoulli responses, n ¼ 200) Summary results for Study 1 (raw data without
outliers)

Regression Variable selection Classification

Procedure loss pn Method EEðbebÞ (sd) C-Z (sd) C-NZ (sd) MCR

non-robust Dev 50 SCAD 0.574 (0.3) 47.5 (1.0) 3.0 (0.0) 0.141

L1 1.071 (0.3) 36.4 (5.7) 3.0 (0.0) 0.151

wL1, MR 0.654 (0.3) 45.8 (2.7) 3.0 (0.0) 0.144

wL1, PMR 0.628 (0.2) 45.9 (2.2) 3.0 (0.0) 0.143

Oracle 0.553 (0.3) 48.0 (0.0) 3.0 (0.0) 0.141

500 SCAD 0.580 (0.4) 497.5 (1.3) 3.0 (0.0) 0.142

L1 1.422 (0.2) 473.0 (13.0) 3.0 (0.0) 0.161

wL1, MR 0.855 (0.3) 493.7 (4.7) 3.0 (0.0) 0.146

wL1, PMR 0.829 (0.3) 494.1 (4.8) 3.0 (0.0) 0.146

Oracle 0.569 (0.4) 498.0 (0.0) 3.0 (0.0) 0.141

Exp 50 SCAD 0.740 (0.5) 47.7 (0.8) 3.0 (0.0) 0.142

L1 0.843 (0.2) 38.3 (5.5) 3.0 (0.0) 0.151

wL1, MR 0.638 (0.3) 45.7 (2.7) 3.0 (0.0) 0.144

wL1, PMR 0.635 (0.3) 46.0 (2.5) 3.0 (0.0) 0.144

Oracle 0.704 (0.4) 48.0 (0.0) 3.0 (0.0) 0.141

500 SCAD 0.740 (0.5) 497.5 (1.1) 3.0 (0.0) 0.142

L1 1.054 (0.3) 478.3 (11.2) 3.0 (0.0) 0.159

wL1, MR 0.723 (0.3) 493.9 (4.9) 3.0 (0.0) 0.147

wL1, PMR 0.708 (0.3) 494.5 (4.5) 3.0 (0.0) 0.146

Oracle 0.719 (0.5) 498.0 (0.0) 3.0 (0.0) 0.142

robust Dev 50 SCAD 0.669 (0.5) 47.9 (0.3) 3.0 (0.0) 0.142

L1 1.367 (0.2) 36.7 (4.5) 3.0 (0.0) 0.151

wL1, MR 0.951 (0.3) 47.6 (0.6) 3.0 (0.0) 0.143

wL1, PMR 0.959 (0.3) 47.7 (0.5) 3.0 (0.0) 0.143

Oracle 0.685 (0.5) 48.0 (0.0) 3.0 (0.0) 0.142

500 SCAD 0.661 (0.5) 498.0 (0.3) 3.0 (0.0) 0.142

L1 2.016 (0.1) 493.3 (2.5) 3.0 (0.0) 0.159

wL1, MR 1.721 (0.2) 498.0 (0.1) 3.0 (0.0) 0.151

wL1, PMR 1.734 (0.2) 498.0 (0.1) 3.0 (0.0) 0.151

Oracle 0.679 (0.5) 498.0 (0.0) 3.0 (0.0) 0.142

Exp 50 SCAD 0.578 (0.3) 47.9 (0.3) 3.0 (0.0) 0.141

L1 1.394 (0.2) 43.5 (2.1) 3.0 (0.0) 0.149

wL1, MR 1.084 (0.3) 48.0 (0.2) 3.0 (0.0) 0.145

wL1, PMR 1.099 (0.3) 48.0 (0.2) 3.0 (0.0) 0.145

Oracle 0.593 (0.4) 48.0 (0.0) 3.0 (0.0) 0.141

500 SCAD 0.570 (0.4) 498.0 (0.0) 3.0 (0.0) 0.141

L1 2.405 (0.1) 498.0 (0.1) 3.0 (0.1) 0.213

wL1, MR 2.045 (0.2) 498.0 (0.0) 3.0 (0.1) 0.174

wL1, PMR 2.065 (0.2) 498.0 (0.0) 3.0 (0.1) 0.176

Oracle 0.602 (0.4) 498.0 (0.0) 3.0 (0.0) 0.142
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Table 4 (Simulation study: Bernoulli responses, n ¼ 200) Summary results for Study 2 (contaminated data
with outliers)

Regression Variable selection Classification

Procedure loss pn Method EEðbebÞ (sd) C-Z (sd) C-NZ (sd) MCR

non-robust Dev 50 SCAD 1.106 (0.3) 47.3 (1.4) 3.0 (0.0) 0.145

L1 1.768 (0.2) 38.9 (5.5) 3.0 (0.0) 0.162

wL1, MR 1.479 (0.3) 45.5 (2.8) 3.0 (0.0) 0.151

wL1, PMR 1.464 (0.3) 45.7 (2.7) 3.0 (0.0) 0.151

Oracle 1.101 (0.3) 48.0 (0.0) 3.0 (0.0) 0.144

500 SCAD 1.112 (0.3) 497.0 (1.8) 3.0 (0.0) 0.145

L1 2.027 (0.2) 479.4 (12.1) 3.0 (0.0) 0.177

wL1, MR 1.658 (0.3) 493.9 (4.3) 3.0 (0.0) 0.157

wL1, PMR 1.634 (0.3) 494.2 (3.8) 3.0 (0.0) 0.156

Oracle 1.107 (0.3) 498.0 (0.0) 3.0 (0.0) 0.144

Exp 50 SCAD 1.507 (0.4) 47.3 (1.2) 3.0 (0.1) 0.156

L1 1.821 (0.3) 39.8 (5.8) 3.0 (0.0) 0.173

wL1, MR 1.685 (0.4) 45.2 (3.0) 3.0 (0.0) 0.164

wL1, PMR 1.669 (0.4) 45.6 (2.8) 3.0 (0.0) 0.163

Oracle 1.504 (0.4) 48.0 (0.0) 3.0 (0.0) 0.152

500 SCAD 1.521 (0.5) 497.2 (1.9) 3.0 (0.2) 0.161

L1 1.927 (0.3) 481.6 (11.7) 3.0 (0.0) 0.187

wL1, MR 1.757 (0.4) 492.8 (5.9) 3.0 (0.0) 0.172

wL1, PMR 1.732 (0.4) 493.6 (5.2) 3.0 (0.0) 0.170

Oracle 1.498 (0.4) 498.0 (0.0) 3.0 (0.0) 0.153

robust Dev 50 SCAD 0.682 (0.4) 47.9 (0.5) 3.0 (0.0) 0.143

L1 1.686 (0.3) 37.6 (4.7) 3.0 (0.0) 0.157

wL1, MR 1.395 (0.3) 47.4 (0.7) 3.0 (0.0) 0.146

wL1, PMR 1.401 (0.3) 47.5 (0.7) 3.0 (0.0) 0.146

Oracle 0.681 (0.4) 48.0 (0.0) 3.0 (0.0) 0.143

500 SCAD 0.681 (0.3) 498.0 (0.2) 3.0 (0.0) 0.143

L1 2.208 (0.1) 491.3 (3.0) 3.0 (0.0) 0.168

wL1, MR 2.095 (0.2) 498.0 (0.2) 3.0 (0.1) 0.164

wL1, PMR 2.105 (0.2) 498.0 (0.2) 3.0 (0.1) 0.165

Oracle 0.685 (0.4) 498.0 (0.0) 3.0 (0.0) 0.143

yExp 50 SCAD 0.976 (0.3) 47.9 (0.5) 3.0 (0.0) 0.144

L1 1.818 (0.2) 42.4 (2.4) 3.0 (0.0) 0.157

wL1, MR 1.766 (0.3) 47.9 (0.3) 3.0 (0.0) 0.155

wL1, PMR 1.778 (0.3) 47.9 (0.3) 3.0 (0.0) 0.155

Oracle 0.804 (0.3) 48.0 (0.0) 3.0 (0.0) 0.143

500 SCAD 1.049 (0.4) 498.0 (0.0) 3.0 (0.2) 0.146

L1 2.578 (0.1) 498.0 (0.1) 3.0 (0.1) 0.232

wL1, MR 2.545 (0.2) 498.0 (0.0) 2.8 (0.4) 0.226

wL1, PMR 2.559 (0.2) 498.0 (0.0) 2.8 (0.4) 0.228

Oracle 0.788 (0.3) 498.0 (0.0) 3.0 (0.0) 0.143
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The publicly available dataset contains 4026 genes across 47 samples, of which 24 are
“gc-B” and 23 are “a-B”. We use the 10-nearest neighbor method to impute the missing
expression data. After imputing, the dataset is standardized to zero mean and unit variance
across genes. We intend to predict whether a sample can be categorized as “gc-B” or “a-B”.

To evaluate the performance of the penalized estimates of parameters in the model,

logitfPðY ¼ 1 j X1; . . .;X4026Þg ¼ b0 þ
P4026

j¼1 bjXj, we randomly split the data into a

training set with 31 samples (containing 16 cases of “gc-B” and 15 cases of “a-B”) and a
test set with 16 samples (containing 8 cases of “gc-B” and 8 cases of “a-B”). For each
training set, kn is selected by minimizing a 3-fold cross validated estimate of the misclas-
sification rate; kn and jn for the proposed PMR method are searched on a surface of grid
points. The test error (TE) gives the misclassification rate of the penalized classifier to the
test set. Both the Huber w-function (with c ¼ 1:345) and Tukey w-function (with c ¼ 4:685)
are utilized in the robust estimates, and the weight function wðxÞ is the same as used in
Sect. 6. Table 6 tabulates the average of TE and the average number of selected genes over
100 random splits. The penalized estimates/classifiers induced by the deviance loss and the
exponential loss yield similar performance. The L1 penalty selects approximately twice as
many genes as the other penalty choices. On the basis of TE and sparse modeling

Table 5 (Simulation study: Bernoulli responses, n ¼ 200) Compare MCR using classical-SVM and robust-
SVM for Study 1 (raw data without outliers) in Table 3 and Study 2 (contaminated data with outliers) in
Table 4

Data pn Method MCR

Raw 50 classical-SVM, linear kernel, c� ¼ 0:1 0.203

classical-SVM, linear kernel, c� ¼ 10 0.227

classical-SVM, Gaussian kernel, c� ¼ 0:1 0.281

classical-SVM, Gaussian kernel, c� ¼ 10 0.208

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ �0:5 0.225

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ 0 0.230

robust-SVM, linear kernel, c� ¼ 10, s ¼ �0:5 0.232

robust-SVM, linear kernel, c� ¼ 10, s ¼ 0 0.233

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ �0:5 0.281

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ 0 0.281

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ �0:5 0.217

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ 0 0.245

500 classical-SVM, linear kernel, c� ¼ 0:1 0.305

classical-SVM, linear kernel, c� ¼ 10 0.305

classical-SVM, Gaussian kernel, c� ¼ 0:1 0.281

classical-SVM, Gaussian kernel, c� ¼ 10 0.278

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ �0:5 0.295

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ 0 0.292

robust-SVM, linear kernel, c� ¼ 10, s ¼ �0:5 0.295

robust-SVM, linear kernel, c� ¼ 10, s ¼ 0 0.293

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ �0:5 0.281

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ 0 0.281

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ �0:5 0.279

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ 0 0.281
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simultaneously, the robust estimate combined with the weighted-L1 penalty appears to
perform the best. The results also reveal that the choice of the w-functions in (6) has a
negligible impact on the performance of the robust penalized estimates.

