
Voiceprint-based Access Control for Wireless
Insulin Pump Systems

Bin Hao, Xiali Hei and Yazhou Tu
School of Computing and Informatics

University of Louisiana at Lafayette

Lafayette, LA 70503, USA

{bin.hao, xiali.hei,yazhou.tu1}@louisiana.edu

Xiaojiang Du and Jie Wu
Dept. of CIS

Temple University

Philadelphia, PA 19912, USA

dxj@ieee.org, jiewu@temple.edu

Abstract—Insulin pumps have been widely used by patients
with diabetes. Insulin pump systems adopt wireless channel with
few cryptographic mechanisms, which makes them vulnerable to
many attacks. In this paper, we focus on the wireless channel
between Carelink USB and insulin pump on which the attackers
can launch message eavesdropping and/or therapy manipulation
attacks, which may put the patient in a life-threatening situ-
ation. Some prior solutions such as certificate-based or token-
based schemes need either complicated key management or
additional devices. We propose a novel voiceprint-based access
control scheme comprising anti-replay speaker verification and
voiceprint-based key agreement to secure the channel between
the Carelink USB and insulin pump. Our scheme does not need
permanent key sharing or additional devices. The anti-replay
speaker verification adopts cascaded fusion of speaker verifica-
tion and anti-replay countermeasure to ensure the insulin pump
can be accessed by Carelink USB only after the legitimate user
passes the identity verification. The evaluation on ASVspoof 2017
datasets shows that our scheme achieves a 4.02% Equal Error
Rate (EER) with the existence of replay impostors. Besides, our
scheme uses energy-difference-based voiceprint extraction and se-
cure multi-party computing to generate a common cryptography
(temporary) key between the Carelink USB and insulin pump,
which can be used to encrypt the subsequent communication,
and protect the insulin pump from eavesdropping and therapy
manipulation attacks. By appropriately setting the similarity
threshold of voiceprints, our key agreement scheme allows the
insulin pump to establish a secure channel only with the device
in its close proximity.

Index Terms—wireless insulin pump; voiceprint; access con-
trol; voice anti-replay; speaker verification; acoustic channel

I. INTRODUCTION

As of 2015, there were an estimated 30.3 million people of

all ages in the U.S., or 9.4% of the population, suffering from

diabetes [1]. People with type 1 diabetes, about 5% of diabetic

patients, need insulin pumps. Insulin pump systems adopt

wireless channels with few cryptographic mechanisms, making

them vulnerable to many attacks. Patients that use such devices

may be in potential security threats. Using off-the-shelf USB

device, Radcliffe [3] was able to intercept wireless signals

(glucose data) sent between the glucose sensor and the man-

agement device and cause blood glucose management devices

to display inaccurate readings. Jack [2] was able to capture

data transmitted from the computer, control the operations of

the insulin pump such as delivering fatal doses (300 unit of

insulin) to a diabetic patient. Li et al. [7] reverse-engineered

the communication protocol used among continuous glucose

monitoring (CGM) and insulin delivery systems and showed

that both passive attacks such as message eavesdropping and

active attacks such as impersonation can be launched. Marin et

al. [8] extended Li’s attacks by fully reverse-engineering the

wireless communication protocol among all the peripherals

of the insulin pump system. The authors carried out replay

attacks, message injection attacks, and privacy attacks on the

insulin pump system compromising both the safety and privacy

of the patient. It is critical to design security mechanisms to

mitigate the threats in wireless insulin pump systems.

In this paper, we focus on the wireless channel between

the Carelink USB and insulin pump, which is critical in

insulin pump systems. Over this channel, the attackers can

launch message eavesdropping and/or therapy manipulation

(such as remote dosage setting) attacks, which may put the

patient in a life-threatening situation. Some prior solutions

such as certificate-based or token-based schemes need either

complicated key management or additional devices. Marin et

al. [8] proposed an AES-MAC based cryptographic solution.

The sharing of two symmetric keys and their management

make the system complicated. Authors of [9], [10] proposed

authentication schemes using additional external devices. Pa-

tient infusion pattern based access control scheme (PIPAC)

[4] can resist two overdose attacks but assumes the patients

glucose levels can only be modified manually, which does not

hold in a closed-loop control system.

We propose a novel voiceprint-based access control scheme

to mitigate the above attacks over the channel between the

Carelink USB and insulin pump (also called “the two de-

vices”). Our scheme does not need permanent key sharing

or additional devices except needing two audio sensors to be

embedded in the two devices, respectively. When the Carelink

USB wants to request data or modify the dosage setting of

the insulin pump, the pump needs a target user to grant her

or his permission to the Carelink USB by speaking random

passphrases. After successful speaker verification, the two

devices can start to construct a secure communication channel.

The core ideas of our scheme rely on 1) the anti-replay

speaker verification adopting cascaded fusion of speaker ver-

ification and anti-replay countermeasure to ensure the insulin

pump is accessed by the Carelink USB only after the legitimate
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user (not a replay impostor) passes the identity verification;

2) energy-difference-based voiceprint extraction and secure

multi-party computing to generate a common cryptography

(temporary) key between the two devices. The scheme does not

need to share common secret or key, and utilizes an acoustic

channel in addition to the wireless channel as a source of

proximity declaration. The two devices transmit voiceprints,

extracted from audio passphrases, to each other using secure

multi-party computing, which leaks no information about the

voiceprints to public. The similarity of the two voiceprints is

then checked by computing such as Hamming Distance in the

two devices, respectively. Then the two devices (if pass check)

generate a common secret/key, which can be used to be (or

to generate) a session key utilized to encrypt and/or append

MAC to the messages exchanged, which can resist attacks

such as message eavesdropping and remote dosage setting.

