
PR-ESP: An Open-Source Platform for Design and
Programming of Partially Reconfigurable SoCs

Biruk Seyoum, Davide Giri, Kuan-Lin Chiu, Bryce Natter and Luca Carloni
Department of Computer Science Columbia University New York, U.S.A

{biruk, davide giri, chiu, luca}@cs.columbia.edu, bdn2113@columbia.edu

Abstract—Despite its presence for more than two decades and its
proven benefits in expanding the space of system design, dynamic
partial reconfiguration (DPR) is rarely integrated into frameworks
and platforms that are used to design complex reconfigurable
system-on-chip (SoC) architectures. This is due to the complexity
of the DPR FPGA flow as well as the lack of architectural
and software runtime support to enable and fully harness DPR.
Moreover, as DPR designs involve additional design steps and
constraints, they often have a higher FPGA compilation (RTL-to-
bitstream) runtime compared to equivalent monolithic designs.

In this work, we present PR-ESP, an open-source platform
for a system-level design flow of partially reconfigurable FPGA-
based SoC architectures targeting embedded applications that
are deployed on resource-constrained FPGAs. Our approach is
realized by combining SoC design methodologies and tools from
the open-source ESP platform with a fully-automated DPR flow
that features a novel size-driven technique for parallel FPGA
compilation. We also developed a software runtime reconfiguration
manager on top of Linux. Finally, we evaluated our proposed
platform using the WAMI-App benchmark application on Xilinx
VC707.

I. INTRODUCTION

Heterogeneous system-on-chip (SoC) architectures, which

combine general-purpose processors with multiple domain-

specific hardware accelerators, have become a dominant trend

for implementing complex systems across a wide range of

application domains. As the integration of diverse computing

elements into a single chip has become very challenging over

the years, several tools had been proposed both to reduce

the complexity and raise the abstraction of the system-level

design [1]–[3]. However, the majority of the proposed tools still

target FPGAs only for rapid prototyping or functional verifica-

tion purposes. Moreover, the dynamic partial reconfiguration

(DPR) capability, which enables to modify only a portion of

the circuit on the fly without requiring a full reconfiguration of

the FPGA, is rarely exploited by these tools.

The challenge of designing heterogeneous partially recon-

figurable SoCs is multifaceted. On one hand, the complexity

that originates from integrating several independently-designed

components requires a DPR-compliant flexible architecture and

a companion methodology. On the other hand, integrating the

partial reconfiguration flow into a SoC flow can create an

implementation quagmire. The difficulty of the integration is

even more exacerbated by the challenging DPR FPGA flow.

To date, this flow is only semi-automated by the vendor tools,

thus requiring an expert-level familiarity in low-level FPGA

architecture to efficiently implement complex designs. For

example, the allocation of partially reconfigurable accelerators

to reconfigurable regions and the subsequent floorplanning for

these regions still needs to be done manually. Furthermore,

due to the additional design constraints and steps involved

in DPR designs, the full compilation of a DPR design takes

a much longer CPU runtime when compared to equivalent

monolithic designs on commercial CAD tools. Finally, a DPR

system requires the implementation of a software framework

the provides an abstraction for a low-latency reconfiguration as

well as runtime management of different DPR-related services.

While several approaches have been proposed to address

one, or a combination of, these challenges [4]–[9], a holistic

solution is still lacking. To fill this gap we present PR-ESP, an

open-source DPR-based system-level design platform to build

partially reconfigurable heterogeneous SoCs. To realize our

platform, we adopted the heterogeneous tile-based distributed

architecture of the Open-Source ESP platform [1], [10] as a

baseline and introduced several changes to the architecture

of its tiles to enable DPR support. The ESP platform was

especially appealing to us because it simplifies the develop-

ment and integration of loosely-coupled partially reconfigurable

accelerators into complex SoC architectures. We also built a

tool that, in addition to fully automating the DPR flow on

Xilinx FPGAs, opportunistically parallelizes the FPGA physical

implementation stage (place and route, P&R) to reduce the

total FPGA compilation runtime. Finally, we developed a

software stack containing a runtime manager with a lightweight

Application Programming Interface (API) for ESP accelerators

and driver modules for the hardware reconfiguration controller

to support both Linux and baremetal applications.

The following are our key technical contributions:

• We conceived and realized a robust yet flexible automated

system-level design flow for DPR. Our flow, which extends

the current ESP FPGA design flow for monolithic (non

DPR) designs, enables the generation of full and partial

bitstreams for a complete SoC using a single make target.