8 Discussion

The conventional penalized least-squares and penalized-likelihood estimates of parameters
exhibit the oracle property for sparsity recovery but lack resistance to outlying observations.
This paper proposes a class of robust error measures called “robust-BD” and introduces the
“penalized robust-BD estimate”. The “robust-BD” induces a bounded influence function
that makes the resulting penalized estimation less sensitive to outliers. Since BD is widely
used in machine learning practice, the proposed “penalized robust-BD estimate” combined
with suitably chosen weights for penalties can be broadly applicable in regression and
classification problems of large dimensions (pn � n) and high dimensions (pn � n),
achieving both the oracle property and the robustness to outliers in either the covariate space
or the response space.

There are several limitations to our study and ongoing challenges that should be con-
sidered. Firstly, in the current scope of the paper, technical conditions, particularly A1, A2,

Table 5 continued

Data pn Method MCR

Contaminated 50 classical-SVM, linear kernel, c� ¼ 0:1 0.219

classical-SVM, linear kernel, c� ¼ 10 0.245

classical-SVM, Gaussian kernel, c� ¼ 0:1 0.281

classical-SVM, Gaussian kernel, c� ¼ 10 0.217

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ �0:5 0.237

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ 0 0.241

robust-SVM, linear kernel, c� ¼ 10, s ¼ �0:5 0.243

robust-SVM, linear kernel, c� ¼ 10, s ¼ 0 0.246

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ �0:5 0.281

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ 0 0.281

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ �0:5 0.221

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ 0 0.244

500 classical-SVM, linear kernel, c� ¼ 0:1 0.322

classical-SVM, linear kernel, c� ¼ 10 0.322

classical-SVM, Gaussian kernel, c� ¼ 0:1 0.282

classical-SVM, Gaussian kernel, c� ¼ 10 0.279

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ �0:5 0.307

robust-SVM, linear kernel, c� ¼ 0:1, s ¼ 0 0.302

robust-SVM, linear kernel, c� ¼ 10, s ¼ �0:5 0.306

robust-SVM, linear kernel, c� ¼ 10, s ¼ 0 0.302

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ �0:5 0.282

robust-SVM, Gaussian kernel, c� ¼ 0:1, s ¼ 0 0.282

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ �0:5 0.280

robust-SVM, Gaussian kernel, c� ¼ 10, s ¼ 0 0.282
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A5 and B3 in Appendix 1.1 exclude heavy-tailed covariates Xj and responses Y. Similarly,
the proposed method does not handle very high levels of contamination in the data.
Moreover, relaxing (19) could be pursued in a separate study. Secondly, Algorithm 1 in
Appendix 1.3.2 shows that the computational complexity depends on various key factors,
including the sample size (n), dimensionality (pn ), the response variable type (Gaussian,
Bernoulli, or Poisson), selected penalty weights (fbwn;jgpnj¼1), proportion of contamination in

the dataset, approximation accuracy of the quadratic function to the loss function in (3), and
convergence property of the coordinate-descent (CD) algorithm (Friedman et al., 2010). In
particular, the quadratic approximation may reduce the accuracy of the “penalized robust-
BD estimator” and slow down the convergence of the resulting CD algorithm. This is
demonstrated in numerical experiments that indicate an increase in CPU runtime as the
response type changes from Gaussian to Bernoulli to Poisson, and as non-robust procedures
using classical-BD are replaced with robust counterparts using “robust-BD”. Despite these
limitations, our work contributes to the “robust-BD” estimation of pn -dimensional param-
eters with some provable results when pn � n and pn � n, and thus fills a gap in the
literature. The goal of our work is to better understand the flexibility, challenges, and
limitations of robust-BD estimation as a data-analytic tool for big data analysis.

A number of open questions need to be discussed. (a) In the linear regression model, the
quantification of the robustness property of estimates in terms of gross error sensitivity,
rejection point, or local-shift sensitivity has been studied. However, beyond the linear
model, such as the GLM, relatively little theoretical work has been done about this property,
even in the case of fixed dimensions pn ¼ p. Rigorously exploring the robustness property,
including the breakdown point, for the proposed class of “penalized robust-BD estimates” in
the current model, assuming (1)–(2), remains a nontrivial task. (b) The existence of con-
sistent local solutions of penalized estimates has also appeared in several other existing
works, such as the nonconcave penalized likelihood method in Fan and Peng (2004).
Devising efficient numerical procedures for obtaining a local solution that is consistent will
be desirable but challenging. See Gong et al. (2013) for recent progress made in addressing
this issue. (c) For pn � n, it is of interest to explore some variable screening procedure for
dimension reduction before applying the proposed “penalized robust-BD” estimation

Table 6 (Real data) Classifica-
tion for the Lymphoma data Deviance loss Exponential loss

Procedure wðrÞ Penalty TE # genes TE # genes

non-robust r SCAD 0.213 6.32 0.205 10.47

L1 0.121 14.42 0.121 12.56

wL1, MR 0.136 6.68 0.141 5.51

wL1, PMR 0.123 7.30 0.128 6.19

robust Huber SCAD 0.211 3.35 0.201 3.61

L1 0.123 10.63 0.122 9.19

wL1, MR 0.160 4.48 0.156 4.21

wL1, PMR 0.141 5.26 0.142 4.72

robust Tukey SCAD 0.170 3.73 0.175 4.09

L1 0.126 10.95 0.125 9.14

wL1, MR 0.151 4.78 0.155 4.46

wL1, PMR 0.141 5.39 0.143 5.20
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method. (d) The weight function wðxÞ used in the numerical evaluations in Sects. 6 and 7 is
a feasible choice for robust-BD estimation in large (pn � n) and high (pn � n) dimensions.
However, an optimal method for selecting the weight function would be desirable,
depending on specific criteria, such as the robustness property, which has yet to be explored.

In low dimensions (pn\n), the weight function (e.g., wðxÞ ¼ 1=f1þ ðx� bmÞT bR�1

ðx� bmÞg1=2) can rely on robust estimates bm and bR of the location vector and scatter matrix
of X, and pages 137–138 of Heritier et al. (2009) suggest alternative weight functions for
robust estimators of linear model parameters in fixed (pn ¼ p) dimensions. (e) Finite sample
other than asymptotic results may be obtained for certain types of covariates Xj and
responses Y under more stringent assumptions. A complete and thorough study of these
theoretical/methodological development and computational advancement is beyond the
scope of the current paper and needs to be examined in future research.

9 Supplementary information

Appendices 1.1, 1.2 and 1.3 collect proofs of Theorems 1 to 9, Figs. 1 and 2 and Tables 1, 2,
3, 4, 5 and 6, additional numerical studies (Figs. 3 and 4 and Tables 7 and 8 in Sect. 6.3; real
data analysis), and algorithmic details, respectively.
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Supplementary Appendix

1. Proofs, figures and tables, algorithm

Notations and symbols.

For a vector a ¼ ða1; . . .; adÞT , kak1 ¼
Pd

j¼1 jajj, kak2 ¼ ðPd
j¼1 a

2
j Þ1=2 and kak1 ¼

max1	 j	 d jajj. Let Ik denote a k
 k identity matrix, and 0p;q denote a p
 q matrix of zero
entries. For a matrix M, its eigenvalues, minimum eigenvalue, maximum eigenvalue are
labeled by kjðMÞ, kminðMÞ, kmaxðMÞ respectively; trðMÞ denotes the trace of a square matrix

M; let kMk ¼ kMk2 ¼ supkxk2¼1 kMxk2 ¼ fkmaxðMTMÞg1=2 be the matrix L2 norm, and

kMkF ¼ ftrðMTMÞg1=2 be the Frobenius norm. Throughout the proof, C is used as a
generic finite constant. The sign function signðxÞ equals þ1 if x[ 0, 0 if x ¼ 0, and �1 if
x\0. For a function g(x), the first-order derivative is g0ðxÞ or gð1ÞðxÞ, the second-order
derivative is g00ðxÞ or gð2ÞðxÞ, and the jth other derivative is gðjÞðxÞ. The chi-squared dis-
tribution with k degrees of freedom is denoted by v2k.
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The conditional expectation and condition variance of Y given X are denoted by EðY j XÞ
and varðY j XÞ respectively. Notations in the asymptotic derivations follow (van der Vaart,

1998), where �!P denotes converges in probability, �!L means converges in distribution,
oPð1Þ is a term which converges to zero in probability, and OPð1Þ is a term which is
bounded in probability.
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Fig. 3 (Simulation study: Gaussian responses, n ¼ 200, pn ¼ 50 (left panel) and pn ¼ 500 (right

panel)) Boxplots of ðbbj � bj;0Þ, j ¼ 0; 1; . . .; 8, corresponding to results in Tables 7 and 8, using the PMR
selection method for penalty weights in the weighted-L1 penalty. The first row: raw data and using non-robust
method; the second row: raw data and using robust method; the third row: contaminated data and using non-
robust method; the fourth row: contaminated data and using robust method
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1.1. Proofs of Theorems 1 up to 9

We first impose some regularity conditions, which are not the weakest possible but facilitate
the technical derivations.

Condition A.
A0. sn � 1 and pn � sn � 1. supn� 1 kbðIÞ0 k1\1.
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Fig. 4 (Simulation study: Gaussian responses, n ¼ 100, pn ¼ 50 (left panel) and pn ¼ 500 (right panel)) The
caption is similar to that in Fig. 3, except n ¼ 100
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A1. kXk1 ¼ max1	 j	 pn jXjj is bounded almost surely.
A2. EðeX eXT Þ exists and is nonsingular in the case of pn þ 1	 n; EfeX ðIÞ eX ðIÞTg exists and

is nonsingular in the case of pn þ 1[ n.
A4. There is a large enough open subset of Rpnþ1 which contains the true parameter pointeb0, such that F�1ðeXT ebÞ is bounded almost surely for all eb in the subset.
A5. wð�Þ� 0 is a bounded function. Assume that wðrÞ is a bounded, odd function, and

twice differentiable, such that w0ðrÞ, w0ðrÞr, w00ðrÞ, w00ðrÞr and w00ðrÞr2 are bounded;
V ð�Þ[ 0, V ð2Þð�Þ is continuous. The matrix HðIÞ

n is positive definite, with eigenvalues
uniformly bounded away from zero.

A50. wð�Þ� 0 is a bounded function.
A6. qð4Þð�Þ is continuous, and qð2Þð�Þ\0. gð2Þ1 ð�Þ is continuous.
A7. Fð�Þ is monotone and a bijection, Fð3Þð�Þ is continuous, and Fð1Þð�Þ 6¼ 0.

