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a b s t r a c t

Improving estimation efficiency for regression coefficients is an important issue in the

analysis of longitudinal data, which involves estimating the covariance matrix of the

within-subject errors. In the balanced or nearly balanced setting, we can also regard the

covariance matrix of the dependent errors as the bivariate covariance function evaluated

at specific time points. In this paper, we compare the performance of the proposed

regularized-covariance-function-based estimator and the conventional high-dimensional

covariance matrix estimator of the within-subject errors. It shows that when the number

p of the time points in each subject is large enough compared to the number n of the

subjects, i.e., p � n1/4 log n, the estimation errors of the high-dimensional covariance

matrix will be accumulated, therefore the error bound of the proposed regularized-

covariance-function-based estimator will be smaller than that of the high-dimensional

covariance matrix estimator in Frobenius norm. We also assess the performance of these

two estimators for the incomplete longitudinal data. All the comparisons and theoretical

results are illustrated using both simulated and real data.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

There has been substantial recent interest in nonparametric and semi-parametric methods for longitudinal or clustered
data with dependence within subjects (or clusters), see [2,7,9,18], among others. Improving estimation efficiency is an
important issue in the analysis of longitudinal data. In the nonparametric setting, Lin and Carroll [9] have recommended
an approach which ignores the within-subject correlation completely and treats the data as if they are independent.
However, Wang et al. [15] have shown that, in the semi-parametric setting, the estimator for parametric component
will achieve the semi-parametric efficiency bound if the within-subject correlation structure is specified correctly. Thus
estimating the covariance matrix of the within-subject errors is an important issue in the semi-parametric model for
longitudinal data.

Many authors have investigated the problem of within-subject correlation structure in longitudinal data. Challenges
arise in estimating the covariance matrix if the data are collected at irregular or subject specific time points. In this
case, instead of estimating covariance matrix, people usually estimate the covariance function of the error process. There
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also has been a vast volume of work on modeling covariance functions in longitudinal data in literature. For example,
Fan et al. [3,4] have proposed a quasi-maximum likelihood method to model covariance functions. The quasi-maximum
likelihood method relies on correctly assuming the form of the covariance functions and can be misspecified easily.
Li [8] has applied bivariate kernel smoothing techniques to estimate covariance functions. The bivariate kernel smoothing
techniques do not utilize the structures of the covariance functions, thus the proposed estimator is not guaranteed to
be positive definite and has slower rates of convergence. Jia et al. [7] have proposed the regularized method to estimate
covariance functions, which has faster rates of convergence and is guaranteed to be positive semi-definite. Besides, other
authors have tried to estimate the error processes directly, for example, Wu and Zhang [17,19] have proposed local linear
mixed-effects (LLME) method, and Yao et al. [6,20] have proposed functional principal component analysis (FPCA) method
to analyze longitudinal data.

In this paper, we will focus on the balanced or nearly balanced longitudinal data where the number p of the time points
in each subject is allowed to increase together with the number n of the subjects. In this case, we can either estimate
the high-dimensional covariance matrix of the with-subject errors by some existing methods directly [12–14], or we can
first estimate the covariance function of the error process by the methods mentioned previously, and then derive the
estimated covariance matrix by focusing on the elements of covariance function evaluated at given time points. We may
ask which method of estimating the covariance matrix is more precise, or has faster rates of convergence and thus will
result in a more efficient estimator for the parametric component in the semi-parametric model.

Let us consider a semi-parametric varying-coefficient partially linear model

Y (t) = X(t)�α(t) + Z(t)�β + η(t) + ζ (t), (1)

where α(t) comprises m unknown smooth functions, β is a q-dimensional unknown parameter vector, and η(t) captures
the within-subject dependence with smooth covariance function Rη(t1, t2), ζ (t) is just the measurement error with

covariance function σ 2
ζ (t1)I(t1 = t2). All the temporal correlations of the errors are relegated to η(t), so this decomposition

is unique. Nonparametric models for longitudinal data can be viewed as special cases of model (1). Moreover, model (1)
is also a useful extension of the partially linear model, the time-varying coefficient model and the partially linear additive
model.

Intuitively, the dimension of the covariance matrix of within-subject errors will increase as the number p of time points
in each subject increases, and thus the total estimation error will be accumulated, whereas the covariance function will
be exactly the same and not dependent on p. So when p and n become larger, the estimator of the covariance function
will be more precise.

The balanced or nearly balanced longitudinal data usually come from the experiments in agriculture, biology and
medicine. In these cases the observations are supposed to be collected at the designed time points in advance. But
occasionally we may still lose the observations at part of these given time points for some subjects, which results in
the incomplete longitudinal data. This is a special case of the unbalanced data, but most conventional high-dimensional
covariance matrix techniques based on sample covariance matrix still work: we can derive each element of the sample
covariance matrix by calculating the pairwise sample covariance, although the resulting sample covariance matrix is no
longer positive definite. We are interested in the performance of covariance matrix estimators using different methods:
the extreme case is that the sample covariance matrix does not exist and thus the high-dimensional covariance matrix
techniques fail while the estimated covariance function still exists when the observations at time t1 are missed for half
of the subjects and the observations at time t2 are missed for the other half. In this paper:

(i) We propose a new estimator for the covariance matrix of the within-subject errors, which is called the regularized-
covariance-function-based estimator.

(ii) We derive the error bounds of the covariance matrices estimators (both the proposed regularized-covariance-
function-based estimator and the high-dimensional covariance matrix estimator [12]) in Frobenius norm.

(iii) We compare the upper bounds of the convergence rates for these two estimators in Frobenius norm and show
two cases when the regularized-covariance-function-based estimator outperforms the high-dimensional covariance
matrix estimator in Section 4: the ‘‘high-rank sparse’’ case and ‘‘low-rank dense’’ case when p � n1/4 log n.

(iv) We compare the performance of these two estimators for the incomplete longitudinal data and study the influence
of the incompleteness on these two different approaches.

