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Abstract—Wepropose the concept of security socket to protect the integration of

loosely-coupled accelerators in system-on-chip (SoC) architectures. The socket is

placed between an accelerator and the rest of the SoCand provides security services

that are completely decoupled from the accelerator implementation. Any accelerator

can be plugged into the socket and transparently benefit fromall the security services.

Index Terms—Hardware, heterogeneous architectures, security
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1 INTRODUCTION

Heterogeneous system-on-chip (SoC) architectures combine general-
purpose processors with many accelerators, which are application-
specific computing engines [1], [2]. By having their hardware tailored
to perform specific tasks, accelerators yield major speedups and
energy savings compared to software executions. Some accelerators
are tightly-coupled to the processors, and thus integrated as special
functional units in the processors’ pipelines. Others are instead
loosely-coupled and they operate as autonomous computing
engines [3], like for example NVDLA [4]. In this paper, we focus pri-
marily on loosely-coupled accelerators.

Despite their benefits, the integration of accelerators in SoCs cannot
be taken lightly as it affects security [5], [6]. As accelerators take amore
central role in the system, there is a growing need for protectionmecha-
nisms that must give them the same consideration as general-purpose
processors. However, being architecturally different from processors,
accelerators demand ad-hoc protection mechanisms to meet the secu-
rity requirements. The different characteristics of the accelerators
require to analyze each accelerator design individually to look for vul-
nerabilities. While processors security has been extensively investi-
gated, less effort has been put on proposing general protection
mechanisms for accelerators.Most solutions only cover specific vulner-
abilities and protecting a diverse set of accelerators is an open problem.

Contributions.We discuss the security of heterogeneous SoCs
focusing on the accelerators and the applications that invoke
them. We first define an accelerator model by drawing inspiration
from the work of Olson et al. [5]. We then propose the novel con-
cept of security socket. A socket is a hardware component placed
between an accelerator and the rest of the SoC. The socket
implements security services, i.e., protection mechanisms, such as
memory access control [7], and primitives, such as encryption.
While the socket instantiates many well-known services, we ana-
lyze their implementation considering their degree of decou-
pling from the implementation of the accelerators. We
categorize the attacks that can be thwarted with fully-decoupled
services and the attacks that might require changes to the accel-
erators. Finally, we discuss the integration of the security socket
in ESP [2], an open-source platform for the design of heteroge-
neous SoC architectures.

2 ACCELERATOR MODEL

We define a generic accelerator model (Fig. 1) as a reference. This is
representative of many loosely-coupled accelerators [2], [4].

The model is organized in three parts: (i) a computing engine
(comp_engine), (ii) a local memory (local_mem), and (iii) a set of regis-
ters fRig to configure the accelerator. The computing engine contains
the hardware that performs the specific tasks supported by the accel-
erator. For example, the engine of an image-processing accelerator
includes the logic to read an image from memory, apply filters, and
write back the result into memory. For a programmable accelerator
that executes instructions, the engine consists of the stages that imple-
ment the instruction pipeline. The local memory holds data during
the computation and it is only accessed by the accelerator. It usually
contains a copy of a portion of the data in global memory (global_-
mem), i.e., the off-chip memory, also called main memory. The local
memory can be implemented as a cache, which obeys a coherence
protocol, or as a scratchpad, which is a multi-bank memory structure
managed by the accelerator [8]. The registers are used to configure
the execution of the accelerator. They are memory mapped, hence
accessible by the software applications that run on the processors and
invoke the accelerator. The registers define where the input and out-
put data of the accelerator are located and other accelerator-specific
parameters, e.g., the number of pixels of the image that needs to be
processed by the accelerator.

To use an accelerator, an application prepares the input in global
memory and then invokes its device driver. The driver configures the
registers and starts the accelerator (signal start). The accelerator per-
forms the tasks autonomously without interrupting the processor.
The execution is divided in three phases (Fig. 2):

� Configuration phase: the memory-mapped registers of the
accelerator are configured and the accelerator is ready to
compute;

� Computation phase: the accelerator performs the assigned
task; it communicates with the global memory through the
channels in_chan and out_chan to load the input data and
write back the output data, respectively;

� Termination phase: the accelerator frees up the resources that it
has used (e.g., a portion of the local memory or a functional
unit in the case that the accelerator supports the execution of
multiple tasks); the accelerator raises an interrupt (signal
done) after completing the execution of the task.

3 ATTACK MODEL

Accelerators potentially affect the confidentiality, integrity, and avail-
ability of the system in which they have been integrated [5]. Confi-
dentiality guarantees that an attacker cannot access sensitive
information. Integrity ensures that sensitive data can never be cor-
rupted. Availability means that a resource can always be utilized
by authorized users when necessary. Next, we describe our threat
model by leveraging the taxonomy of Olson et al. [5].