Condition B.

B3.

There exists a constant C 2 ð0;1Þ such that supn� 1 EfjY � mðXÞjjg	 j!Cj for all j� 3.

Also, infn� 1; 1	 j	 pn EfvarðY j XÞX 2
j g[ 0.

Table 7 (Simulation study: Gaussian responses, n ¼ 200) Summary results for Study 1 (raw data without
outliers)

Regression Variable selection

Procedure pn Method EEðbebÞ (sd) C-Z (sd) C-NZ (sd)

non-robust 50 SCAD 0.236 (0.1) 38.0 (5.9) 6.0 (0.0)

L1 0.316 (0.1) 32.5 (6.5) 6.0 (0.0)

wL1, MR 0.276 (0.1) 37.7 (6.9) 5.9 (0.2)

wL1, PMR 0.279 (0.1) 38.8 (6.3) 5.9 (0.3)

Oracle 0.166 (0.1) 45.0 (0.0) 6.0 (0.0)

500 SCAD 0.305 (0.1) 473.1 (9.0) 6.0 (0.1)

L1 0.439 (0.1) 469.5 (11.5) 6.0 (0.0)

wL1, MR 0.387 (0.1) 485.0 (8.8) 5.7 (0.4)

wL1, PMR 0.378 (0.1) 487.0 (8.4) 5.7 (0.5)

Oracle 0.172 (0.1) 495.0 (0.0) 6.0 (0.0)

robust 50 SCAD 0.187 (0.1) 44.6 (1.1) 6.0 (0.1)

L1 0.329 (0.1) 32.0 (7.3) 6.0 (0.0)

wL1, MR 0.287 (0.1) 38.2 (6.2) 5.9 (0.3)

wL1, PMR 0.289 (0.1) 39.4 (5.5) 5.9 (0.4)

Oracle 0.176 (0.1) 45.0 (0.0) 6.0 (0.0)

500 SCAD 0.239 (0.1) 494.7 (1.5) 5.8 (0.4)

L1 0.467 (0.1) 466.9 (19.9) 6.0 (0.1)

wL1, MR 0.397 (0.1) 484.4 (10.4) 5.7 (0.4)

wL1, PMR 0.390 (0.1) 486.0 (9.8) 5.7 (0.5)

Oracle 0.185 (0.1) 495.0 (0.0) 6.0 (0.0)
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B5.

The matrices XðIÞ
n and HðIÞ

n are positive definite, with eigenvalues uniformly bounded

away from zero. Also, kðHðIÞ
n Þ�1XðIÞ

n k2 is bounded away from infinity.

Condition C.

C4.

There is a large enough open subset of Rpnþ1 which contains the true parameter point eb0,

such that F�1ðeXT ebÞ is bounded almost surely for all eb in the subset. Moreover, the subset
contains the origin.

Condition D.

D5.

The eigenvalues of HðIÞ
n are uniformly bounded away from zero. Also,

kðHðIÞ
n Þ�1=2ðXðIÞ

n Þ1=2k2 is bounded away from infinity.

Table 8 (Simulation study: Gaussian responses, n ¼ 200) Summary results for Study 2 (contaminated data
with outliers)

Procedure pn Method Regression Variable selection

EEðbebÞ (sd) C-Z (sd) C-NZ (sd)

non-robust 50 SCAD 1.291 (0.4) 36.1 (6.5) 5.4 (0.6)

L1 1.341 (0.4) 35.4 (6.4) 5.5 (0.6)

wL1, MR 1.255 (0.4) 41.0 (4.8) 5.2 (0.7)

wL1, PMR 1.207 (0.3) 42.6 (4.1) 5.0 (0.7)

Oracle 1.003 (0.3) 45.0 (0.0) 6.0 (0.0)

500 SCAD 1.547 (0.4) 471.2 (21.6) 5.2 (0.7)

L1 1.593 (0.4) 476.9 (17.7) 5.1 (0.7)

wL1, MR 1.428 (0.4) 487.3 (7.8) 4.8 (0.7)

wL1, PMR 1.311 (0.4) 491.2 (7.7) 4.6 (0.7)

Oracle 1.026 (0.3) 495.0 (0.0) 6.0 (0.0)

robust 50 SCAD 0.249 (0.1) 43.9 (3.5) 5.9 (0.2)

L1 0.373 (0.1) 31.3 (8.8) 6.0 (0.0)

wL1, MR 0.375 (0.1) 36.2 (7.4) 5.8 (0.4)

wL1, PMR 0.379 (0.1) 37.7 (6.5) 5.8 (0.4)

Oracle 0.196 (0.1) 45.0 (0.0) 6.0 (0.0)

500 SCAD 0.299 (0.1) 494.8 (1.2) 5.7 (0.4)

L1 0.527 (0.1) 466.0 (19.8) 6.0 (0.2)

wL1, MR 0.547 (0.2) 480.4 (12.5) 5.6 (0.5)

wL1, PMR 0.544 (0.2) 482.9 (12.1) 5.5 (0.6)

Oracle 0.192 (0.1) 495.0 (0.0) 6.0 (0.0)
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Condition E.

E1.
min1	 j	 sn jcovðXj; Y Þj � An and maxsnþ1	 j	 pn jcovðXj; Y Þj ¼ oðBnÞ for some positive
sequences An and Bn, where the symbol sn � tn, for two nonnegative sequences sn and tn,
means that there exists a constant c[ 0 such that sn � c tn for all n� 1.

E2.
supn� 1;1	 j	 sn Efq2

ðY ; a0ÞX 2
j g\1; infn� 1;snþ1	 j	 pn Efq2

ðY ; a0ÞX 2
j g ¼ g[ 0, where

a0 ¼ FðEðY ÞÞ.

Proof of Theorem 1 We first need to show Lemma 1. h

Lemma 1 (existence and consistency: pn � n) Assume Conditions A0, A1, A2, A4, A5, A6

and A7 in Appendix 1.1, the matrix Hn ¼ Efp
2
ðY ; eXðIÞT ebðIÞ

0 ÞwðXÞeX eXTg is positive definite

with eigenvalues uniformly bounded away from zero, and wðIÞ
max ¼ OPf1=ðkn ffiffiffi

n
p ffiffiffiffiffiffiffiffiffiffiffi

sn=pn

p Þg. If
p4
n
=n ! 0 as n ! 1, then there exists a local minimizer beb of (3) such that

kbeb � eb0k2 ¼ OPð
ffiffiffiffiffiffiffiffiffi
pn=n

p Þ.

Proof We follow the idea of the proof of Theorem 1 in Fan and Peng (2004). Let rn ¼ffiffiffiffiffiffiffiffiffi
pn=n

p
and eun ¼ ðu0; u1; . . .; upn ÞT 2 Rpnþ1. It suffices to show that for any given �[ 0,

there exists a sufficiently large constant C� such that, for large n we have

P
n

inf
keunk2¼C�

‘nðeb0 þ rneunÞ[ ‘nðeb0Þ
o
� 1� �: ð20Þ

This implies that with probability at least 1� �, there exists a local minimizer beb of ‘nðebÞ in
the ball feb0 þ rneun : keunk2 	C�g such that kbeb � eb0k2 ¼ OPðrnÞ. To show (20), consider

DnðeunÞ

¼ 1

n

Xn
i¼1

fqqðYi;F�1ðeXT

i ðeb0 þ rneunÞÞÞwðXiÞ

� qqðYi;F�1ðeXT

i
eb0ÞÞwðXiÞg

þ kn
Xpn
j¼1

wn;jðjbj;0 þ rnujj � jbj;0jÞ

� I1 þ I2;

ð21Þ

where keunk2 ¼ C�.
First, we consider I1. By Taylor’s expansion, I1 has the decomposition,

I1 ¼ I1;1 þ I1;2 þ I1;3; ð22Þ

where I1;1 ¼ rn=n
Pn

i¼1 p1
ðYi; eXT

i
eb0ÞwðXiÞeXT

i eun, I1;2 ¼ r2n=ð2nÞ
Pn

i¼1 p2
ðYi; eXT

i
eb0Þ

wðXiÞðeXT

i eunÞ2, and
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I1;3 ¼ r3n=ð6nÞ
Pn

i¼1 p3
ðYi; eXT

i
eb�ÞwðXiÞðeXT

i eunÞ3 for eb�
located between eb0 andeb0 þ rneun. Hence

jI1;1j 	 rn

���� 1n
Xn
i¼1

p
1
ðYi; eXT

i
eb0ÞwðXiÞeX i

����
2

keunk2 ¼ OPðrn
ffiffiffiffiffiffiffiffiffi
pn=n

q
Þkeunk2: ð23Þ

For the term I1;2 in (22),

I1;2 ¼ r2n
2n

Xn
i¼1

Efp
2
ðYi; eXT

i
eb0ÞwðXiÞðeXT

i eunÞ2g

þ r2n
2n

Xn
i¼1

h
p

2
ðYi; eXT

i
eb0ÞwðXiÞðeXT

i eunÞ2

� Efp
2
ðYi; eXT

i
eb0ÞwðXiÞðeXT

i eunÞ2g
i

� I1;2;1 þ I1;2;2;

where I1;2;1 ¼ 2�1r2neuT
nHneun: Meanwhile, we have

jI1;2;2j 	 r2n

���� 1n
Xn
i¼1

h
p
2
ðYi; eXT

i
eb0ÞwðXiÞeX i

eXT

i

� Efp
2
ðYi; eXT

i
eb0ÞwðXiÞeX i

eXT

i g
i����

F

keunk22
¼ r2nOPðpn=

ffiffiffi
n

p Þkeunk22:
Thus,

I1;2 ¼ r2n
2
euT
nHneun þ OPðr2npn=

ffiffiffi
n

p Þkeunk22: ð24Þ

For the term I1;3 in (22), we observe that

jI1;3j 	 r3n
1

n

Xn
i¼1

jp
3
ðYi; eXT

i
eb�ÞjwðXiÞjeXT

i eunj3 ¼ OPðr3np3=2n
Þkeunk32;

which follows from Conditions A0, A1, A4 and A5.
Next, we consider I2 in (21). Note I2 ¼ kn

Psn
j¼1 wn;jðjbj;0 þ rnujj � jbj;0jÞ

þknrn
Ppn

j¼snþ1 wn;jjujj. Clearly, by the triangle inequality,

I2 � � knrn
Xsn
j¼1

wn;jjujj � I2;1;

in which

jI2;1j 	 knrnw
ðIÞ
maxkuðIÞn k1; ð25Þ

where uðIÞn ¼ ðu1; . . .; usnÞT . By (23)–(25) and p4
n
=n ! 0, we can choose some large C� such

that I1;1, I1;3 and I2;1 are all dominated by the first term of I1;2 in (24), which is positive by
the eigenvalue assumption. This implies (20). h
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We now show Theorem 1. Write eun ¼ ðeuðIÞT
n ; uðIIÞTn ÞT , where euðIÞ

n ¼ ðu0; u1; . . .; usnÞT and

uðIIÞn ¼ ðusnþ1; . . .; upn ÞT . Following the proof of Lemma 1, it suffices to show (20) for

rn ¼
ffiffiffiffiffiffiffiffiffi
sn=n

p
.