The rest of the article is organized as follows. Section 2 describes the general framework (profile weighted least squares
estimation procedure) of estimating the parametric components in the varying-coefficient partially lineal model. Two
different estimators for the covariance matrix of within-subject errors are described in Section 3. Theoretical properties
and comparisons of the two estimators are presented in Section 4. In Sections 5 and 6 the proposed method is illustrated
via simulation studies and real data examples, respectively. All technical proofs are relegated to Appendix.

2. Framework of the efficient estimation procedure

Suppose all longitudinal observations from different subjects (or clusters) are made on a fixed time interval T ⊂ R,
e.g., T = [0, 1]. The data consist of n independent subjects. For the ith subject, i ∈ {1, . . . , n}, the response variable
Yi(t) and the covariates {Xi(t), Zi(t)} are collected at time points t = tj, j ∈ {1, . . . , p}, where p is the total number of
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observations for each subject. One special case is the equally spaced time points scheme, i.e., tj = j/p, j ∈ {1, . . . , p}. In
this article, we consider the semi-parametric varying-coefficient partially linear model:

Y (t) = X(t)�α(t) + Z(t)�β + ε(t),

i.e.,

Yi(tj) = Xi(tj)
�α(tj) + Zi(tj)

�β + εi(tj), i ∈ {1, . . . , n}, j ∈ {1, . . . , p}, (2)

where α(t) comprises m unknown smooth functions, β is a q-dimensional unknown parameter vector, and εi(t), i ∈
{1, . . . , n} are the i.i.d. error processes with E{εi(t) | Xi(t), Zi(t)} = 0. To consider the within-subject dependence, we

assume that εi(t) can be decomposed into two independent error processes:

εi(t) = ηi(t) + ζi(t),

where ηi(t), i ∈ {1, . . . , n} are the i.i.d. mean zero error processes capturing the within-subject dependence or temporal

correlation, and ζi(t), i ∈ {1, . . . , n} are the i.i.d. measurement errors, see [5,20]. For t1, t2 ∈ T , suppose

Cov{ηi(t1), ηi(t2)} = Rη(t1, t2), Cov{ζi(t1), ζi(t2)} = σ 2
ζ (t1)I(t1 = t2), i ∈ {1, . . . , n},

where I(·) is an indicator function, Rη(·, ·) and σ 2
ζ (·) are smooth functions. Then the covariance function R(t1, t2) of

εi(t) = ηi(t) + ζi(t) is given by

R(t1, t2) ≡ Cov{εi(t1), εi(t2)} = Rη(t1, t2) + σ 2
ζ (t1)I(t1 = t2), i ∈ {1, . . . , n}, (3)

which is a smooth surface except on the diagonal points where t1 = t2.

In practice, estimation of {α(t), β} must be done in multiple steps. Their initial estimators are constructed by ignoring

within-subject correlation. With the initial estimators of {α(t), β}, we can estimate the covariance matrix of within-subject

errors. Finally, we can estimate {α(t), β} more efficiently by using the estimator of covariance matrix. We propose the

efficient estimators for {α(t), β} using the profile weighted least squares techniques.

2.1. Step 1: Initial estimator

For a given β, model (2) reduces to a varying-coefficient model:

Yi(tj) − Zi(tj)
�β = Xi(tj)

�α(tj) + ηi(tj) + ζi(tj). (4)

Ignoring the within-subject correlation or ηi(t), we first apply the profile local linear regression to get the initial estimators

of {α(t), β}, see [3]. The profile least squares estimators of {α(t), β} will enjoy the closed form if we use the following

matrix notations, let

Y = (Y�
1 , . . . ,Y�

n )�, Z = (Z�
1 , . . . , Z�

n )
�, m = (m�

1 , . . . ,m�
n )

�,

Yi = (Yi(t1), . . . , Yi(tp))
�, Zi = (Zi(t1), . . . , Zi(tp))

�, mi = (Xi(t1)
�α(t1), . . . ,Xi(tp)

�α(tp))
�.

Now model (4) can be written as

Y − Zβ = m + η + ζ, (5)

where η = (η1(t1), . . . , η1(tp), . . . , ηn(t1), . . . , ηn(tp))
� and ζ = (ζ1(t1), . . . , ζ1(tp), . . . , ζn(t1), . . . , ζn(tp))

�. Let K (·) be a
kernel function, Kh(·) = h−1K (·/h) where h > 0 is the bandwidth, and Xi(t) = (Xi1(t), . . . , Xim(t))

�. Then the local linear

estimator α̂β(t0) ≡ (̂a1, . . . , âm)
� for the nonparametric component at time point t0 can be derived by:

min
{al,bl}ml=1

n∑
i=1

p∑
j=1

[
Yi(tj) − Zi(tj)

�β −
m∑
l=1

{al + bl(tj − t0)}Xil(tj)
]2

Kh(tj − t0).

Substituting α̂β(·) into model (5) results in the ordinary least squares estimator of β:

β̂
ini = {Z�(I − Sh)�(I − Sh)Z}−1Z�(I − Sh)�(I − Sh)Y , (6)

where Sh is a smoothing matrix of the local linear smoother and I is an identity matrix, see [3] for details. The initial

estimator of the nonparametric component α(·) is just α̂
β̂
ini (·).