Besides, our scheme uses Gaussian mixture model (GMM) to

implement anti-replay speaker verification, which only needs

to store the target user’s model and achieves low equal error

rate (EER, a threshold value when false acceptance rate equals

false rejection rate) to secure the patient’s safety (the lower the

EER the higher the accuracy of the verification).

Our contributions are as follows:

• We propose a novel voiceprint-based access control

scheme comprising anti-replay speaker verification and

voiceprint-based key agreement to secure the channel

between the Carelink USB and insulin pump.

• We implement an anti-replay speaker verification scheme

using cascaded fusion of speaker verification and anti-

replay countermeasure.

• We design a voiceprint-based key agreement between the

two devices, and demonstrate its feasibility by experi-

ments. The key agreement ensures the insulin pump will

establish a secure channel only with a device in close

proximity by setting the similarity threshold of voiceprint

to some appropriate value such as 80%.

• We conduct an experimental evaluation on ASVspoof

2017 datasets, the results of which show that the speaker

verification scheme achieves a 4.02% EER with the

existence of replay impostors.

The remainder of this paper is organized as follows: In

Section II, we discuss the related work. Section III describes

the system and attacker model. We present our voiceprint

(acoustic channel) based access control scheme for wireless

insulin pumps in Section IV, and make security analysis

in Section V. In Section VI, we describe the experimental

results. We make overhead analysis and emergency handling

in Section VII, and conclude the paper in Section VIII.

II. RELATED WORK

A. Medical Device Authentication

Some proposals have been provided to add authentication

schemes to medical devices. Li et al. [7] showed different

types of attacks on an insulin pump using reverse-engineering

technology, and proposed a cryptographic solution (rolling

code) and body-coupled communication to protect the wire-

less links. Marin et al. [8] extended their attacks by fully

reverse-engineering the wireless communication protocol in

the insulin pump system, and proposed an AES-MAC based

cryptographic solution which needs sharing of two symmetric

keys. Authors of [9], [10] proposed authentication schemes

using additional external devices, which may be forgotten,

lost or stolen, and could potentially disclose a patient’s sta-

tus. Authors of [5], [6], [13], [14] proposed various access

control schemes for wireless medical devices. These works

based on general well-studied radio signal channels can be

attacked by remote attackers who have sound knowledge of

the radio propagation patterns. Our scheme utilizes an acoustic

channel as a source of proximity declaration to establish secure

communication between unacquainted devices in proximity.

B. Anti-replay Voice Authentication

Biometric identification systems such as face and voice

recognition are widely used by healthcare providers. Biometric

systems are susceptible to spoofing attacks which use methods

such as artifact, mutilations, and replay to achieve imperson-

ation or concealment. For speaker or voice authentication, the

spoofing attacks comprise impersonation, voice conversion,

speech synthesis, and replay [19]. In this paper, we focus on

anti-replay voice authentication. Some countermeasures (CMs)

have been proposed to mitigate replay attacks. Commercial

voice authentication systems such as Nuance usually use

challenge-response based methods and require users’ explicit

cooperation (repeating a closed set of sentences). Acoustic

feature based methods come from the observation that design

of spoofing countermeasures should focus on the search for

discriminative features rather than the design of complex

classifiers [20], [21], [32]. This principle is also adopted

in our work. There also exist methods which leverage the

response of the human speech production system to external

stimuli to implement liveness detection. Zhang et al. propose

VoiceGesture which is smartphone based and achieves high

accuracy in detecting live users while not requiring additional

cumbersome operations from users [15].

C. Secure Channel Establishment

There exist solutions that establish secure communication

between (two) devices without any prior trust [11], [16], [18].

Roeschlin et al. [18] proposed a device pairing protocol based

on the idea that two devices are permitted to bootstrap a

secure channel if both of them are held by the same person.

Schürmann et al. [16] proposed a scheme to establish a secure

channel between unacquainted devices conditioned on similar

ambient audio patterns. The protocol uses ambient audio

fingerprints to generate a common cryptographic key between

two devices in proximity, and explores error correcting codes

to account for noise in the fingerprints. Our scheme utilizes

a method similar to [16] to extract voiceprint from the target

speaker’s voice (not only the ambient audio) but uses secure

multi-party computing to bootstrap a secure channel. Based on

ultrasonic distance bounding, Rasmussen et al. [11] proposed a
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Fig. 1: A real time insulin pump system

proximity-based access control scheme enabling an implanted

medical device to be accessed only by devices in its close

proximity. The devices supporting this scheme need effective

RF shielding; otherwise, a strong attacker can send data over

the sound channel at a speed faster than that of sound, which

breaks the assumption of the scheme.

III. SYSTEM AND ATTACKER MODEL

A. System Model

1) Background and the problem: The components of a

Medtronic Paradigm real-time insulin pump system are shown

in Fig. 1, which demonstrates a closed-loop control system.

A typical insulin pump system consists of the insulin pump

and its accessories (blood glucose meter, remote control,

transmitter connecting to glucose sensor, and Carelink USB

as an upload device). The blood glucose meter obtains blood

glucose readings from the patients’ finger-stick tests. The

insulin pump can be programmed to automatically receive

blood glucose readings from the blood glucose meter via

wireless link 2 (each wireless link is numbered in Fig. 1). The

glucose sensor tests the glucose level in the fatty layer under

the skin. The transmitter connected with the glucose sensor

then sends the readings to the pump via wireless link 4. The

insulin pump delivers insulin to the patient. The remote control

is operated by the patient to send instructions (such as suspend

and resume basal dosage) to the insulin pump via wireless link

1 from a distant location. Via wireless link 3, the Carelink

USB requests reports on blood glucose readings and patterns,

then uploads data to a web-based diabetes management system

using a USB port on a Laptop or PC.

