2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES) | 978-1-6654-7296-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/CASES55004.2022.00019

2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)

Work-in-Progress: An Open-Source Platform for
Design and Programming of Partially Reconfigurable
Heterogeneous SoCs

Davide Giri
Computer Science
Columbia University
New York, USA

Biruk B. Seyoum
Computer Science
Columbia University
New York, USA
biruk @cs.columbia.edu

Abstract—Dynamic partial reconfiguration (DPR) enables the
design and implementation of flexible, scalable and robust adap-
tive systems. We present an FPGA-based DPR flow for partially
reconfigurable heterogeneous SoCs that uses an incremental com-
pilation technique to reduce the total FPGA compilation time.

[. INTRODUCTION

By providing the capability to swap only a portion of the
logic on the FPGA at runtime, dynamic partial reconfiguration
(DPR) unlocks a great potential for implementing complex
adaptive systems. Furthermore, it can be used to expand
the space of system design for reconfigurable heterogeneous
system-on-chip (SoC) architectures, which combine general-
purpose processors with multiple domain-specific hardware
accelerators. With the progress in semiconductor technology,
SoCs hosts more and more heterogeneous components, mak-
ing integration very challenging. Addressing these challenges
requires the adoption of system-level design approaches [2]. In
recent years, several open-source platforms have been proposed
to support the system-level design of SoC architectures [1],
[4], [5]. To date, however, most of these platforms target
FPGA technologies only for rapid prototyping or functional
verification purposes, without employing DPR-based design
methodologies. This leaves behind the opportunity to use DPR
for improving system performance and optimizing the FPGA
compilation time (synthesis, place and route, and bitstream
generation runtime) by using CAD-tool parallelism.

Realizing a platform that automates the integration of
partially reconfigurable heterogeneous SoCs while improving
FPGA compilation time demands a system-level design ap-
proach that addresses questions related to: (i) defining a system
architecture that is compliant with DPR-related design con-
straints, (ii) creating algorithms that automate and parallelize
the DPR FPGA flow using commercial CAD tools, and (iii)
extending the heterogeneity of the architecture down to the
FPGA implementation to enable a fine-grained incremental
compilation of the design.

To address these challenges, we developed a DPR-based
system-level design flow for partially reconfigurable hetero-
geneous SoCs. Our flow uses the heterogeneous tile-based
distributed architecture of the open-source platform ESP [3],
[5] as a baseline, and augments its architecture. Moreover, it

davide_giri@cs.columbia.edu

Kuan-Lin Chiu
Computer Science
Columbia University
New York, USA
chiu@cs.columbia.edu

Luca P. Carloni
Computer Science
Columbia University
New York, USA
luca@cs.columbia.edu

introduces a novel DPR design flow that optimizes the bitstream
generation runtime. This work-in-progress paper presents the
incremental flow aspect of our approach. Our flow integrates
an algorithm that enables a find-grained FPGA compilation of
the design as well as a parallelization of the FPGA CAD flow,
to reduce the total FPGA compilation runtime.

II. THE INCREMENTAL FLOW

ESP is an open-source research platform for heterogeneous
SoC design and programming [3], [5]. It combines a scalable
tile-based architecture and a flexibile methodology to integrate
processors and loosely-coupled accelerators on a single chip.
Our incremental flow for DPR focuses on supporting the
introduction of reconfigurable accelerator tiles in ESP, while
all the other tiles remain as static parts of the SoC design.
Our flow introduces a fine-grained FPGA compilation that is
aimed at reducing the recompilation runtime during iterative
FPGA implementations, where only some of the reconfigurable
tiles are modified in each iteration. The incremental flow
detects the presence of newly modified reconfigurable tiles
in the SoC design and generates new partial bitstreams only
for them. The flow also introduces a novel approach for an
on-demand parallelism during the synthesis and place and
route (P&R) stages. While our flow exploits the out-of-context
(O0C) synthesis mode that is offered by Vivado, the P&R of
reconfigurable tiles is performed in parallel, on top of a pre-
implemented static part, by using separate Vivado instances.
The incremental flow utilizes a custom algorithm, which
is described with a high-level pseudo-code in Listing 1. In
each design iteration, the algorithm starts with a comparison
of the SoC configurations between the current and previous
design runs to determine if the static part or any of the
reconfigurable tiles have been modified. The changes in the
static and reconfigurable parts are mainly detected by parsing
the name, type, and additional parameters of the tiles inside
both configurations. If a change is detected in the static part
(e.g., tiles in the static region are modified or the total number
of tiles in the SoC is changed), then this invalidates all the
previous design runs and the algorithm invokes the full flow
to implement the entire SoC (line 16). Instead, if the changes
are only limited to reconfigurable tiles, then the flow performs

2643-1726/22/$31.00 ©2022 IEEE 25
DOI 10.1109/CASES55004.2022.00019
Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 03,2023 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

Listi ! ; . ile

3| int modified_tiles;

s|if (is_static_modified(new_config, old_config) {

3| //extract resource consumption of tiles from vivado report
24| parse_resource_consumption (new_config, old_config);