For the term I1;1 in (22),

I1;1 ¼ rn
n

Xn
i¼1

p
1
ðYi; eXT

i
eb0ÞwðXiÞeX ðIÞT

i euðIÞ
n

þ rn
n

Xn
i¼1

p
1
ðYi; eXT

i
eb0ÞwðXiÞXðIIÞT

i uðIIÞn � I ðIÞ1;1 þ I ðIIÞ1;1 :

It follows that

jI ðIÞ1;1j 	 rnOPð
ffiffiffiffiffiffiffiffiffi
sn=n

p
ÞkeuðIÞ

n k2; jI ðIIÞ1;1 j 	 rnOPð1=
ffiffiffi
n

p ÞkuðIIÞn k1:
For the term I1;2 in (22), similar to the proof of Lemma 1, I1;2 ¼ I1;2;1 þ I1;2;2. We observe
that

I1;2;1 � r2n
2
euðIÞT
n HðIÞ

n euðIÞ
n

þ r2n
n

Xn
i¼1

E½p
2
ðYi; eX ðIÞT

i
ebðIÞ
0 ÞwðXiÞfeX ðIÞT

i euðIÞ
n gfXðIIÞT

i uðIIÞn g�

� I ðIÞ1;2;1 þ I ðcrossÞ1;2;1 :

Then there exists a constant C[ 0 such that

I ðIÞ1;2;1 �Cr2nkeuðIÞ
n k22; jI ðcrossÞ1;2;1 j 	OPðr2n

ffiffiffiffi
sn

p ÞkeuðIÞ
n k2 � kuðIIÞn k1:

For the term I1;2;2,

I1;2;2

¼ r2n
2n

Xn
i¼1

½p2i wðXiÞðeX ðIÞT
i euðIÞ

n Þ2 � Efp2i wðXiÞðeXðIÞT
i euðIÞ

n Þ2g�

þ r2n
2n

Xn
i¼1

h
p2i wðXiÞ2ðeX ðIÞT

i euðIÞ
n ÞðXðIIÞT

i uðIIÞn Þ

� Efp2i wðXiÞ2ðeX ðIÞT
i euðIÞ

n ÞðXðIIÞT
i uðIIÞn Þg

i
þ r2n
2n

Xn
i¼1

½p2i wðXiÞðXðIIÞT
i uðIIÞn Þ2 � Efp2i wðXiÞðXðIIÞT

i uðIIÞn Þ2g�

� I ðIÞ1;2;2 þ I ðcrossÞ1;2;2 þ I ðIIÞ1;2;2;

where

jI ðIÞ1;2;2j 	 r2nOPðsn=
ffiffiffi
n

p ÞkeuðIÞ
n k22;

jI ðcrossÞ1;2;2 j 	 r2nOPð
ffiffiffiffiffiffiffiffiffi
sn=n

p
ÞkeuðIÞ

n k2kuðIIÞn k1;
jI ðIIÞ1;2;2j 	 r2nOPð1=

ffiffiffi
n

p ÞkuðIIÞn k21:
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For the term I1;3 in (22), since snpn ¼ oðnÞ, keb�k1 is bounded and thus

jI1;3j 	OPðr3nÞkeuðIÞ
n k31 þ OPðr3nÞkuðIIÞn k31 � I ðIÞ1;3 þ I ðIIÞ1;3 ;

where

jI ðIÞ1;3j 	OPðr3nsn3=2ÞkeuðIÞ
n k32; jI ðIIÞ1;3 j 	OPðr3nÞkuðIIÞn k31:

For the term I2 in (21), I2 � I ðIÞ2;1 þ I ðIIÞ2;1 ; where I ðIÞ2;1 ¼ �knrn
Psn

j¼1 wn;jjujj and

I ðIIÞ2;1 ¼ knrn
Ppn

j¼snþ1 wn;jjujj. Thus, we have

jI ðIÞ2;1j 	 knrnw
ðIÞ
max

ffiffiffiffi
sn

p kuðIÞn k2; I ðIIÞ2;1 � knrnw
ðIIÞ
minkuðIIÞn k1:

It can be shown that either I ðIÞ1;2;1 or I ðIIÞ2;1 dominates all other terms in groups G1 ¼ fI ðIÞ1;2;2;

I ðIÞ1;3g, G2 ¼ fI ðIIÞ1;1 ; I
ðIIÞ
1;2;2; I

ðIIÞ
1;3 ; I

ðcrossÞ
1;2;1 ; I ðcrossÞ1;2;2 g and G3 ¼ fI ðIÞ1;1; I

ðIÞ
2;1g. Namely, I ðIÞ1;2;1 dominates

G1, and I ðIIÞ2;1 dominates G2. For G3, since keuðIÞ
n k2 	C�, we have that

jI ðIÞ1;1j 	OPðrn
ffiffiffiffiffiffiffiffiffi
sn=n

p
ÞC�; jI ðIÞ2;1j 	 knrn

ffiffiffiffi
sn

p
wðIÞ
maxC�:

Hence, if kuðIIÞn k1 	C�=2, then keuðIÞ
n k2 [C�=2, and thus G3 is dominated by I ðIÞ1;2;1, which is

positive; if kuðIIÞn k1 [C�=2, then G3 is dominated by I ðIIÞ2;1 , which is positive. This completes

the proof. h

Proof of Theorem 2 We first need to show Lemma 2. h

Lemma 2 Assume Condition A in Appendix 1.1. If s2n=n ¼ Oð1Þ and wðIIÞ
minkn

ffiffiffi
n

p
=ffiffiffiffiffiffiffiffi

snpn

p �!P 1, then with probability tending to one, for any given eb ¼ ðebðIÞT
; bðIIÞT ÞT sat-

isfying kebðIÞ � ebðIÞ
0 k2 ¼ OPð

ffiffiffiffiffiffiffiffiffi
sn=n

p Þ and any constant C[ 0, it follows that

‘nðebðIÞ
; 0Þ ¼ minkbðIIÞk2 	C

ffiffiffiffiffiffiffi
sn=n

p ‘nðebðIÞ
; bðIIÞÞ.

Proof It suffices to prove that with probability tending to one, for any ebðIÞ
satisfying

kebðIÞ � ebðIÞ
0 k2 ¼ OPð

ffiffiffiffiffiffiffiffiffi
sn=n

p Þ, the following inequalities hold for sn þ 1	 j	 pn,

o‘nðebÞ=obj\0; for bj\0;

o‘nðebÞ=obj [ 0; for bj [ 0;

namely, with probability tending to one,

max
snþ1	 j	 pn

sup

keb�eb0k2¼OPð
ffiffiffiffiffiffiffi
sn=n

p
Þ; bj\0

o
obj

‘nðebÞ\0;

min
snþ1	 j	 pn

inf
keb�eb0k2¼OPð

ffiffiffiffiffiffiffi
sn=n

p
Þ; bj [ 0

o
obj

‘nðebÞ[ 0:

ð26Þ

Proofs for showing both inequalities are similar; we only need to show (26). Note that for
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bj 6¼ 0,

o
obj

‘nðebÞ ¼ 1

n

Xn
i¼1

p
1
ðYi; eXT

i
ebÞwðXiÞXi;j þ knwn;j signðbjÞ

¼ 1

n

Xn
i¼1

p
1
ðYi; eXT

i
eb0ÞwðXiÞXi;j

þ 1

n

Xn
i¼1

p
2
ðYi; eXT

i
eb�ÞwðXiÞfeXT

i ðeb � eb0ÞgXi;j þ knwn;j signðbjÞ;

where eb�
lies between eb0 and eb. It follows that
max

snþ1	 j	 pn
sup

keb�eb0k2¼OPð
ffiffiffiffiffiffiffi
sn=n

p
Þ; bj\0

o
obj

‘nðebÞ
	 max

snþ1	 j	 pn

1

n

Xn
i¼1

p
1
ðYi; eXT

i
eb0ÞwðXiÞXi;j

þ max
snþ1	 j	 pn

sup

keb�eb0k2¼OPð
ffiffiffiffiffiffiffi
sn=n

p
Þ

1

n

Xn
i¼1

p
2
ðYi; eXT

i
eb�ÞwðXiÞfeXT

i ðeb � eb0ÞgXi;j

� min
snþ1	 j	 pn

fknwn;jg

� I1 þ I2 � kn min
snþ1	 j	 pn

wn;j ¼ I1 þ I2 � knw
ðIIÞ
min:

The first term I1 satisfies that

jI1j 	OPðflogðpn � sn þ 1Þ=ng1=2Þ: ð27Þ
For the term I2,

jI2j 	OPð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
snpn=n

q
Þ: ð28Þ

Therefore, by (27) and (28), the left side of (26) is

	OPð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
snpn=n

q
Þ � knw

ðIIÞ
min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
snpn=n

q
fOPð1Þ � kn

ffiffiffi
n

p
wðIIÞ
min=

ffiffiffiffiffiffiffiffi
snpn

p g:

By wðIIÞ
minkn

ffiffiffi
n

p
=

ffiffiffiffiffiffiffiffi
snpn

p �!P 1, (26) is proved. h

We now show Theorem 2. By Lemma 2, the first part of Theorem 2 holds thatbeb ¼ ðbeb ðIÞ
; 0T ÞT . To verify the second part of Theorem 2, notice the estimating equations

o‘nðebðIÞ
;0Þ

oebðIÞ jebðIÞ
¼beb ðIÞ ¼ 0, since

beb ðIÞ
is a local minimizer of ‘nðebðIÞ

; 0Þ. Denote dnðebðIÞÞ ¼

knWðIÞ
n signfebðIÞg which is equal to dn when ebðIÞ ¼ ebðIÞ

0 . Since min1	 j	 sn jbj;0j=
ffiffiffiffiffiffiffiffiffi
sn=n

p !
1 and kbeb ðIÞ � ebðIÞ

0 k2 ¼ OPð
ffiffiffiffiffiffiffiffiffi
sn=n

p Þ, it follows that
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Pð signfbeb ðIÞg 6¼ signfebðIÞ
0 gÞ

¼ Pð signðbbjÞ 6¼ signðbj;0Þ for some j 2 f1; . . .; sngÞ
	 P

�
max

1	 j	 sn
jbbj � bj;0j � min

1	 j	 sn
jbj;0j

�
! 0:

Thus with probability tending to one, dnðbeb ðIÞÞ ¼ dnðebðIÞ
0 Þ ¼ dn. Taylor’s expansion applied

to the loss part on the left side of the estimating equations yields

0 ¼
�
1

n

Xn
i¼1

p
1
ðYi; eXðIÞT

i
ebðIÞ
0 ÞwðXiÞeX ðIÞ

i þ dn

�

þ
�
1

n

Xn
i¼1

p
2
ðYi; eX ðIÞT

i
ebðIÞ
0 ÞwðXiÞeXðIÞ

i
eXðIÞT
i

�
ðbeb ðIÞ � ebðIÞ

0 Þ

þ 1

2n

Xn
i¼1

p3ðYi; eXðIÞT
i

eb�ðIÞÞwðXiÞfeX ðIÞT
i ðbeb ðIÞ � ebðIÞ

0 Þg2 eX ðIÞ
i

�
�
1

n

Xn
i¼1

p
1
ðYi; eX ðIÞT

i
ebðIÞ
0 ÞwðXiÞeXðIÞ

i þ dn

�
þ K2ðbeb ðIÞ � ebðIÞ

0 Þ þ K3;

ð29Þ

where both eb�ðIÞ
and eb��ðIÞ

lie between ebðIÞ
0 and beb ðIÞ

. Below, we will show

kK2 �HðIÞ
n k2 ¼ OPðsn=

ffiffiffi
n

p Þ; ð30Þ

kK3k2 ¼ OPðs5=2n =nÞ: ð31Þ

First, to show (30), note that K2 �HðIÞ
n ¼ K2 � EðK2Þ � L1. Similar arguments for the

proof of Lemma 1 give kL1k2 ¼ OPðsn= ffiffiffi
n

p Þ.
Second, a similar proof used for I1;3 in (22) completes (31).