Compromising wireless links 1, 3, 4 was demonstrated in

[3] and [2]. The authors of [7] [8] have proposed security

mechanisms for wireless links 1 and 4. In this paper, we will

investigate an innovative approach to defend against passive

and active attacks through link 3, which can be easily launched

by remote adversaries. Besides passively eavesdropping the

data from an insulin pump, the attackers can remotely change

settings (such as dosage level) on the pump. These attacks

bring potential threats to patient’s privacy and safety, which

need to be mitigated.

2) System model: We propose a human-aware, acoustic

channel based access control scheme to mitigate above-

mentioned attacks. In our considered scenarios, access control

means the CareLink USB (or an attacker) wants to acquire

access to an insulin pump to request data or remotely modify

the therapy settings. When the Carelink USB wants to access

the pump, first it sends request to the pump to activate the

access privilege. The pump then starts the speaker verification

to ensure that the access can be granted to the Carelink

USB only when the legitimate user (e.g., the patient) passes

the speaker verification. This verification needs the pump to

embed speaker verification protocol and an audio sensor. After

successful verification, the pump then bootstraps a key agree-

ment with the Carelink USB, which also needs to embed an

audio sensor or directly uses the microphone of the connected

PC or laptop . This process takes as inputs two voiceprints

and generates a shared temporary secret/key used to establish

a secure channel between the two devices. The authentication

process can be achieved in the case that the speaker passes the

speaker verification and the Carelink USB is in close proximity

to the pump, e.g., in the same diabetes consulting room.

B. Attacker Model

We consider two attack scenarios: the attacker wants to steal

data (such as dosage history and patient personal information)

transmitted from the pump or manipulate the therapy settings

of the pump. The first attack can incur leakage of patient’s

privacy and the second may launch a maximum dosage in-

jection, which would put the patient in critical danger. As

in [17], we suppose the pump can work in two modes. In

the normal mode, the pump needs the legitimate user to pass

speaker verification while in the emergency mode the pump

deactivates speaker verification and only needs the Carelink

USB to be in close proximity. In the second mode, the pump

and the Carelink USB can share a common key using the

voiceprint extracted from ambient audio [16].

During the access control process, the proposal is supposed

to defend against three different adversaries as follows:

• Remote impersonation. The attacker tries to pass speaker

verification and perform key agreement with the pump.

The attacker is not in close proximity (same context,

e.g., clinic room) to the pump, but can participate in the

authentication process by remotely receiving the user’s

voice or just using the voice previously recorded. This

kind of attack can be launched when the pump is acci-

dentally activated and the patient is speaking.

• Passive eavesdropping. The attacker eavesdrops on the

messages transmitted over the wireless channel and

records the voice of the legitimate user. The spied mes-

sages can be used to extract information about the shared

secret/key. The recorded voice can be used to launch voice

replay attacks to impersonate the legitimate speaker.

• Man-in-the-middle. The attacker tries to actively partic-

ipate in the authentication process, making the pump

and Carelink USB believe that they have successfully

computed a shared secret/key but they haven’t. They have
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actually established a secure connection with the attacker,

respectively, not each other.

IV. VOICEPRINT-BASED ACCESS CONTROL SCHEME

The proposed scheme comprises a speaker-dependent (only

legitimate user can pass the verification) and text-independent

(the user can use any passphrases) speaker verification system

using the acoustic channel to ensure user permission, and a key

agreement protocol using energy-difference-based voiceprint

extraction and secure multi-party computing (SMC) to add

authentication between the pump and USB.

A. Acoustic Channel Verification

As shown above, we focus on adding acoustic channel

verification for the wireless link 3 to make it safer. In

embedded systems, we face several issues and challenges in

implementing the above verification: First, the insulin pump

system has limited computing power and memory; Second,

we need to store speaker models in the insulin pump, which

has limited storage capacity; Third, the accuracy of speaker

verification must be high enough to guarantee the safety.

To solve the first problem, we choose the feature (i.e., a

type of voiceprint) whose extraction has lower computation

complexity. For lower memory occupation, we reduce the

number of filter bands (feature dimension) while keeping

appropriately high verification performance (e.g., low EER

and high verification accuracy). For the second problem, we

train the classifier based on our particular requirements. We

need not to build a large-scale system used to verify many

speakers. The model is lightweight because there is only

one patient/speaker in each system. For the same reason, the

accuracy of our system is higher than large-scale systems

since we concentrate on only one speaker and optimize the

verification for this particular scenario.

Speaker Verification Process. The speaker verification

process typically has two phases: enrollment and prediction.

In the enrollment phase, we collect the utterances of a user and

then train them based on the algorithms stated below. While in

the prediction phase, based on the trained model, the system

makes prediction and computes a score for each test utterance.

A typical automatic speaker verification (ASV) system shown

in Fig. 2 comprises two subsystems: front-end and back-end.

