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Abstract

Statistical data analysis and machine learning heavily rely on error measures for regression,
classification, and forecasting. Bregman divergence (BD) is a widely used family of error
measures, but it is not robust to outlying observations or high leverage points in large- and
high-dimensional datasets. In this paper, we propose a new family of robust Bregman
divergences called “robust-BD” that are less sensitive to data outliers. We explore their
suitability for sparse large-dimensional regression models with incompletely specified
response variable distributions and propose a new estimate called the “penalized robust-
BD estimate” that achieves the same oracle property as ordinary non-robust penalized least-
squares and penalized-likelihood estimates. We conduct extensive numerical experiments to
evaluate the performance of the proposed penalized robust-BD estimate and compare it with
classical approaches, and show that our proposed method improves on existing approaches.
Finally, we analyze a real dataset to illustrate the practicality of our proposed method. Our
findings suggest that the proposed method can be a useful tool for robust statistical data
analysis and machine learning in the presence of outliers and large-dimensional data.
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1 Introduction

Advancements in high-throughput technologies have made it possible to collect sophisti-
cated, high-dimensional datasets, such as microarray data, genome-wide human SNP data,
high-frequency financial data, functional data, and brain imaging data. In comparison to
conventional datasets, where there are fewer variables than observations, large-dimensional
datasets involve variables that could be as many as, or even more than, observations. These
scenarios correspond to p, < n, p, ~ n, and p, > n, respectively, with p  being the number
of variables and »n being the number of observations. A fundamental problem common to
any large-dimensional dataset is that observations are more prone to outliers in either the
covariate space or the response space than those in low-dimensional datasets. In such
settings, outliers can lead to possible erroneous conclusions concerning statistical estima-
tion, but the mechanism of contamination can be quite complex and intractable in general. It
can also be difficult or even impossible to spot outliers in large-dimensional or highly
structured data. Hence, exploring and developing robust statistical estimation and inference
procedures that are resistant to outliers in large-dimensional data becomes increasingly
important.

In recent years, much attention has been focused on developing penalized estimates of
parameters in regression models with a large number of parameters. Examples include the
Lasso (Tibshirani, 1996), the SCAD (Fan & Peng, 2004), the adaptive Lasso (Zou, 2000),
the Dantzig selector (Candes & Tao, 2007), and the group Lasso (Meier et al., 2008), among
others. These penalized least-squares estimates or penalized-likelihood estimates are
obtained using a quadratic loss function or require full knowledge of the likelihood function.
The penalized “classical-BD” estimation was proposed in Zhang et al. (2010) for p, < n
and p, ~ n, where the error measure BD includes the quadratic loss, the exponential family
of distributions, the (negative) quasi-likelihood, and many others as special cases. However,
these non-robust estimates do not handle outlying observations. General tools for investi-
gating the robustness properties of penalized estimates, especially when p ~ n and p, > n,
seem to be much less developed.

It is well-known that the influence functions of classical (non-penalized) regression
estimates based on the quadratic loss function and likelihood are unbounded. Large devi-
ations of the response from its mean, as measured by the Pearson residuals, or outlying
points in the covariate space, can have a significant influence on the estimates. While robust
procedures in Bianco et al. (1996), Kiinsch et al. (1989), Stefanski et al. (1986) control
outliers for the generalized linear model (GLM), these procedures are limited to finite- and
low-dimensional problems. It remains unclear to what extent they are useful in large- and
high-dimensional settings. The works (Boente et al., 2006; Cantoni & Ronchetti, 2001)
developed robust quasi-likelihood estimates of finite-dimensional parameters. However, the
robust quasi-likelihood procedure is not available for other types of error measures, such as
the hinge loss for the support vector machine (SVM) (Vapnik, 1996) and the exponential
loss for AdaBoost (Freund & Schapire, 1997), which are commonly used in classification
procedures and machine learning practice. This is because these error measures do nof fall
into the (negative) quasi-likelihood category.

This paper aims to investigate the applicability of robust statistical inference for
regression estimation and classification procedures in large-dimensional (p, ~ n) and high-
dimensional (p, > n) settings, where the distribution of the response variable given
covariates may be incompletely specified. The proposed work is not a simple endeavor and
does not aim to solve all possible issues stemming from the combination of the “robustness
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property coupled with large-dimensionality”. The paper identifies major challenges and
presents new results below.

o In Sect. 2, we contribute to constructing a new class of robust error measures called
“robust-BD”. This is motivated by Bregman divergence (BD), which plays an important
role in quantifying error measures for regression estimates and classification procedures.
The quadratic loss function and negative quasi-likelihood are two widely used error
measures that, along with many others, belong to the family of BD. This newly proposed
“robust-BD” method broadens the scope of penalized estimation methods, greatly
facilitating the investigation of their asymptotic behavior in a systematic way. The new
method is applicable to all aforementioned error measures (e.g., the hinge loss and
exponential loss, which fail to be (negative) quasi-likelihood but belong to BD). The
“robust-BD” benefits from the flexibility and extensibility offered by BD. Nonetheless,
unlike the “classical-BD”, the “robust-BD” entails a bias-correction procedure that
complicates theoretical derivations as well as practical implementations; see concrete
examples in Sect. 2.3. Moreover, when p <n, justifying the influence function of a
“robust-BD” estimate for a p -dimensional parameter calls for re-examination and re-
derivation beyond the framework of Hampel et al. (1986), confined to a fixed-
dimensional parameter.

o In Sects. 3 and 4, we study the consistency and oracle property of the proposed
“penalized robust-BD estimates” in p, =~ n and p, > n settings, respectively. It is shown
that the new estimate, combined with an appropriately weighted L, penalty, achieves the
same oracle property as the ordinary non-robust penalized least-squares and penalized-
likelihood estimates, but is less sensitive to outliers, a very desirable property in many
applications. It will be seen that the robust counterpart eliminates the finiteness
assumption of some higher-order moments of the response variable Y, typically assumed
in the non-robust case. Nonetheless, dealing with large-dimensionality in the robust case
will face many more theoretical and computational challenges than in the non-robust
case. For example, the oracle property in the case p, ~ n could not be directly extended
to the case p, > n without requiring more technical assumptions and invoking more
careful mathematical treatments. For practical implementation, two data-driven selection
procedures for penalty weights, PMR and MR, will be proposed and justified for both
p, ~n and p > n. Unlike the selection method in Zhang et al. (2010) for penalty
weights which deals with p, ~ n and requires E(X) = 0 for the p -dimensional predictor
vector X = (X,...,X), )T, both the methods and theory developed in the current work
do not impose such a requirement, thus are more widely applicable. In the context of
large-dimensional inference, we demonstrate that the Wald-type test statistic based on the
“penalized robust-BD estimates” will be asymptotically distribution-free, whereas the
likelihood ratio-type test statistic will fail to be.

o In Sect. 5, we devise “penalized robust-BD  classifiers” based on the proposed
“penalized robust-BD estimates” in large- and high-dimensional binary classification.
We demonstrate that if a parameter estimate possesses the sparsity property and is
consistent at an appropriate rate, then the induced classifier attains classification
consistency. Hence, even for data contaminated with outliers, the choice of loss functions
for regression estimates invoked in the classifier has an asymptotically relatively
negligible impact on classification performance.
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There is a diverse and extensive literature on robust procedures for model selection. For
instance, Zou and Yuan (2008) proposed the composite quantile regression and the oracle
model selection theory for linear models. Theorem 3 of Zhang et al. (2009) shows that the
quantile loss function does not belong to the class of BD. Therefore, the “robust-BD” and
the quantile loss, as two operationally different robust alternatives, work in non-overlapping
frameworks with different motivations and demand theoretically distinct manipulations. The
work (Dupuis & Victoria-Feser, 2011) developed a fast algorithm for robust forward
selection procedure in linear regression, where p, <n.

The rest of the paper is organized as follows. Section 6 presents simulation comparisons
of the penalized “robust-BD” estimates with the classical ones, including classical-SVM and
robust-SVM for Bernoulli responses, to assess the performance in statistical model fitting,
variable selection, and classification rules. Section 7 analyzes a real dataset. Limitations and
open questions are discussed in Sect. 8. Notations, technical and algorithmic details, fig-
ures and tables, and additional analysis are collected in Appendix 1 (in the supplementary
materials).

2 Proposed robust penalized regression estimation

Let {(X1, 1), .., (X4, Y,)} be a sample of independent observations from some underlying
population, (X, Y), where X = (X;,..., X, )" € RP» is the input vector and Y is the output
variable. We assume the parametric model for the conditional mean function,

m(x) =E(Y | X =x) :F_l(ﬁo;o +x"By), (1)
together with the conditional variance function
var(Y | X =x) = V(m(x)), (2)

where F(-) is a known link function, F~! denotes the inverse function of F, B, € R' and
Bo = (Bio,-- pn;O)T € R?» are the unknown true intercept and regression parameters, and
the functional form of V(-) is known. It is worth noting that (1)—(2) include the GLM as a
special case. Moreover, they allow the conditional distribution of ¥ given X to be incom-
pletely (or partially) specified.

Let p, (v, 1) be a robust loss function (to be proposed in Sect. 2.1) which aims to guard
against outlying observations in the response space. We define the “penalized robust-

BD estimate” (EO, ﬁ) as the minimizer of the criterion function,

Py

1 n
0BosB) =~ 9y (Y5 (B + X B) wXD) + 40> wiglB) G)
=1 j=1

over B, € R and g = (B,,.. .,ﬁpn)T € RP», where w(-) >0 is a given bounded weight
function that downweights high leverage design points in the p -dimensional covariate
space, {w,;} represent non-negative weights for the penalty terms, and /4, >0 serves as a
regularization parameter. In practice, the weight function w(-) can be chosen in various
ways, such as through prior knowledge or data-driven methods. An empirical choice of w(-)
is provided at the beginning of Sect. 6. Data-driven procedures for properly selected penalty
weights {w, ;} will be carefully developed in Sects. 3.5 and 4. Optimization solutions of (3)
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will be discussed in Sect. 6. Hereafter, we write X = (1,X”)” and B =By B )" to sim-
plify notations.

2.1 Construction of robust loss functions p,(-, - )

We propose a class of robust loss functions p,, which is motivated from Bregman divergence
(BD), anotion commonly used in the machine learning applications. The original form of BD,
which is a bivariate function introduced by Brégman (Brégman, 1967), is defined by

Oy (v, 1) = —q(v) +q(u) + (v — w)q' (w), (4)

where ¢(-) is a given concave differentiable function. For an extensive literature on BD, see
Altun and Smola (2006), Efron (1986), Gneiting (2011), Griinwald and Dawid (2004), Laf-
ferty et al. (1997), Lafferty (1999), Vemuri et al. (2011) and references therein. The BD is

suitable for a broad array of error measures Q,. For example, g(u) = au — 2 for any constant

a yields the quadratic loss Q,(y, u) = (v — 11)*. For a binary response variable y, g(u) =
min{y, (1 — p)} gives the misclassification loss Q, (v, ) = I{y # I(u > 1/2)}, where I(:)
denotes the indicator function; g(u) = —2{plog(u) + (1 — u)log(l — u)} gives the Ber-
noulli deviance-based loss Q,(yv,n) = —2{ylog(n) + (1 —y)log(l — w)}; q(u) =
2min{u, (1 — p)} results in the hinge loss; ¢(1) = 2{u(1 — u)}l/2 yields the exponential loss
Oy(v, 1) = exp[—(y — .5) log{p/(1 — w)}]. In the cases of p, < n and p, =~ n, Zhang et al.
(2010) developed the penalized “classical-BD” estimation.

Despite a wide range of applications of BD in many different domains, its original form,
including the quadratic loss used in the ordinary least squares estimates for regression models,
yields estimates not resistant to outliers. The robust loss functions for boosting was studied in
Kanamori et al. (2007). To the best of our knowledge, there is very little work in the literature
on systematically developing robust forms of BD and related inference, in the presence of
outliers. In the present work, we describe the construction of a “robust-BD”. In accordance
with the conditional variance function in (2), let#(y, u) = (v — p)/+/V (1) denote the Pearson
residual, which reduces to the standardized residual for linear models. Following (4), we get
partial derivatives 00, (v, u)/0u = (v — p)g” (1), which can be rewritten as

%Qq(y, 1) = r(y, ){q" (W7 ()}

To guard against outliers with large Pearson residuals, we replace r(y, i) by ¥ (r(y, 1)), where
Y(-) is chosen to be a bounded, odd function. There is a wide class of functions /() satisfying
these requirements; feasible choices include the Huber y-function (Huber, 1964) defined by

U(r) =rl(r| <c) + ¢ sign(r) I(|r] > ¢), (5)

and the Tukey biweight function formed by ¥(r) = r{1 — (r/¢)*}* 1(|r| < ¢), where ¢ is a
positive constant. The proposed robust version of BD, p,, is formed by

plvon) = | W) (g ()T s — Glu), (6)

where the bias-correction term, G(u), serves to entail the “conditional zero-mean property”
(see part (b) of Sect. 2.2) of a non-penalized and low-dimensional parameter estimate (i.e.
minimizing (3) in the case of 4, = 0 and p, <n) and satisfies

@ Springer



3366 Machine Learning (2023) 112:3361-3411
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Fig. 1 Plots of p,(y, u) (left panels), p, (v;0) (middle panels) and p,(y; 0) (right panels) for the Bernoulli
response y = 1. In each panel, solid line: using “robust-BD” with Huber -function (5) and ¢ = 1.345; dashed
line: using “classical-BD”. Top panels: deviance loss used as the BD; bottom panels: exponential loss used
as the BD

G'(1) = g1 (wH{d" (W V(w)},

with
gi1(m(x)) = E{y(r(Y,m(x))) | X = x}. (7)

See Sect. 2.3 for explicit expressions of G(u) for Bernoulli responses. We call p, (-, -) defined
in (6) the “robust-BD”, and call the resulting parameter estimate which minimizes (3) the
‘penalized robust-BD estimate”. An illustrative plot of “robust-BD”, as compared with the
classical-BD, is displayed in Fig. 1.

As a specific example of the class p, of “robust-BD” in (6), the robust (negative) quasi-
likelihood in Boente et al. (2006) and Cantoni and Ronchetti (200 1) can be recovered by setting
the generating g-function of BD to be g(u f H(s — V' (s)ds, where a is a finite constant
such that the integral is well-defined. More generally, the availability of the necessary and
sufficient conditions as given in Theorem 3 of Zhang et al. (2009) for an error measure to be a
BD enables the construction of the corresponding “robust-BD” from expression (6).

2.2 General properties of “robust-BD” p,

We make the following comments regarding features of the “robust-BD”. To facilitate the
discussion, we first introduce some necessary notation. Assume that the quantities

@ Springer



Machine Learning (2023) 112:3361-3411 3367

p0:0) = 0, (1, (0) = 0.1, ®)

exist finitely up to any order required. Then we have the following expressions,

p, (7 0) = {Y(r(y, ) — @1 (W H" (W V() }/F (1)
p,(1;0) =Ao(y,u)+{¢(r(y,u>)— g1 (u )}Al( ), (9)
p,(1;0) = A2 (y, 1) + {(r(y, 1)) — &1 (1) 347 (1) /F' (),

where u = F~1(0),

_ y—p VW : q" (1)

Aoy 1) = =W o) {1+ NN }+g1<u>\/V<u>} 0 (H)}z,
Ar(w) WV (1) +271" (W) V" (W) / V()3 (1) —q" () V () F" (w)]/ {F' (1)
}', and AZ(%M) = [aAO(% M)/aMJr@{lﬁ(r(% W) —gl(u)}/@MAl( )]/F'( )- Paftlcularly,
p, (»;0) contains Y(r); p,(y;0) contains y(r), Y'(r), and 1//'( )r' p,(»; 0) contains (r),

W (r), () (r), W (r)r, and Y (r)r?, where r = r(y, 1) ©)/~/V (1) denotes the
Pearson residual. Accordingly, {p (y;0):j=1,2,3} depend on y through xp( ) and its

derivatives coupled with .