2.2. Step 2: Refined estimator

First, let Σ0 and Σ̂ be the true and estimated covariance matrix of (εi(t1), . . . , εi(tp))
� respectively, i.e.,

Σ0 = [
R(tj, tk)

]p
j,k=1

, Σ̂ = [̂
R(tj, tk)

]p
j,k=1

, (7)
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where R(·, ·) is defined in (3) and the different choices of the covariance function estimator R̂(·, ·) will be shown in

Section 3. Since we ignore the within-subject correlation or ηi(t) in Step 1, the initial least squares estimator β̂
ini

in (6) is
not efficient. To improve the efficiency for estimating β, we use the profile weighted least squares estimator as follows:

{Z�(I − Sh)�W(I − Sh)Z}−1Z�(I − Sh)�W(I − Sh)Y , (8)

where W is a weight matrix, called a working covariance matrix. Then the initial estimator β̂
ini

in (6) is just a special case
of (8) with W being an identity matrix. As usual, misspecification of the working covariance matrix does not affect the
consistency of the resulting estimators, but does affect the efficiency. Fan et al. [3] have shown that the most efficient
estimator for β among the profile weighted least squares estimators given by (8) is the one that uses the inverse of the
true variance–covariance matrix of errors as the weight matrix, that is, W = diag(Σ−1

0 , . . . ,Σ−1
0 ) is a n-blocked diagonal

matrix, with each block beingΣ
−1
0 . BecauseΣ0 is unknown, we can use the estimator Σ̂. Different choices of the covariance

matrix estimator Σ̂ will be shown and compared in Sections 3 and 4, so the final refined estimator of β is

β̂ = {Z�(I − Sh)�Ŵ(I − Sh)Z}−1Z�(I − Sh)�Ŵ(I − Sh)Y , (9)

where Ŵ = diag(Σ̂−1, . . . , Σ̂−1) is a np×np matrix. The profile least squares estimator for the nonparametric component
is simply α̂β̂(·).
3. Proposed estimators of the covariance matrix

3.1. Regularized-covariance-function-based estimator

After we get the initial estimators β̂
ini

and α̂
β̂
ini (t) in Section 2, the residuals are

ε̂i(tj) = Yi(tj) − Xi(tj)
�α̂

β̂
ini (tj) − Zi(tj)

�β̂
ini

, i ∈ {1, . . . , n}, j ∈ {1, . . . , p}.
Then we can derive the nonparametric regularized estimator of Rη(·, ·) based on ε̂i(tj). Since there are too many parameters
in Rη(·, ·), a penalty for over-parametrization is imposed to regularize the covariance function. Jia et al. [7] assumed that

Rη(·, ·) resides in a tensor product of Hilbert space W2
2 (T ) ⊗ W2

2 (T ), which is the closure of the following linear space

span{f (s)g(t) : f (·), g(·) ∈ W2
2 (T )}, (10)

where W2
2 (T ) = {f : f ′, f ′′ are absolutely continuous, f ′′ ∈ L2(T )} is a Sobolev space endowed with the squared

norm
∫
T (f ′′)2. Because W2

2 (T ) ⊗ W2
2 (T ) is dense in the continuous bivariate function space, we can find an element

in W2
2 (T ) ⊗ W2

2 (T ) that approximates any continuous bivariate function very well. Then let R̂ini
η (s, t) ∈ W2

2 (T ) ⊗ W2
2 (T )

be the minimizer of

1

np(p − 1)

n∑
i=1

∑∑
1≤j1 �=j2≤p

{̂
εi(tj1 )̂εi(tj2 ) − Rη(tj1 , tj2 )

}2 + λ1,nP(Rη), (11)

where λ1,n ≥ 0 is a tuning parameter, and P(Rη) is a penalty function for Rη(s, t) = ∑
j≥1 ajfj(s)gj(t) with the following

form:

P(Rη) =
∫∫

t,s∈T

{∂4Rη(s, t)

∂2s∂2t

}2

dsdt =
∫∫

t,s∈T

{∑
j≥1

ajf
′′
j (s)g

′′
j (t)

}2

dsdt

=
∑∑

i,j≥1

aiaj

∫
T

{f ′′
i (s)f

′′
j (s)}ds

∫
T

{g ′′
i (t)g

′′
j (t)}dt.

Cai and Yuan [1] have shown that the minimizer R̂ini
η of (11) must have the following closed form

R̂ini
η (s, t) = H(s)�ÂH(t) =

p∑
j,k=1

Âj,kH(s, tj)H(t, tk), (12)

where Â is a p × p symmetric matrix which can be derived by the package ‘‘ssfcov’’, Âj,k is the element in the jth row

and kth column of Â, and

H(s) = (
H(s, t1), . . . ,H(s, tp)

)� ∈ R
p,

where H(s, t) = B2(s)B2(t)/4−B4(|s − t|)/24 and Br is the rth Bernoulli polynomial, see [10]. Thanks to the representation

(12), Jia et al. [7] showed that the eigenvalues and eigenfunctions of R̂ini
η (s, t) = H(s)�ÂH(t) can actually be computed

explicitly:

R̂ini
η (s, t) = H(s)TQ−1/2

(
Q1/2ÂQ1/2

)
Q−1/2H(t) = H(s)TQ−1/2

{ p∑
k=1

λ̂(k)̂uk̂uT
k

}
Q−1/2H(t) ≡

p∑
k=1

λ̂(k)ψ̂k(s)ψ̂k(t),
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where λ̂(1) ≥ λ̂(2) ≥ · · · ≥ λ̂(p) are the decreasing eigenvalues and {̂u1, û2, . . . , ûp} are the corresponding eigenvectors of

Q1/2ÂQ1/2, where Q = [∫
T H(s, tj)H(s, tk)ds

]
1≤j,k≤p

, and ψ̂k(·) = ûT
kQ

−1/2H(·). Since λ̂(k)’s are not necessarily positive, we

need to truncate the negative eigenvalues. Then the adjusted estimator for Rη is defined as

R̂η(s, t) =
p∑

k=1

λ̂(k)I(̂λ(k) > τ )ψ̂k(s)ψ̂k(t), s, t ∈ T , (13)

where τ ≥ 0 is a predetermined threshold for the eigenvalues (e.g., 0.01) or a percentage (e.g., 1 percent) of the sum of
all the positive eigenvalues.