The front-end subsystem acquires voice from the speaker,

implements feature extraction, and generates a feature matrix

from the voice. Each column (feature vector) of the feature

matrix corresponds to one frame of the voice. The back-

end classifies the feature vectors using the trained classifiers

based on speaker models, then outputs a verification result

(accept or reject) using decision logic. Further processing of

the utterances contains the following steps:

Step 1: Feature Extraction. We focused on short-term

power spectrum features (except CQCC) and evaluated 9

different features [20], [21]: Mel Frequency Cepstral Coeffi-

cients (MFCC), Inverted MFCC (IMFCC), Linear Frequency

Cepstral Coefficients (LFCC), Linear Prediction Cepstral Co-

efficients (LPCC), Constant-Q Cepstral Coefficients (CQCC),

Speaker Feature 
Extraction Classifier

Speaker 
Model

Decision 
Logic

Decision Reject / 
Accept

Front-end Back-end

Speech

Fig. 2: Automatic speaker verification (ASV) system

Speaker
Speech

ASV CM

Reject

Accept
Accept

Reject

ASVscore
CMscore

Fig. 3: Fusion of automatic speaker verification (ASV) and counter-
measure (CM)

Subband Spectral Centroid Frequency Coefficients (SCFC),

Subband Spectral Centroid Magnitude Coefficients (SCMC),

Subband Spectral Flux Coefficients (SSFC), and Rectangular

Filter Cepstral Coefficients (RFCC). Based on the evaluation

results, We selected MFCC [22], CQCC [24], and LPCC [25])

to train the ASV model for high accuracy and IMFCC [26] to

train the countermeasure model for resisting replay attacks.

Step 2: Classifier Training. Gaussian mixture model using

maximum likelihood estimation (GMM-ML) [27] is used as a

two-class classifier (genuine or replay) in our work. GMM is a

weighted combination of multivariate Gaussian distributions.

We use GMM-ML to train the classifier for detecting replay

attacks. Gaussian mixture model with universal background

model (GMM-UBM) [28] adopts GMM for likelihood func-

tions, a universal background model (UBM) to represent

alternative speakers, a kind of Bayesian adaptation such as

maximum a posteriori (MAP) to generate speaker-specific

models from the UBM. We use GMM-UBM to train the ASV.

B. Fusion of ASV and Anti-replay Countermeasure
Our speaker verification scheme can be considered as a kind

of ASV system known to be vulnerable to replay attacks (a

kind of spoofing). Some dedicated countermeasures (CMs)

aiming to detect replay attacks have been proposed. Since

genuine utterances should be accepted by both ASV and CM

and either ASV or anti-replay CM should reject the utterances

from impostors, a cascaded combination of ASV and CM

forms a straightforward solution [29]. To our best knowledge,

we are the first group to propose a cascaded fusion of ASV

and CM using evaluation on the ASVSpoof 2017 datasets. The

fusion framework is shown in Fig. 3. If an utterance passes

the verification of ASV (score ≥ θAS V ), it would continue to

be verified by CM. If passing CM verification(score ≥ θCM),

a live target (legitimate) speaker is declared.

C. Voiceprint-based Key Agreement

After the target speaker passes verification, the attackers still

have an opportunity to modify the dosage before delivery. To

avoid this threat, we propose a voiceprint-based key agreement

protocol, which ensures that access to the insulin pump can be

granted to the Carelink USB only when the latter is in close

proximity to both the insulin pump and the target speaker.
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1) Energy-difference-based Voiceprint Extraction: After s-

peaker verification, if the speaker is the claimed one, the pump

and Carelink USB would begin the key agreement process.

Firstly, each device needs to extract a binary characteristic

sequence (called voiceprint) from the sampled audio. We adopt

an energy-difference-based voiceprint extraction scheme, the

principle of which comes from [16], [30]. Our scheme aims to

extract voiceprint from a speaker’s voice while [30] and [16]

achieve that through music and ambient audio, respectively.

The extraction algorithm proceeds as follows:

• Partition audio sample X of length L into N non-

overlapping frames X1, ..., XN of identical length L/N .

• Transform each frame using Fast Fourier Transformation

(FFT) weighted by a hanning window (HW):

Fn = FFT (HW(Xn)), n ∈ {1, . . . ,N} (1)

• Partition the frequency into M non-overlapping frequency

bands (filters) FBm at linear space, compute the energy

En,m of each frequency band FBm per frame Fn:

En,m = |Fn|2 ∗ FBm, n ∈ {1, . . . ,N}, m ∈ {1, . . . ,M} (2)

• Compute (N − 1) ∗ (M − 1) bits of the voiceprint by

f (n,m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1,
(En,m − En,m+1)−
(En−1,m − En−1,m+1) > 0,

n ∈ {2, . . . ,N}, m ∈ {1, . . . ,M − 1}
0, otherwise.

(3)

2) Key Agreement using Voiceprint: Because the pump and

CareLink USB may potentially adopt different types of audio

sensors, and even the same type of sensors have different

hardware characteristics, the voiceprints computed in these

two devices are similar but there is a high probability they

are not identical; they cannot be directly used as a key. We

propose a key agreement protocol based on secure multi-party

computing and energy-difference-based voiceprint extraction,

which is shown in Fig. 4.

In the key agreement, we use Secure Three-party Sum

Protocol (Sec3Sum) [31] as a voiceprint transmission method.

Different from the standard protocol in [31], we consider one

device (e.g., pump) as two participants, P1 and P2, and the

other (e.g., USB) as the third participant P3, and vice versa.

The message exchange between P1 and P2 does not happen

in practice. Suppose P1 (Alice) computes voiceprint f1, P2

(Alice) generates a random number c1, P3 (Bob) computes

voiceprint f2, we want to securely compute the three sum

s = f1+c1+ f2, but no one leaks private information ( f1, c1, f2)

to others or public. Sec3Sum executes as follows:

• Pi (i = 1, 2, 3) generates random shares vi, j ( j = 1, 2, 3),

such that f1 =
∑3

j=1 v1, j, c1 =
∑3

j=1 v2, j, f2 =
∑3

j=1 v3, j.