(a) Relation between the “robust-BD” p, and “classical-BD” Q,. For the par-
ticular choice of y(r) = r, it is clearly noticed from (7) that g;(-) = 0 and thus G’(-) = 0. In
such a case, the proposed robust p, (v, 1) in (6) reduces to the conventional form, Q, (v, 1),
of BD; similarly, p (y; 0) reduces to q (v; ), where

4
q,(»0) :quO@F_](Q))J:O,I,.... (10)
Accordingly, q, (v; 0) is linear in y for fixed 0. As a comparison,

q,(5.0) = (v = ©g? (W) /FO (w),
q,(70) = =47 (W) /{TFV (W} + (v = A1 (w),
q, (7 0) =4>(p) + (v — w43 (u),
where A14(1) = {¢° (WF () = P WFO (W}/{FO (W}, 42() = {2 (wF"

() + 3¢ (WF (W} /{F (u )}4 and Az( ) = [g“ {F (1)} =3¢ (WF (WF®
(1) — 2 (WFD (m)F® (n)+ 3¢ () {F (u)}*]/{FV (1)} . In addition, assuming that

q,(»;0) > 0 for all 0 € R and all y in the range of Y, (11)
we see that Q, (Y, F~! ()N(Tﬁ)) is strictly convex in .

(b) “Conditional zero-mean property”. For the proposed class of “robust-BD” p,
induced by the classical-BD Q,, it follows from the expression of p (y;0) in (9) that

E{p, (Y; X Bo) | X} =0.
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(c) Bounded influence function. When Z, =0 in (3) and p, <n, the “robust-
BD estimate” defined by minimizing (3) is characterized by the score function and influence
function below,

¥, (Y.X) =p (VX' By) w(X)X, (12)

IF(Y,X:, ) = {M(y, )} ¥, (Y.X), (13)

where M (¥, ) = —E{0W, (Y.X)/0B} = —E{p,(Y: X Bo)w(X)XX }inote that justify-
ing the influence function of a “robust-BD” estimate for a p -dimensional parameter calls
for re-examination and re-derivation beyond the framework of Hampel et al. (1986) for a
fixed-dimensional parameter. Thus, the boundedness of 1/(-) and the weight function w(-)
ensure a bounded influence function. In contrast, for non-robust counterparts, with () = r
and w(-) = 1, the influence function is unbounded. As to the score function, the “condi-

tional zero-mean property” in part (b) ensures that under the parametric model (1),
E{y 2% (Y,X)} = 0 holds for the proposed class of “robust-BD” p, induced by the classical-

BD Q,.

(d) Conditions under which E{p,(Y; X Tﬁo) | X} > 0. This is a very minimal con-
dition relevant to discussing Theorems 1 and 2, assumption (19) and numerical mini-

mization of (3). First, as observed from (9), the sign of E{p,(Y; X Tﬁo) | X} is invariant
with the choice of generating g-functions of BD. Second, one sufficient condition for

~T~
E{p,(Y;X B,) | X} >0 is that the conditional distribution of ¥ given X is symmetric about

m(X). Third, another sufficient condition for E{p,(Y; X Tﬁo) | X} >0 is that
E[y(r(Y,m(X))) %(X)log{f(Y | X,m(X))} | X] >0, which holds for y(r)r > 0 (applicable
to Huber and Tukey /-functions), and the conditional distribution of ¥ given X belongs to
the exponential family, where f denotes the conditional density or probability of ¥ given X.
Fourth, in the particular choice of /() = r, which is unbounded, a direct computation gives
that E{p, (Y; )?TEO) | X} = —¢" (m(X))/{F'(m(X))}* >0, for any conditional distribution
of Y given X.

2.3 Difference between “robust-BD” and “classical-BD”

To better distinguish between the “robust-BD” and “classical-BD”, we derive below their
closed-form expressions for the Bernoulli responses, using the canonical link
0 =log{p/(1 — w)}, Huber y-function, and the deviance loss and the exponential loss as
the BD. In that case, assume ¢ > 1 in the Huber y/-function (5), and define two constants
Ci=1/(1+¢c*) and C, =1—C;. Results in the case of 0<c<1 can be similarly
obtained.
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For the deviance loss employed as the BD, the “robust-BD” in (6) takes the form,

P, 1) =p* (v, 1) — G(w),

where
—2log(1 — u)(1 —y) — [4c{sin™' (/@) —sin~' (vC1)}
+21og(C1)ly, if0<u<Cy,
P (yp) =4 —2log(1 — w)(1 —y) — 2log(n)y, if ) <pu<Cy,
—2log()y + [4c{sin~! (/i) —sin~' (VC2)}
( —21log(C1)](1 —y), ifG<p<l,
—2(1 = p) = 2¢{sin"! (/) —sin ' (VC1) —/V ()}, if0<pu<Cy,
G(,U) =<0, if Cy<u<Cy,
—2p+ 2c{sin” (/) — sinT (VC2) + /V ()}, ifC<u<l.

The two related derivative quantities are

20— w{p+ey/V(W}, if0<u<Cy,
p,(10)=14 —2(v— ) ifC,<u<GC,
—2(y— w)+ey/Vp}, ifC<u<l,

2V u{2u—y\/ (u +C/2 p=y)(1=2p) +cV ()},

p,(1;0) =4 2V(w),if C; <pu<Gy,

2V V(W1 =2p+y)v/ V(1) +¢/2(p—y)(1 = 2p) +cV (1)},

The “classical-BD” is Q,(y, u) = —2log(1 — u)(1 —y) —2log(n)y, and the two related
quantities are q, (y;0) = —2(y —p) and q, (y;0) =2V (u).
Analogously, for the exponential loss used as the BD, the “robust-BD” counterpart is

represented by p, (v, 1) = p*(v, 1) — G(u), where

/(1= p)(1—y) —c/2{log(u/(1—p)) +2log(c) -2}y, f0<u<Ci,
P =4 {u(1=y)+ 1 =wy}/VV (W), if Oy <u< Gy,
V(=) /uy+c/2{log(p/(1 = p)) —2log(c) +2} (1 —y), fC<p<l,

{sin™' (/@) —sin™! (v/C1)} +¢/2{log(1 — p) —log(C2)}, ifO<u<Cy,
G(u) =10, ifC) <u<Cy,

—{sin ! (VE) —sin " (VT2)} + ¢/2{log () ~log(C2)}, I Co<u<l.

The two related derivative quantities are

=/ (1= +c}/2, if0<u<ay,
p, (v;:0) = —=w/{2VV (W},  ifCi<p<Gy,
(=W =@ /u+e}/2, ifC<p<l,
1/ (T=w) (1 =) /4= (1=20)\/V (1) /4+¢/2V (1), ifO<p<Ci,
p,(50) =< {u(1—y)+(1—wy}/{4/V (W)}, ifCy<p<C
V=10 /w44 (1=20)\/V () /4+¢/2V (), if G <p<l.
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The “classical-BD” is Q, (v, pt) ={u(1—y)+ (1 —pn)y}//V (1), and the two related quan-
tities are q, (y;0) =—(y—pw)/{2/V (1)} and q,(y;0) = {u(1 =)+ (1 = wy}/{4/V (1)}

In summary, for both types of “classical-BD”, which are unbounded, the corresponding
versions of “robust-BD” are bounded. See the left panels of Fig. 1 with the response y = 1,
where the “classical-BD” goes to infinity as u approaches zero. (The case of y = 0 will be
similar.) From the middle and right panels, p, (; 0) and p, (y; 0) associated with the “robust-
BD” are always bounded. In contrast, for the exponential loss, the non-robust counterparts
for the “classical-BD” are unbounded. Moreover, we observe from each panel that the
“robust-BD” and “classical-BD” differ at lower and upper tails of u, but coincide at the
intermediate values of u.

3 Robust estimation with large-dimensions: p, ~ n

This section investigates the statistical properties of the “penalized robust-BD estimate”
defined by minimizing (3) in sparse large-dimensional parametric models with p ~ n.
Throughout the paper, it is assumed that some entries in f§, are exactly zero. Without loss of

generality, write X = (XN, X" and g, = (ﬁ(()I)T, ﬁ(()H)T)T, where the ﬁ(()l) part collects all
non-zero coefficients, and ﬁ(()H) = 0. Let s, denote the number of non-zero coordinates of f,,

and set B, = (Bo-o BI)". Correspondingly, write x" = (1, X017 and E(I) = (B, BV
It will be demonstrated that the impact of penalty weights {w,;} in (3) on the penalized
“robust-BD” estimate is primarily captured by two quantities, defined by

a _ .
min = min_w

W(I) = max Wn/', w.
’ §p+1 <j Spn

nj-
max 1</ <5, J

3.1 Consistency

Theorem 1 guarantees the existence of a \/n/s,-consistent local minimizer of (3). In par-
ticular, Theorem 1 allows the dimension to diverge with 7 at the rate p, = o{n(3+9/(4+9)}
for any 0 >0, as long as the number of truly non-zero parameters fulfills that
Sy = O{nl/(4+5)}.

Theorem 1 (existence and consistency: p, ~ n) Assume Conditions A0, A1, A2, A4, AS,
A6, A7 in Appendix 1.1, Wik = Op{1/(Zn\/n)} and there exists a constant M € (0, 00)
such that lim,_, P(W(H) Jn>M)=1.If s*/n — 0 and s,(p, — s,) = o(n), then there

min
exists a local minimizer B of (3) such that || B — Boll, = Op(r/sx/n), where || - |, denotes
the Euclidean norm.

To clarify the distinction between Theorem 5 of Zhang et al. (2010) and Theorem 1 of this
paper, we make the following comparison. (i) Theorem 5 of Zhang et al. (2010) uses the
classical-BD, corresponding to y/(r) = r in (6), and assumes the finiteness of some moments
of Y. (i) Condition A5 of our Theorem 1 uses the robust-BD and assumes the boundedness
of Y(r), thus excluding (r) = r, but avoids the moment assumption. Thus, our Theorem 1
is not applicable to the case of /() = r in (6) associated with a classical-BD of Zhang et al.
(2010).
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3.2 Oracle property

To investigate the asymptotic distribution of the penalized robust-BD estimate B, we define
three square matrices of size (s, + 1) by WV = diag(0, w,.1, ..., w,,) and

— (70 — =7
QY —E{p}(Y; X By )W XX X},

HY = E{p,(v: X" ) w)xVx V7.

n

Both Q’g) and HV depend on the choice of BD, weight function w(-), and the -function
V()

Following Theorems 1, 2 obtains the oracle property of the /n/s,-consistent local
minimizer. Namely, if the “robust-BD” is used as the loss function for parameter estimation,
then the penalized robust-BD estimates of the zero parameters take exactly zero values with
probability tending to one, and the penalized robust-BD estimates of the non-zero param-
eters are asymptotically Gaussian with the same means and variances as if the zero coef-
ficients were known in advance.

Theorem 2 (oracle property: p, ~ n) Assume Conditions A0, A1, A2, A4, AS, BS, A6, A7
in Appendix 1.1.

@ s2/n=0(1) and wr(rljzl/ln\/ﬁ/ snp"Loo as n — oo, then any +/n/s,-consistent
oo = =T SIDT, ¢ . (1)
local minimizer f = (B~ ,p ) of (3) satisfies P(f ~ =0) — 1.
(i) Moreover, if wiky = Op{1/(2n\/n)}, s)/n — 0 and min, <; <, |Bol/\/sn/n — o0,
then for any fixed integer k and any k x (s, + 1) matrix 4, such that 4,47 — G fora
k x k nonnegative-definite symmetric matrix G, then \/ﬁAn(Qg))_l/ ? [H,SI){E(D
() . =My, L . ~(I) . .
—Bo } + W sign{B, }]—N(0.G), where sign{f, } = (sign(f,), sign(f,),

e sign(ﬁsn))T.

Remark 1 In Theorem 2, Condition B5 extends the positive-definiteness assumption of

E{)Nf (I))~( (I)T} in the non-robust and fixed-dimensional case to the robust and large-dimen-
Biol/+/sn/n — 00 is relevant to the magnitude of
coefficients for significant variables which can be selected, and is fulfilled when

sional case. The assumption min; <<,

min; <<, [B0] > Cn=*/5 for a constant C > 0.

3.3 Comparison with the penalized “classical-BD” estimate

Comparisons are made between the penalized “robust-BD” and “classical-BD” estimates. (I)
The penalized “classical-BD” estimate in Zhang et al. (2010) requires E(Y?) <oo for the
consistency and requires finiteness of some higher-order moments of Y for the oracle
property. These requirements are avoided in the “robust-BD” counterpart. (II) The two types
of penalized estimates appear to share similar forms of the asymptotic distribution, except

that matrices Q" and HV for the “classical-BD” estimate are given by
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ST (D), () = ()7 — (72 (1), = () = (7
E{q/(:X " B )X 'X "}, E{q,(;X B, )X X},

respectively. Hence, the differences are captured by the distinction between the robust
versions, {p (; 9)}]?:1 (defined in (8)) and weight function w(-), used in the penalized

“robust-BD” estimate and the non-robust counterparts, {q, (v; 0) }le (defined in (10)) and

w(:) = 1, used in the penalized “classical-BD” estimate.

As observed from (12)—(13), a bounded function p, (y; ) is introduced from a bounded
function (r) to control deviations in the Y-space, and leverage points are down-weighted
by the weight function w(X). In contrary, q, (y; 0) is not guaranteed to be bounded. It is then
clear that for penalized “robust-BD” estimates of non-zero parameters, the choice of a
bounded score function ensures robustness by putting a bound on the influence function.
Such property is not possessed by the penalized “classical-BD” counterparts.

3.4 Hypothesis testing

We consider the hypothesis testing about Bél) formulated as
H, :A,lﬁél) = Oversus (14)

where 4, is a given K x (s, + 1) matrix such that 4,47 equals a k x k positive-definite
matrix G. This form of linear hypotheses allows one to simultaneously test whether a subset
of variables used are statistically significant by taking some specific form of the matrix 4,;
for instance 4, = [, Ok, +1-k] yields 4,47 = I for a k x k identity matrix.

In the context of non-robust penalized-likelihood estimation, Fan and Peng (2004)
showed that the likelihood ratio-type test statistic asymptotically follows a chi-squared
distribution under the null. It is thus natural to explore the extent to which the likelihood
ratio-type test can feasibly be extended to the “robust-BD”. Our derivations (with details
omitted) indicate that the resulting asymptotic null distribution is generally not chi-squared,
but a sum of weighted chi-squared variables, with weights involving unknown quantities,
thus not distribution free, and holds under restrictive conditions.

To ameliorate this undesirable property, we propose a robust generalized Wald-type test
statistic of the form,

W, = n{d, By L, (A ) @) ATy 1, 5,

g
@

i

where 0 = w1 5 (7 X ) w2
ﬁ(l) N L OT%[ Ny DO . . . o

, =0 > p,(Ys X" B )w(X;)X, X; . This test is asymptotically distribu
tion-free, as Theorem 3 justifies that under the null, ¥, is asymptotically chi-squared with k
degrees of freedom.

and

Theorem 3 (Wald-type test under Hy based on robust-BD: p, ~ n) Assume Conditions A0,
Al, A2, C4, A5, B5, A6, A7 in Appendix 1.1, and wI(Ill)ax = 0,{1/(Zn/n8,)}. If 53 /n — 0
and min <j <, |Biol/\/Sn/n — 00 as n — oo, then Wnixﬁ under the null Hy in (14).
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Since the influence function of E(I) is bounded, Proposition 2 of Cantoni and Ronchetti
(2001) can be modified to show that the asymptotic level of the robust test statistic ¥, under
a sequence of e-contaminations is bounded. Similarly, the asymptotic power is stable under
contamination. Details are omitted for lack of space.

3.5 Proposed selection for penalty weights
In practice, the weights {w, ;} in the penalty part of (3) need to be selected and their validity

also needs to be justified. To accommodate the general error measures, we propose two
procedures. The first one, called the “penalized marginal regression” (PMR) method, selects

the data-dependent penalty weights w, ;, for each individual j = 1,...,p,, according to
R ~PMR
waj =1/1B; 1, (15)

~PMR PMR
, /3

where Ej satisfies that (%; ) € R? minimize the criterion function

éPMR

N ZQq Yo, F~ (o + XiB)) + 1l B (16)

over (a, f§), with some sequence «,, > 0, and X;; denoting the jth variable in the ith sample.
An alternative procedure, called the “marginal regression” (MR) method, selects the
penalty weights w, ;, for each individual j = 1,...,p,, by means of

~MR

~MR MR MR 2 .. . .. .
where f3;  satisfies that ( ;B; ) € R” minimize the criterion function

ﬁMR ZQ!] Yi, F~ (O“"Xwﬁ)) (18)

over (o, f3).