The diagonal element of R(·, ·) requires a special treatment since it involves both Rη(t, t) and σ 2
ζ (t). Define σ 2(t) ≡

R(t, t) = Rη(t, t) + σ 2
ζ (t), then R(s, t) in (3) can also be written as

R(s, t) = Rη(s, t)I(s �= t) + σ 2(t)I(s = t), (14)

that means, R(s, t) is Rη(s, t) when s �= t and σ 2(t) when s = t . For the irregular or subject specific setting, Jia et al. [7]

used the standard one-dimensional local linear estimator of σ 2(t) based on the squared residuals ε̂2
i (tj), i ∈ {1, . . . , n} and

j ∈ {1, . . . , p}. For the balanced and nearly balanced case, we define the following regularized-covariance-function-based
estimator Σ̂recf of Σ0 as:

Σ̂recf(j, k) =
{̂
Rη(tj, tk), if j �= k,

s2j , if j = k,
(15)

where s2j = (n − 1)−1
∑n

i=1{̂εi(tj) − ε̄(tj)}2 is the sample variance of ε̂i(tj), i ∈ {1, . . . , n}, with ε̄(tj) = n−1
∑n

i=1 ε̂i(tj).

It is easy to show that with probability tending to 1, Σ̂recf defined in (15) is positive definite. In practice, the diagonal

elements of the estimator Σ̂recf can be defined as Σ̂recf(j, j) = max{s2j , R̂η(tj, tj)}, j ∈ {1, . . . , p}, to guarantee the positive
definiteness when sample size n is small.

3.2. High-dimensional covariance matrix estimator

From the procedure of estimating the parametric component β in Section 2, the estimator of Σ0 = [
R(tj, tk)

]p
j,k=1

=
Cov(εi, εi), i ∈ {1, . . . , n}, is required to be positive definite, where εi = (εi(t1), . . . , εi(tp))

�. When the dimension p is
large, it is well known that the sample covariance matrix S does not work well. And sometimes it is reasonable to assume
that the dependence between Y (t) and Y (s) is weak when |t − s| is relatively large. Thus to estimate the covariance
matrix Σ0, we adopt the Positive Definite Sparse Covariance-matrix Estimator (PDSCE) proposed by Rothman [12] when
the dimension p of the covariance matrix is large. Other high-dimensional covariance matrix estimators with different
constraints and structures may also be considered.

Let M+ be a diagonal matrix with the same diagonal as M, and define M− = M − M+. For a matrix M, let |M|q =
‖vec(M)‖q denote the q-norm of the vector formed by stacking the columns of M. Let ‖M‖F ≡ |M|2 and ‖M‖ denote the
Frobenius and spectral norms of M respectively. When M is a square matrix, |M| denotes its determinant, and M � 0
indicates that M is symmetric and positive definite. Let Θ0 = Corr(εi, εi) denote the true population correlation matrix
of εi = (εi(t1), . . . , εi(tp))

�. Rothman [12] proposed the correlation matrix estimator of Θ0 by

Θ̂λ = argmin
Θ�0

(‖ Θ − Γ ‖2
F /2 − τn log |Θ| + λ2,n|Θ−|1

)
, (16)

where Γ is the sample correlation matrix of ε̂i = (̂εi(t1), . . . , ε̂i(tp))
�, i ∈ {1, . . . , n}, and λ2,n ≥ 0 is a tuning parameter,

τn > 0 is a small value. The logarithmic barrier term ensures the existence of a positive definite solution, and the lasso-type
penalty is used to encourage sparse solutions. Then the proposed high-dimensional covariance matrix estimator of Σ0 is
defined by

Σ̂λ = (S+)1/2Θ̂λ(S+)1/2, (17)

where S is the sample covariance matrix for the vectors ε̂i = (̂εi(t1), . . . , ε̂i(tp))
�, i ∈ {1, . . . , n}.

In the next section, we will derive the upper bounds of the convergence rates for both Σ̂recf in (15) and Σ̂λ in (17) in
Frobenius norm, and then compare their performance.

4. Theoretical results

In this section we investigate sampling properties of the covariance matrices estimators as n → ∞ and p → ∞. The
proposed estimation procedures are applicable for various formulations for collecting longitudinal data. For example, we
could assume that tj, j ∈ {1, . . . , p} are either independent and identically distributed on T with a density fT (t), or the
fixed designs tj = j/p, j ∈ {1, . . . , p}, see [3].

Without loss of generality, in the following theorems we derive the upper bounds of the convergence rates for the
two estimated covariance matrices in Frobenius norm based on the true errors εi, i ∈ {1, . . . , n} instead of the residuals
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ε̂i, i ∈ {1, . . . , n}. Let the pseudo-estimatorsΣrecf andΣλ be derived by the same procedure in Section 3, with the residuals
being replaced by εi, i ∈ {1, . . . , n}. In order to present the asymptotic properties of the proposed estimators in Section 3,
we need the following technical assumptions.

Assumption 1. The observed time points tj, j ∈ {1, . . . , p} are independent and identically distributed with a density
fT (·) bounded away from zero on T .

Assumption 2. E{ζ 4
i (tj)} < ∞ for j ∈ {1, . . . , p}.

Assumption 3. λ1,n = K1{log(n)/(pn)}4/5, where K1 is a sufficiently large constant.

Assumption 4. τn = O
({n−1s log(p)}1/2‖Θ−1

0 ‖−1
F

)
, and λ2,n = K2{n−1 log(p)}1/2, where K2 is a sufficiently large constant.

Assumption 5. (s + 1) log(p) = o(n), where s denotes the number of nonzero off-diagonal entries in Σ0.

Assumption 6. E
[
exp{uε2

i (tj)}
] ≤ C1 < ∞ for 0 < |u| < C2, j ∈ {1, . . . , p}, and C1, C2 are positive constants.

Assumption 7. 0 < κ1 ≤ λmin(Σ0) ≤ λmax(Σ0) ≤ κ2 < ∞, where κ1 and κ2 are constants, λmin(Σ0) and λmax(Σ0) denote
the smallest and largest eigenvalues of Σ0.

Theorem 1. Under Assumptions 1–3, we have

‖Σrecf − Σ0‖2
F = Op

({p3/2 log(n)

n

}4/5 + p2

n

)
. (18)

The next corollary shows that when the dimension p of the covariance matrix is quite large or small compared to the
sample size n, the error bounds of Σrecf in (18) are different.