Table 1 reports an attack classification based on our accelerator
model, indicating the execution phase inwhich the attack takes place,
the signals and/or channels involved in the attack, the attack descrip-
tion, and which of the three security properties may be affected. We
consider attacks made possible due to improper uses of the accelera-
tor by software applications (malicious or not), direct attacks to the
accelerator, and attacks caused by design flaws in the accelerator. We
consider only accelerators that do not include hardware Trojans (the
accelerators do not deliberately attack other SoC components), which
can be mitigated with techniques [9] that are orthogonal to the socket
approach. Each of the attacks of Table 1 is possible depending on the
attackers’ capabilities, e.g., the attackers may need direct access to the
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SoC to implement a certain attack, or on the existence of a certain
design flaw in the accelerator. We provide a classification of the most
relevant attacks that are made possible by the presence of accelera-
tors, without making specific assumptions. The socket is flexible and
can instantiate several security services, whichmay be relevant or not
depending on the properties of the SoC in which the socket is
deployed. To analyze the potentiality of the socket approach in its
entirety, we avoid making restrictive assumptions on trusted and
untrusted components. We aim at protecting the accelerators and the
applications that invoke them. Some attacks only affect the applica-
tion that invokes the accelerator, but others have an impact on the
entire SoC as discussed byOlson et al. [5].

Configuration Phase. During the configuration phase, there are
two possible attack vectors: improper use of the signal start and
improper configuration of the registers fRig. For example, if the
signal start is utilized maliciously, the accelerator can be set to a
”busy” state, therefore violating the property of availability [5], or

the accelerator can be invoked by an application without permis-

sions, thus affecting confidentiality. Also, the registers fRig can be

configured incorrectly on purpose. This leads to a variety of issues

including unsafe accesses to the global memory [7], incorrect accel-

erator-specific parameters, and bad configurations of security

metadata, such as memory tags [6].
Computation Phase. The computation phase is especially vulner-

able because there are many attack surfaces. For example, the

power consumption of comp_engine can be monitored to leak data,

even remotely [10]. Another vulnerable component of the accelera-

tor is local_mem, which can be exposed to side-channel attacks [11].

Also, incorrect configurations of the accelerator may cause unsafe

read and write requests or an excessive number of requests to

local_mem. This would affect the integrity of the tasks performed

by the accelerator and the availability of the local memory,

respectively. Finally, in_chan and out_chan must be protected as

they interface the accelerator to global_mem.
Termination Phase. An attack can leak data through the signal

done [12], in particular by measuring the execution time of the
accelerator. In addition, similarly to the configuration phase, the
signal done can be used maliciously to make the accelerator
unavailable. Also, the resources used during the execution, e.g.,
fRig and local_mem, should be cleared to avoid leaks [13]. For a
similar reason, clearing in_chan and out_chan is necessary to avoid
leaks of sensitive data through stale requests [5].

4 SECURITY SOCKET

Wepropose the concept of security socket to protect the accelerator that
it encloses, establishing a layer of protection between the accelerator
and the applications that invoke it. The socket encloses the accelerator
and manages its interactions with the rest of the SoC, including the
local memory (Fig. 3). Differently from other approaches that focus on
a specific vulnerability, the socket includes modular security services
that protect the accelerator against a variety of attacks. The last column
of Table 1 reports the protection mechanisms that can be integrated in
the socket. While many of the services of Table 1 have been proposed
in other papers, we analyze their implementation within the socket,
while striving to respect three principles:

1. Decoupling: we do not require changes to the accelerator
logic and we can freely add or remove services as needed;

2. Automation:we minimize the effort to deploy the socket;
3. Efficiency:we minimize the performance overheads.
We keep the services separated from the implementation of the

accelerator. This makes it possible to (i) add and remove services
depending on the particular requirements of the accelerator, and (ii)
improve the reusability of the services. Table 1 shows the degree of
decoupling of each service. We use to indicate if modifications to

Fig. 1. Model of the target accelerators and integration in an SoC.

Fig. 2. Example of execution of the target accelerators.

TABLE 1
Threats to Our Accelerator Model and Protection Mechanisms. The Taxonomy is Derived From Olson et al. [5]
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the accelerator are necessary depending on the current state-of-the-
art techniques. We use if only high-level information is required,
but no modifications are needed. When only high-level information
is required, the security services can be automatically customized
starting from a configurable template. We use � if no modifications
and no information are required. Note that for most of the attacks in
Table 1 no modifications are necessary, and we advocate for fully-
decoupled services to simplify a safe accelerator integration. In these
cases, the socket does not need tomodify the computing engine of the
accelerator nor its external interface. The accelerator does not need to
know that it is protected by the socket: it executes normally, exactly
as it wouldwithout the security socket.