Note that (16) and (18) each involves a univariate predictor with the intercept term. Thus
fast bivariate optimization solutions of (16) and (18) would be feasible even when p, > n.
Compared with the PMR method, the MR method gains computational superiority with less
computational cost.

Theorems 4 and 5 indicate that under the assumptions on the correlation between the
predictor variables and the response variable, the penalty weights selected by either the
PMR or MR method satisfy the conditions on {w,;} in Theorem 1.

Theorem 4 (PMR for penalty weights: p, ~ n) Assume (11) and Conditions A0, Al, A2,
B3, A4, A6, A7 in Appendix 1.1. Assume E1 in Appendix 1.1, where A, = Ay\/n, Ap/Kn —
oo and B,/k,=0(1) for K, in (16). Suppose In/n=0(1), A, =o(k,) and

MR
log(p,) = o(nk2). Then there exist local minimizers {ﬁ 5');1 of (16) such that thepenally

weights {wnJ}j.’:l defined in (15) satisfy that w wmax = Op{1/(Jp\/n)} and w )/1 —00 as

0 ~(1D)

needed in Theorem 1, where W, = max| <<y, Wyj and Wy = ming (1 <j<, Wp.
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Theorem 5 (MR for penalty weights: p, ~ n) Assume (11) and Conditions A0, A1, A2, B3,
A4, A6, A7 in Appendix 1.1. Assume E2 and El in Appendix 1.1, where A, = J,+/n and
B, = Jn. Suppose n\/n=O(1), iy — 0, iyn/s, — oo and s>log(p,) = 0(/1,21112). Then

~MR
there exist local minimizers ﬁj of (18) such that the penalty weights w,; defined in (17)
satisfy that WY = Op{1/(Jy/n)} and ")

i unLoo as needed in Theorem 1.

It should be pointed out that the PMR method here differs from the weights selection method in
Zhang et al. (2010), which is restricted to p, ~ n, excludes the intercept term in (16) and
requires E(X) = 0 to satisfy the conditions on {w,;} in Theorem 1. In contrast, the PMR
method here removes that requirement and will also be applicable to p, > n; see Theorem 7.

4 Robust estimation with high-dimensions: p, > n

This section explores the behavior of penalized robust-BD estimates in sparse high-dimen-
sional parametric models when p, is allowed to grow faster than n. Evidently, the technical
conditions (e.g., in Theorem 1) on p, in Sect. 3 are violated for p, > n. Thus, directly carrying
through the proofs in Sect. 3 to the counterpart of p, >> n is infeasible. To facilitate the study in
the case of p, > n, we impose a convexity assumption on the “robust-BD”:

p,(»;0) > 0 for all 0 € R and all y in the range of Y. (19)

Under this assumption, p, (Y, F~! (X Tﬁ)) is strictly convex in B.

Apparently, assumption (19) is stronger than E{p (Y; X Tﬁo) | X} >0 discussed in
Sect. 2.2; relaxing (19) will be desirable but is not pursued in this paper. We consider here
particular cases where assumption (19) is practically/approximately achievable and theo-
retically relevant for high-dimensional settings.

Case 1:  Forany observation (X, Y) such that the conditional distribution of Y given X is
symmetric about m(X), the use of a quadratic loss function combined with an
identity link, and a constant conditional variance ensures that p, (y; 0) = 2y/(r
(v,0)) >0, for a monotone non-decreasing -function. Thus, the Gaussianity
assumption on the conditional distribution of ¥ given X is relaxed.

Case 2:  Recall that if y(r) =r, then p (v;0) = q,(y;0), and thus condition (19) is
equivalent to condition (11). Indeed, condition (11) holds broadly for nearly all
commonly used BD. Examples include the quadratic loss function, the deviance-
based loss and exponential loss functions for the Bernoulli responses, and the
(negative) quasi-likelihood for over-dispersed Poisson responses, among many
others. The implication is that for high-dimensional data, if we are most
concerned with dealing with outliers arising from the explanatory variables, we
may employ (r) = r for Yalone while retaining the weight function w(-) on the
covariates X. This is particularly relevant to samples with Bernoulli or Binomial
responses, where both the parameter space and the response space are bounded,
and thus is applicable to a wide class of classification procedures.

Theorem 6 states that the oracle property remains true, under suitable conditions, for the
penalized robust-BD estimates in the p > n settings. Due to the technical challenge from
p, > n, Theorem 6 contains stronger assumptions than those in Theorem 2 (with p, ~ n).
Lemma 4 in Appendix 1.1 provides key proofs for Theorem 6.
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Theorem 6 (oracle property: p, > n) Assume (19) and Conditions A0, Al, A2, A4, AS,
B5, A6, A7 in Appendix 1.1. Suppose s* /n — 0, log(p, — s,)/n = O(1), log(p, — s,)/{ni>

(wgﬂ)z} = 0,(1) and min, <; <, |B;ol/\/sn/n — 00. Assume Wik = Op{1/(4n/n)} and

Wt A /15y —00.
. = (1
@) Then there exists a global minimizer f of (3) such that P(f w_ 0) — 1.
(i) Moreover, if s> /n — 0, then for any fixed integer k and any k x (s, + 1) matrix 4,
such that 4,47 — G for a k x k nonnegative-definite symmetric matrix G, then

- S RN
Vid, Q) PHD (B — By ) + W sign{B, }]-=N(0,G).

The conditions s°/n = o(1), log(p, — 5,) = O(n) and log(p, — s,)/{(w)222n} = 0,(1)

min

impose the constraints on s, and p, simultaneously. To illustrate, take s, = n“, where
0<a<1/5. Then we can take wl(rljzl = n"/(Jy/n) for b > a, namely, n)2 {wgﬂ}z =n*. A
sufficient condition for the model dimension p, 6 is that log(p, —s,) = O(n) and
log(p, — s,) = o(n*?). So log(p, — s,) = min{o(n**), O(n)}. This indicates that Theorem 6
allows p, = exp{o(n**) A O(n)}, which grows nearly exponentially fast with 7.

Regarding the selection of penalty weights, the PMR and MR methods proposed in
Sect. 3.5 with p, ~ n continue to work well for selecting weights with p, > n. The validity
is presented in Theorems 7 and 8, which again do not require E(X) = 0.

Theorem 7 (PMR for penalty weights: p, > n) Assume (11) and Conditions A0, Al, A2,
B3, A4, A6, A7 in Appendix 1.1. Assume El in Appendix 1.1, where A, = i,\/n,
A, [, — 00, and B, [k, = O(1) for k, in (16). Suppose A,\/n = O(1), Jy\/n/s, = o(k,)

~PMR
and log(p,) = o(ni2). Then there exist local minimizers . of (16) such that the penalty

weights w, ; defined in (15) satisfy that vAvgzix = Op{1/(Au/n)} and ngiilin\/ﬁ/snioo as
needed in Theorem 6.

Theorem 8 (MR for penalty weights: p, > n) Assume (11) and Conditions A0, Al, A2,
B3, A4, A6, A7 in Appendix 1.1. Assume E2 and E1 in Appendix 1.1, where A, = J,\/n

and B, = dy\/n/sn. Suppose iy\/n = O(1), dy\/n/sy — 0, dyn/s, — oo and s*log(p,)

~MR
= 0(22n?). Then there exist local minimizers B;  of (18) such that the penalty weights W,

defined in (17) satisfy that vazlx = Op{1/(Jn/n)} and ngizlin\/ﬁ/snioo as needed in
Theorem 6.

5 Robust estimation in classification: p. ~n, p, > n

This section deals with the binary response variable Y which takes values 0 and 1. In this
case, the mean regression function m(x) in (1) becomes the class label probability,

P(Y = 1| X = x). From the penalized robust-BD estimate § proposed in either Sect. 3 or
Sect. 4, we can construct the “penalized robust-BD classifier”, ¢ (x) = 1{#(x) > 1/2}, for

a future input variable x, where 7i(x) = F~' (X" B).
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In the classification literature, the misclassification loss of a classification rule ¢ at a
sample point (x,y) is I(y, p(x)) = I{y # ¢(x)}. The risk of ¢ is the expected misclassifi-
cation loss, R(¢) = E{I(Y, $(X))} = P(¢(X) # Y). The optimal Bayes rule, which min-
imizes the risk over ¢, is ¢,(x) = I{m(x) > 1/2}. For a test sample (X°, Y°), which is an
i.i.d. copy of samples in the training set 7, = {(X;,Y;) : i = 1,...,n}, the optimal Bayes
risk is then R(¢,) = P(¢,(X?) # Y°). Meanwhile, the conditional risk of the classification

rule ¢ is R(¢p | 7,) = P(¢(X?) f Yo |T,).
Theorem 9 demonstrates that ¢ attains the classification consistency, provided that the

estimate E possesses the sparsity property and is consistent at an appropriate rate. As
observed, the conclusion of Theorem 9 is applicable to penalized robust-BD estimates in
both Theorem 2(i) with p, = n and Theorem 6(i) with p, > n.

Theorem 9 (consistency of the penalized robust-BD classifier) Assume Conditions A0, Al
and A4 in Appendix 1.1. Suppose that the estimate ﬁ = (ﬁ(I)T, B(II)T)T satisfies P(E(H) =
0) — 1 and ||§(I) - ﬁéI)Hz = Op(7n). If rar/s, = 0(1), then the classification rule b con-
structed from [3 is consistent in the sense that (i) E{R(¢ | 7,)} — R(¢p,) — 0 as n — oo,

which in turn yields (ii) (qS ] T,,)—>R(<1)B).

6 Simulation study

We conduct simulation studies to evaluate the performance of the penalized robust-BD
estimates in the absence and presence of outliers. The Huber y/-function is used with
¢ = 1.345. For practical applications, we suggest an empirical choice of the weight function,

wx) =1/{1+>" (%)z}l/z, where x = (xi,...,x, )", m.; and s,; denote the sample
median and sample median absolute deviation of {X;;:i=1,...,n} respectively,
Jj=1,...,p,. This form of w(x) is a generalization of a weight function used on page 2864

of Boente et al. (2006) for a one-dimensional covariate. The classical non-robust counter-
parts correspond to ¥/(r) = r and w(x) = 1. In the simulation, p, = 50 and 500 are treated
respectively.

For illustrative purpose, 4 types of penalization techniques combined with the loss term
in (3) are compared: (I) the SCAD penalty, with an accompanying parameter ¢ = 3.7,
combined with the local linear approximation; (II) the L; penalty; (III) the weighted-L;
penalty with weights selected by the proposed MR method; (IV) the weighted-L, penalty
with weights selected by the proposed PMR method. For comparison, the oracle (non-
penalized) estimator (abbreviated as “Oracle”) of parameters using the true model con-
taining truly significant variables is included. The tuning constants 4, in each simulation for
methods (I)—(III) are selected separately by minimizing the classical-BD (for non-robust
methods) and “robust-BD” (for robust methods) on a test set of size n; 4, and k, for method
(IV) are searched on a surface of grid points. Numerical algorithms for the proposed
penalized estimator in (3) are given in Appendix 1.3.

The number of Monte Carlo runs is 500. To measure the performance of a parameter

estimate ﬂ through 51mulat10n we use the average value and standard deviation (sd) of

estimation errors, EE( )=l /3 Boll,. Variable selection is assessed by C-Z, the average
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number of regression coefficients which are correctly estimated to be zero when the true
coefficients are zero, and C-NZ, the average number of coefficients which are correctly
estimated to be non-zero when the true coefficients are non-zero. For binary responses,
MCR denotes the average of the misclassification rates on a test set of size 5000.

6.1 Overdispersed Poisson responses

We generate overdispersed Poisson counts {Y;}7_, with n =100, satisfying
var(Y; | X; = x;) = 2m(x;). In the predictor X; = (X1, X2, .. .,X,-vpn)T, X1 =i/n—0.5;
forj=2,...,p, Xi; = ®(Z;) — 0.5, where ® is the standard Gaussian distribution func-
tion, and (Zia,...,Zip, ) ~N(0,Z, 1), with X, 1(j,k) =02VH, jk=1,....p, —1.
The link function is log{m(x)} = B0 + X" By, with oo = 2.5 and B, = (2,2,0,...,0)".
The (negative) quasi-likelihood with V(1) = u is utilized as the BD.

Study 1 (raw data without outliers). For simulated data without contamination, the results

are summarized in Table 1. The lose of efficiency (at the true model) from classical to robust
estimates using the (non-penalized) oracle estimation method can be seen from the increase

of EE(E) For penalized methods, the robust estimates exhibit similar performance to those
of the non-robust counterparts, with little loss in estimation efficiency and selecting relevant
and irrelevant variables. Thus, there is no serious adverse effect of applying penalized robust
estimation to clean datasets.

Study 2 (contaminated data with outliers). For each data set generated from the model,
we create a contaminated data set, where 8 data points (X;;, ¥;) are subject to contamination:
They are replaced by (le‘/, Y), where Y = Y;I(Y; > 100) + A1(Y; <100) with 4 = 50,
i=1,...8,

X7 = Ssign(U; —0.5), Xj, = 5sign(U, —0.5), X;; = .5sign(Us —0.5),
X5 = 5sign(Us — 0.5), X;; = .5sign(Us —0.5), Xz = 5sign(Us—0.5),
X79 = .5sign(U; - 0.5),

with {Ui}i'ri'vd ‘Uniform(0, 1). Table 2 summarizes the results over 500 sets of contaminated

data. A comparison of each penalized quasi-likelihood estimate across Tables 1 and 2

~

indicates that the presence of contamination substantially increases EE( ). Among the 4
penalized estimates, the L; penalty tends to have higher false positive rates. As observed
from Table 2 with contaminated cases, the non-robust estimates are more sensitive to
outliers than the robust counterparts. This lends support to Theorems 2 and 6. To provide a

closer view of the estimates, Fig. 2 draws the boxplots of biases (ﬁj = Bio)i =0,1,...,5,
corresponding to results in Tables 1 and 2, using the PMR selection method for penalty
weights in the weighted-L; penalty.

6.2 Bernoulli responses

We generate samples {(X;, ¥;)}._, with n = 200 from the model, ¥; | X; = x; ~ Bernoulli
{m(x;)}, where logit{m(x)} = B, +x"p, with o, =2 and B, = (2,2,0,.. ,0)". The
predictor X; ~N(0,%, ), with X, (j,k) = 0.1V-*, j k =1,...,p . Both the deviance and
exponential loss functions are employed as the BD.
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Table 1 (Simulation study: overdispersed Poisson responses, n = 100) Summary results for Study 1 (raw
data without outliers)

Regression Variable selection
Procedure D, Method EE (ﬁ ) (sd) C-Z (sd) C-NZ (sd)
non-robust 50 SCAD 0.205 (0.1) 45.8 (3.6) 3.0 (0.0)
L 0.415 (0.1) 39.8 (5.4) 3.0 (0.0)
wL;, MR 0.250 (0.1) 46.0 (3.0) 3.0 (0.0)
wL;, PMR 0.202 (0.1) 46.9 (2.6) 3.0 (0.0)
Oracle 0.178 (0.1) 48.0 (0.0) 3.0 (0.0)
500 SCAD 0.205 (0.1) 494.0 (7.0) 3.0 (0.0)
L 0.581 (0.1) 479.7 (12.2) 3.0 (0.0)
wL;, MR 0.314 (0.1) 494.9 (3.5) 3.0 (0.0)
wL;, PMR 0.205 (0.1) 496.7 (3.1) 3.0 (0.0)
Oracle 0.172 (0.1) 498.0 (0.0) 3.0 (0.0)
robust 50 SCAD 0.244 (0.2) 475 (1.2) 3.0 (0.0)
L 0.411 (0.1) 39.4 (5.8) 3.0 (0.0)
wL;, MR 0.242 (0.1) 45.7 (3.6) 3.0 (0.0)
wL;, PMR 0.208 (0.1) 46.6 (3.1) 3.0 (0.0)
Oracle 0.202 (0.1) 48.0 (0.0) 3.0 (0.0)
500 SCAD 0.443 (0.4) 495.8 (4.0) 3.0 (0.2)
L 0.587 (0.2) 477.6 (12.5) 3.0 (0.0)
wL;, MR 0.297 (0.1) 494.9 (3.7) 3.0 (0.0)
wL;, PMR 0.215 (0.1) 496.5 (3.1) 3.0 (0.0)
Oracle 0.193 (0.1) 498.0 (0.0) 3.0 (0.0)

Study 1 (raw data without outliers). For simulated data without contamination, the results
are summarized in Table 3. The robust estimates perform as well as the non-robust coun-
terparts, with respect to parameter estimation, variable selection and classification accuracy.
Indeed, the optimal Bayes rule gives misclassification rates 0.137 for p, = 50, and 0.138 for
p, = 500. Thus, the choice of loss functions has an asymptotically relatively negligible
impact on classification performance. This agrees with results of Theorem 9 on the
asymptotic classification consistency.