Corollary 1. Under Assumptions 1–3, according to (18),

(i) If p � n1/4 log(n), then

‖Σrecf − Σ0‖2
F = Op

(p2

n

)
. (19)

(ii) If p � n1/4 log(n), then

‖Σrecf − Σ0‖2
F = Op

({p3/2 log(n)

n

}4/5)
.

The following theorem shows the upper bound of the convergence rate for the PDSCE estimator Σλ in Frobenius norm.

Theorem 2. Under Assumptions 4–7, we have

‖Σλ − Σ0‖2
F = Op

{ r(s + 1) log(p)

n

}
, (20)

where r is the rank of (Σλ − Σ0)
�(Σλ − Σ0).

Now let us compare the upper bounds of convergence rates (18) and (20). According to Corollary 1, it is obvious that
when p � n1/4 log(n), the upper bound of convergence rate (19) is smaller than (20) when

r(s + 1) log(p)/p2 → ∞. (21)

The following situations are the sufficient conditions for (21), that means the regularized-covariance-function-based
estimator outperforms the Positive Definite Sparse Covariance-matrix Estimator (PDSCE) in terms of the error bounds
in Frobenius norm when:

(i) ‘‘high-rank sparse’’ case: r � p, s � p;

(ii) ‘‘low-rank dense’’ case: r = O(1), s � p2.

To further investigate the relationship between the quantity r(s + 1), the dimension p and the sample size n, suppose
p = nθ , where θ ≥ 0 and r(s + 1) = pγ = nθγ , it is obvious that 0 ≤ γ ≤ 3.

Theorem 3. Under Assumptions 1–7, if (θ, γ ) satisfy

(i) θ > 1/4, 2 ≤ γ ≤ 3;

(ii) 0 < θ ≤ 1/4, (6θ + 1)/(5θ ) ≤ γ ≤ 3,

6



S. Jia, C. Zhang and H. Lu Journal of Multivariate Analysis 187 (2022) 104900

Table 1
(Simulation 1) Biases and standard deviations of β̂2 over 100 simulations using different Methods I–IV (with n = 50

and p = 6, 12, 18).

Method p = 6 p = 12 p = 18

Bias SD Bias SD Bias SD

Method I .0028 .0411 −.0011 .0297 −.0055 .0267

Method II .0046 .0416 −.0052 .0319 −.0049 .0311

Method III .0017 .0409 −.0053 .0307 −.0032 .0291

Our Method IV .0030 .0417 −.0024 .0286 −.0030 .0254

then the upper bound of the convergence rate of the regularized-covariance-function-based estimator Σrecf is smaller than that
of the Positive Definite Sparse Covariance-matrix Estimator (PDSCE) Σλ in Frobenius norm.

5. Simulation study

5.1. Simulation 1

In this section, we investigate the finite sample properties of the estimators proposed in Section 3 through Monte Carlo
simulations. Suppose the data are generated from the following model:

Yi(tj) = Xi(tj)
�α(tj) + Zi(tj)

�β + ηi(tj) + ζi(tj), i ∈ {1, . . . , n}, j ∈ {1, . . . , p}.
Similar to the real data example (n = 60, p = 11) in Section 6, we assume that the sample size n is 50, and p = 6, 12, 18.
Let T = [0, 1], and the observation time points tj = j/(p + 1), j ∈ {1, . . . , p}. We let the coefficients α(t) and β be
two dimensional in our simulation, and further set X1(t) ≡ 1 to include an intercept term. We generate the covariates
in the following way: For a given t , (X2(t), Z1(t))

� follows a bivariate normal distribution with mean 0, variance 1, and
correlation 0.5, and Z2(t) is a Bernoulli distributed random variable with success probability 0.5 and independent of X2(t)
and Z1(t). In this simulation we set β = (1, 2)�, α1(t) = √

t , and α2(t) = sin(2π t). The within-subject errors ηi(t)’s are
generated from a temporal mixed effects model (see [7]):

ηi(t) =
L∑

k=1

ξi,kψk(t), i ∈ {1, . . . , n},

where ξi,k’s are independent normal random variables with N(0, σ 2). Thus the covariance function of ηi(t) is

Rη(s, t) = σ 2

L∑
k=1

ψk(s)ψk(t). (22)

We set L = 1, σ 2 = 0.1, and ψ1(t) = cos(π t), which corresponds to the ‘‘low-rank dense’’ case. Finally we assume the

measurement errors ζi(tj) follow N(0,
(√

0.1
)2
) and are independent of ηi(tj). For comparison, in each simulated dataset,

we fit the model using four different estimators of the covariance matrix Σ0 in (7):
Method I. True covariance matrix Σ0.
Method II. Sample covariance matrix S.
Method III. Positive Definite Sparse Covariance-matrix Estimator (PDSCE) Σ̂λ in (17).
Method IV. Regularized-covariance-function-based estimator Σ̂recf in (15).
For a fair comparison, we use the same bandwidth h = 0.15 when estimating α(·) for all the estimators. Throughout

the simulations and the real data examples in the next section, we use the Epanechnikov kernel, and the tuning parameter
λ1,n in (11) is selected automatically by the package ‘‘ssfcov’’, the tuning parameters λ2,n and τn in (16) are selected by
the package ‘‘PDSEC’’.

Table 1 and Fig. 1 summarize the results over 100 simulations. We assess the performance of different covariance
matrix estimators by calculating the biases and standard errors of the 100 estimators of coefficients. In the table, ‘‘Bias’’
represents the median of the 100 estimators subtracting the true value, ‘‘SD’’ represents the median absolute deviation of
the 100 estimators divided by a factor of 0.6745. We also assess the performance of different covariance matrix estimators
Σ̂ in Method II, III, IV by calculating the average of ‖Σ̂ − Σ0‖2

F/p
2 over 100 simulations. Since ‖Σ̂ − Σ0‖2

F is the sum of

p2 squared terms for a p × p matrix estimator Σ̂, we divide it by a factor p2 to reduce the influence of dimension p.
From Table 1, all parameter estimators are asymptotically unbiased, which is confirmed from the numerical results:

the biases are much smaller than the standard errors in all cases. This is also shown by the box-plots in Fig. 1. In terms
of the efficiency, theoretically, the oracle estimator (Method I) using the true covariance matrix Σ0 should be the best.
For Method II using the sample covariance matrix S, it works well when the dimension p is quite small (e.g., p = 6), but
the ‘‘SD’’ of the coefficients are much larger than that of the other methods when p is large. For the comparison of our
proposed estimator Σ̂recf (Method IV) and the PDSCE estimator Σ̂λ (Method III), when p is small, these two estimators
are comparable, and as p becomes large, our proposed estimator Σ̂recf (Method IV) works better than the other methods.