Third, by (29)–(31) and kbeb � eb0k2 ¼ OPð
ffiffiffiffiffiffiffiffiffi
sn=n

p Þ, we see that

HðIÞ
n ðbeb ðIÞ � ebðIÞ

0 Þ þ dn ¼ � 1

n

Xn
i¼1

p
1
ðYi; eXðIÞT

i
ebðIÞ
0 ÞwðXiÞeX ðIÞ

i þ un; ð32Þ

where kunk2 ¼ OPðs5=2n =nÞ. Note that by Condition B5,

k ffiffiffi
n

p
AnðXðIÞ

n Þ�1=2unk2 	
ffiffiffi
n

p kAnkFkmaxððXðIÞ
n Þ�1=2Þkunk2

¼ ffiffiffi
n

p ftrðAnA
T
n Þg1=2=k1=2minðXðIÞ

n Þkunk2 ¼ OPðs5=2n =
ffiffiffi
n

p Þ ¼ o
P
ð1Þ:

Thus

ffiffiffi
n

p
AnðXðIÞ

n Þ�1=2fHðIÞ
n ðbeb ðIÞ � ebðIÞ

0 Þ þ dng

¼ � 1ffiffiffi
n

p AnðXðIÞ
n Þ�1=2

Xn
i¼1

p
1
ðYi; eX ðIÞT

i
ebðIÞ
0 ÞwðXiÞeXðIÞ

i þ o
P
ð1Þ:

To complete proving the second part of Theorem 2, we apply the Lindeberg-Feller central

limit theorem (van der Vaart, 1998) to
Pn

i¼1 Zi, where Zi ¼ �n�1=2AnðXðIÞ
n Þ�1=2p

1

ðYi; eX ðIÞT
i

ebðIÞ
0 ÞwðXiÞeXðIÞ

i . It suffices to check two conditions: (I)
Pn

i¼1 covðZiÞ ! G; (II)
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Pn
i¼1 EðkZik2þd

2 Þ ¼ oð1Þ for some d[ 0. Condition (I) follows from the fact that

varfp
1
ðY ; eX ðIÞT ebðIÞ

0 ÞwðXÞeX ðIÞg ¼ XðIÞ
n . To verify condition (II), notice that using Conditions

B5 and A5,

EðkZik2þd
2 Þ

	 n�ð2þdÞ=2E
�
kAnk2þd

F

�
kðXðIÞ

n Þ�1=2 eXðIÞk2				fwðrðY ;mðXÞÞÞ � g1ðmðXÞÞg fq
00ðmðXÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ðmðXÞÞp g
F 0ðmðXÞÞ wðXÞ

				

2þd�

	Cn�ð2þdÞ=2E½fk�1=2
min ðXðIÞ

n ÞkeXðIÞk2g2þdjfwðrðY ;mðXÞÞÞ � g1ðmðXÞÞg

fq00ðmðXÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðmðXÞÞ

p
g=F 0ðmðXÞÞj2þd�

	Csð2þdÞ=2
n n�ð2þdÞ=2E½jfwðrðY ;mðXÞÞÞ � g1ðmðXÞÞg


fq00ðmðXÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðmðXÞÞ

p
g=F 0ðmðXÞÞj2þd�

	Ofðsn=nÞð2þdÞ=2g:

Thus, we get
Pn

i¼1 EðkZik2þd
2 Þ	Ofnðsn=nÞð2þdÞ=2g ¼ Ofsð2þdÞ=2

n =nd=2g, which is o(1).
This verifies Condition (II). h

Proof of Theorem 3 Before showing Theorem 3, Lemma 3 is needed. h

Lemma 3 Assume conditions of Theorem 3. Then

beb ðIÞ � ebðIÞ
0 ¼ � 1

n
ðHðIÞ

n Þ�1
Xn
i¼1

p
1
ðYi; eXðIÞT

i
ebðIÞ
0 ÞwðXiÞeX ðIÞ

i þ o
P
ðn�1=2Þ;

ffiffiffi
n

p fAnð bHðIÞ
n Þ�1 bXðIÞ

n ð bHðIÞ
n Þ�1AT

n g�1=2Anðbeb ðIÞ � ebðIÞ
0 Þ�!L Nð0; IkÞ:

Proof Following (32) in the proof of Theorem 2, we observe that kunk2 ¼ OP

ðs5=2n =nÞ ¼ o
P
ðn�1=2Þ. Furthermore, kdnk2 	

ffiffiffiffi
sn

p
knw

ðIÞ
max ¼ o

P
ðn�1=2Þ. Condition B5 com-

pletes the proof for the first part.

To show the second part, denote Un ¼ AnðHðIÞ
n Þ�1XðIÞ

n ðHðIÞ
n Þ�1AT

n and bUn ¼ Anð bHðIÞ
n Þ�1

bXðIÞ
n ð bHðIÞ

n Þ�1AT
n . Notice that the eigenvalues of ðHðIÞ

n Þ�1XðIÞ
n ðHðIÞ

n Þ�1 are uniformly bounded
away from zero. So are the eigenvalues of Un. From the first part, we see that

Anðbeb ðIÞ � ebðIÞ
0 Þ ¼ � 1

n
AnðHðIÞ

n Þ�1
Xn
i¼1

p
1
ðYi; eX ðIÞT

i
ebðIÞ
0 ÞwðXiÞeXðIÞ

i þ o
P
ðn�1=2Þ:

It follows that

ffiffiffi
n

p
U�1=2

n Anðbeb ðIÞ � ebðIÞ
0 Þ ¼

Xn
i¼1

Zi þ o
P
ð1Þ;

where Zi ¼ �n�1=2U�1=2
n AnðHðIÞ

n Þ�1p
1
ðYi; eXðIÞT

i
ebðIÞ
0 ÞwðXiÞeX ðIÞ

i . To show
Pn

i¼1 Zi�!L N
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ð0; IkÞ, similar to the proof for Theorem 2, we check two conditions: (III)Pn
i¼1 covðZiÞ ! Ik; (IV)

Pn
i¼1 EðkZik2þd

2 Þ ¼ oð1Þ for some d[ 0. Condition (III) is

straightforward since
Pn

i¼1 covðZiÞ ¼ U�1=2
n UnU�1=2

n ¼ Ik. To check condition (IV), sim-

ilar arguments used in the proof of Theorem 2 give that EðkZik2þd
2 Þ ¼ Ofðsn=nÞð2þdÞ=2g:

This and the boundedness of the w-function yield
Pn

i¼1 EðkZik2þd
2 Þ	O fsð2þdÞ=2

n

=nd=2g ¼ oð1Þ. Hence
ffiffiffi
n

p
U�1=2

n Anðbeb ðIÞ � ebðIÞ
0 Þ�!L Nð0; IkÞ: ð33Þ

Also, it can be concluded that k bUn � Unk2 ¼ o
P
ð1Þ and that the eigenvalues of bUn are

uniformly bounded away from zero and infinity with probability tending to one. Conse-
quently,

k bU�1=2

n U1=2
n � Ikk2 ¼ o

P
ð1Þ: ð34Þ

Combining (33), (34) and Slutsky’s theorem completes the proof that
ffiffiffi
n

p bU�1=2

n An

ðbeb ðIÞ � ebðIÞ
0 Þ�!L Nð0; IkÞ. h

We now show Theorem 3, which follows directly from the null hypothesis H0 in (14) and
the second part of Lemma 3. This completes the proof. h

Proof of Theorem 4 The proof of Theorem 4 is similar to that used in Theorem 7, except that
in the Part 2, Cn is changed from kn

ffiffiffi
n

p
=sn to kn. h

Proof of Theorem 5 The proof of Theorem 5 is similar to that used in Theorem 8, except that
in the Part 2, Bn is changed from kn

ffiffiffi
n

p
=sn to kn. h

Proof of Theorem 6 Assumption (19) implies that ‘nðebÞ in (3) is convex in eb. By Karush-
Kuhn-Tucker conditions (Wright 1997, Theorem A.2), a set of sufficient conditions for an

estimate
beb ¼ ðbb0;

bb1; . . .;
bbpn

ÞT being a global minimizer of (3) is that

1

n

Xn
i¼1

p
1
ðYi; eXT

i
bebÞwðXiÞ ¼ 0;

1

n

Xn
i¼1

p
1
ðYi; eXT

i
bebÞwðXiÞXi;j ¼ �knwn;j signðbbjÞ; for 1	 j	 pn with bbj 6¼ 0;

1

n

Xn
i¼1

p
1
ðYi; eXT

i
bebÞwðXiÞXi;j

					
						 knwn;j; for 1	 j	 pn with bbj ¼ 0:

ð35Þ

Before proving Theorem 6, we first show Lemma 4. h

Lemma 4 (existence and consistency: pn � n) Assume (19) and Conditions A0, A1, A2,

A4, A50, B5, A6, A7 in Appendix 1.1. Suppose s4n=n ! 0, logðpn � snÞ=n ¼ Oð1Þ, logðpn �
snÞ=fnk2nðwðIIÞ

minÞ2g ¼ o
P
ð1Þ and min1	 j	 sn jbj;0j=

ffiffiffiffiffiffiffiffiffi
sn=n

p ! 1. Assume wðIÞ
max ¼ OPf1=ðkn
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ffiffiffi
n

p Þg and wðIIÞ
minkn

ffiffiffi
n

p
=sn�!P 1. Then with probability tending to one, there exists a global

minimizer beb ¼ ðbeb ðIÞT
; bbðIIÞT ÞT of ‘nðebÞ in (3) which satisfies that

ðiÞ bbðIIÞ ¼ 0,
ðiiÞ beb ðIÞ

is the minimizer of the oracle subproblem,

‘On ðebðIÞÞ ¼ 1

n

Xn
i¼1

qqðYi;F�1ðeX ðIÞT
i

ebðIÞÞÞwðXiÞ þ kn
Xsn
j¼1

wn;jjbjj: ð36Þ

Proof Let
beb ðIÞ
n ¼ ðbb0; bb1; . . .; bbsnÞT be the minimizer of the subproblem (36). By Karush-

Kuhn-Tucker necessary conditions (Wright 1997, Theorem A.1),
beb ðIÞ
n satisfies that

1

n

Xn
i¼1

p
1
ðYi; eXðIÞT

i
beb ðIÞ
n ÞwðXiÞ ¼ 0;

1

n

Xn
i¼1

p
1
ðYi; eX ðIÞT

i
beb ðIÞ
n ÞwðXiÞXi;j ¼ �knwn;j signðbbjÞ; for 1	 j	 sn with bbj 6¼ 0;

1

n

Xn
i¼1

p
1
ðYi; eXT

i
beb ðIÞ
n ÞwðXiÞXi;j

					
						 knwn;j; for 1	 j	 sn with bbj ¼ 0:

In the following, we will verify conditions

bb1 6¼ 0; . . .; bbsn 6¼ 0; ð37Þ
and 			 1

n

Xn
i¼1

p
1
ðYi; eX ðIÞT

i
beb ðIÞ
n ÞwðXiÞXi;j

				 knwn;j; for sn þ 1	 j	 pn : ð38Þ

It then follows, from (37), (38) and (35), that ðbeb ðIÞT
n ; 0T ÞT is the global minimizer of (3).