Study 2 (contaminated data with outliers). For each data set generated from the model,
we create a contaminated data set. The contamination scheme is to replace the original 8
data points (X;;, ¥;) by (X, Y[), where Y =1 -V, i=1,...,8,

Xi' =3 sign(U; —0.5), Xj, =3sign(U, —0.5), X;, =3 sign(Us; —0.5),
X3 =3 51gn(U4 —0.5), X55=3sign(Us —0.5), Xgo =3 sign(Us —0.5),
(U7

0.5),
with {U; }1 & “Uniform(0, 1). Table 4 summarizes the results over 500 sets of contaminated data.

Regarding the robustness-efficiency tradeoff, analogous conclusions to Sect. 6.1 can be reached.
Moreover, comparing Tables 3 and 4 reveals that (i) contamination increases the misclassifi-
cation rates of all 5 methods; (ii) for contaminated cases in Table 4, robust procedures tend to
reduce the misclassification rates; (iii) for robust estimation, the deviance loss is computationally

X7 9 =3 sign
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Table 2 (Simulation study: overdispersed Poisson responses, n = 100) Summary results for Study 2

(contaminated data with outliers)

Regression Variable selection
Procedure D, Method EE (ﬁ ) (sd) C-Z (sd) C-NZ (sd)
non-robust 50 SCAD 1.955 (0.3) 40.9 (4.6) 2.9 (0.3)
Ly 2.012 (0.2) 40.2 (5.2) 2.9 (0.3)
wL;, MR 1.912 (0.3) 443 (3.7) 2.8 (0.4)
wL;, PMR 1.846 (0.3) 45.8 (3.4) 2.7 (0.4)
Oracle 1.455 (0.2) 48.0 (0.0) 3.0 (0.0)
500 SCAD 2.246 (0.2) 482.4 (12.4) 2.7 (0.5)
L 2.292 (0.2) 484.8 (12.3) 2.6 (0.5)
wL;, MR 2.194 (0.2) 493.1 (6.1) 2.4 (0.5)
wL;, PMR 2.105 (0.2) 495.6 (5.2) 2.3 (0.5)
Oracle 1.475 (0.2) 498.0 (0.0) 3.0 (0.0)
robust 50 SCAD 0.309 (0.2) 47.6 (1.1) 3.0 (0.0)
L 0.689 (0.2) 39.0 (6.1) 3.0 (0.0)
wL;, MR 0.603 (0.3) 43.6 (4.1) 3.0 (0.1)
wL;, PMR 0.558 (0.3) 443 (4.3) 3.0 (0.1)
Oracle 0.242 (0.1) 48.0 (0.0) 3.0 (0.0)
500 SCAD 0.799 (0.5) 494.5 (3.2) 2.9 (0.3)
L 1.093 (0.3) 481.8 (11.7) 3.0 (0.0)
wL;, MR 1.037 (0.5) 491.6 (5.4) 2.9 (0.3)
wL;, PMR 0.996 (0.5) 491.6 (5.5) 2.9 (0.3)
Oracle 0.255 (0.1) 498.0 (0.0) 3.0 (0.0)

more stable yielding relatively lower misclassification rates than the exponential loss, see also
Fig. 1, and thus the deviance loss is recommended for practical applications.

For the penalized methods, the tuning parameter /, is searched in the interval
[0.0034, 0.1975], and «, is searched in the interval [1/28 1/25]. To compare the classifi-
cation performance with methods such as the classical-SVM and robust-SVM (using either
the linear or Gaussian kernel, combined with auxiliary parameters ¢* and/or s) in Wu and
Liu (2007), Table 5 summarizes the results under the same set-ups as in Tables 3 and 4.
Compared with classical- and robust-SVMs (in Table 5), the robust-BD method (in Tables 3,

4) clearly lowers MCRs.

6.3 Gaussian responses

To further illustrate the benefits of the robust method relative to the non-robust method,
Appendix 1.2 gives additional simulation studies for Gaussian responses.

7 Real data application

To illustrate the application of the penalized robust-BD methods for classifying high-di-
mension low sample size data, we consider the Lymphoma data studied in Alizadeh et al.
(2000), which identified two molecularly distinct forms of diffuse large B-cell Lymphoma
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Fig. 2 (Simulation study: overdispersed Poisson responses, n = 100, p, = 50 (left panel) and p, = 500 (right
panel)) Boxplots of (f; — ), j=0,1,...,5, corresponding to results in Tables 1 and 2, using

the PMR selection method for penalty weights in the weighted-L; penalty. The first row: raw data and
using non-robust method; the second row: raw data and using robust method; the third row: contaminated

raw, non-robust, p,, = 50

raw, non-robust, p,, = 500
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raw, robust, p,, = 500
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data and using non-robust method; the fourth row: contaminated data and using robust method

(DLBCL). These two forms, called “germinal centre B-like (gc-B)” DLBCL and “activated
B-like (a-B)” DLBCL, had gene expression patterns indicative of different stages of B-cell

differentiation.
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Table 3 (Simulation study: Bernoulli responses, n = 200) Summary results for Study 1 (raw data without

outliers)
Regression Variable selection Classification
Procedure loss  p, Method EE (E ) (sd) C-Z (sd) C-NZ (sd) MCR
non-robust  Dev 50 SCAD 0.574 (0.3) 47.5 (1.0) 3.0 (0.0) 0.141
L 1.071 (0.3) 36.4 (5.7) 3.0 (0.0) 0.151
wLi, MR 0.654 (0.3) 45.8 (2.7) 3.0 (0.0) 0.144
wL;, PMR  0.628 (0.2) 459 (2.2) 3.0 (0.0) 0.143
Oracle 0.553 (0.3) 48.0 (0.0) 3.0 (0.0) 0.141
500  SCAD 0.580 (0.4) 497.5 (1.3) 3.0 (0.0) 0.142
L 1.422 (0.2) 473.0 (13.0) 3.0 (0.0) 0.161
wL;, MR 0.855 (0.3) 493.7 (4.7) 3.0 (0.0) 0.146
wL;, PMR  0.829 (0.3) 494.1 (4.8) 3.0 (0.0) 0.146
Oracle 0.569 (0.4) 498.0 (0.0) 3.0 (0.0) 0.141
Exp 50 SCAD 0.740 (0.5) 47.7 (0.8) 3.0 (0.0) 0.142
L 0.843 (0.2) 383 (5.5) 3.0 (0.0) 0.151
wLi, MR 0.638 (0.3) 45.7 (2.7) 3.0 (0.0) 0.144
wL;, PMR  0.635 (0.3) 46.0 (2.5) 3.0 (0.0) 0.144
Oracle 0.704 (0.4) 48.0 (0.0) 3.0 (0.0) 0.141
500  SCAD 0.740 (0.5) 497.5 (1.1) 3.0 (0.0) 0.142
L 1.054 (0.3) 4783 (11.2) 3.0 (0.0) 0.159
wL;, MR 0.723 (0.3) 493.9 (4.9) 3.0 (0.0) 0.147
wL;, PMR  0.708 (0.3) 494.5 (4.5) 3.0 (0.0) 0.146
Oracle 0.719 (0.5) 498.0 (0.0) 3.0 (0.0) 0.142
robust Dev 50 SCAD 0.669 (0.5) 47.9 (0.3) 3.0 (0.0) 0.142
L 1.367 (0.2) 36.7 (4.5) 3.0 (0.0) 0.151
wL;, MR 0.951 (0.3) 47.6 (0.6) 3.0 (0.0) 0.143
wL;, PMR  0.959 (0.3) 47.7 (0.5) 3.0 (0.0) 0.143
Oracle 0.685 (0.5) 48.0 (0.0) 3.0 (0.0) 0.142
500  SCAD 0.661 (0.5) 498.0 (0.3) 3.0 (0.0) 0.142
L 2.016 (0.1) 493.3 (2.5) 3.0 (0.0) 0.159
wLi, MR 1.721 (0.2) 498.0 (0.1) 3.0 (0.0) 0.151
wL;, PMR  1.734 (0.2) 498.0 (0.1) 3.0 (0.0) 0.151
Oracle 0.679 (0.5) 498.0 (0.0) 3.0 (0.0) 0.142
Exp 50 SCAD 0.578 (0.3) 47.9 (0.3) 3.0 (0.0) 0.141
L 1.394 (0.2) 435 (2.1) 3.0 (0.0) 0.149
wL;, MR 1.084 (0.3) 48.0 (0.2) 3.0 (0.0) 0.145
wL;, PMR  1.099 (0.3) 48.0 (0.2) 3.0 (0.0) 0.145
Oracle 0.593 (0.4) 48.0 (0.0) 3.0 (0.0) 0.141
500  SCAD 0.570 (0.4) 498.0 (0.0) 3.0 (0.0) 0.141
L 2.405 (0.1) 498.0 (0.1) 3.0 (0.1) 0.213
wLi, MR 2.045 (0.2) 498.0 (0.0) 3.0 (0.1) 0.174
wL;, PMR  2.065 (0.2) 498.0 (0.0) 3.0 (0.1) 0.176
Oracle 0.602 (0.4) 498.0 (0.0) 3.0 (0.0) 0.142
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Table 4 (Simulation study: Bernoulli responses, n = 200) Summary results for Study 2 (contaminated data

with outliers)

Regression Variable selection Classification
Procedure loss D, Method EE(;) (sd) C-Z (sd) C-NZ (sd) MCR
non-robust  Dev 50 SCAD 1.106 (0.3) 473 (1.4) 3.0 (0.0) 0.145
L 1.768 (0.2) 389 (5.5) 3.0 (0.0) 0.162
wL;, MR 1.479 (0.3) 455 (2.8) 3.0 (0.0) 0.151
wL;, PMR 1464 (03) 45.7 (2.7) 3.0 (0.0) 0.151
Oracle 1.101 (0.3)  48.0 (0.0) 3.0 (0.0) 0.144
500  SCAD 1.112 (0.3) 497.0 (1.8) 3.0 (0.0) 0.145
L 2.027 (0.2) 4794 (12.1) 3.0 (0.0) 0.177
wL;, MR 1.658 (0.3) 4939 (4.3) 3.0 (0.0) 0.157
wL;, PMR  1.634 (0.3)  494.2 (3.8) 3.0 (0.0) 0.156
Oracle 1.107 (0.3)  498.0 (0.0) 3.0 (0.0) 0.144
Exp 50 SCAD 1.507 (0.4) 473 (1.2) 3.0 (0.1) 0.156
L 1.821 (0.3)  39.8 (5.8) 3.0 (0.0) 0.173
wL;, MR 1.685 (0.4) 452 (3.0) 3.0 (0.0) 0.164
wL;, PMR  1.669 (0.4)  45.6 (2.8) 3.0 (0.0) 0.163
Oracle 1.504 (0.4)  48.0 (0.0) 3.0 (0.0) 0.152
500  SCAD 1.521 (0.5)  497.2 (1.9) 3.0 (0.2) 0.161
L 1.927 (0.3)  481.6 (11.7) 3.0 (0.0) 0.187
wL;, MR 1.757 (0.4)  492.8 (5.9) 3.0 (0.0) 0.172
wL;, PMR  1.732 (0.4)  493.6 (5.2) 3.0 (0.0) 0.170
Oracle 1.498 (0.4)  498.0 (0.0) 3.0 (0.0) 0.153
robust Dev 50 SCAD 0.682 (0.4) 479 (0.5) 3.0 (0.0) 0.143
Ly 1.686 (0.3)  37.6 (4.7) 3.0 (0.0) 0.157
wL;, MR 1.395(0.3) 474 (0.7) 3.0 (0.0) 0.146
wL;, PMR  1.401 (0.3)  47.5(0.7) 3.0 (0.0) 0.146
Oracle 0.681 (0.4)  48.0 (0.0) 3.0 (0.0) 0.143
500  SCAD 0.681 (0.3)  498.0 (0.2) 3.0 (0.0) 0.143
L 2208 (0.1)  491.3 (3.0) 3.0 (0.0) 0.168
wL;, MR 2.095 (0.2)  498.0 (0.2) 3.0 (0.1) 0.164
wL;, PMR  2.105(0.2)  498.0 (0.2) 3.0 (0.1) 0.165
Oracle 0.685 (0.4)  498.0 (0.0) 3.0 (0.0) 0.143
yExp 50 SCAD 0.976 (0.3)  47.9 (0.5) 3.0 (0.0) 0.144
L, 1.818 (0.2) 424 (2.4) 3.0 (0.0) 0.157
wL;, MR 1.766 (0.3)  47.9 (0.3) 3.0 (0.0) 0.155
wL;, PMR  1.778 (0.3)  47.9 (0.3) 3.0 (0.0) 0.155
Oracle 0.804 (0.3)  48.0 (0.0) 3.0 (0.0) 0.143
500  SCAD 1.049 (0.4)  498.0 (0.0) 3.0 (0.2) 0.146
L 2.578 (0.1)  498.0 (0.1) 3.0 (0.1) 0.232
wL;, MR 2.545(0.2)  498.0 (0.0) 2.8 (0.4) 0.226
wL;, PMR  2.559 (0.2)  498.0 (0.0) 2.8 (0.4) 0.228
Oracle 0.788 (0.3)  498.0 (0.0) 3.0 (0.0) 0.143
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Table 5 (Simulation study: Bernoulli responses, n = 200) Compare MCR using classical-SVM and robust-
SVM for Study 1 (raw data without outliers) in Table 3 and Study 2 (contaminated data with outliers) in
Table 4

Data P, Method MCR
Raw 50 classical-SVM, linear kernel, ¢* = 0.1 0.203
classical-SVM, linear kernel, ¢* = 10 0.227
classical-SVM, Gaussian kernel, ¢* = 0.1 0.281
classical-SVM, Gaussian kernel, ¢* = 10 0.208

robust-SVM, linear kernel, ¢* = 0.1, s = —0.5 0.225

robust-SVM, linear kernel, ¢* = 0.1, s =0 0.230

robust-SVM, linear kernel, ¢* = 10, s = —0.5 0.232

robust-SVM, linear kernel, ¢* = 10, s = 0 0.233

robust-SVM, Gaussian kernel, ¢* = 0.1, s = —0.5 0.281

robust-SVM, Gaussian kernel, ¢* = 0.1, s =0 0.281

robust-SVM, Gaussian kernel, ¢* = 10, s = —0.5 0.217

robust-SVM, Gaussian kernel, ¢* = 10, s =0 0.245

500 classical-SVM, linear kernel, ¢* = 0.1 0.305
classical-SVM, linear kernel, ¢* = 10 0.305
classical-SVM, Gaussian kernel, ¢ = 0.1 0.281
classical-SVM, Gaussian kernel, ¢* = 10 0.278

robust-SVM, linear kernel, ¢* = 0.1, s = —0.5 0.295

robust-SVM, linear kernel, ¢* = 0.1, s =0 0.292

robust-SVM, linear kernel, ¢* = 10, s = —0.5 0.295

robust-SVM, linear kernel, ¢* = 10, s = 0 0.293

robust-SVM, Gaussian kernel, ¢* = 0.1, s = —0.5 0.281

robust-SVM, Gaussian kernel, ¢* = 0.1, s =0 0.281

robust-SVM, Gaussian kernel, ¢* = 10, s = —0.5 0.279

robust-SVM, Gaussian kernel, ¢* = 10, s =0 0.281

The publicly available dataset contains 4026 genes across 47 samples, of which 24 are
“gc-B” and 23 are “a-B”. We use the 10-nearest neighbor method to impute the missing
expression data. After imputing, the dataset is standardized to zero mean and unit variance
across genes. We intend to predict whether a sample can be categorized as “gc-B” or “a-B”.