7
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Fig. 1. (Simulation 1) Left panel: boxplots for β̂2 with different methods and different p = 6, 12, 18; right panel: average of ‖Σ̂−Σ0‖2
F /p

2 over 100

simulations with different Σ̂ and different p = 6, 12, 18.

Table 2
(Simulation 2) Biases and standard deviations of β̂2 over 100 simulations using different Methods I–IV (with n = 50

and p = 6, 12, 18).

Method p = 6 p = 12 p = 18

Bias SD Bias SD Bias SD

Method I .0081 .0575 −.0034 .0353 .0066 .0366

Method II .0062 .0541 −.0036 .0344 .0035 .0351

Method III .0077 .0566 −.0038 .0378 .0055 .0374

Our Method IV .0082 .0519 −.0010 .0398 .0059 .0362

Fig. 1 shows the average of ‖Σ̂−Σ0‖2
F/p

2 over 100 simulations with different estimators Σ̂ and different dimension p.

When we compare the error bounds in Frobenius norm, our proposed estimator Σ̂recf (Method IV) outperforms the other

two estimators, and the performance of the PDSCE estimator Σ̂λ (Method III) is even worse than the sample covariance

matrix S (Method II). This is because the true covariance matrix Σ0 defined by (22) is not sparse. In the next simulation

where the true covariance matrix Σ0 is sparse or nearly sparse, it is shown that the PDSCE estimator Σ̂λ also works quite

well.

Fig. 2 also shows the advantage of our proposed method when the dimension p is large (p = 18). From the plot,

the true covariance matrix Σ0 in Fig. 2(a) is very complicated. Fig. 2(b) shows the sample covariance matrix estimator S
(Method II) and Fig. 2(c) shows the Positive Definite Sparse Covariance-matrix Estimator Σ̂λ (Method III). Our proposed

estimator Σ̂recf in (15) is displayed in Fig. 2(d). It is obvious that our proposed estimator Σ̂recf (Method IV) performs better

than the PDSCE estimator Σ̂λ (Method III) and captures the structure of the true covariance matrix very well when p is

large.

5.2. Simulation 2

In simulation 2, we study the performance of different methods in the ‘‘high-rank sparse’’ case when the true covariance

matrix Σ0 is sparse or nearly sparse. The data are generated with the same setup as in the previous simulation, except

that ηi(t) is a Gaussian process with the covariance function:

Rη(s, t) = σ (s)σ (t)ρκ|s−t|, s, t ∈ [0, 1]. (23)

We set marginal variance σ 2(t) = 0.1, and set ρ = 0.4 and κ = 10 in (23). When |s − t| > 0.5, Rη(s, t) ≤ 10−3, which is

regarded to be close to 0. We apply the semi-parametric regression methods using the true covariance matrix Σ0 (Method

I), the sample covariance matrix estimator S (Method II), the PDSCE estimator Σ̂λ (Method III) and our proposed estimator

Σ̂recf (Method IV) to the simulated data and repeat the simulation 100 times. The selection methods of h, λ1,n, λ2,n and τn
are the same as those in the previous simulation. The results for the estimated coefficients and covariance matrices are

summarized in Table 2, Figs. 3 and 4.

From Table 2 and Fig. 3, again all parameter estimators are asymptotically unbiased since the biases are much smaller

than the standard errors. From the right panel of Fig. 3, the PDSCE estimator Σ̂λ (Method III) performs better than the

sample covariance matrix estimator S (Method II) in terms of the error bounds in Frobenius norm, which is quite different

from Simulation 1. In addition, our proposed estimator Σ̂recf (Method IV) and the PDSCE estimator Σ̂λ (Method III) are

comparable when sample size is small (p = 6), and the average squared Frobenius norm of our proposed estimator Σ̂recf

(Method IV) is smaller than that of the PDSCE estimator Σ̂λ (Method III) as p becomes larger, which verifies the theorems

in Section 4. From Fig. 4, when p is large (p = 18), both our proposed estimator Σ̂recf and the PDSCE estimator Σ̂λ work

quite well and capture the structure of the true covariance matrix Σ0 in Fig. 4(a).

8
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Fig. 2. (Simulation 1) Panel (a): true covariance matrix Σ0 in Method I; panel (b): sample covariance matrix S in Method II; panel (c): PDSCE

estimator Σ̂λ in Method III; panel (d): our proposed covariance matrix estimator Σ̂recf in Method IV for one simulated data (with p = 18 and

n = 50).

Fig. 3. (Simulation 2) Left panel: boxplots for β̂2 with different methods and different p = 6, 12, 18; right panel: average of ‖Σ̂−Σ0‖2
F /p

2 over 100

simulations with different Σ̂ and different p = 6, 12, 18.

5.3. Simulation 3

In this simulation we compare the performance of different covariance matrices estimators when data are incomplete

and study the influence of the incompleteness on these different approaches. We consider both the ‘‘low-rank dense’’ case

and the ‘‘high-rank sparse’’ case in Simulation 1 and 2 when p = 18 and n = 50. The complete data are generated with

the same setup as that in Simulation 1 and 2, with the true covariance function Rη(s, t) in (22) and (23) respectively.