• For the hardware support of our flow, we designed two

new types of tiles that augment the native ESP tile-based

architecture by providing several DPR-compliant features

in a modular way, based on its socket-based approach.

We designed a reconfigurable tile that accommodates a

partially reconfigurable subset of an SoC design. We also

modified the native ESP auxiliary tile by adding new

features to enable and control the partial reconfiguration.

• We designed and integrated a size-driven P&R parallelism

algorithm within our flow to reduce the total FPGA com-

pilation time. We developed the algorithm by performing

an extensive characterization of the Vivado tool with

several designs and then built an approximate model that

correlates the size of the design with the P&R runtime.

• At the software level, we supported our flow by augment-

ing the ESP software stack with a DPR runtime manager

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 03,2023 at 13:42:52 UTC from IEEE Xplore. Restrictions apply.

Class 1.3: when γ ≈ 1 the size of the static part is approxi-

mately equal to the sum of all the reconfigurable tiles.

Group 2: κ ≪ αav or κ ≈ αav , this category represents

designs where the size of the static part is either equal to or

much less than each of the reconfigurable tiles. Also in this

group, there are two additional classes depending on the size

of γ.
Class 2.1: when γ > 1, then a design contains one or multiple

reconfigurable tiles whose size are larger than the static region.
Class 2.2: the case γ ≈ 1 is true under the condition where the

design contains only a single reconfigurable tile.
Note that, for designs that belong in the second group, γ < 1

denotes an impossible condition, meaning if the size of a static

region is smaller than the average reconfigurable part, then it is

impossible for the ratio of the total reconfigurable area to the

static area to be smaller than one.
To perform the characterization, we designed 4 SoCs, one

for each of the first four classes described above, targeting

Xilinx VC707 FPGA. Since designs that belong to Class 2.2

can only be implemented in a serial mode, there is no need

to investigate further. The first design, SoC_1, which was de-

signed to fit in Class 1.1, has a 4x5 tile configuration containing

16 instances of a reconfigurable MAC accelerator that was

generated by using the ESP Vivado HLS accelerator flow. The

second design, SoC_2, which is of Class 1.2, has a 3x3 tile

configuration and contains four reconfigurable accelerators: (i)

2-d convolutional (Conv2d), (ii) matrix multiply (GEMM), (iii)

Fast Fourier Transform (FFT), and (iv) vector sorting (sort).

These accelerators are designed in SystemC and synthesized by

using the Cadence Stratus HLS tool. The third SoC, SoC_3,

that belongs to Class 1.3, is a variant of SoC_2 containing only

the Conv-2d, GEMM, and sort accelerators. The static part of

all three SoCs is composed of a single instance of the MEM,

AUX, and a CPU tile with an instance of a Leon3 core. The

last SoC, SoC_4, which belongs to Class 2.1, is created by

modifying the CPU tile in SoC_2 to move it from the static

part into the reconfigurable part. In this case, our goal was not

making the CPU partially reconfigurable but reducing the size

of the static part.
We performed the characterization by using several imple-

mentation runs on all four SoCs under different levels of

parallelism and recorded the total design compilation time. The

characterization took hundreds of hours and was performed

using Vivado 2019.2 on an Intel Core-i7 machine with 16 cores

running at 3.6GHz and 64GB DRAM memory. We run each test

case serially to maximize the accuracy of the characterization.

Although we run multiple instances of Vivado on the machine,

due to the inherent sequential nature of the P&R algorithms,

Vivado actually uses a limited number of the cores [18].
Table II reports the resource consumption of the accelerators,

the CPU tile, and the static part with and without the processor.

Table III provides a summary of the characterization for the

four SoCs under different levels of implementation parallelism.

The boldface values on the table denote the implementation

with the shortest compilation time. Based on these results and

a long experience working on DPR designs using the Vivado

tool, we devised an algorithm that chooses an implementation

strategy that improves the total design runtime. The algorithm,

which is based on the strategies defined in Table I, mainly relies

on the resource profile of the design to make a choice. For

example, for designs where the static part is much larger than

both the average reconfigurable accelerator and the sum of all

reconfigurable accelerators (Class 1.1), a serial implementation

is favorable. But under the previous condition, if the static part

is less than the sum of all reconfigurable accelerators (Class

1.2), then a fully-parallel or semi-parallel implementation is

likely to reduce the timing cost. The two entries of Table I that

are left unfilled correspond to impossible conditions discussed

above.