To evaluate the performance of the penalized estimates of parameters in the model,

logit{P(Y = 1| X1,...,X4006)} = Po + Z;gé B;X;, we randomly split the data into a
training set with 31 samples (containing 16 cases of “gc-B” and 15 cases of “a-B”) and a
test set with 16 samples (containing 8 cases of “gc-B” and 8 cases of “a-B”). For each
training set, 4, is selected by minimizing a 3-fold cross validated estimate of the misclas-
sification rate; 4, and k, for the proposed PMR method are searched on a surface of grid
points. The test error (TE) gives the misclassification rate of the penalized classifier to the
test set. Both the Huber y/-function (with ¢ = 1.345) and Tukey y/-function (with ¢ = 4.685)
are utilized in the robust estimates, and the weight function w(x) is the same as used in
Sect. 6. Table 6 tabulates the average of TE and the average number of selected genes over
100 random splits. The penalized estimates/classifiers induced by the deviance loss and the
exponential loss yield similar performance. The L, penalty selects approximately twice as
many genes as the other penalty choices. On the basis of TE and sparse modeling
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Table 5 continued

Data P, Method MCR
Contaminated 50 classical-SVM, linear kernel, ¢* = 0.1 0.219
classical-SVM, linear kernel, ¢* = 10 0.245
classical-SVM, Gaussian kernel, ¢* = 0.1 0.281
classical-SVM, Gaussian kernel, ¢* = 10 0.217

robust-SVM, linear kernel, ¢* = 0.1, s = —0.5 0.237

robust-SVM, linear kernel, ¢* = 0.1, s =0 0.241

robust-SVM, linear kernel, ¢* = 10, s = —0.5 0.243

robust-SVM, linear kernel, ¢* =10, s =0 0.246

robust-SVM, Gaussian kernel, ¢* = 0.1, s = —0.5 0.281

robust-SVM, Gaussian kernel, ¢* = 0.1, s =0 0.281

robust-SVM, Gaussian kernel, ¢ = 10, s = —0.5 0.221

robust-SVM, Gaussian kernel, ¢* = 10, s =0 0.244

500 classical-SVM, linear kernel, ¢* = 0.1 0.322
classical-SVM, linear kernel, ¢* = 10 0.322
classical-SVM, Gaussian kernel, ¢* = 0.1 0.282
classical-SVM, Gaussian kernel, ¢* = 10 0.279

robust-SVM, linear kernel, ¢* = 0.1, s = —0.5 0.307

robust-SVM, linear kernel, ¢* = 0.1, s =0 0.302

robust-SVM, linear kernel, ¢* = 10, s = —0.5 0.306

robust-SVM, linear kernel, ¢* =10, s =0 0.302

robust-SVM, Gaussian kernel, ¢* = 0.1, s = —0.5 0.282

robust-SVM, Gaussian kernel, ¢* = 0.1, s =0 0.282

robust-SVM, Gaussian kernel, ¢* = 10, s = —0.5 0.280

robust-SVM, Gaussian kernel, ¢* = 10, s =0 0.282

simultaneously, the robust estimate combined with the weighted-L, penalty appears to
perform the best. The results also reveal that the choice of the y-functions in (6) has a
negligible impact on the performance of the robust penalized estimates.

8 Discussion

The conventional penalized least-squares and penalized-likelihood estimates of parameters
exhibit the oracle property for sparsity recovery but lack resistance to outlying observations.
This paper proposes a class of robust error measures called “robust-BD” and introduces the
“penalized robust-BD estimate”. The “robust-BD” induces a bounded influence function
that makes the resulting penalized estimation less sensitive to outliers. Since BD is widely
used in machine learning practice, the proposed “penalized robust-BD estimate” combined
with suitably chosen weights for penalties can be broadly applicable in regression and
classification problems of large dimensions (p, ~n) and high dimensions (p, > n),
achieving both the oracle property and the robustness to outliers in either the covariate space
or the response space.

There are several limitations to our study and ongoing challenges that should be con-
sidered. Firstly, in the current scope of the paper, technical conditions, particularly Al, A2,
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Table 6 (Real data) Classifica-

tion for the Lymphoma data Deviance loss Exponential loss

Procedure  (r) Penalty TE # genes TE # genes

non-robust r SCAD 0213 6.32 0.205 10.47
L 0.121 14.42 0.121 12.56
wL;, MR  0.136 6.68 0.141 5.51
wL;, PMR 0.123 7.30 0.128 6.19

robust Huber SCAD 0.211 3.35 0.201 3.61
L 0.123  10.63 0.122  9.19
wL;, MR 0.160 4.48 0.156 4.21
wL;, PMR 0.141 5.26 0.142 4.72

robust Tukey SCAD 0.170 3.73 0.175 4.09
Ly 0.126  10.95 0.125 9.14
wL;, MR 0.151 4.78 0.155 4.46
wL;, PMR 0.141 5.39 0.143  5.20

A5 and B3 in Appendix 1.1 exclude heavy-tailed covariates X; and responses Y. Similarly,
the proposed method does not handle very high levels of contamination in the data.
Moreover, relaxing (19) could be pursued in a separate study. Secondly, Algorithm 1 in
Appendix 1.3.2 shows that the computational complexity depends on various key factors,
including the sample size (n), dimensionality (p,), the response variable type (Gaussian,
Bernoulli, or Poisson), selected penalty weights ({w, J}fil), proportion of contamination in
the dataset, approximation accuracy of the quadratic function to the loss function in (3), and
convergence property of the coordinate-descent (CD) algorithm (Friedman et al., 2010). In
particular, the quadratic approximation may reduce the accuracy of the “penalized robust-
BD estimator” and slow down the convergence of the resulting CD algorithm. This is
demonstrated in numerical experiments that indicate an increase in CPU runtime as the
response type changes from Gaussian to Bernoulli to Poisson, and as non-robust procedures
using classical-BD are replaced with robust counterparts using “robust-BD”. Despite these
limitations, our work contributes to the “robust-BD” estimation of p, -dimensional param-
eters with some provable results when p, ~n and p, > n, and thus fills a gap in the
literature. The goal of our work is to better understand the flexibility, challenges, and
limitations of robust-BD estimation as a data-analytic tool for big data analysis.

A number of open questions need to be discussed. (a) In the linear regression model, the
quantification of the robustness property of estimates in terms of gross error sensitivity,
rejection point, or local-shift sensitivity has been studied. However, beyond the linear
model, such as the GLM, relatively little theoretical work has been done about this property,
even in the case of fixed dimensions p, = p. Rigorously exploring the robustness property,
including the breakdown point, for the proposed class of “penalized robust-BD estimates” in
the current model, assuming (1)—(2), remains a nontrivial task. (b) The existence of con-
sistent local solutions of penalized estimates has also appeared in several other existing
works, such as the nonconcave penalized likelihood method in Fan and Peng (2004).
Devising efficient numerical procedures for obtaining a local solution that is consistent will
be desirable but challenging. See Gong et al. (2013) for recent progress made in addressing
this issue. (c) For p, > n, it is of interest to explore some variable screening procedure for
dimension reduction before applying the proposed “penalized robust-BD” estimation
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method. (d) The weight function w(x) used in the numerical evaluations in Sects. 6 and 7 is
a feasible choice for robust-BD estimation in large (p, ~ n) and high (p, > n) dimensions.
However, an optimal method for selecting the weight function would be desirable,

depending on specific criteria, such as the robustness property, which has yet to be explored.

In low dimensions (p, <n), the weight function (e.g., w(x) = 1/{1 +(x—ﬁl)T§71

(x — 1?1)}1/ %) can rely on robust estimates i and 3 of the location vector and scatter matrix
of X, and pages 137-138 of Heritier et al. (2009) suggest alternative weight functions for
robust estimators of linear model parameters in fixed (p, = p) dimensions. (e) Finite sample
other than asymptotic results may be obtained for certain types of covariates X; and
responses Y under more stringent assumptions. A complete and thorough study of these
theoretical/methodological development and computational advancement is beyond the
scope of the current paper and needs to be examined in future research.

9 Supplementary information

Appendices 1.1, 1.2 and 1.3 collect proofs of Theorems 1 to 9, Figs. 1 and 2 and Tables 1, 2,
3,4, 5 and 6, additional numerical studies (Figs. 3 and 4 and Tables 7 and 8 in Sect. 6.3; real
data analysis), and algorithmic details, respectively.
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Supplementary Appendix
1. Proofs, figures and tables, algorithm

Notations and symbols.
T d d 1/2

For a vector a = (ar,-.,aq)", llall, = S, lajl, llall, = (S, @)% and ]l =
max; <;<q |a;|. Let Iy denote a k x K identity matrix, and 0, , denote a p x ¢ matrix of zero
entries. For a matrix M, its eigenvalues, minimum eigenvalue, maximum eigenvalue are
labeled by 4;(M), Amin(M), Amax (M) respectively; tr(M) denotes the trace of a square matrix
M; let ||M| = (|M]|, = supy,—; [[Mx[[, = {imax(MTM)}l/2 be the matrix L, norm, and
M|l = {tr(M TM)}'? be the Frobenius norm. Throughout the proof, C is used as a
generic finite constant. The sign function sign(x) equals +1 if x > 0, 0 if x = 0, and —1 if
x<0. For a function g(x), the first-order derivative is g’(x) or g!!)(x), the second-order
derivative is g”(x) or g'?(x), and the jth other derivative is g¥)(x). The chi-squared dis-
tribution with k degrees of freedom is denoted by 7.
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(left panel) and p, =500 (right
panel)) Boxplots of ( B — ﬁj;o), j=20,1,...,8, corresponding to results in Tables 7 and 8, using the PMR
selection method for penalty weights in the weighted-L; penalty. The first row: raw data and using non-robust
method; the second row: raw data and using robust method; the third row: contaminated data and using non-
robust method; the fourth row: contaminated data and using robust method

Fig. 3 (Simulation study: Gaussian responses, n =200, p = 50

The conditional expectation and condition variance of ¥ given X are denoted by E(Y | X)
and var(Y | X) respectively. Notations in the asymptotic derivations follow (van der Vaart,

1998), where . denotes converges in probability, £, means converges in distribution,
op(1) is a term which converges to zero in probability, and Op(1) is a term which is
bounded in probability.
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raw, non-robust, p,, = 50 raw, non-robust, p,, = 500
2 2
+
1} 1 17 % 1
o%—%%%%&i—i} o%%%%——i—i—*—#—
At 1 At 1
-2 -2
o 1 2 3 5 6 7 8 0O 1 2 3 4 5 6 7 8
J
raw, robust, p,, = 50 raw, robust, p,, = 500
2 2
+
1r 1 17 % 1
okt e b ideRat e
-1t + E 1t ]
-2 -2
o 1 2 3 5 6 7 8 o 1 2 8 5 6 7 8
J J
contam., non-robust, p,, = 50 contam., non-robust, p,, = 500
2 2
+

dt=

; LT TB o_i_;j_ _5_ é_%¢
E??l %%% L Hﬁzi iy

2t 27
5 6 7 8 0O 1 2 3 4 5 6 7 8
j J
contam., robust, p,, = 50 contam robust pn = 500

o%é%%%%gf!i{ o—;—ﬁé—ﬁ i%i«%

Fig. 4 (Simulation study: Gaussian responses, n = 100, p, = 50 (left panel) and p, = 500 (right panel)) The
caption is similar to that in Fig. 3, except n = 100

1.1. Proofs of Theorems 1 up to 9

We first impose some regularity conditions, which are not the weakest possible but facilitate
the technical derivations.

Condition A.
AO. g, >Tandp, —s,> 1. sup,., [|BV]], <oo.

@ Springer



Machine Learning (2023) 112:3361-3411

3389

Table 7 (Simulation study: Gaussian responses, n = 200) Summary results for Study 1 (raw data without

outliers)
Regression Variable selection

Procedure D, Method EE (ﬁ ) (sd) C-Z (sd) C-NZ (sd)

non-robust 50 SCAD 0.236 (0.1) 38.0 (5.9) 6.0 (0.0)
L 0.316 (0.1) 32.5 (6.5) 6.0 (0.0)
wL;, MR 0.276 (0.1) 37.7 (6.9) 5.9(0.2)
wL;, PMR 0.279 (0.1) 38.8 (6.3) 5.9(0.3)
Oracle 0.166 (0.1) 45.0 (0.0) 6.0 (0.0)

500 SCAD 0.305 (0.1) 473.1 (9.0) 6.0 (0.1)

L 0.439 (0.1) 469.5 (11.5) 6.0 (0.0)
wL;, MR 0.387 (0.1) 485.0 (8.8) 5.7 (0.4)
wL;, PMR 0.378 (0.1) 487.0 (8.4) 5.7 (0.5)
Oracle 0.172 (0.1) 495.0 (0.0) 6.0 (0.0)

robust 50 SCAD 0.187 (0.1) 44.6 (1.1) 6.0 (0.1)
L 0.329 (0.1) 32.0 (7.3) 6.0 (0.0)
wL;, MR 0.287 (0.1) 382 (6.2) 5.9 (0.3)
wL;, PMR 0.289 (0.1) 39.4 (5.5) 5.9 (0.4)
Oracle 0.176 (0.1) 45.0 (0.0) 6.0 (0.0)

500 SCAD 0.239 (0.1) 494.7 (1.5) 5.8 (0.4)

L 0.467 (0.1) 466.9 (19.9) 6.0 (0.1)
wL;, MR 0.397 (0.1) 484.4 (10.4) 5.7 (0.4)
wL;, PMR 0.390 (0.1) 486.0 (9.8) 5.7 (0.5)
Oracle 0.185 (0.1) 495.0 (0.0) 6.0 (0.0)

Al.  ||X||, = max;<;<, |Xj| is bounded almost surely.

A2.

A4.

AS.

AS'.

Ab.
AT.

E()? X T) exists and is nonsingular in the case of p, + 1 <mn; E{)? (I))? (I)T} exists and
is nonsingular in the case of p, + 1 > n.
There is a large enough open subset of RP» ™! which contains the true parameter point

EO, such that F~ (X Tﬁ) is bounded almost surely for all § in the subset.

w(:) >0 is a bounded function. Assume that y(r) is a bounded, odd function, and
twice differentiable, such that /' (r), ¥/ (r)r, " (r), ¥" (r)r and " (r)r* are bounded;
V(-) > 0, ¥?)(.) is continuous. The matrix H\" is positive definite, with eigenvalues

uniformly bounded away from zero.
w(-) >0 is a bounded function.

g™ (-) is continuous, and ¢@(-)<0. g
F(-) is monotone and a bijection, F©)(-) is continuous, and F()(-) # 0.

Condition B.

B3.

(2)

17(+) is continuous.

There exists a constant C € (0, 00) such that sup,~ | E{|Y — m(X){'} <;1C’ for all j > 3.