• Pi (i = 1, 2, 3) transmits vi, j to Pj ( j = 1, 2, 3 and j � i).
• Pi (i = 1, 2, 3) gets all v j,i ( j = 1, 2, 3) and computes

v
′
i =
∑3

j=1 v j,i, then broadcasts v
′
i .

• Pi (i = 1, 2, 3) computes the sum s =
∑3

i=1 v
′
i = f1+c1+ f2.

After executing Sec3Sum, Alice (P1, P2) gets s = f1 +
c1 + f2 and computes the voiceprint f2 of Bob by subtracting

Speaker

Voiceprint: Voiceprint: 

Pick 

3c

Key Agreement

Key Confirmation

Verify MAC

Verify MAC

Alice Bob

End End

Send     using Secure Voiceprint Transmitting2f

Send     using Secure Voiceprint Transmitting1f

Voiceprint similarity check

               check,
Voiceprint similarity check

1( )Hash f

1 3( )KM MAC c

2 1( )KM MAC M

1 2 3K f f c

3 3 2s c f

3 3 2c s f

1 2 3K f f c

1f

3c

2f

1( )Hash f

Fig. 4: Voiceprint-based key agreement

f1 + c1 from s. We also call this process Secure Voiceprint

Transmitting (SVT) by which Bob securely sends voiceprint

to Alice, and vice versa. Using Sec3Sum as a basic unit, the

key agreement shown in Fig. 4 processes as follows:

• Alice and Bob extract voiceprints from the voice of the

speaker, f1 and f2 (same length), respectively.

• Alice sends Hash( f1) to Bob as a commitment for f1.

• Bob sends f2 to Alice using SVT (Sec3Sum).

• Alice computes the voiceprint similarity:
HanmingDistance( f1, f2)/Length( f1), aborts if the similarity is

less than the preset threshold (e.g., 80%).

• Alice sends f1 to Bob using SVT (Sec3Sum). Bob

compares the hash of f1 with Hash( f1) received

previously from Alice, checks voiceprint similari-

ty: HanmingDistance( f1, f2)/Length( f2). If any check (hash or

voiceprint) fails, Bob aborts the process.

• Alice then picks a random number c3, transmits s3 =

f2 + c3 to Bob.

• Upon receiving s3, Bob gets c3 by subtracting f2 from s3.

• Alice and Bob compute a key: K = f1 + f2 + c3,

respectively. The key agreement finishes.

• Key confirmation begins immediately after the key a-

greement. Bob generates a message authentication code

(MAC) M1 of c3 using K and sends M1 to Alice. Alice

verifies M1, generates a MAC M2 of M1 using K and

sends M2 to Bob. If all MACs pass the verification, Alice

and Bob share a common key; otherwise, the scheme will

terminate and report an error.

V. SECURITY ANALYSIS

A. Remote Impersonation

An attacker who is not in close proximity (e.g., same clinic

room) to the pump or the speaker tries to perform the key
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agreement with the pump or with the USB. The attacker must

get a voiceprint which can pass the similarity validation. There

are three possible methods to achieve this: generating a random

bit sequence; extracting from previously or currently recorded

voice; impersonating the pump to get the voiceprint of the US-

B, then making an agreement with the pump. For the first, the

voiceprints have high entropy [16]; the probability of guessing

a voiceprint with similarity greater than or equal to the preset

threshold (e.g., 80%) is negligible if the voiceprint length is

long enough (e.g., ≥ 512 bits). For the second, according to the

results of [16], the gap between voiceprints is significant even

if the adversary can listen to same audio source in a different

room, and the differences between voiceprints extracted at

different times are of high significance. The attacker cannot

get a voiceprint having high similarity to the one in the pump

in another context by remotely receiving the user’s voice or

using a previously recorded one. For the third, our protocol

first requests the pump (or an impersonation attacker) sends the

hash of voiceprint(Hash( f1)) to make commitment of having

a voiceprint. Even if getting the voiceprint of the USB, the

attacker cannot pass the hash check given that Hash function

is preimage resistant.

B. Passive Eavesdropping

By channel eavesdropping, the attacker can collect all the

messages exchanged during the key agreement and record

the voice of the legitimate speaker. Our speaker verification

scheme uses the fusion of speaker verification and anti-replay

countermeasure, which can mitigate the replay attacks with

high accuracy as shown in Section VI. The security of the

key agreement relies on whether or not the attacker can learn

partial or all information about the exchanged voiceprints,

which can be achieved by two methods: brute-force and mes-

sage eavesdropping. For brute-force attack, according to the

results of [16], the voiceprints have high entropy and no bias

in bit distribution. We recommend the usage of long length of

voiceprint (e.g., 512bits) and random passphrases (a sequence

of words spoken by the user) to strengthen the security. For

message eavesdropping, our protocol adopts a secure three-

party sum protocol (Sec3Sum) to exchange voiceprints; no

information about voiceprints is leaked given that the random

numbers used in the protocol are uniformly distributed. Our

scheme uses hash (Hash( f1)) for voiceprint commitment and

uses two MACs (M1,M2) for key confirmation. The protocol

leaks no information about the voiceprint and key if the Hash

function can resist preimage attacks and the MAC can resist

second-preimage attacks.