This will in turn imply Lemma 4.
First, we prove that (37) holds with probability tending to one. Applying Lemma 1 to the

subproblem (36), we conclude that kbeb ðIÞ
n � ebðIÞ

0 k2 ¼ OPð
ffiffiffiffiffiffiffiffiffi
sn=n

p Þ. Since min1	 j	 sn jbj;0j
=

ffiffiffiffiffiffiffiffiffi
sn=n

p ! 1 as n ! 1, it is seen that

Pð signðbbjÞ 6¼ signðbj;0Þ for some j 2 f1; . . .; sngÞ
	 P

�
max

1	 j	 sn
jbbj � bj;0j � min

1	 j	 sn
jbj;0j

�
! 0:

Hence (37) holds with probability tending to one.
Second, we prove that (38) holds with probability tending to one. It suffices to prove that

P

�
max

snþ1	 j	 pn

				 1n
Xn
i¼1

p
1
ðYi; eXðIÞT

i
beb ðIÞ
n ÞwðXiÞXi;j

				\knw
ðIIÞ
min

�
! 1: ð39Þ
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By Taylor’s expansion, we have that

1

n

Xn
i¼1

p
1
ðYi; eXðIÞT

i
beb ðIÞ
n ÞwðXiÞXi;j ¼ 1

n

Xn
i¼1

p
1
ðYi; eX ðIÞT

i
ebðIÞ
0 ÞwðXiÞXi;j

þ 1

n

Xn
i¼1

p
2
ðYi; eXðIÞT

i
ebðIÞ�ÞwðXiÞfeXðIÞT

i ðbeb ðIÞ
n � ebðIÞ

0 ÞgXi;j;

with ebðIÞ�
located between ebðIÞ

0 and
beb ðIÞ
n . Then (39) holds if we can prove

P

�
max

snþ1	 j	 pn

				 1n
Xn
i¼1

p
1
ðYi; eX ðIÞT

i
ebðIÞ
0 ÞwðXiÞXi;j

				\ kn
2
wðIIÞ
min

�
! 1; ð40Þ

and

P

�
max

snþ1	 j	 pn

				 1n
Xn
i¼1

p
2
ðYi; eX ðIÞT

i
ebðIÞ�ÞwðXiÞfeXðIÞT

i ðbeb ðIÞ
n � ebðIÞ

0 ÞgXi;j

				\ kn
2
wðIIÞ
min

�
! 1:

ð41Þ

We first prove (40). Set p1i ¼ p
1
ðYi; eXðIÞT

i
ebðIÞ
0 Þ. Since logðpn � snÞ ¼ OðnÞ and

logðpn � snÞ ¼ o
P
fnk2nðwðIIÞ

minÞ2g, we see that

max
snþ1	 j	 pn

				 1n
Xn
i¼1

p1i wðXiÞXi;j

				 ¼ OPf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpn � sn þ 1Þ=n

q
g ¼ o

P
ðknwðIIÞ

minÞ:

This implies (40).

Second, we prove (41). Since kebðIÞ
0 k1\1 and kbeb ðIÞ

n � ebðIÞ
0 k2 ¼ OPð

ffiffiffiffiffiffiffiffiffi
sn=n

p Þ, it follows
that

kbeb ðIÞ
n k1 	kebðIÞ

0 k1 þ kbeb ðIÞ
n � ebðIÞ

0 k1 	kebðIÞ
0 k1 þ

ffiffiffiffi
sn

p kbeb ðIÞ
n � ebðIÞ

0 k ¼ OPð1Þ;

and then kebðIÞ�k1 ¼ OPð1Þ, thus

max
snþ1	 j	 pn

				 1n
Xn
i¼1

p
2
ðYi; eX ðIÞT

i
ebðIÞ�ÞwðXiÞfeXðIÞT

i ðbeb ðIÞ
n � ebðIÞ

0 ÞgXi;j

				
	C

ffiffiffiffi
sn

p kbeb ðIÞ
n � ebðIÞ

0 k
�
1

n

Xn
i¼1

jp
2
ðYi; eXðIÞT

i
ebðIÞ�ÞjwðXiÞ

�

¼ ffiffiffiffi
sn

p
OPð

ffiffiffiffiffiffiffiffiffi
sn=n

p
ÞOPð1Þ ¼ OPðsn=

ffiffiffi
n

p Þ ¼ o
P
fknwðIIÞ

ming:

Here wðIIÞ
minkn

ffiffiffi
n

p
=sn�!P 1 is used. Hence (41) is proved. h

The first part of Theorem 6 follows from the first part of Lemma 4. The second part of
Theorem 6 follows directly from applying Theorem 2 to the oracle subproblem (36). h

Proof of Theorem 7 It is easy to see that bbPMR

j ¼ argminb ‘
PMR�
j ðbÞ, where ‘PMR�

n;j ðbÞ ¼
‘PMR
n;j ðbajðbÞ; bÞ, and bajðbÞ satisfies n�1

Pn
i¼1 q1

ðYi; bajðbÞ þ Xi;jbÞ ¼ 0 for j ¼ 1; . . .; pn.

From (11), ba1ð0Þ ¼ � � � ¼ bapn ð0Þ. Let ba0 ¼ ba1ð0Þ. Then ba0�!P a0, where a0 ¼ Fðl
0
Þ with
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l
0
¼ EðY Þ. The rest of the proof contains two parts.

Part 1. For An ¼ kn
ffiffiffi
n

p
, we will show that bwðIÞ

maxAn ¼ OPð1Þ. It suffices to show that

there exist local minimizers bbPMR

j of ‘PMR�
n;j ðbÞ such that limd!0þ infn� 1 Pðmin1	 j	 sn

jbbPMR

j j[AndÞ ¼ 1: It suffices to prove that, for 1	 j	 sn, there exist some bj with jbjj ¼
2d such that

lim
d!0þ

inf
n� 1

P
�

min
1	 j	 sn

n
inf

jbj 	 d
‘PMR�
n;j ðAn bÞ � ‘PMR�

n;j ðAn bjÞ
o
[ 0

�
¼ 1; ð42Þ

and there exists some large enough Cn [ 0 such that

lim
d!0þ

inf
n� 1

P
�

min
1	 j	 sn

n
inf

jbj �Cn

‘PMR�
n;j ðAn bÞ � ‘PMR�

n;j ðAn bjÞ
o
[ 0

�
¼ 1: ð43Þ

Equations (42) and (43) imply that with probability tending to one, there must exist local

minimizers bbPMR

j of ‘PMR�
n;j ðbÞ such that An d\jbbPMR

j j\An Cn for 1	 j	 sn.

First, we prove (43). For every n� 1, when jbj ! 1,

min
1	 j	 sn

f‘PMR�
n;j ðAn bÞ � ‘PMR�

n;j ðAn bjÞg�jnAnjbj � max
1	 j	 sn

‘PMR�
n;j ðAn bjÞ�!P 1:

Thus (43) holds.
Second, we prove (42). Since An ¼ Oð1Þ, we see that jAn bj 	Oð1Þd ! 0 as d ! 0þ.

For 1	 j	 sn, by Taylor’s expansion,

‘PMR�
n;j ðAn bÞ ¼ 1

n

Xn
i¼1

QqðYi; bl0
Þ þAn b

1

n

Xn
i¼1

q
1
ðYi; ba0ÞfXi;j � EðXjÞg

þA2
n b

2

2

1

n

Xn
i¼1

q
2
ðYi; h�ijÞfba0jðAn b

�
j Þ þ Xi;jg2 þAn jnjbj;

where bl
0
¼ F�1ðba0Þ, h�ij ¼ hijðAn b

�
j Þ, hijðbÞ ¼ bajðbÞ þ Xi;jb and b�j is between 0 and b.

Thus we have that

min
1	 j	 sn

n
inf

jbj 	 d
‘PMR�
n;j ðAn bÞ � ‘PMR�

n;j ðAn bjÞ
o

�An min
1	 j	 sn

inf
jbj 	 d

�
ðb� bjÞ 1n

Xn
i¼1

q
1
ðYi; ba0ÞfXi;j � EðXjÞg




þA2
n

2
min

1	 j	 sn
inf

jbj 	 d

�
b2

1

n

Xn
i¼1

q
2
ðYi; h�ijÞfba0jðAn b

�
j Þ þ Xi;jg2

� b2j
1

n

Xn
i¼1

q
2
ðYi; c�ijÞfba0jðAnb

�
j Þ þ Xi;jg2



þAn min

1	 j	 sn
inf

jbj 	 d
fjnðjbj � jbjjÞg � I1 þ I2 þ I3;

where c�ij ¼ hijðAn b�j Þ, with b�j between 0 and bj. Let bC0 ¼ q00ðbl
0
Þ=F 0ðbl

0
Þ 6¼ 0. Then

bC0�!P C0, where C0 ¼ q00ðl
0
Þ=F 0ðl

0
Þ. We obtain
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I1 ¼ An min
1	 j	 sn

inf
jbj 	 d

fbC0ðb� bjÞcovðXj; Y Þg

þAn min
1	 j	 sn

inf
jbj 	 d

�bC0ðb� bjÞ 1n
Xn
i¼1

½ðYi � l
0
ÞfXi;j � EðXjÞg � covðXj; Y Þ�

�

�An max
1	 j	 sn

sup
jbj 	 d

hbC0ðbl0
� l

0
Þðb� bjÞ 1n

Xn
i¼1

fXi;j � EðXjÞg
i
� I1;1 þ I1;2 þ I1;3:

Choosing bj ¼ �2d signfbC0 covðXj; Y Þg, which satisfies jbjj ¼ 2d, gives

I1;1 ¼ An min
1	 j	 sn

inf
jbj 	 d

fbbC0 covðXj; Y Þ þ 2djbC0 covðXj; Y Þjg

�An djbC0j min
1	 j	 sn

jcovðXj; Y Þj � jbC0jcA2
n d:

We can see that jI1;2j ¼ OPðAnflogðsnÞ=ng1=2Þd; by the Bernstein’s inequality (van der Vaart

andWellner 1996, Lemma 2.2.11). Similarly, jI1;3j 	 o
P
ðAnflogðsnÞ=ng1=2Þd. For terms I2 and

I3, we observe that jI2j 	OPðA2
nÞ d2 and jI3j ¼ OðAn jnÞd. The conditions logðpnÞ ¼ oðnj2nÞ

and An=jn ! 1 imply that flogðsnÞ=ng1=2=An ¼ oð1Þ. Together with the condition
An=jn ! 1, we can choose a small enough d[ 0 such that with probability tending to one,
I1;2, I1;3, I2 and I3 are dominated by I1;1, which is positive. Thus (42) is proved.