AISO, infnzl,léjép,, E{Var(Y ’ X))f;z} > 0.
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Table 8 (Simulation study: Gaussian responses, 7 = 200) Summary results for Study 2 (contaminated data
with outliers)

Procedure D, Method Regression Variable selection
EE(;) (sd) C-Z (sd) C-NZ (sd)
non-robust 50 SCAD 1.291 (0.4) 36.1 (6.5) 5.4 (0.6)
L 1.341 (0.4) 35.4 (6.4) 5.5 (0.6)
wL;, MR 1.255 (0.4) 41.0 (4.8) 5.2 (0.7)
wL;, PMR 1.207 (0.3) 42.6 (4.1) 5.0 (0.7)
Oracle 1.003 (0.3) 45.0 (0.0) 6.0 (0.0)
500 SCAD 1.547 (0.4) 471.2 (21.6) 5.2 (0.7)
L 1.593 (0.4) 476.9 (17.7) 5.1 (0.7)
wLi, MR 1.428 (0.4) 487.3 (7.8) 4.8 (0.7)
wL;, PMR 1.311 (0.4) 491.2 (7.7) 4.6 (0.7)
Oracle 1.026 (0.3) 495.0 (0.0) 6.0 (0.0)
robust 50 SCAD 0.249 (0.1) 43.9 (3.5) 5.9 (0.2)
Ly 0.373 (0.1) 31.3 (8.8) 6.0 (0.0)
wL;, MR 0.375 (0.1) 36.2 (7.4) 5.8 (0.4)
wL;, PMR 0.379 (0.1) 37.7 (6.5) 5.8 (0.4)
Oracle 0.196 (0.1) 45.0 (0.0) 6.0 (0.0)
500 SCAD 0.299 (0.1) 494.8 (1.2) 5.7 (0.4)
L 0.527 (0.1) 466.0 (19.8) 6.0 (0.2)
wLi, MR 0.547 (0.2) 480.4 (12.5) 5.6 (0.5)
wL;, PMR 0.544 (0.2) 482.9 (12.1) 5.5 (0.6)
Oracle 0.192 (0.1) 495.0 (0.0) 6.0 (0.0)
BS.

The matrices QEII) and Hg) are positive definite, with eigenvalues uniformly bounded

away from zero. Also, ||(H) IQ,(}) |l, is bounded away from infinity.

Condition C.

C4.
There is a large enough open subset of R ! which contains the true parameter point Eo:

such that F~! (X’ Tﬁ) is bounded almost surely for all E in the subset. Moreover, the subset
contains the origin.
Condition D.

DSs.
The eigenvalues of H,g) are uniformly bounded away from zero. Also,

H(pr)_l/ 2(Qg))l/ ?||, is bounded away from infinity.
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Condition E.

El.
min; <<y, [cov(X;, Y)| = A, and max,, <<, |cov(X;,Y)| = o(B,) for some positive
sequences A, and B,, where the symbol s, > #,, for two nonnegative sequences s, and #,,

means that there exists a constant ¢ > 0 such that s, > c¢, for all n > 1.
E2.

SUP, > 11 <j<s, E{q, (Y5 020)X7} <o00; inf,>1,41<j<p, E{q,(Y;%0)X?} =1 >0, where
% = F(E(Y)).

Proof of Theorem 1 We first need to show Lemma 1. O

Lemma 1 (existence and consistency: p, < n) Assume Conditions A0, A1, A2, A4, A5, A6
and A7 in Appendix 1.1, the matrix H, = E{p,(Y; X(I)Tﬁ(()n) W(X))?)?T} is positive definite
with eigenvalues uniformly bounded away from zero, and Wiy = Op{1/(Aun/nr/$u/p,)}. If

pj/n—>0 as n— oo, then there exists a local minimizer ﬁ of (3) such that

1B = Bolls = Oe (/o ).

Proof We follow the idea of the proof of Theorem 1 in Fan and Peng (2004). Let r, =

V/p,/n and u, = (ug,uy,.. .,up")T € R+ 1t suffices to show that for any given € > 0,
there exists a sufficiently large constant C, such that, for large n we have

This implies that with probability at least 1 — ¢, there exists a local minimizer E of £,(B) in
the ball { B, + ruii, : lt,||, < Cc} such that 1B — Eo”z = Op(ry). To show (20), consider
D,(u,)

- %Zn:{pq(YiaFl(iz‘T(EO + ralhy))) w(X;)
i=1

- pq(YivF_]()?iTBo)) w(X;)} (21)
P
+ 2 Y wag(1Bro + raw| = |Bjol)
=1
= ]1 +]27

where ||u,||, = C..
First, we consider /;. By Taylor’s expansion, /; has the decomposition,

I =5hL+ 6L+ 13, (22)

" ~T~ ~T_ . ~T~
where  I1; =71,/n Z,’:] p, (Y X; Bo) wXi) X, w,, Lip= ri/(2n) Zizl pz(Yi;Xi Bo)
w(X;)(X, 1), and
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11_3:rfl/(6n)Z?:lp3(K;)??E*)w(Xi)()?jﬁ”)3 for ﬁ* located between f, and

Xi|| laally = Oe(run/p, /m)llwally. (23)
2

Bo + ryu,. Hence

i <ry

1< T~

=3 b, (Ya X, o) wX
)

For the term /; ; in (22),

~T _

zl,z_ii E{p, (7: X! Bo) w(X)(X @)}

271 T

oD [0 X B wt) (K]

T

~T~ ~
- E{pm; X, Bo) wiXi) (X[ @,)’}
=hp1+hoo,

where 1, = 27 '72%! H,u,,. Meanwhile, we have

%Z [pz(Yi; X?EO) W(Xi)iiiiT

i=1
- E{Pz(Yi; XITBO) W(Xz)izif}}

= 120p(p, /V/n)|[T, 3.

22| <7

~ 12
2]l
F

Thus,

2
oo ~ ~
P :E”u;H,,u,,+Op(rflpn/\/2)||u,,H§. (24)

For the term /; 3 in (22), we observe that
1 & ~ T~ ~T_ _
sl <> 1o, (0 X B W (X)X @l = 0n(3p7) 3
i—1

which follows from Conditions A0, A1, A4 and AS.
Next, we consider £ in (21). Note L =2,y " wai(|Bo +ruti] — |Bol)
+ At Zj')ls,, 1 Wajluj|. Clearly, by the triangle inequality,

Sy

122 — Anl'n g Wn,j|uj| E12,la
J=1

in which

(21 < Zurwighyllee (25)

InW max

where u(V = (uy,...,u;)". By (23)~(25) and p*/n — 0, we can choose some large C, such
that /; 1, /; 3 and I, ; are all dominated by the first term of /; » in (24), which is positive by
the eigenvalue assumption. This implies (20). [
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We now show Theorem 1. Write u,, = (ﬁ,(f)T ,ulmr )", where ﬂg) = (ug,uy,...,us)" and
ufl“) = (g, 11, - .,upn)T. Following the proof of Lemma 1, it suffices to show (20) for

Py = \/Sn/n.
For the term /; ; in (22),

PIL.
Iy =— Zp Y X, Bo)w(x)X; )

11 1 11
4 zp Vi X; Bo) wX) X" ul = 1) 1Y),

It follows that

1 ~ 11
1S <rOp(Vsa/mlaPy, 11V <r0p(1/3/m) e,

For the term /; » in (22), similar to the proof of Lemma 1, /1, = 1121 + 11 22. We observe
that

2
Ly > g THOZD
eyl — 2 n n
" T~ (1) ~()T —
+ S Ep, (VX By ) wX) (X @) X Ny

Then there exists a constant C > 0 such that
I ~() )12 ~(1
1Y, =@l 5, 5SS < op2snllat | - el

For the term [ 5,

Linn
< ~ 1 T ~ (DT~
2—2% a!)? — E{py w(X;) (X, a))*}]
2 n
+5 [pz, S0 )
n<—=

i=1
- E{pZi W(Xl)z(il(l)Tﬁ(I))(XI(H)Tu(H))}]

2 n
r}’l
+ 32 P ) ) — By w () (X))

=1, +155Y +1{7,,
where

1155] < 20p(s, /) [0 L3,
ufzm; | < 20p(v/su/m)||@P |, ],
1%, < 20p(1/v/m) [u™3.

@ Springer



3394 Machine Learning (2023) 112:3361-3411

For the term 7, 3 in (22), since s,p, = o(n), HFHI is bounded and thus
R 11
13| < Op ()@ 13 + Op () [u ]} = 15 + 11,
where
I ~( 3 11 3
1S < op(rs A Nal 3, 1Y < oer) 3.

For the term 1, in (21), 12>I(If+12(IP, where z(%z—inrnzjs.”zlwnﬂuj\ and

7

p
2.1 — AnT'n !

" +1 Wayluj|. Thus, we have

1n)
] < A Sl 1Y 2 Al ]
It can be shown that either II(I%I or IZ(IP dominates all other terms in groups G; = { 11(1% N
]l(lg}’ G: = {Il b 122’ 1(3)’[1(3?155) 1(02“)255} and G; = {11 11 21} Namely, / 1(%1 dominates

G, and ]2(_1) dominates G,. For Gs, since ||un |, < C., we have that

|]1(I“ < Op(rav/su/n)Ce, |12(,I“ < Anl'n Snwr%xcf'

Hence, if |[u™||, < C./2, then &, > C./2, and thus G5 is dominated by 11(2’1, which is

positive; if [[uV||, > C./2, then G5 is dominated by Iz(ﬁ), which is positive. This completes
the proof. [

Proof of Theorem 2 We first need to show Lemma 2. O

Lemma 2 Assume Condition A in Appendix 1.1. If s>/n=0O(1) and wgr)lin\/ﬁ/

\ /snpnioo, then with probability tending to one, for any given ﬁ = (ﬁ(I)T7 ﬁ(H)T )T sat-

isfying ||ﬁ(1) — Bél)||2 = Op(\/su/n) and any constant C >0, it follows that
~(1) o . ~(1) (I1)

Kn(ﬁ 70) - mlan(ll)HzScm ‘gl’l(ﬁ 7ﬂ )

Proof 1t suffices to prove that with probability tending to one, for any E(I) satisfying
||AB(I) - B(()I)Hz = Op(+/s,/n), the following inequalities hold for s, + 1 <;j<p

34,(B)/3p; <0, for p;<0,
3t,(B)/op; >0, for B; > 0,

namely, with probability tending to one,

o0 ~
K sup @én(ﬁ)<0’
= B Balla=0n( /sy py <0 (26)
0 ~
min inf —0,(B) > 0.

snt1<j<p, |‘E,EO\|2:OP(\/AW) >0 65]

Proofs for showing both inequalities are similar; we only need to show (26). Note that for
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ﬁﬂéo,
Zp Y X! B)w(X)Xij + S sign(f;)
Z—Zp Vi X; Bo) w(X;) X,
+ Zp (Y X B ) wX){X] (B — Bo)} Xy + Auway sign(),

where F lies between ﬁo and ﬁ It follows that

J<p _ﬁ£n<ﬁ)
= B Bolla=0p (/5 /m); <0

max Zp Vi X Bo) w(X)X,,

- s,,+1<]<p"

max. sup
Sp+ 1<

~T~x% ~T ~ ~
+, max sup ;ZPQ(YI-;XI- B)wX){X; (B~ Bo)}Xi
' "B Boll,=0p(y/su/m) =T

_ i i .
L

=L+5L—1, min Wy = 11—|—12—}»,, mm
s t1<j<p,

The first term /; satisfies that

1] < Op({log(p, — su + 1)/n}'?). (27)

|| < Op(y/sup, /7). (28)

Therefore, by (27) and (28), the left side of (26) is
< Op(\f5up, /1) = da¥in = \ 0P, /n{Op (1) = Zurs/mpin / /50 ).

By ngizl)»n\/ﬁ/ \/Snp,,LOO, (26) is proved. 0

For the term 15,

We now show Theorem 2. By Lemma 2, the first part of Theorem 2 holds that

b= (E(I)’OT)T' To verify the second part of Theorem 2, notice the estimating equations

wL ~y = 0, since B(I) is a local minimizer of Kn(ﬁ(l),()). Denote dn(ﬁ(l)) —
o B —Ii

7, W sign{B""} which is equal to d, when B = By . Since min <., 1Biol/\/sa/n —

oo and HFI) - ﬁél)|]2 = Op(\/su/n), it follows that
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P(sign{f"} # sign{B })
— P(sign(B;) # sign(f;) for some j € {1,....5,})
§P< max ‘,3 Biol =  min ’ﬁ 0’) — 0.

1</ <s, 1</<s

Thus with probability tending to one, dn(ﬁ(l)) = dn(ﬁél)) =d,. Taylor’s expansion applied

to the loss part on the left side of the estimating equations yields

1< — (T~ -
{3 xR )X a,
i=1
1 <7~ <O<O7) 20 50
0 0 X TE R, X| }(ﬁ )
i=1

S (DT Zx(D) (I)
+%Zp3(Yi;Xi B )wX ){X ( —ﬁo )} i
1< I>T 1) 20 =)
= {;Zp X B wR) + db+ ka(BY - B+ Ko
i=1
where both E*( and ﬁ he between ﬂo and ﬂ . Below, we will show
1Ky — HP[|, = Op(sa/v/n), (30)
K31l = Op(s;? /). (31)

First, to show (30), note that K, — HEII) =K, — E(K;) = L;. Similar arguments for the
proof of Lemma 1 give ||L; ||, = Op(s,/+/n).
Second, a similar proof used for /; 3 in (22) completes (31).

Third, by (29)-(31) and || g — Eo”z = Op(+/sn/n), we see that

=m0 IR ST 0
BB = By) +dy =30, (5 X, By ) w(X) X, + (32)
i=1

where ||u, ||, = Op(s>/?/n). Note that by Condition BS,

VA () P ||y < v/l Au | p Aamax () 72) a1
= /n{te(4, A7)} 1202 QD) lu, ||, = Op(s3%/ /i) = 0,(1).
Thus

_ =1 =)
Vid, (D)2 HD (B~ By) +d,)
1 (1)

M7 %0
:_TA QI) 1/22 (Y X; ™ By ) w(Xi)X; ™ +0,(1).

To complete proving the second part of Theorem 2, we apply the Lindeberg-Feller central

limit theorem (van der Vaart, 1998) to > 7  Z; where Z,':—nfl/zAn(Q,(f))_l/zp

s X By ) wix) X

1

. It suffices to check two conditions: (I) 7, cov(Z;) — G; (Il

@ Springer



Machine Learning (2023) 112:3361-3411 3397

> E(|1Z; \]2+5) o(1) for some o6 > 0. Condition (I) follows from the fact that

var{p (Y; x""p ﬁo ) w(X)X (I)} = QSZI). To verify condition (ll), notice that using Conditions
B5 and A5,

E(|1Z:]3")

< @ 9p{ a3 [|\<Qf:>>”2)?‘”||z

(00t — s ) 1L TGN )

<cnf<2+5>/2E[{z;L{2< <I>>ni(”u PR ((Y, m(X)) — g1 (m(X) }
(g (m \/7}/}7, 2+5]

<cS<2+5>/2 -4 /zEn{w m(X))) - g (m(X))}x

(g (m(X)) /T XN} /F (m(X)) )

< 0{<sn/n> a2y

Thus, we get 3", E(|Z:|37) < O{n(s,/n)*T/*} = O{s®+9)/2/n?/2}, which is o(1).
This verifies Condition (Il). O

Proof of Theorem 3 Before showing Theorem 3, Lemma 3 is needed. O

Lemma 3 Assume conditions of Theorem 3. Then

SO() 1
_ ﬁO

B ——(H)) Zp v X B ) w) X 40, (071,

afd, (A ﬁi%ﬁi a2, (B - B Ev (0,1,

Proof Following (32) in the proof of Theorem 2, we observe that |ju,|, = Op

(s3/2/n) = 0,(n~'/?). Furthermore, ||d,||, < \/s}lnwgllx = 0,(n"'/?). Condition BS com-

pletes the proof for the first part.