We get the incomplete data by the following way: all the 50 subjects are divided into 5 groups. The observation

at time point tk (k ∈ {1, . . . , 5}) for the ith subject is deleted, if the subject i belongs to the kth group, (i.e., i =
10(k − 1) + j, j ∈ {1, . . . , 10}). Thus we have 17 observations for each subject and a total number of 850 observations

9
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Fig. 4. (Simulation 2) Panel (a): true covariance matrix Σ0 in Method I; panel (b): sample covariance matrix S in Method II; panel (c): PDSCE

estimator Σ̂λ in Method III; panel (d): our proposed covariance matrix estimator Σ̂recf in Method IV for one simulated data (with p = 18 and

n = 50).

Table 3
(Simulation 3) Average squared Frobenius norms over 100 simulations for complete and incomplete data and Relative

Loss of Incompleteness in (24) using different Methods II–IV (with p = 18 and n = 50).

Method Simulation 1 Simulation 2

Complete Incomplete Loss Complete Incomplete Loss

Method II .0164 .0192 17.1% .0288 .0329 14.2%

Method III .0191 .0214 12.0% .0166 .0175 5.4%

Method IV .0062 .0065 4.8% .0118 .0122 3.4%

are made. In Method II and Method III, we use the adjusted sample covariance/correlation matrix which based on the
pairwise sample covariance/correlation instead of S. It is obvious that when we utilize the pairwise sample covariance to
estimate Σ0(j, k), 1 ≤ j �= k ≤ 5, only 30 pairs are observed completely, and thus the effective sample size is just 30 for
estimating Σ0(j, k), 1 ≤ j �= k ≤ 5.

We assess the performance of the different covariance matrices estimators Σ̂ by calculating the average of the squared
Frobenius norms ‖Σ̂−Σ0‖2

F over 100 simulations. When we use the incomplete data, the estimator of covariance matrix

will be less precise and the squared Frobenius norm ‖Σ̂ − Σ0‖2
F will be larger than that derived from the complete data.

Thus we define the Relative Loss of Incompleteness by

‖Σ̂incom − Σ0‖2
F − ‖Σ̂com − Σ0‖2

F

‖Σ̂com − Σ0‖2
F

, (24)

where Σ̂com and Σ̂incom are the estimators of covariance matrix based on complete and incomplete data respectively.
Table 3 summarizes the average squared Frobenius norms and the Relative Loss of Incompleteness in (24) for different

methods. For the sample covariance matrix (Method II), the relative losses are 17.1% and 14.2% for these two cases
respectively, which are much larger than that of other two methods. The PDSCE estimator (Method III) performs quite

10
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Table 4
(Real data case) Comparisons of the estimators and standard errors of β in (25) using different Methods

II–IV.

Method II Method III Method IV

β̂ 1.209 1.735 −0.224

v̂ar(̂β) 6.166 6.361 7.767

well when the true covariance function is nearly sparse, and the relative loss 5.4% is close to that of our proposed Method

IV. For both cases, the relative losses of our proposed Method IV are quite small (4.8% and 3.4% respectively), which shows

the advantage of the regularized-covariance-function-based estimator when the data are incomplete.

6. Real data example

We now present an application to the Cattle data study. This dataset has been studied extensively in the literature

of longitudinal data analysis, see [11,16]. This dataset comprises the information of an experiment in which cattle were

assigned randomly to two treatment groups A and B, and their body weights were recorded in kilogram. 30 animals

received treatment A and another 30 received treatment B. The animals were weighted 11 times over a 133-day period:

the first 10 measurements for each animal were made at two-week intervals and the last measurement was made one

week later. A total of 660 observations were made in this study, with n = 60 and p = 11. Since no observation is missing,

it is considered to be a balanced longitudinal data.

We take the response Y to be the body weights of cattle, Z to be the treatment level (1 for treatment A and 0 for

treatment B). The observation time is divided by 140 so that the rescaled observation time t is in between 0 and 1. Now

consider a partially linear model

Y (t) = α(t) + βZ(t) + η(t) + ζ (t). (25)

We apply a multifold cross-validation method to select a bandwidth h for α(t). After partitioning the data into 15

groups, we fit model (25) for the data excluding the kth-group, k ∈ {1, . . . , 15}. For the computational issue, we minimize

the cross-validation (CV) score on a rough grid h = 0.5 × 0.9b, b ∈ {1, . . . , 10}. The resulting optimal bandwidth is

hopt = 0.174.

Table 4 shows the estimators of β using three different covariance matrix estimators: the sample covariance matrix

estimator S (Method II), the PDSCE estimator Σ̂λ (Method III) and our proposed estimator Σ̂recf (Method IV). The estimator

β̂ using Method IV is quite different with that using either Method II or Method III. According to the sandwich formula by

Fan et al. [3], in Table 4 we also provide the estimated variances v̂ar(̂β) of the profile weighted least squares estimators

β̂ in (9) for different methods. And we conclude that the treatment A is not significantly different from the treatment B

for all the three methods.

Since the scales of the estimated covariance matrices are large, and it is hard to distinguish these three covariance

matrices estimators from the plots directly, in Fig. 5 we display the estimated correlation matrices for different methods.

Fig. 5(a) shows the estimator of correlation matrix using Method II and Fig. 5(b) shows the correlation matrix estimator

using Method III. Our proposed estimator of the correlation matrix is displayed in Fig. 5(c). For comparison, we also

show the nonparametric estimator of large correlation matrix using a two step estimation procedure proposed by Wu

and Pourahmadi [16] in Fig. 5(d). They only studied the 30 cattle with treatment A. From Fig. 5, the estimators of the

covariance matrices using Method II and Method III are similar and they are quite different from our proposed Method

IV and Wu and Pourahmadi’s method.

7. Conclusion

In this article we proposed a nonparametric method to estimate the covariance matrix of the within-subject errors in

longitudinal data collected at balanced or nearly balanced time points, which is called the regularized-covariance-function-

based estimator. We further derived and compared the error bounds for both the proposed regularized-covariance-

function-based estimator and the Positive Definite Sparse Covariance-matrix Estimator (PDSCE) in Frobenius norm. We

also investigated the relationship between the rank r , the dimension p, the sparsity s of covariance matrix and the sample

size n, so that the upper bound of the convergence rate of the proposed regularized-covariance-function-based estimator

is smaller than that of PDSCE estimator in Frobenius norm, which includes the ‘‘high-rank sparse’’ case and ‘‘low-rank

dense’’ case when p � n1/4 log n.