Part 2. For Cn ¼ kn
ffiffiffi
n

p
=sn, we will show that bwðIIÞ

minCn�!P 1. It suffices to prove that for any

�[ 0, there exist local minimizers bbPMR

j of ‘PMR�
n;j ðbÞ such that limn!1 Pðmaxsnþ1	 j	 pn

jbbPMR

j j 	 Cn�Þ ¼ 1: Similar to the proof of Lemma 1, we will prove that for any �[ 0,

lim
n!1

P
�

min
snþ1	 j	 pn

n
inf
jbj¼�

‘PMR�
n;j ðCnbÞ � ‘PMR�

n;j ð0Þ
o
[ 0

�
¼ 1: ð44Þ

Since Cn ! 0 as n ! 1, we have that by Taylor’s expansion,

min
snþ1	 j	 pn

n
inf
jbj¼�

‘PMR�
n;j ðCnbÞ � ‘PMR�

n;j ð0Þ
o

� Cn min
snþ1	 j	 pn

inf
jbj¼�

h
b
1

n

Xn
i¼1

q
1
ðYi; ba0ÞfXi;j � EðXjÞg

i

þ C2n
2

min
snþ1	 j	 pn

inf
jbj¼�

h
b2

1

n

Xn
i¼1

q
2
ðYi; hijðCnb

�
j ÞÞfba0jðCnb

�
j Þ þ Xi;jg2

i
þ Cn inf

jbj¼�
ðjnjbjÞ � I1 þ I2 þ I3;

where b�j is between 0 and b. Similar to the proof in Part 1,

I1 ¼ Cn min
snþ1	 j	 pn

inf
jbj¼�

fbC0bcovðXj; Y Þg

þ Cn min
snþ1	 j	 pn

inf
jbj¼�

�bC0b
1

n

Xn
i¼1

½ðYi � l
0
ÞfXi;j � EðXjÞg � covðXj; Y Þ�

�

� Cn max
snþ1	 j	 pn

sup
jbj¼�

hbC0ðbl0
� l

0
Þb 1

n

Xn
i¼1

fXi;j � EðXjÞg
i
� I1;1 þ I1;2 þ I1;3:
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Then jI1;1j 	 oðCnBn�Þ; jI1;2j 	OP½Cnflogðpn � sn þ 1Þ=ng1=2�� and jI1;3j 	 o
P
½Cnflogðpn

�sn þ 1Þ=ng1=2��. Hence jI1j 	OP½Cnflogðpn � sn þ 1Þ=ng1=2��þ oðCnBnÞ�: For the term I2,

we have that jI2j 	OPðC2
nÞ�2: Note I3 ¼ Cnjn�: Since logðpnÞ ¼ oðnj2nÞ, Bn ¼ OðjnÞ and

Cn ¼ oðjnÞ, it follows that with probability tending to one, terms I1 and I2 are dominated by I3,
which is positive. So (44) is proved. h

Proof of Theorem 8 It is easy to see that bbMR

j ¼ argminb ‘
MR�
j ðbÞ, where ‘MR�

n;j ðbÞ ¼
‘MR
n;j ðbajðbÞ; bÞ, and bajðbÞ satisfies n�1

Pn
i¼1 q1

ðYi; bajðbÞ þ Xi;jbÞ ¼ 0 for j ¼ 1; . . .; pn. From

(11), ba1ð0Þ ¼ � � � ¼ bapn ð0Þ. Let ba0 ¼ ba1ð0Þ. Then ba0�!P a0, where a0 ¼ Fðl
0
Þ with

l
0
¼ EðY Þ. Let hn;jðbÞ ¼ d

db ‘
MR�
n;j ðbÞ ¼ n�1

Pn
i¼1 q1

ðYi; bajðbÞ þ Xi;jbÞ fba0jðbÞ þ Xi;jg. Then
h0n;jðbÞ ¼ n�1

Pn
i¼1 q2

ðYi; bajðbÞ þ Xi;jbÞfba0jðbÞ þ Xi;jg2 and h00n;jðbÞ ¼ n�1
Pn

i¼1 q3iðbÞ. The
minimizer bbMR

j of (17) satisfies the estimating equations, hn;jðbbMR

j Þ ¼ 0. The rest of the

proof consists of two parts.

Part 1. For An ¼ kn
ffiffiffi
n

p
, we will show that bwðIÞ

maxAn ¼ OPð1Þ, which is An=min1	 j

	 snjbbMR

j j ¼ OPð1Þ. That is, limd!0þ supn� 1 Pðmin1	 j	 sn jbbMR

j j\AndÞ ¼ 0. Using the

Bonferroni inequality, it suffices to show that

lim
d!0þ

sup
n� 1

Xsn
j¼1

PðjbbMR

j j\An dÞ ¼ 0:

With assumption (11) for the convex BD, hn;jð�Þ is an increasing function. Thus

PðjbbMR

j j\An dÞ	 Pfhn;jð�An dÞ	 0	 hn;jðAn dÞg:
Note that An ¼ Oð1Þ gives An d ! 0 as d ! 0þ. By Taylor’s expansion, for 1	 j	 sn, we
have that

hn;jð�An dÞ ¼ 1

n

Xn
i¼1

q
1
ðYi; ba0ÞfXi;j � EðXjÞg þ ð�An dÞ 1n

Xn
i¼1

q
2
ðYi; ba0Þfba0jð0Þ þ Xi;jg2

þ 1

2
ðAn dÞ2 1n

Xn
i¼1

q3iðAn d
�
j Þ � I1j þ I2j þ I3j;

with d�j 2 ð0; dÞ. Let bC0 ¼ q00ðbl
0
Þ=F 0ðbl

0
Þ 6¼ 0, where bl

0
¼ F�1ðba0Þ. Then bC0�!P C0,

where C0 ¼ q00ðl
0
Þ=F 0ðl

0
Þ. We obtain

I1j ¼ 1

n

Xn
i¼1

ðYi � bl
0
ÞbC0fXi;j � EðXjÞg

¼ bC0 covðXj; Y Þ þ bC0
1

n

Xn
i¼1

½ðYi � l
0
ÞfXi;j � EðXjÞg � covðXj; Y Þ�

� bC0ðbl0
� l

0
Þ 1
n

Xn
i¼1

fXi;j � EðXjÞg � I1j;1 þ I1j;2 þ I1j;3:

Because An ¼ Oð1Þ, jcovðXj; Y Þj � cAn, 1	 j	 sn, and both

max1	 j	 sn E½n�1
Pn

i¼1 q2
ðYi; ba0Þfba0jð0Þ þ Xi;jg2� and max1	 j	 sn Efn�1

Pn
i¼1 jq3iðAn
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d�j Þjg are bounded, we can choose d small enough such that, uniformly for all 1	 j	 sn, the

term I1j;1 ¼ bC0 covðXj; Y Þ dominates I2j and I3j. By assuming bC0 covðXj; Y Þ\0 without
loss of generality,

PðjbbMR

j j 	An dÞ	 Pð0	 hn;jðAn dÞÞ

	PðI1j;2 þ I1j;3 �CAnÞ	 4 exp
� �n2A2

n

C1nþ C2nAn

�
;

ð45Þ

for some positive constants C, C1 and C2, where the last inequality applies the Bernstein
inequality. By (45), for a small enough d[ 0,

Xsn
j¼1

PðjbbMR

j j\An dÞ	 4sn exp
� �n2A2

n

C1nþ C2nAn

�
¼ oð1Þ: ð46Þ

The equality in (46) follows from An ¼ Oð1Þ, knn ! 1 and logðsnÞ ¼ oðk2nn2Þ, where the
latter two are implied by the conditions knn=sn ! 1 and logðpnÞ ¼ oðk2nn2=s2nÞ.

Part 2. For Bn ¼ kn
ffiffiffi
n

p
=sn, we will prove that bwðIIÞ

minBn�!P 1, which is maxsnþ1	 j	 pn

jbbMR

j j=Bn ¼ o
P
ð1Þ. Namely, for any �[ 0, limn!1 Pðmaxsnþ1	 j	 pn jbbMR

j j �Bn�Þ ¼ 0. By

the Bonferroni inequality, it suffices to show that

lim
n!1

Xpn
j¼snþ1

PðjbbMR

j j �Bn�Þ ¼ 0:

Since hn;jð�Þ is increasing, we have that for j ¼ sn þ 1; . . .; pn,

PðjbbMR

j j �Bn�Þ	 Pfhn;jð�Bn�Þ� 0g þ Pfhn;jðBn�Þ	 0g: ð47Þ

Similar to Part 1, Bn ¼ oð1Þ gives that for j ¼ sn þ 1; . . .; pn,

hn;jð�Bn�Þ ¼ 1

n

Xn
i¼1

q
1
ðYi; ba0ÞfXi;j � EðXjÞg

þ ð�Bn�Þ 1n
Xn
i¼1

q
2
ðYi; ba0Þfba0jð0Þ þ Xi;jg2

þ 1

2
ðBn�Þ2 1n

Xn
i¼1

q3iðBn�
�
j Þ � I1j þ J2j þ J3j;

with ��j 2 ð0; dÞ. Since Bn ¼ oð1Þ, jcovðXj; Y Þj ¼ oðBnÞ, sn þ 1	 j	 pn , and from Condi-

tion E2, jJ2jj �Bn�g, as n ! 1, J2j dominates I1j;1 and J3j. Applying the Bernstein’s
inequality, for large n,

Pfhn;jðBn�Þ	 0g	 PðI1j;2 þ I1j;3 	 � CBn�Þ

	 4 exp
� ��2n2B2

n

C1nþ C2�nBn

�
;

ð48Þ

for some positive constants C, C1 and C2, where I1j, I1j;2 and I1j;3 are as defined in Part 1.
Similarly,
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Pfhn;jð�Bn�Þ� 0g	PðI1j;2 þ I1j;3 �CBn�Þ4

exp
� ��2n2B2

n

C1nþ C2�nBn

�
:

ð49Þ

Thus by (47), (48) and (49),

Xpn
j¼sn

PðjbbMR

j j �Bn�Þ	 8ðpn � snÞ

exp
� ��2n2B2

n

C1nþ C2�nBn

�
¼ oð1Þ:

ð50Þ

The equality in (50) follows from the conditions Bn ¼ oð1Þ, knn=sn ! 1 and logðpnÞ
¼ oðk2nn2=s2nÞ. h