6| //check if the modified accelerators require more resource

o}

//struct variables that hold the esp SoC configuration
struct new_config, old_config;

//implementation mode {PARALLEL or Serial}
int mode = PARALLEL;

//check how many tiles are modified in the current iteration
modified_tiles compare_configs (new_config, old_config);

//1if no tile is modified, exit
if (modified_tiles
return 0;

=0

//check 1if the SoC configuration is modified
goto: run_full_flow(mode);

}

else {
//synthesize newly modified tiles
synth_modified_acc_tiles (new_config, mode);

}

//than their predecessors; if so, floorplanning again
for(int i = 0; i1 < modified_tiles; i++) {
if (!chk_resource_util (new_config, old_config, 1)) {
floorplan();
goto: implement_all_acc_tiles (mode);
}

goto: implement_only_modified_acc_tiles (mode);

a parallel OoC synthesis of all the modified reconfigurable
accelerators (line 20).

After the synthesis is complete, the resource consumption of
the new accelerators is extracted (line 24) and is compared to
the resources that are already allocated to the reconfigurable tile
where the new accelerators are to be placed (line 29). If enough
resources are available in the host tiles, then partial bitstreams
are generated only for the modified accelerators by using an
already placed and routed design checkpoint, which contains
the unmodified part of the SoC (line 34). In the worst case, i.e.,
one or more of the newly modified accelerators consume more
resources than what is available in the reconfigurable tiles, a
new floorplanning design step is executed and partial bitstreams
are generated both for the modified and unmodified accelerators
(line 29 - line 31). Note that, even in this worst case, the
algorithm in the incremental flow avoids re-synthesizing the
static part of the design, which usually is the second most time
consuming step after P&R. Our flow uses an open-source DPR
floorplanning tool [6]. Besides its flexibility, the incremental
flow offers an opportunity to save valuable synthesis and
implementation time that would have otherwise been wasted in
re-implementing the full SoC, even for minor changes during
an iterative design.

III. EXPERIMENTAL EVALUATION

To evaluate our incremental flow, we generated three SoC
design instances, with 3x4, 3x5 and 4x5 tile configurations,
respectively. In the SoCs, all the reconfigurable tiles were
instantiated with MAC accelerators from the ESP accelerator
suite. At each design iteration, an incremental percentage of

26

100 = w \ .
- 3x4 tile serial
—o— 3x4 tile parallel
= 80| 3x5 tile serial
‘s —&—3x5 tile parallel
: 60 || * 4x5 tile serial
g —e— 4xS5 tile parallel
(=}
=
= 40 |- n
.20
3
A
20 |- N
0 | | | |
0 20 40 60 80 100
Modified tiles [%]
Fig. 1. Total design runtime to generate partial bitstreams for designs with

incremental changes per iteration.

the reconfigurable tiles was modified and the design runtime
to regenerate the new partial bitstreams was recorded. To
guarantee enough resources for the new accelerators in each
tile and to reduce the design sensitivity to resource variations,
the floorplan pblocks were generated with a 10% resources
margin. The experiment was performed in two modes. In the
first mode, the parallel compilation was disabled (denoted as
serial in Fig. 1) and all modified tiles were recompiled using
a single Vivado instance. This demonstrates the net speedup
from our incremental compilation flow without any boost from
parallel P&R. In the second mode, instead, the incremental flow
was executed by also exploiting the CAD-level parallelism.
Fig. 1 reports the results of this experiment. Note that,
without incremental compilation, the design must always be
recompiled fully even for minor modifications. As expected,
the design runs that were executed without parallelism take
longer to complete as more and more tiles are modified. But
even without parallelism, the incremental compilation keeps the
design runtime to a minimum. In addition to this, enabling par-
allel implementation within the incremental flow significantly

reduces the design runtime.

Acknowledgments. This work was supported in part by DARPA (C#:
FA8650-18-2-7862) and in part by the NSF (A#: 1764000). The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory and DARPA or
the U.S. Government.

REFERENCES
[1]

[2]
[3]
[4]
[5]
[6]

A. Amid et al. Chipyard: Integrated design, simulation, and implementation
framework for custom SoCs. IEEE Micro, 40(4):10-21, 2020.

L. P. Carloni. From latency-insensitive design to communication-based
system-level design. Proc. of the IEEE, 103(11):2133-2151, 2015.

L. P. Carloni. The case for embedded scalable platforms. In Proc. of the
Design Automation Conf. (DAC), pages 1-6, 2016.

C. Heinz et al. The TaPaSCo open-source toolflow. Journal of Signal
Processing Systems, 93(5):545-563, 2021.

P. Mantovani et al. Agile SoC development with Open ESP. In Proc. of
the Intl. Conf. on Computer-Aided Design (ICCAD), 2020.

B. B. Seyoum et al. FLORA: floorplan optimizer for reconfigurable areas
in FPGAs. ACM Trans. Embed. Comput. Syst., 18(5s), Oct. 2019.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 03,2023 at 13:38:04 UTC from IEEE Xplore. Restrictions apply.