C. Man-in-the-middle
Suppose an eavesdropper Eve to be located in the middle

of Alice and Bob, she must modify or replace at least one

message during the key agreement; otherwise, this would be

passive eavesdropping. As shown in remote impersonation

analysis, Eve cannot successfully finish the protocol with Alice

and Bob, respectively. If Eve modifies any message in the

protocol (Hash( f1), random numbers exchanged in Sec3Sum,

c3, M1, M2), Alice and Bob would compute different sum

and/or different key, which finally makes the key confirmation

fail.

VI. EXPERIMENTS EVALUATION

In this section, we present experiments to show how our

cascaded fusion of speaker verification and anti-replay coun-

termeasure is achieved and demonstrate the feasibility of

the energy-difference-based voiceprint extraction scheme. We

break down the experiments into the following: 1) describe the

datasets used for evaluating our scheme; 2) evaluate different

features and select candidates for speaker verification; 3) train

and test the stand-alone ASV using selected features in case of

zero-effort and replay imposters, respectively; 4) train and test

the standalone CM in case of replay imposters; 5) evaluate the

performance of our cascaded fusion scheme; 6) demonstrate

the feasibility of energy-difference-based voiceprint extraction.

A. Dataset

We used the datasets of ASVspoof 2017 challenge, the

primary technical goal of which is to evaluate spoofing (replay)

attack detection accuracy of the countermeasures [32]. The

datasets consisting of genuine and replay/spoof recordings are

separated into three subsets comprising Training, Development

and Evaluation set, details of which are listed in Table I.

In ASVspoof 2017 challenge, the Training and Development

subsets are provided for the design of replay countermeasures

and the Evaluation subset is used to test the accuracy and

generalization capacity of submitted replay detectors.

B. Model Feature Selection

To select the appropriate features used to implement au-

tomatic speaker verification (ASV), we evaluated 9 different

features (shown in Section IV) using the ASVspoof 2017

Training subset. We used GMM-UBM model with 256 GMM

mixtures and 20 iterations to train ASV. The GMM-UBM im-

plementation is based on the MSR Identity Toolbox V1.0 [23].

For each feature except CQCC, we adopted 20ms frame length

and 40 filter banks. For CQCC (not using short-time Fourier

analysis as other features), the number of cepstral coefficients

is 29 with the appended 0th coefficient. We used 70% of all

the genuine utterances to train UBM model, and used 70%

genuine utterances per speaker to train speaker-specific model

and keep the remaining 30% utterances for test. Verification

trials consist of all possible model-test combinations (30%

of one target speaker vs. 30% of all the other impostors’

utterances). The performance is shown in Table II. We find that

voice activity detector (VAD) is critical. Without VAD, there

is no successfully trained classifier except CQCC, which is not

sensitive to VAD. Finally, we chose MFCC, LPCC, and CQCC

as candidates to train ASV because MFCC and LPCC achieve

TABLE I: Statistics of the ASVspoof 2017 corpus.

Subset # Speakers # Utterances
Genuine Spoof

Training 10 1507 1507
Development 8 760 950

Evaluation 24 1294 11988
Total 42 3561 14445

250

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 03,2023 at 13:16:59 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Standalone ASV feature performance (%EER) based on
ASVspoof 2017 Traing subset

Features Training set Training set
(VAD) (No VAD)

CQCC 0.66 0.44
MFCC 0.54 50.89
IMFCC 0.88 50.89
LPCC 0.44 55.56
LFCC 0.66 50.89
RFCC 0.57 50.89
SCFC 1.62 50.89
SCMC 0.88 50.89
SSFC 1.20 55.56

better performance than other features and CQCC achieves the

best performance without VAD and outperforms all features

in evaluation of the ASVspoof 2015 datasets [24].

C. Standalone ASV Performance of Zero-effort Impostors
Based on the trials above, we selected MFCC, CQCC, and

LPCC as candidates and evaluated the performance of these

three features in case zero-effort impostors try to impersonate

the genuine target speaker just using their own sounds. We

used the Training subset containing utterances of the 10 speak-

ers to train a two-class GMM-UBM classifier. One of the 10

speakers was chosen as the enrollment (target) speaker whose

utterances were used to train the speaker-specific model, and

the 9 other speakers as zero-effort impostors whose utterances

were used to train the impostor model. 70% of genuine

utterances of the target speaker combined with the other 9

impostors’ genuine utterances were used to train the two-

class GMM-UBM model. 30% genuine utterances of the target

speaker combined with all genuine utterances of the Develop-

ment subset were used to predict and evaluate the performance,

which is shown in Table III (columns 2-4). We can see that for

most speakers MFCC achieves better performance, and LPCC

achieves significantly better performance for speaker M0003

and M0008.

TABLE III: Standalone ASV performance of zero-effort and replay
impostors (%EER) based on ASVspoof 2017 Datasets (Training and
Development subsets)

Speakers Zero-effort Impostors Replay Impostors
MFCC CQCC LPCC MFCC CQCC LPCC

M0001 0.00 1.45 4.20 0.05 1.19 2.56
M0002 0.00 0.13 1.30 0.20 0.25 2.03
M0003 3.55 2.37 0.66 14.54 11.11 10.40
M0004 1.32 0.00 3.70 4.78 2.94 3.70
M0005 0.39 2.63 0.13 0.56 1.56 0.44
M0006 1.97 4.21 3.68 16.16 8.89 12.58
M0007 0.00 0.26 0.26 0.22 0.22 0.11
M0008 10.39 11.67 1.67 8.69 6.67 2.46
M0009 1.75 0.26 1.18 1.75 0.42 1.75
M0010 0.39 0.53 0.92 0.22 0.22 1.88

D. Standalone ASV Performance of Replay Impostors

We evaluated the performance of the above 3 features

in case replay impostors try to impersonate target speaker

using recordings of target speaker (or someone else). We still

used the Training subset to train a two-class GMM-UBM

classifier. For each iteration, we chose 1 of the 10 speakers

as the target speaker whose utterances were used to train

speaker-specific model, and others as replay impostors whose

utterances were used to train the impostor model. 70% of

the target speaker’s genuine utterances and all of the other

9 impostors’ genuine utterances were chosen to train the two-

class GMM-UBM model. We used 30% genuine along with

all the spoof utterances of the target speaker and all genuine

and spoof utterances of the Development subset to predict and

evaluate the performance. The comparisons among MFCC,

CQCC, and LPCC are shown in Table III (columns 5-7).