To show the second part, denote U, = 4,,(H\V)~ 1Q O(H 0y~ "4
(

ﬁ(l) (ﬁfll))_lA; . Notice that the eigenvalues of (H! H~lo® (HU ))~" are uniformly bounded

n n
away from zero. So are the eigenvalues of U,. From the first part, we see that

T and U, —An(H( ))

21 =) ~ (1) ~
Au(P —ﬁo>=——A (HY) Zp SXTBO) wx )X 4 0,(n712).
It follows that

Vau 24,8 — By Ez +0,(

ALY D

where Z; = —n~12U7124,(HD) 'p (Y; X, By )w(X)X, . To show Y, Zi—N
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(0,Ix), similar to the proof for Theorem 2, we check two conditions: (lll)
S cov(Z) — L, (IV) S E(|Z:)137°) = o(1) for some & > 0. Condition (Il is
straightforward since Y7 cov(Z,) = U;'/?U,U; "> = Ix. To check condition (IV), sim-
ilar arguments used in the proof of Theorem 2 give that E(||Zl~||§+5) = O{(s,/n)*"7}.
This and the boundedness of the iy-function yield 7, E(||Z:[3"°) <0 {st9/2
/n®?} = o(1). Hence

ViU 24,80 — B SN (0. 1), (33)

Also, it can be concluded that |U, — U, ||, = 0,(1) and that the eigenvalues of U, are
uniformly bounded away from zero and infinity with probability tending to one. Conse-
quently,

\]ﬁ;l/zU’:/z_Ik||2 —0,(1). (34)
Combining (33), (34) and Slutsky’s theorem completes the proof that /nU, 1/2An
U {UN

We now show Theorem 3, which follows directly from the null hypothesis Hj in (14) and
the second part of Lemma 3. This completes the proof. 0

Proof of Theorem 4 The proof of Theorem 4 is similar to that used in Theorem 7, except that
in the Part 2, C, is changed from A,/n/s, to 7,. O

Proof of Theorem 5 The proof of Theorem 5 is similar to that used in Theorem 8, except that
in the Part 2, B, is changed from 4,\/n/s, to 4,. O

Proof of Theorem 6 Assumption (19) implies that En(ﬁ) in (3) is convex in . By Karush-
Kuhn-Tucker conditions (Wright 1997, Theorem A.2), a set of sufficient conditions for an
estimate f = (EO, Bl, cen Epn)T being a global minimizer of (3) is that
IR ~T=
=S b (Y X[ Bywlx) = 0,
i=1
1 < ~T= . . S
=S 0, (Y X, B)w(X0)Xij = — 2w sign(B), for1 <j<p, with B, #0,  (35)
i=1
1< ~T2 ~
>op, (Y X, B) w(X)Xi;| < duwnj, for 1 <j<p, with B, =0.
i=1
Before proving Theorem 6, we first show Lemma 4. U

Lemma 4 (existence and consistency: p, > n) Assume (19) and Conditions A0, Al, A2,
A4, AS', BS, A6, A7 in Appendix 1.1. Suppose s* /n — 0, log(p, — s,)/n = O(1), log(p, —
s,,)/{n)ui(wgzl)z} =0,(1) and min; <<, |ﬁj;0|/\/sn/n — 00. Assume WQILX = Op{1/(/y
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V/n)} and wt )/ln f /snLoo. Then with probability tending to one, there exists a global

minimizer B = (,B ,ﬂ H)T) ofﬁn(ﬁ) in (3) which satisfies that

) pw_o,

(if) ﬁ(l) is the minimizer of the oracle subproblem,

EO qu Y, F~ (X ﬁ +/bnzwn,/|ﬂ|

=(1 ~ o~ ~
Proof Let bi) = (bo, by,...,bs)" be the minimizer of the subproblem (36). By Karush-
Kuhn-Tucker necessary conditions (Wright 1997, Theorem A.1), Zil) satisfies that

1 < T3
=S p, s X By wixy) = 0,
ni=

1< ~(T=(1) , L~ , L
Zzp‘(Yi;Xi b, )w(X:)Xij = —Aywy; sign(b;), for1 <j<s, with b; # 0,

< Wy, for1 <j <s, with b =0.

‘ ZP Yz,X I w(X;)X; iy

In the following, we will verify conditions

by #0,...,by, #0, (37)

and

n

1 IS
2> (1 X B, ) WXy | < 2w, for s, + 1<) <, (38)
i=1

It then follows, from (37), (38) and (35), that (5.
This will in turn imply Lemma 4.
First, we prove that (37) holds with probability tending to one. Applying Lemma 1 to the

subproblem (36), we conclude that ||E,(11) - ﬁél)||2 = Op(y/Sn/n). Since min; <<, B}l
/\/Sn/n — 00 as n — oo, it is seen that
(mgn(ﬁ ) # sign(f;,) for some j € {1,...,5,})
§P( max ’ﬁ] 5]0’ > min ‘5 o‘) — 0.

1<j<sy, 1<j<s

,07)" is the global minimizer of (3).

Hence (37) holds with probability tending to one.
Second, we prove that (38) holds with probability tending to one. It suffices to prove that

n

1 S (HT=(1)
;Zp (YHX b )W(Xl) i
i=1

P( max <Z wgfn> — 1. (39)
sitl1<j<p,
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By Taylor’s expansion, we have that

S X wxgx, =S XYy wixx,

B ) (X B - B,

with E(I)* located between ﬁél) and 5,(11). Then (39) holds if we can prove

n

1 S5(MT=(1)
3 (1 XY ) X)X,

P max
sitl<j<p, | N4

< ﬁw(“)> —1, (40)

2 min

and

rzm

sz v X B wx (X (8, — By )3y <

in
: Wg;) Y

(41)

P max
st <j<p,

We first prove (40). Set py; =p, (Vi XEI)TE(()I)). Since log(p, —s,) = O(n) and
log(p, — sn) = 0,{nis(w H)) }, we see that

Il'llIl

Zplz

max
Spt1 <j <p

)X,| = Op{ylog(p, — s, +1)/n} = 0, (2w,

This implies (40).
Second, we prove (41). Since ||ﬁ(()1)||1 <oo and ||Zil) - E(()I)”z = Op(+/s,/n), it follows
that
=0 =@ =M = =@ =M =0
||bn ||1 < ||ﬁ0 ||1 + ||bn - ﬂO ||1 < ||ﬁ0 ”1 + \/‘Ean - ﬂO || = OP(1)7

and then |||, = Op(1), thus

=(I1)

1 <& ~ (DT~ (T)*
S e X B we) (X 6, - B
i=1

max
sitl<j<p,

<oyl = B 0w}
— \/EOP(\/W)OP( ) OP(Sn/\/7) = OP{}W mm}

Here w'™V Jn\/1 /s,,Loo is used. Hence (41) is proved. ]

min

The first part of Theorem 6 follows from the first part of Lemma 4. The second part of
Theorem 6 follows directly from applying Theorem 2 to the oracle subproblem (36). [

~PMR

Proof of Theorem 7 1t is easy to see that f§; = argming £;*(f), where £;'**(f) =
YR (3(B), B), and o;(p) satisfies n! Y7L, q, (Yi; 9(f) + XiyB) =0 for j=1,...,p,
From (11), %;(0) = --- =, (0). Let %y = %;(0). Then &oinxo, where og = F(u,) with
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t, = E(Y). The rest of the proof contains two parts.

Part 1. For A, = 4,1/n, we will show that varll)ax.An = Op(1). It suffices to show that
there exist local minimizers EJI.)MR of EE_I}’[R*([}) such that limy_ o, inf,> P(min; <; <,
]EjMR] > A,0) = 1. It suffices to prove that, for 1 <j <s,, there exist some b; with |b;| =
20 such that

lim inf P( min { inf (PR, B) — (PMRY(A, bj)} > 0) —1, (42)

0—0+n>1 1</<s, L|pj<s ™/

and there exists some large enough C, > 0 such that

lim inf P( min { inf (PMRS (A, B) — (PMR (4, bj)} >o> 1. (@3

0—0+n>1 1<j<s, |.B|2C

Equations (42) and (43) imply that with probability tending to one, there must exist local
o ~PMR PMR ~PMR )

minimizers f;  of £, 7%*(B) such that A, 6<[B; |<A,C, for 1 <j<s,.
First, we prove (43). For every n> 1, when |ff| — oo,

min ({3 (A, ) = 3% (A, 5)} = i, A lB] — max 7% (A, b) = ? 0.

1<i<s,

Thus (43) holds.
Second, we prove (42). Since A, = O(1), we see that |A, f| <O(1)0 — 0 as 6 — 0+.
For 1 <j<s,, by Taylor’s expansion,

KSJMR* ZQq o)+ A B qu Yy %o ){ Xy — E(X))}

Aiﬁ2 2 0* ~/ * 2
+Tﬁz q, (Y5 O (Au B;) + X} + Anrcal Bl

i=1
where 71, = F~'(a), 05 = 05(A, B;), 05(B) = o;(B) + Xi;B and B is between 0 and f.
Thus we have that
min { inf R (A, B) — 6N (A, by) |

1<<s, Ligj<s ™/
> A, min inf (8- )13 q (% @) (X, — B(X))
= nlg}lélsn \/)}|n§5 )j n - ql is 0o ij j

2
+ﬂ min inf { Zq (Y55 0;){2;(A, ﬁ)+X,,}

2 1<j<s, |p|<o

1 o) *
_bz Zq2 o a/Ab)JrX,J}]

+ A, min inf {x,(|f| = b))} =L + L+ 5,

1<j<sp || <o

where ¢j; = 0;;(A, b;), with b7 between 0 and b;. Let Co=q"(R J)/F'(1i,) # 0. Then

E’OLCO, where Co = ¢"(u,)/F'(11,). We obtain
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I = A, min inf {Co( — bj)cov(X;,Y)}

1<j<s,|f| <o

+ A, min inf <A - %Z Y- {X,J—E(X)}—cov(Xj,Y)]>

1<) <50 Bl <0 p—

— A, max sup {60@0 —1,) (B — bj);Z{AXi.j - E(XJ)}] =ha+ho+1is.
P

L=/ssnipi<o
Choosing b; = —206 sign{ Co cov(X;, Y)}, which satisfies |b;| = 20, gives
L= A, g}lg?n ‘é‘n<fb{ﬂco cov(X;,Y) + 26|Co cov(X;, Y)|}

> A, 6|Col  min_ Jeov(;, ¥)| > |ColcA2 6.

We can see that |[; 5| = Op(.A,{log(s,)/ n}l/ ?)8, by the Bernstein’s inequality (van der Vaart
and Wellner 1996, Lemma 2.2.11). Similarly, |/, 3| <o, (An{log(sn)/n}]/z)é. For terms 7, and
I, we observe that |I,| < Op(A2) 6% and |I;] = O(A, «,,)é. The conditions log(p,) = o(nx?)
and A,/x, — oo imply that {log(s,)/n}"/?/A, = o(1). Together with the condition
A, /K, — oo, we can choose a small enough 6 > 0 such that with probability tending to one,
I 2, 113, I, and I3 are dominated by /; |, which is positive Thus (42) is proved.

Part2. ForC, = A,\/n/s,, we will show that w (I C, —>oo It suffices to prove that for any

min

~PMR
¢ > 0, there exist local minimizers f,  of £7Y%*(f) such that lim, . P(max,,41<j<p,

~PMR
|B; | <Cue) = 1. Similar to the proof of Lemma 1, we will prove that for any € > 0,

tim P( min {inf 3R (C,p) 3 (0)} > 0) = 1. (44)

n—oo Sn+1 S]SP,, ‘ﬁlz(f

Since C,, — 0 as n — oo, we have that by Taylor’s expansion,

. PMR _ /PMRx
Sn+{r§/r.lgpn{‘;fr‘lff (CuB) — €, (0)}

n

>(C, min inf [ﬁ%qu(E;&o){%—E(&)}]

snt1<j<p, ‘m:E —1
2

VO in ot 05 0 (5 0,C)) 5 (Cof) + %))
i=1

2 snt1<j<p, ‘m:E
+Cy I}flll—f (ulBl) =1L + L + L,
where /)’]’.‘ is between 0 and f. Similar to the proofin Part 1,

I =C, f{C XY
1=C min inf {Copcov(X;, Y)}

+C, min inf <60ﬁ%2[(n—y0){)¢J—E(Xj)} — cov(X;, Y)]>

snt1 <j<p, |Bl=e

~ 1 B
— G max P [Co(ﬂo - uo)ﬁ;;{Xm - E(Xj)}} =hLy+ho+hs.
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Then |[; 1| <o(C,Bye), |Ii2| <Op[C,{log(p, — sn + 1)/n}"*e and 11 3] <0, [C.{log(p,
—sp + 1)/n}'"]e. Hence || < Op[Cu{log(p, — s, + 1)/n}"*)€ + 0(C,By)e. For the term I,
we have that |I,| < Op(C?)é>. Note I = C,k,e. Since log(p,) = o(nx?), B, = O(x,) and
C, = o(k,), it follows that with probability tending to one, terms /; and I, are dominated by 7,
which is positive. So (44) is proved. [

. AMR .

Proof of Theorem 8 It is easy to see that f§, = argming (™" (f), where £} () =
R (@(B), B), and %;(p) satisfies n~' 7, q, (Yi; %(B) + Xi;f) = 0 forj = 1,...,p,. From
(11), %;(0) =--- =1, (0). Let %y = o;(0). Then &Oimo, where oy = F(u,) with
1 = E(Y). Lethy () — SLomme(B) = ' Sy 0, (% 5(B) + XisB) {7)(B) + Xz} Then
I (B) = n" S0 q, (Y 2 (B) + Xy B){@(B) + Xi}* and A7 (B) = n' 3L, q5,(B). The
minimizer EJMR of (17) satisfies the estimating equations, 4, J(EJMR) = 0. The rest of the
proof consists of two parts.

Part 1 For A, = A,/n, we will show that w!) A, = OP( ), which is A, /min; <;

|<An5) = 0. Using the

Ss,,]ﬂj | = Op(1). That is, lims_o4 sup, - P(min; <;<,
Bonferroni inequality, it suffices to show that

Sn

lim supZP ]ﬁ \<.A 0) =

00+ ;> 1
With assumption (11) for the convex BD, 4, ;(-) is an increasing function. Thus
~MR
P(|B, [<Au6) <P{hy;(—Ay6) <O<hy;(A, )}

Note that A, = O(1) gives A, d — 0 as 6 — 0+. By Taylor’s expansion, for 1 <;j<s,, we
have that

1 L ~ ~/
B j(£A, 0) Zq Yi; %0){Xi; — E(X))} + (£A, 5);;%(}@; 0) {2(0) + Xy}’
1 *
+ 5 (An 5)2;;(131'(-'4” 0;) =1y + by + Iy,

with & € (0,8). Let Co = ¢"(7,)/F(i,) #0, where 7, = F~'(&). Then Co—-C,
where Co = ¢"(u,)/F'(1,). We obtain
1 < PSS
Ly ==Y (Y= &,)Co{X; — E(X))}
N 1
= Cocov(;, ¥) + Co-»[(Yi = ) {Xi; — E(X)} — cov(X;, V)]
i=1
- R 1 n
— Co(k, — #0);;{% —EWX)} = Lo + 1o + 13-
Because A, = O(1), |cov(X;, Y)|>cA,, 1 <j<s,, and both
maxi <;<, B[~ Y21 q, (Y5 %0){%(0) + X;;}°] and max; <;<,, E{n™' Y1) |qs,(A
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57)|} are bounded, we can choose ¢ small enough such that, uniformly for all 1 <; <s,, the

term /y;; = Co cov(X;,Y) dominates /»; and /3;. By assuming Co cov(X;, Y) <0 without
loss of generality,

P(B, | <Ay 8) < P(O< (A, 0))
_”2“45 ) (45)

< P(11j72 +11j,3 > C-An) §46Xp (W ’

for some positive constants C, C; and C,, where the last inequality applies the Bernstein
inequality. By (45), for a small enough 6 > 0,
—n? A2

. CmAﬂ) = o(1). (46)

Sn ~MR
> P(IB <A 0) <dsiexp
=1

The equality in (46) follows from A, = O(1), A,n — oo and log(s,) = o(/2n?), where the
latter two are implied by the conditions 4,n/s, — oo and log(p ) = o(A2n?/s2).