We also assess the performance of these two covariance matrices estimators when the data are incomplete. Both

our proposed regularized-covariance-function-based estimator and PDSCE estimator perform quite well in the ‘‘high-rank

sparse’’ case, while the Relative Losses of Incompleteness for the PDSCE estimator and the sample covariance matrix are

much large than that of our proposed method for the ‘‘low-rank dense’’ case. So the regularized-covariance-function-based

estimator is not sensitive to the incompleteness of data.
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Fig. 5. (Real data case) Panel (a): estimated correlation matrix for Method II; panel (b): estimated correlation matrix for Method III; panel (c):

estimated correlation matrix for our proposed Method IV; panel (d): estimated correlation matrix by Wu and Pourahmadi [16].

Several issues are desirable for future research. First, in the presence of outliers, one should consider a robust method to

estimate α(t) and β instead of using profile weighted least squares. Second, in simulations different covariance structures

(22) and (23) are considered, which are classical examples for the ‘‘low-rank dense’’ and ‘‘high-rank sparse’’ cases. The

performance of the regularized-covariance-function-based estimator and the PDSCE estimator under these two cases are

quite different, thus in practice it is desirable to develop testing procedures for model assumptions (22) and (23) to

decide which method should be applied. Finally, in this paper we only compare the error bounds of the regularized-

covariance-function-based estimator and the PDSCE estimator in Frobenius norm. Other norms such as the L2 norm may

also be considered. In the proof of Theorems 1 and 2, we have shown the error bound of PDSCE estimator Σ̂λ in L2 norm,

but we only derived the error bound of the covariance function estimator R̂η(·, ·) in integrated squared norm. Thus it

is also of interest to study the convergence rate of Σ̂recf in L2 norm. Besides, other high-dimensional covariance matrix

estimators with different constraints and structures instead of PDSCE may also be compared. For example, in Simulation

1, instead of using the PDSCE estimator, one may consider the high-dimensional positive definite low-rank covariance

matrix estimator; in Simulation 2, one may use the high-dimensional sparse Toeplitz covariance matrix estimator. This

topic is beyond the scope of this article and further research is needed.
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Appendix

Proof of Theorem 1. Without loss of generality, we assume tj = j/p, j ∈ {1, . . . , p}. By the definition of Σrecf and R(·, ·)
in (14), we have

‖Σrecf − Σ0‖2
F =

∑
1≤j�=k≤p

{Rη(tj, tk) − R(tj, tk)}2 +
p∑

j=1

{s2j − R(tj, tj)}2

=
∑

1≤j�=k≤p

{Rη(tj, tk) − Rη(tj, tk)}2 +
p∑

j=1

{s2j − σ 2(tj)}2

≤
p∑

j,k=1

{Rη(tj, tk) − Rη(tj, tk)}2 +
p∑

j=1

{s2j − σ 2(tj)}2, (26)

where Rη(·, ·) is defined in [7]. According the definition of integral, and an application of [1] (Theorem 4), as p → ∞,

1

p2

p∑
j,k=1

{Rη(tj, tk) − Rη(tj, tk)}2 → ‖Rη − Rη‖2
L2

= OP

({log(n)/(np)}4/5 + n−1
)
, (27)

where ‖f (·, ·)‖L2 =
{∫∫

s,t∈T f 2(s, t)dsdt
}1/2

denotes the integrated squared norm of a bivariate function f (·, ·). And an

application of CLT shows that

p∑
j=1

{s2j − σ 2(tj)}2 = OP

(p
n

)
. (28)

(26) combined with (27), (28) shows that

‖Σrecf − Σ0‖2
F = OP

(
p2

[{ log(n)

np

}4/5 + 1

n

]
+ p

n

)
= OP

({p3/2 log(n)

n

}4/5 + p2

n

)
,

which completes the proof. �

Proof of Theorem 2. By the definition of Frobenius norm and spectral norm for a general p × p matrix M,

‖M‖F =
√
trace(M�M), ‖M‖ =

√
λmax(M�M).

Let λmax(M�M) = λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λp = λmin(M�M) = 0 be the decreasing eigenvalues of M�M,

where r = rank(M�M), then

‖M‖2
F = trace(M�M) =

p∑
i=1

λi = λ1 + · · · + λr ≤ rλmax(M�M) = r‖M‖2. (29)

According to Theorem 1 of [12], we have

‖Σλ − Σ0‖2 = Op

{ (s + 1) log(p)

n

}
. (30)

Take M = Σλ − Σ0, (30) together with (29) completes the proof. �

Proof of Theorem 3. According to Corollary 1, there are two different situations:

(i) If θ > 1/4, then p � n1/4 log(n) and the upper bound of the convergence rate for the regularized-covariance-

function-based estimator will be smaller than that for the Positive Definite Sparse Covariance-matrix Estimator

(PDSCE) when

p2

n
= o

{ r(s + 1) log(p)

n

}
, or n2θ−1 = o

(
nθγ−1 log(n)

)
,

that means 2θ − 1 ≤ θγ − 1 or 2 ≤ γ .

(ii) If θ ≤ 1/4, then p � n1/4 log(n) and the upper bound of the convergence rate for the regularized-covariance-

function-based estimator will be smaller than that for the Positive Definite Sparse Covariance-matrix Estimator

(PDSCE) when
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{p3/2 log(n)

n

}4/5 = o
{ r(s + 1) log(p)

n

}
, or n(6θ−4)/5{log(n)}4/5 = o

(
nθγ−1 log(n)

)
,

than means (6θ − 4)/5 ≤ θγ − 1 or γ ≥ (6θ + 1)/(5θ ). �
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