4.1 Security Services

Table 1 shows the services that can be added to the socket. Each
service is ”plug-and-play,” thus it can be enabled or disabled.

Configuration Monitor. During the configuration phase, the con-
figuration monitor checks that the accelerator is invoked safely by
software applications. Specifically, it detects incorrect uses of the
signal start and invalid values for the registers fRig. One of the
goals of the configuration monitor is to ensure the availability of
the accelerator. The monitor keeps the history of the invocation
calls to the accelerator made by the applications and checks that
the accelerator is shared fairly. In addition, the monitor allows
only the applications with the right permissions (or that belong to
a certain group) to use the accelerator. The configuration monitor
can be customized with accelerator-specific checks to guarantee
the correctness of the computation. For instance, for an accelerator
that performs matrix multiplications, the monitor checks that the
dimensions of the two input matrices are compatible.

Encryption Unit. The encryption unit encrypts and decrypts the
data and registers of the accelerator, which have been selected at
design time. The encryption tasks do not need to be performed nec-
essarily in the socket: the encryption unit can offload these tasks to
an external engine, which is shared by multiple sockets. The
encryption unit is used in scenarios where the data are not safe in
global_mem or if the accelerator works on encrypted data.

Request Monitor. The request monitor checks the safety of the
memory requests to ensure the integrity and confidentiality of the
stored data. For instance, the monitor checks that the requests only
access data belonging to the task of the accelerator that made the
requests (for local_mem) and the software application that invoked
the accelerator (for global_mem) [7]. Unsafe memory requests happen
for multiple reasons, frommalicious configurations of fRig to buggy
implementations of the accelerator. The request monitor can guaran-
tee the availability of local_memand global_mem by monitoring the
number of requests made by the accelerator. Also, if there is a risk of
reverse engineering, the request monitor can make the requests to
global_mem oblivious. The monitor can perform more complex
checks, if needed. For example Olson et al. show how to check
whether the requests to global_mem are consistent with the coherence
protocol of the platform inwhich the accelerator is integrated [14].

Termination Monitor. The main goal of the termination monitor is to
clean up the resources used by the accelerator, e.g., local_mem and fRig,
so that sensitive data are not leaked. Many accelerators do not preserve
their state across different invocations, but others must keep some data
across invocations due to the computation they perform, e.g., a deep-

learning accelerator that updates its model at each invocation to
improve classification accuracy. In these cases, it is important to clean
up all the used resources to prevent leakages. For instance, Di Pietro
et al. show that the localmemories ofGPUs canbeused to leak confiden-
tial data [13]. Besides cleaning up the used resources, the termination
monitormust guarantee that there are no stalememory requests [5].

4.2 More Socket Services

In addition to the general services of Section 4.1, the socket can
implement services that offer protection in specific scenarios.
While here we describe how to support dynamic information flow
tracking (DIFT) [6], [15], the socket is flexible enough to accommo-
date the implementation of other protection mechanisms, e.g.,
trusted execution environments (TEEs) [16], [17].

DIFT has been implemented mostly on processors [15], but it has
been recently extended to accelerators. Piccolboni et al. showed how
to support DIFT on loosely-coupled accelerators by proposing to han-
dle tags at the interface, with low overhead and without modifying
the implementation of the accelerators [6]. We can adopt this
approach to support DIFT in the socket: the socket is extended with a
module to propagate and check the tags (shadowDIFT logic in Table 1).
This module intercepts the memory requests made by the accelerator
andmodifies the requests to load and store the tags in addition to the
accelerator’s data [6]. This module also implements the logic to prop-
agate the tags, which can be customized for a given accelerator.

4.3 Side-Channel Attacks

Table 1 includes attack vectors caused by side-channels for which it
might be hard (or not possible) to provide protection without mod-
ifying the accelerator. We can, however, leverage approaches that
are orthogonal to the security socket.

Attackers exploit timing side-channels by finding a correlation
between the execution time of the accelerator and the value of some
sensitive signal. Inmost cases, preventing these attacks requires a thor-
ough understanding of the internal implementation of the accelerator;
this information is typically used to balance the execution time of the
accelerator so that leakages are prevented. Jiang et al. [12] explain that it
is possible to eliminate the timing vulnerabilities by enforcing constant
execution time for input/output signals, e.g., the signal done. Their
approach analyzes the accelerator and adds enforcement finite state
machines (FSMs) to fix the vulnerabilities. The approach embraces some
principles of the security socket, but it requires the enforcement FSMs
to receive information from the internal implementation of the acceler-
ator. Still, it is fully compatible with our socket approach, which can
enclose an accelerator that has been modified to fix the side-channel
vulnerabilities. In some specific scenarios, itmaybe possible tomitigate
the risk of timing attacks by operating only at the level of the socket.