Proof of Theorem 9 For part (i), note that for Xo ¼ ðXoðIÞT ;XoðIIÞT ÞT , eXo ¼ ð1;XoT ÞT andeXoðIÞ ¼ ð1;XoðIÞT ÞT ,

jbmðXoÞ � mðXoÞj ¼ jF�1ðeXoðIÞT beb ðIÞÞ � F�1ðeXoðIÞT ebðIÞ
0 Þj

	 jðF�1Þ0ðeXoðIÞT eb�ÞjkeXoðIÞTk2kbeb ðIÞ � ebðIÞ
0 k2;

for some eb�
located between ebðIÞ

0 and beb ðIÞ
. By Condition A4, we conclude that ðF�1Þ0

ðeXoðIÞT eb�Þ ¼ OPð1Þ. This along with kbeb ðIÞ � ebðIÞ
0 k2 ¼ OPðrnÞ and keXoðIÞk2 ¼ OPð ffiffiffiffi

sn
p Þ

implies that jbmðXoÞ � mðXoÞj ¼ OPðrn ffiffiffiffi
sn

p Þ ¼ o
P
ð1Þ: The rest of the proof is similar to that

of Theorem 9 in Zhang et al. (2010) and is omitted.
For part (ii), using the proof similar to Lemma A1 of Zhang et al. (2010), we obtain that

for any BD Q satisfying (4),

EfQðYo; bmðXoÞÞ j T n;X
og ¼ EfQðYo;mðXoÞÞ j Xog þ QðmðXoÞ; bmðXoÞÞ:

It follows that

EfQðYo; bmðXoÞÞ j T ng
¼ E½EfQðYo; bmðXoÞÞ j T n;X

og j T n�
¼ E½EfQðYo;mðXoÞÞ j Xog þ QðmðXoÞ; bmðXoÞÞ j T n�
¼ E½EfQðYo;mðXoÞÞ j Xog j T n� þ EfQðmðXoÞ; bmðXoÞÞ j T ng
¼ E½EfQðYo;mðXoÞÞ j Xog� þ EfQðmðXoÞ; bmðXoÞÞ j T ng
¼ EfQðYo;mðXoÞÞg þ EfQðmðXoÞ; bmðXoÞÞ j T ng:

Setting Q to be the misclassification loss implies

Rðb/ j T nÞ�Rð/BÞ;
which combined with part (i) completes the proof. h
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1.2 Additional numerical studies

1.2.1 Gaussian responses in Sect. 6.3

Random samples fðXi; YiÞgni¼1 of size n ¼ 200 are generated from the model,

Xi ¼ ðXi;1; . . .;Xi;pn ÞT 
Nð0;Rpn Þ; Yi j Xi 
Nðb0;0 þ XT
i b0; r

2Þ;

where b0;0 ¼ 1, b0 ¼ ð2; 1:5; 0:8;�1:5; 0:4; 0; . . .; 0ÞT with r2 ¼ 1. Here Rpn ðj; kÞ ¼ qjj�kj,
j; k ¼ 1; . . .; pn , with q ¼ 0:1. The qudartic loss is used as the BD.

Study 1 (raw data without outliers). For simulated data in the non-contaminated case, the
results are summarized in Table 7. The robust estimators perform very similar to the non-
robust counterparts.

Study 2 (contaminated data with outliers). For each data set generated from the model,
we create a contaminated data set, where 7 data points ðXi;j; YiÞ are contaminated as follows:
They are replaced by ðX �

i;j; Y
�
i Þ, where Y �

i ¼ YiIfjYi � mðXiÞj=r[ 2g þ 15IfjYi � m

ðXiÞj=r	 2g, i ¼ 1; . . .; 7,

X �
1;1 ¼ 5 signðU1 � :5Þ; X �

2;1 ¼ 5 signðU2 � :5Þ; X �
3;1 ¼ 5 signðU3 � :5Þ;

X �
4;3 ¼ 5 signðU4 � :5Þ; X �

5;5 ¼ 5 signðU5 � :5Þ; X �
6;9 ¼ 5 signðU6 � :5Þ;

X �
7;9 ¼ 5 signðU7 � :5Þ;

with fUig 
i:i:d:Uniformð0; 1Þ. Table 8 summarizes the results over 500 sets of contaminated
data. A comparison of each estimator in Tables 7 and 8 indicates that the presence of

contamination substantially increases the estimation errors EEðbebÞ and reduces either C-Z or
C-NZ. On the other hand, it is clearly observed that the non-robust estimates are more
sensitive to outliers than the robust counterparts.

To further assess the impact of the sample size n on the parameter estimates, we display

boxplots of ðbbj � bj;0Þ, j ¼ 0; 1; . . .; 8, using the PMR selection method for the weighted-L1
penalty, in Fig. 3 using n ¼ 200 and Fig. 4 using n ¼ 100, respectively. The comparison
supports the consistency of both the classical and robust estimates of large dimensional
model parameters for clean data as n increases, in addition to the stability of the robust
estimates under a small amount of contaminated outliers.

1.2.2 Real data analysis

We consider the classification of Colon cancer data discussed in Alon et al. (1999) and
available at http://genomics-pubs.princeton.edu/oncology/. It consists of 2000 genes and 62
samples, where 22 samples are from normal colon tissues and 40 samples are from tumor
tissues. Similar to the analysis in Sect. 7, the data set is randomly split into two parts, with
45 samples as training samples and the rest 17 as test samples. Table 9 summarizes the
average of the test errors (TE) and the average number of selected genes over 100 random
splits. We observe that robust procedures tend to select fewer genes than the non-robust
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procedures, without getting much increase in the test errors. This lends further support to the
practicality of the proposed penalized robust-BD estimation.

1.3 Numerical procedure for penalized robust-BD estimator in (3)

1.3.1 Optimization algorithm

Numerically, the penalized robust-BD estimators in (3) combined with penalties used in
Sects. 6 and 7 are implemented by extending the coordinate descent (CD) iterative algorithm

(Friedman et al., 2010), with the initial value ðb; 0; . . .; 0ÞT , where b ¼ logfðYn þ 0:1Þ=ð1�
Yn þ 0:1Þg and b ¼ logðYn þ 0:1Þ for Bernoulli and count responses respectively, using the
sample mean Yn of fYigni¼1. Namely, the loss term

LðebÞ ¼ n�1
Xn
i¼1

qqðYi;F�1ðeXT

i
ebÞÞwðXiÞ

in (3) is locally approximated by a weighted form of quadratic loss functions, and the
optimization solution of (3) is obtained by the CD method. Particularly, the gradient vector

and Hessian matrix of LðebÞ are
L0ðebÞ ¼ n�1

Xn
i¼1

p
1
ðYi; eXT

i
ebÞwðXiÞeX i;

L00ðebÞ ¼ n�1
Xn
i¼1

p
2
ðYi; eXT

i
ebÞwðXiÞeX i

eXT

i :

The quadratic approximation is supported by the fact that the Hessian matrix of LðebÞ
evaluated at the true parameter vector eb0 is

L00ðeb0Þ ¼ n�1
Xn
i¼1

p
2
ðYi; eXT

i
eb0ÞwðXiÞeX i

eXT

i

¼ E½Efp
2
ðY ; eXT eb0Þ j XgwðXÞeX eXT � þ o

P
ð1Þ;

which, combined with the property Efp
2
ðY ; eXT eb0Þ j Xg� 0 discussed in part (d) of Sect. 2.2,

indicates that with probability tending to one, the matrix L00ðeb0Þ is positive semidefinite.

Both p
1
ðy; hÞ and p

2
ðy; hÞ in L0ðebÞ and L00ðebÞ are calculated using (9), which incorporates

the Huber and Tukey w-functions whose derivatives w0ðrÞ can be substituted by its sub-
gradient or approximation.

1.3.2 Pseudo codes, source codes and computational complexity analysis

Algorithm 1 summarizes the complete procedure for numerically solving the “penalized
robust-BD estimator” in (3).
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To illustrate the computational complexity analysis, Tables 10 and 11 compare runtime of
the non-robust and robust procedures. All computations are performed using MATLAB
(Version: 9.12.0.1956245 (R2022a) Update 2) on Windows 11, 12th Gen Intel(R) Core(TM)
i9-12900, 2400 Mhz, 16 Core(s), 24 Logical Processors. MATLAB source codes are
available at GitHub https://github.com/ChunmingZhangUW/Robust_penalized_BD_high_
dim_GLM. For either clean or contaminated data, the algorithmic complexity depends on

Table 9 (Real data) Classifica-
tion for the Colon cancer data Deviance loss Exponential loss

Procedure wðrÞ Penalty TE # genes TE # genes

non-robust r SCAD 0.224 9.95 0.217 10.68

L1 0.190 18.64 0.204 16.26

wL1, MR 0.155 10.65 0.156 9.51

wL1, PMR 0.161 10.89 0.165 9.43

robust Huber SCAD 0.268 3.40 0.243 5.02

L1 0.282 5.84 0.226 10.42

wL1, MR 0.231 4.93 0.172 6.83

wL1, PMR 0.214 5.97 0.180 6.79

robust Tukey SCAD 0.247 3.91 0.263 3.84

L1 0.230 11.30 0.228 10.91

wL1, MR 0.185 7.45 0.166 7.54

wL1, PMR 0.184 7.90 0.169 7.31
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the type of response variables, the dimensionality and the procedure. Poisson-type responses
are more computationally intensive than Gaussian responses; robust procedures are slower
than the non-robust counterparts; higher dimensions demand more computational costs than
lower dimensional settings.
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Data availability The Lymphoma data studied in Sect. 7 is publicly available from Alizadeh et al. (2000); the
Colon cancer dataset in Appendix 1.2.2 is at http://genomics-pubs.princeton.edu/oncology/.

Table 10 The total CPU time (in
seconds) for overdispersed Pois-
son responses in 500 replications

Data Procedure n pn runtime

Table 1 raw non-robust 100 50 82

Raw non-robust 100 500 865

raw robust 100 50 14404

raw robust 100 500 16319

Table 2 contaminated non-robust 100 50 94

contaminated non-robust 100 500 1070

contaminated robust 100 50 18185

contaminated robust 100 500 21437

Table 11 The total CPU time (in
seconds) for Gaussian responses
in 500 replications

Data Procedure n pn Runtime

Table 7 raw non-robust 200 50 53

raw non-robust 200 500 672

raw robust 200 50 91

raw robust 200 500 800

Table 8 contaminated non-robust 200 50 63

contaminated non-robust 200 500 911

contaminated robust 200 50 96

contaminated robust 200 500 899

Figure 4 raw non-robust 100 50 49

raw non-robust 100 500 429

raw robust 100 50 106

raw robust 100 500 1154

Figure 4 contaminated non-robust 100 50 67

contaminated non-robust 100 500 610

contaminated robust 100 50 120

contaminated robust 100 500 1246
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Code availability MATLAB codes are available at https://github.com/ChunmingZhangUW/Robust_
penalized_BD_high_dim_GLM.
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