Part 2. For B, = J,\/n/s,, we will prove that w( )B —00, Wthh is max,, 1<j<p,

|ﬁj |/Bn = 0,(1). Namely, for any € > 0, lim,, .. P(max,, 1 <<, |ﬁj \ > B,e) = 0. By
the Bonferroni inequality, it suffices to show that

lim (|ﬁ 1> Bye) =0
nﬂooj:sn_'_1
Since A, (-) is increasing, we have that forj =s, +1,...,p,,
P(B, | > Bue) < PLhnj(~Bye) > 0} + P{hy;(Bye) <0}, (47)

Similar to Part 1, B, = o(1) gives that forj=s, + 1,...,p

nd

By j(£Be) Zq Y 40){X;; — E(X))}
+ <iBne>;ZqZ<Yi; %){%(0) + X}’

1
+§ Z%z i) =1+ Dy +Jy,

with € € (0,0). Since B, = o(1), |cov(X}, Y)| = o(B,), s, + 1 <j<p,, and from Condi-
tion E2, |Joj| > B,en, as n — oo, Jo; dominates [;; and J3;. Applying the Bernstein’s
inequality, for large n,

P{th(Bne) < 0} < P([lj,z —|—11j_’3 < — CBnE)
e ) (48)

caep (B
=Texp Cin+ CrenBB,

for some positive constants C, C; and C,, where 1, I1;, and /j; 3 are as defined in Part 1.
Similarly,
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P{th'(—BnE) Z O} S P(Ilj,2 —|— ]lj,3 2 C8n6)4

—eznzBﬁ (49)
xp (C]I’l + CzEI’an ) '

Thus by (47), (48) and (49),

Py

Zpyﬁ \>Be)<8(pn Sn)
J=5n ) (50)
n’B;
—_— 1).
X p<C1n+C26nB ) O( )
The equality in (50) follows from the conditions B, = o(1), 4,n/s, — oo and log(p,)
= o(/in?/s?). O

Proof of Theorem 9 For part (i), note that for X° = (X°W7 xoT)T, X' = (1,x°")" and

)?O(I) _ (I,XO(I)T)T,

o()T 2 (1)

B >— -‘<~"“”B'é”>|
<1 EY @R - B,

[ (X°) —m(X°)| = |F'(X

for some F located between Bél) and E(I). By Condition A4, we conclude that (F~')’

(X""B") = 0p(1). This along with |8 = BY I, = Op(r,) and X[, = Op(/50)
implies that |7 (X?) — m(X°)| = Op(r4+/5,) = 0,(1). The rest of the proof is similar to that
of Theorem 9 in Zhang et al. (2010) and is omitted.

For part (ii), using the proof similar to Lemma A1 of Zhang et al. (2010), we obtain that
for any BD Q satisfying (4),

E{Q(Y?, m(X?)) | T,,X°} = E{Q(Y’, m(X")) | X°} + Q(m(X°), m(X?)).
It follows that

E{Q(Y?, m(X?)) | 7.}

= E[E{Q(Y®, m(X*)) | T, X"} | T,]

= E[E{Q(Y*,m(X?)) | X°} + Q(m(X*), m(X°)) | T,]

= E[E{Q (Y" m(X°)) | X°} | 7] + E{Q(m(X?), m(X°)) [ Tx}

= E[E{Q(Y?,m(X")) | X°}] + E{Q(m(X°), m(X°)) | T}

= E{Q(Y", ( N} +E{Q(m(X?), m(X°)) | Tu}.
Setting Q to be the misclassification loss implies
R($ | T,) = R(dy),

which combined with part (i) completes the proof. ]
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1.2 Additional numerical studies
1.2.1 Gaussian responses in Sect. 6.3

Random samples {(X;, Y;)}'_, of size n = 200 are generated from the model,
X = ()(i,b .. '7)(i,pn)r NN<07ZP,1)7 Y; | X; NN(ﬂO;O +X1Tﬂ0a 02)7

where B0 = 1, By = (2,1.5,0.8,-1.5,0.4,0,...,0)" with 6> = 1. Here %, (j, k) = p/ ¥,
J,k=1,...,p,, with p = 0.1. The qudartic loss is used as the BD.

Study 1 (raw data without outliers). For simulated data in the non-contaminated case, the
results are summarized in Table 7. The robust estimators perform very similar to the non-
robust counterparts.

Study 2 (contaminated data with outliers). For each data set generated from the model,
we create a contaminated data set, where 7 data points (X;;, Y;) are contaminated as follows:
They are replaced by (X, Y), where Y = Yil{|Y; —m(X;)|/o >2} + IS{|Y; —m
X)|/o<2},i=1,...,7,

X' =5 sign(U; —.5), X;, =5sign(U; —.5), X35, =5 sign(U; —.5),
Xj3=5sign(Us — .5), Xi5=>5sign(Us —.5), Xig=>5sign(Us —.5),
X749 =5 sign(Us - .5),
with {U,-}l'rl‘vd ‘Uniform(0, 1). Table 8 summarizes the results over 500 sets of contaminated
data. A comparison of each estimator in Tables 7 and § indicates that the presence of

~

contamination substantially increases the estimation errors EE( ) and reduces either C-Z or
C-NZ. On the other hand, it is clearly observed that the non-robust estimates are more
sensitive to outliers than the robust counterparts.

To further assess the impact of the sample size n on the parameter estimates, we display

boxplots of (E/ = Bio)»j =0, 1,...,8, using the PMR selection method for the weighted-L,
penalty, in Fig. 3 using n = 200 and Fig. 4 using n = 100, respectively. The comparison
supports the consistency of both the classical and robust estimates of large dimensional
model parameters for clean data as n increases, in addition to the stability of the robust
estimates under a small amount of contaminated outliers.

1.2.2 Real data analysis

We consider the classification of Colon cancer data discussed in Alon et al. (1999) and
available at http://genomics-pubs.princeton.edu/oncology/. It consists of 2000 genes and 62
samples, where 22 samples are from normal colon tissues and 40 samples are from tumor
tissues. Similar to the analysis in Sect. 7, the data set is randomly split into two parts, with
45 samples as training samples and the rest 17 as test samples. Table 9 summarizes the
average of the test errors (TE) and the average number of selected genes over 100 random
splits. We observe that robust procedures tend to select fewer genes than the non-robust
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procedures, without getting much increase in the test errors. This lends further support to the
practicality of the proposed penalized robust-BD estimation.

1.3 Numerical procedure for penalized robust-BD estimator in (3)
1.3.1 Optimization algorithm

Numerically, the penalized robust-BD estimators in (3) combined with penalties used in
Sects. 6 and 7 are implemented by extending the coordinate descent (CD) iterative algorithm

(Friedman et al., 2010), with the initial value (5,0, ...,0)", where b = log{ (Y, + 0.1)/(1—
Y, +0.1)} and b = log(Y, + 0.1) for Bernoulli and count responses respectively, using the
sample mean Y, of {¥;}?_,. Namely, the loss term

LB =S py (6 F - ED B wix)
i=1

in (3) is locally approximated by a weighted form of quadratic loss functions, and the
optimization solution of (3) is obtained by the CD method. Particularly, the gradient vector

and Hessian matrix of L(f) are

L,(E) =n! ZPI (3 X’,TE) w(Xi) X,
i=1

LB =Y (1 K B wx )X
i=1

The quadratic approximation is supported by the fact that the Hessian matrix of L(f)
evaluated at the true parameter vector f is

LB =03 p, (5 X Bo) wix) XX
= B[E{p,(¥; X Bo) | X} w(X)XX'| +0,(1),

which, combined with the property E{p, (Y; X Tﬁo) | X} > 0 discussed in part (d) of Sect. 2.2,
indicates that with probability tending to one, the matrix L (B,) is positive semidefinite.

Both p, (;0) and p, (y; 0) in L'(B) and L"(p) are calculated using (9), which incorporates

the Huber and Tukey y-functions whose derivatives /' (r) can be substituted by its sub-
gradient or approximation.

1.3.2 Pseudo codes, source codes and computational complexity analysis

Algorithm 1 summarizes the complete procedure for numerically solving the “penalized
robust-BD estimator” in (3).
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Table 9 (Real data) Classifica-
tion for the Colon cancer data

Deviance loss Exponential loss

Procedure  (r) Penalty TE # genes TE # genes

non-robust SCAD 0.224 995 0.217 10.68
L, 0.190 18.64 0.204 16.26
wL;, MR 0.155 10.65 0.156 9.51
wL;, PMR 0.161 10.89 0.165 9.43

robust Huber SCAD 0.268 3.40 0.243  5.02
L 0.282 5.84 0.226 10.42
wL;, MR 0.231 4093 0.172  6.83
wL;, PMR 0.214 597 0.180 6.79

robust Tukey SCAD 0.247 3.91 0.263 3.84
L 0.230 11.30 0.228 10.91
wL;, MR 0.185 745 0.166 7.54
wL;, PMR 0.184 7.90 0.169 7.31

Algorithm 1 Numerical procedure for the “penalized robust-BD estimator”

Require: Data {(X,;,Y;) :i =1,...,n}, dimension p_, type of the response

4:

variable Y, link function F'in (1), variance function V' in (2), the generating
g-function of BD, weight function w(x), Huber or Tukey -function with
a constant ¢ > 0.

. Compute the Pearson residual r(y,u) = (y — p)/+/V (1), and construct

the robust-BD p,(y, 1) from (6).

. Select the data-driven penalty weights {w,, ; }?;1 by the PMR method in

(15)—(16) or the MR method in (17)—(18); select the data-driven regulariza-
tion parameter \,, on a grid via cross-validation or other prediction-based
criterion. For the PMR method, each k,, on a grid K yields a selected A,

and a test error; take the opt/i\mal Ry, which minimizes the test error over
the grid K to select the final \,,.

: Use the data-driven {@n,j};)ll and A, to compute the criterion function

(3)-
Minimize the criterion function (3) over (Bo,3) via the optimization
algorithm in Section A.4.1.

Ensure: The “penalized robust-BD estimator” (BO,B).

To illustrate the computational complexity analysis, Tables 10 and 11 compare runtime of
the non-robust and robust procedures. All computations are performed using MATLAB
(Version: 9.12.0.1956245 (R2022a) Update 2) on Windows 11, 12th Gen Intel(R) Core(TM)
19-12900, 2400 Mhz, 16 Core(s), 24 Logical Processors. MATLAB source codes are
available at GitHub https://github.com/ChunmingZhangUW/Robust _penalized BD high
dim GLM. For either clean or contaminated data, the algorithmic complexity depends on
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Table 10 The total CPU time (in

seconds) for overdispersed Pois- Data Procedure ! Py runtime
son responses in 500 replications
Table 1 raw non-robust 100 50 82
Raw non-robust 100 500 865
raw robust 100 50 14404
raw robust 100 500 16319

Table 2 contaminated non-robust 100 50 94
contaminated non-robust 100 500 1070

contaminated robust 100 50 18185

contaminated robust 100 500 21437
Table 11 The total. CPU time (in Data Procedure B » Runtime
seconds) for Gaussian responses "
in 500 replications

Table 7 raw non-robust 200 50 53

raw non-robust 200 500 672

raw robust 200 50 91

raw robust 200 500 800

Table 8 contaminated non-robust 200 50 63
contaminated non-robust 200 500 911

contaminated robust 200 50 96
contaminated robust 200 500 899
Figure 4  raw non-robust 100 50 49
raw non-robust 100 500 429
raw robust 100 50 106
raw robust 100 500 1154
Figure 4  contaminated  non-robust 100 50 67
contaminated non-robust 100 500 610
contaminated robust 100 50 120
contaminated robust 100 500 1246

the type of response variables, the dimensionality and the procedure. Poisson-type responses
are more computationally intensive than Gaussian responses; robust procedures are slower
than the non-robust counterparts; higher dimensions demand more computational costs than
lower dimensional settings.

Author Contributions CM Zhang contributed to the proof, computation, and writing; LXZ contributed to the
discussion, proof, and writing; YBS contributed to the implementation of SVM and robust-SVM.

Funding The work was partially supported by the U.S. National Science Foundation grants DMS-2013486
and DMS-1712418, and provided by the University of Wisconsin-Madison Office of the Vice Chancellor for

Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.

Data availability The Lymphoma data studied in Sect. 7 is publicly available from Alizadeh et al. (2000); the
Colon cancer dataset in Appendix 1.2.2 is at http://genomics-pubs.princeton.edu/oncology/.

@ Springer



3410 Machine Learning (2023) 112:3361-3411

Code availability MATLAB codes are available at https:/github.com/ChunmingZhangUW/Robust
penalized BD high dim GLM.

References

Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, 1. S., Rosenwald, A., Boldrick, J. C., Sabet, H.,
Tran, T., Yu, X., Powell, J. L., Yang, L., Marti, G. E., Moore, T., Hudson, J., Jr., Lu, L., Lewis, D. B.,
Tibshirani, R., Sherlock, G., ... Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature, 403, 503-511.

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J. (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proceedings of the National Academy of Sciences of the USA, 96, 6745—-6750.

Altun, Y., & Smola, A. (2006). Unifying divergence minimization and statistical inference via convex duality.
In G. Lugosi & H. U. Simon (Eds.), Learning theory: 19th annual conference on learning theory (pp.
139-153). Springer.

Bianco, A. M., & Yohai, V. J. (1996). Robust estimation in the logistic regression model. In Robust statistics,
data analysis, and computer intensive methods (Schloss Thurnau, 1994) (Vol. 109, pp. 17-34), Lecture
Notes in Statist., Springer.

Boente, G., He, X., & Zhou, J. (2006). Robust estimates in generalized partially linear models. Annals of
Statistics, 34, 2856-2878.

Brégman, L. M. (1967). A relaxation method of finding a common point of convex sets and its application to
the solution of problems in convex programming. USSR Computational Mathematics and Mathematical
Physics, 7, 620—631.

Candes, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than 7.
Annals of Statistics, 35, 2313-2351.

Cantoni, E., & Ronchetti, E. (2001). Robust inference for generalized linear models. Journal of the American
Statistical Association, 96, 1022—1030.

Dupuis, D. J., & Victoria-Feser, M.-P. (2011). Fast robust model selection in large datasets. Journal of the
American Statistical Association, 106, 203-212.

Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American
Statistical Association, 81, 461-470.

Fan, J., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals
of Statistics, 32, 928-961.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1), 119-139.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33, 1-22.

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association,
106, 746-762.

Gong, P., Zhang, C., Lu, Z., Huang, J., & Ye, J. (2013). A general iterative shrinkage and thresholding
algorithm for non-convex regularized optimization problems. In The 30th international conference on
machine learning (ICML 2013).

Griinwald, P. D., & Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust
Bayesian decision theory. Annals of Statistics, 32, 1367-1433.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics: The approach
based on influence functions. Wiley.

Heritier, S., Cantoni, E., Copt, S., & Victoria-Feser, M.-P. (2009). Robust methods in biostatistics. Wiley.

Huber, P. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73—101.

Kanamori, T., Takenouchi, T., Eguchi, S., & Murata, N. (2007). Robust loss functions for boosting. Neural
Computation, 19, 2183-2244.

Kiinsch, H., Stefanski, L., & Carroll, R. (1989). Conditionally unbiased bounded influence estimation in
general regression models, with applications to generalized linear models. Journal of the American
Statistical Association, 84, 460—466.

Lafferty, J. D., Della Piestra, S., & Della Piestra, V. (1997). Statistical learning algorithms based on Bregman
distances. In Proceedings of the 5th Canadian workshop on information theory.

Lafferty, J. (1999). Additive models, boosting and inference for generalized divergences. In: Proceedings of
the twelfth annual conference on computational learning theory (pp. 125-133). ACM Press.

Meier, L., van de Geer, S., & Biithlmann, P. (2008). The group Lasso for logistic regression. Journal of the
Royal Statistical Society Series B, 70, 53-71.

@ Springer



Machine Learning (2023) 112:3361-3411 3411

Stefanski, L., Carroll, R., & Ruppert, D. (1986). Optimally bounded score functions for generalized linear
models with applications to logistic regression. Biometrika, 73, 413—-424.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58, 267-288.

van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge University Press.

van der Vaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical processes: With applications
to statistics. Springer.

Vapnik, V. (1996). The nature of statistical learning theory. Springer.

Vemuri, B. C., Liu, M., Amari, S.-I., & Nielsen, F. (2011). Total Bregman divergence and its applications to
DTI analysis. [EEE Transactions on Medical Imaging, 30, 475-483.

Wright, S. J. (1997). Primal-dual interior-point methods. SIAM.

Wu, Y. C.,, & Liu, Y. F. (2007). Robust truncated hinge Loss support vector machines. Journal of the
American Statistical Association, 102, 974-983.

Zhang, C. M., Jiang, Y., & Shang, Z. (2009). New aspects of Bregman divergence in regression and
classification with parametric and nonparametric estimation. Canadian Journal of Statistics, 37, 119—
139.

Zhang, C. M., Jiang, Y., & Chai, Y. (2010). Penalized Bregman divergence for large-dimensional regression
and classification. Biometrika, 97, 551-566.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association,
101, 1418-1429.

Zou, H., & Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. Annals of
Statistics, 36, 1108—1126.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