We can see that the performance of the replay impostors is

significantly lower than that of the zero-effort impostors, and

that CQCC has comparable performance with LPCC while

CQCC has significantly better performance for speaker M0006

and LPCC still achieves significantly better performance for

speaker M0003 and M0008.

E. Standalone CM Performance of Replay Impostors

We trained a two-class GMM-ML model using the Devel-

opment (Dev) and Evaluation (Eval) subsets of ASVspoof

2017. Specifically, we used all genuine utterances of Eval

or Dev to train the genuine model while using its spoof

utterances to train the spoof model, and then made Dev-Eval

cross-validation. Table IV shows the performance. The second

column shows the result with Dev as enrollment set and Eval

as prediction set. The third column shows the result with Eval

as enrollment set and Dev as prediction set. We chose the latter

(showing IMFCC feature achieves the best performance) as the

reference for subsequent fusion evaluation.

F. ASV & CM Fusion Performance of Replay Impostors

In this section, we demonstrate the performance of the

fusion of ASV and CM. We used the Training subset to

train and test the ASV GMM-UBM model and computed a

threshold (θAS V ). Each utterance getting a score below θAS V

would be considered as zero-effort or replay impostor resulting

in a rejection. The utterance getting a score ≥ θAS V would

continue to be double-checked in CM. Dev and Eval subsets

were used to train GMM-ML model for CM. All the genuine

and spoof utterances per speaker in Eval set were used to train

a two-class GMM-ML model. All utterances, both the genuine

and spoof of Dev, were used to test the model and compute

a CM threshold (θCM). Each utterance getting a score below

θCM would be considered as a spoof. The CM double-check is

used to detect the utterance which is false positive. The fusion

policy potentially increases the false negative rate (a genuine

TABLE IV: Standalone countermeasures (CMs) replay detection
performance (%EER) based on ASVspoof 2017 Development (Dev)
and Evaluation (Eval) subsets

Features Enrollment/Prediction dataset
Dev/Eval set Eval/Dev set

CQCC 27.58 8.94
MFCC 38.78 8.00
IMFCC 34.67 6.57
LPCC 30.90 8.42
LFCC 37.06 7.23
RFCC 36.14 8.04
SCFC 25.11 29.05
SCMC 34.97 8.14
SSFC 33.94 8.03
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utterance is considered as a spoof one). When this happens,

the user can try again. For the safety of the user, we think

this inconvenience is acceptable. We evaluated MFCC, CQCC,

and LPCC in ASV and IMFCC in CM, which results in 3

different fusions, the performance of which is shown in Table

V. We find that in most cases the fusion of MFCC/LPCC ASV

and IMFCC CM gets a lower EER than a standalone ASV or

CM. The fusion of LPCC ASV and IMFCC CM achieves the

best performance: the maximal EER value for all evaluated

speakers is 4.02%.

G. Feasibility of Energy-difference-based Voiceprint Extrac-
tion

After the speaker has passed the speaker verification, the in-

sulin pump and Carelink USB would start the voiceprint-based

key agreement to bootstrap a secure communication channel.

We made trials to demonstrate the feasibility of the voiceprint-

based key agreement. Using the microphones in iPhone 5S

and Honor 10, we recorded 270 passphrases, i.e., 135 for

each device. In each test case, a person spoke the passphrase

as a voice source, and these two devices were positioned in

the way of one of total 27 different distance settings relative

to the voice source (speaker). In each distance setting, the

speaker spoke 5 sentences, each of which contains either 4 or 5

English words or 5 numbers between 0 and 9. The duration of

each sentence is about between 1 and 3 seconds. The distance

setting among the speaker and the mobile phones simulates

the relative positions among the insulin pump, Carelink USB,

and the patient (or the attacker). All the distance settings and

results of similarities of voiceprints generated by these two

devices are shown in Table VI. For voiceprint extraction, we

used 16 kHz sampling frequency, 63 ms frame length, and 17

frequency filter banks. From all the experimental results, we

get: (1) the average voiceprint similarity (AVS) is larger than

80% when the two devices are positioned within distance less

than 30cm to the voice source; (2) the AVS drops down to

75.21% when one device is 300cm away from the speaker,

and 61.71% when one device is at outside of the closed door

of room (320 cm, mean ambient loudness in room: 38 dB,

outside: 47 dB), which shows that the attacker cannot get a

voiceprint having high similarity to the one in the pump or

USB in another context by remotely receiving the user’s voice.

VII. DISCUSSION

A. Overhead Analysis

Storage overhead. We only need to store classifier models

for one patient in the pump, which reduces the storage com-

paring with other speaker recognition systems. In the fusion

system, the feature dimension adopted is 40. For ASV, we

need to store one GMM UMB model (162 KB with 256 GMM

components), one GMM user model (162 KB), and one GMM

background users model (162 KB). For countermeasure, we

need to store one GMM Genuine model (324 KB with 512

GMM components) and one GMM Spoof model (324 KB).