4.4 Design Implications

The security socket is a general and flexible approach to protect accel-
erators. We demonstrate its effectiveness by showing that the socket
(i) protects a relevant class of accelerators (Section 2), (ii) can support
a broad variety of protectionmechanisms, and (iii) can be extended at
ease. The implementation of the socket is feasible since it does not
require extensive modifications to the target SoC nor to the applica-
tions. The socket implements per-accelerator services. If the replica-
tion of a service is inefficient, a centralized implementation of the
service can be made available to multiple accelerators. The socket
increases design productivity, as it allows designers to focus on the
engineering of the accelerators rather than on the security aspects.

5 CASE STUDY

ESP [2] is an open-source research platform for heterogeneous SoC
design (Fig. 4). ESP combines a scalable tile-based architecture and a
flexible system-level design methodology [18].

Fig. 3. The proposed security socket protecting an accelerator.
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Architecture. The architecture is structured as a grid [2] (Fig. 4)
with four types of tiles: processor tiles, memory tiles for the com-
munication with the global memory, accelerator tiles, and an auxil-
iary tile for peripherals like Ethernet. Each tile is encapsulated into
a socket that interfaces it to a scalable network-on-chip and decou-
ples its design from the one of the rest of the SoC [19]. The ESP
accelerator socket is automatically generated and can host any
accelerator compliant to the ESP load-store interface or to the AXI4
standard. The ESP accelerator socket provides services that are
transparent to the accelerators and the applications (Fig. 4), e.g.,
direct memory access (DMA), dynamic voltage-frequency scaling
(DVFS), performance monitors, etc.

Methodology. The methodology consists of two main categories
of design flows. The accelerator design flows simplify the design of
accelerators and their SoC integration. The SoC design flow
supports SoC configuration, software build, and rapid FPGA pro-
totyping. On the hardware side, ESP supports multiple accelera-
tor design flows, including high-level synthesis flows and
domain-specific flows, e.g., hls4ml [20]. All the generated acceler-
ators become part of an intellectual property (IP) library, which
includes third-party IPs, e.g., NVDLA. The automated SoC
design flow (Fig. 4) allows the designer to select the number, mix,
and placement of tiles for a target SoC and many other configura-
tion parameters by using the ESP SoC generator. Once the floor-
planning of the SoC is specified, the flow is push-button: ESP
generates the RTL of the full system for the physical design of the
chip and for FPGA prototyping. On the software side, ESP auto-
matically generates the device drivers and provides an applica-
tion programming interface (API) for invoking the accelerators
from applications running on Linux.

5.1 Security Socket

Architectural Modifications. The ESP accelerator socket can be easily
extended with the security services reported in Table 1. The serv-
ices already present in the ESP socket simplify the integration of
the accelerator; the new security services help to make this integra-
tion more secure. The ESP socket is automatically generated and
the implementations of the security services can be generated
through the same process. The implementation of the services that
require customization (indicated with the symbol in Table 1) can
be automatically obtained at design time by starting from a tem-
plated implementation.

Methodology Modifications. The accelerator design flows sup-
ported by ESP do not need to be changed, but some design flows
could be extended to support those services that require modifica-
tions to accelerators, e.g., side-channel elimination [12]. The SoC

integration flow should be adapted for the integration of the secu-
rity socket. The ESP SoC generator should be extended to enable
the selection of which security services are instantiated in each tile
(Fig. 4). The device drivers of the accelerators need to be extended
to configure the security services and to handle the exceptions that
are raised by the socket. Some services may be implemented trans-
parently to software (like the encryption unit) by hiding the imple-
mentation behind a software API. Other services (for example the
configuration monitor) require software configuration as well as
mechanisms to report unsafe uses.

6 CONCLUSION

We proposed the concept of security socket to make accelerator
integration secure. We showed that the socket is an effective solu-
tion to thwart many of the attack vectors that may involve accelera-
tors. We explained how the security socket can be implemented as
part of ESP by enhancing the ESP accelerator sockets. We hope that
the socket approach will be adopted to implement protection
mechanisms for accelerators.
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Fig. 4. ESP SoC design flow extended with the security socket.

68 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 03,2023 at 13:33:04 UTC from IEEE Xplore.  Restrictions apply. 