The total permanent storage needed is only about 1 MB.

Computation complexity. We evaluated the executing time

of the key modules in the environment of Raspberry Pi 1

Model B+ with 700 MHz Broadcom BCM2835 CPU. We

suppose the duration of each recorded voice is around 2 s.

For the speaker verification system, the ASV part needs one

audio read (0.02 s), one feature extraction (0.15 s), and one

log likelihood computation (0.23 s); the CM part needs one

feature extraction (0.15 s), and one log likelihood computation

(0.23 s). In the voiceprint extraction process, the scheme

generates 16 bits voiceprint for each voice frame. All the tested

passphrases have the length between 19 and 42 frames, so the

length of voiceprints is between 304 and 672 bits. For high

security, we adopt the voiceprint with the length ≥ 512 bits.

During the key agreement, the voiceprint extraction spends

0.04 s; the running time of each of other operations (1 Hash,

8 Random number generations, 2 MACs, and 18 additions) is

≤ 0.001 s, totally ≤ 0.03 s. So the total computation time of

the whole access control is around 1 s.

Communication complexity. Only the voiceprint-based key

agreement needs message exchanges between the insulin pump

and Carelink USB. The pump needs to transmit 1 Hash

(256 bits using Sha256), 2 MACs (2x160 bits using EVP

Sha1), 7 random numbers (7x512 bits) during two Sec3Sum

protocols, and one random number s3 (512 bits), and receive

7 random numbers during two Sec3Sum protocols. The total

received and transmitted data of the pump (almost equivalent

to Carelink USB) is ≤ 10 Kbits, which can be exchanged

within 1 s using the RF channel (Pump to Carelink USB

Frequency: 961.5 MHz, Bandwidth: 185 kHz). Combined with

the computation analysis, the whole access control can be

finished within around 2 s after the voice recording is finished.

B. Emergency Situation Handling

Allowing easy access to medical devices under emergencies

is an orthogonal problem. Many proposals (e.g., in [9], [10],

and [11]) suggested to grant open access to clinical staff during

emergencies. Some literatures (e.g., in [6] and [12]) proposed

schemes for emergency cases. To handle the emergency case,

we can deactivate the speaker verification and execute the

key agreement using the voiceprints extracted from ambient

audio, the same case handled in [16]. In this situation, although

without the participation and permission of the patient (unable

to participate under emergency situation such as coma), the

insulin pump and Carelink USB can still establish a secure

channel so long as they are in close proximity to each other.

VIII. CONCLUSION

In this paper, we propose a novel voiceprint-based access

control scheme comprising anti-replay speaker verification and

voiceprint-based key agreement to secure the channel between

the insulin pump and Carelink USB. We present a scheme that

makes sure the insulin pump can be accessed by Carelink USB

only after the legitimate user passes the identity verification,

and the pump establishes a secure channel only with the device

in its close proximity. Our scheme uses energy-difference-

based voiceprint extraction and secure multi-party computing
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TABLE V: ASV and CM fusion replay detection performance (%EER) based on ASVspoof 2017 Datasets

System Speakers
M0001 M0002 M0003 M0004 M0005 M0006 M0007 M0008 M0009 M0010

ASV1 (MFCC) 0.20 0.00 11.11 3.70 0.78 4.78 0.16 6.67 1.75 0.17
CM1 (IMFCC) 7.11 6.06 6.96 6.71 6.67 6.31 7.59 6.61 6.11 6.81

Fusion1 (MFCC+IMFCC) 1.19 0.00 4.60 0.83 0.72 2.22 0.16 8.33 1.75 0.06
ASV2 (LPCC) 3.17 1.30 0.80 1.44 0.50 2.22 0.22 1.67 1.63 0.50
CM2 (IMFCC) 7.11 6.06 6.96 6.71 6.67 6.31 7.59 6.61 6.11 6.81

Fusion2 (LPCC+IMFCC) 4.02 2.60 0.52 0.50 0.22 1.77 0.11 3.33 1.63 0.33
ASV3 (CQCC) 2.31 0.20 4.94 0.56 0.89 4.44 0.05 6.67 0.00 0.22
CM3 (IMFCC) 7.11 6.06 6.96 6.71 6.67 6.31 7.59 6.61 6.11 6.81

Fusion3 (CQCC+IMFCC) 7.14 11.69 1.38 0.00 3.70 6.67 0.05 9.84 1.75 0.17

TABLE VI: Average similarity of voiceprints generated by two
devices at different distances to the same voice source

Distance (cm) Average voiceprints similarity (%)
S5 20 S5 30 S5 50 S5 150 S5 300 S5 outside

H10 20 81.55 80.22 80.78 78.66 74.97 64.36
H10 30 81.35 80.37 77.69 78.34 75.89 62.27
H10 50 80.73 80.50 78.45 78.32 77.00 61.11
H10 150 75.29 76.17 74.17 - - -
H10 300 75.06 75.79 72.55 - - -

H10 outside 60.39 60.90 61.22 - - -

to generate a common cryptography (temporary) key between

the Carelink USB and insulin pump, which can be used to

encrypt the subsequent communication while protecting the

insulin pump from message eavesdropping and parameters

manipulation attacks, such as remote dosage setting. Our

proposal does not need certificates, permanent shared key or

additional devices, which we believe will be an attractive

solution to access control problem for insulin pump systems.

Finally, our scheme may be generalized to other infusion

systems as well, which can be our future work.
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