V. SOFTWARE SUPPORT FOR THE PR-ESP PLATFORM

ESP already provides a library API and auto-generated Linux

and baremetal device drivers to invoke accelerators. However,

the software stack lacks the necessary abstraction to enable a

runtime swapping of accelerators and their respective drivers.

We augmented the software stack by implementing (i) a Linux

kernel level runtime manager that handles the scheduling and

synchronization of reconfiguration requests as well as the swap-

ping of accelerator drivers during reconfiguration, (ii) Linux

and bare-metal drivers to handle the decoupling of tiles and

FPGA reconfiguration via the PRC and ICAP modules, and

(iii) a user-space API to expose DPR services to applications.

Fig 2A shows the modified software stack.

Before the start of application execution, partial bitstreams,

which are mmaped in the user-space in the DDR, are copied

into the kernel memory. This enables the runtime manager

to create a reference between the bitstreams, their physical

addresses, the tiles they will be loaded into, and their re-

spective drivers. The runtime manager uses the built-in kernel

workqueue to manage multiple reconfiguration requests. Recon-

figuration requests are queued up and executed as soon as the

PRC is ready. However, before being inserted into the queue,

the manager forces the calling thread to wait for the accelerator

in the tile to complete its execution. During reconfiguration, it

locks access to the device so that other threads trying to access

it must wait until the reconfiguration is complete (interrupt is

received from the PRC) and the new driver is loaded. The

loading of drivers is realized by modifying the ESP library

that registers and un-registers drivers.

VI. EXPERIMENTAL EVALUATION

We present the case study of an embedded SoC application

that was designed and implemented using our approach. The

SoC is composed of a set of image-processing accelerators for

the open-source Wide Area Motion Imagery (WAMI) bench-

mark suite [19]. Fig. 3 depicts the data flow of the acceler-

ators in the SoC, which include Debayer, Grayscale, Lucas-

Kanade, and Change-Detection kernels. We decomposed the

Lucas-Kanade accelerator into multiple accelerators to further

parallelize its execution. We first profiled each accelerator for

its LUT consumption and execution time by using a 2x2 SoC

with a single accelerator tile and targeting a Xilinx VC707

board. The values obtained from the profiling are annotated

next to each accelerator in Fig 3. We then used the benchmark

application to evaluate compilation runtime of the DPR flow of

PR-ESP as well as the performance (execution time and energy

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 03,2023 at 13:42:52 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
SUMMARY OF THE EVALUATION OF THE P&R PARALLELLISM IN PR-ESP.

TIME IS MEASURED IN MINUTES

SoC accs (in-

dexes from

Fig 3)

αav κ γ

P&R

run-

time

fully-

par

semi-

par

serial

tstatic 98 98 -

SoC_A {4, 8, 10, 9} 9.2 29.1 1.26 ⌈Ω⌉ 52 88 -

(class 1.2) TP&R 150 186 192

tstatic 95 95 -

SoC_B {2, 3, 11, 1} 4.5 28.3 0.6 ⌈Ω⌉ 48 61 -

(class 1.1) TP&R 143 156 135

tstatic 88 88 -

SoC_C {7, 11, 8, 2} 5.5 28.2 0.97 ⌈Ω⌉ 71 64 -

(class 1.3) TP&R 159 152 167

tstatic 48 48 -

SoC_D {4, 5, 9, 2} 23.5 12.2 2.4 ⌈Ω⌉ 71 83 -

(class 2.1) TP&R 119 131 142

TABLE V
COMPARISON OF COMPILATION TIME OF THE PR-ESP IMPLEMENTATION

AGAINST MONOLITHIC IMPLEMENTATIONS. TIME IS MEASURED IN MINUTES.

PR-ESP monolithic

Synth tstatic max{Ω} Ttot τ Synth P&R Ttot

SoC_A 47 98 52 197 4 fully-par 91 152 243

SoC_B 54 135 - 189 1 serial 60 124 184

SoC_C 42 88 64 194 2 semi-par 74 129 203

SoC_D 49 48 71 168 6 fully-par 81 141 222

TABLE VI
THE PARTITIONING OF ACCELERATORS INSIDE THE THREE SOCS.

SoC_X SoC_Y SoC_Z

Reconf.

Tile

WAMI accs pbs

(KB)

WAMI accs pbs

(KB)

WAMI accs pbs

(KB)

RT 1 {1, 4, 9, 10, 8} 328 {1, 3, 7, 12} 283 {1, 6, 12} 305

RT 2 {2, 3, 6, 7, 11} 245 {2, 6, 8} 247 {2, 5, 11} 359

RT 3 - - {4, 9, 10} 378 {4, 10, 7} 317

RT 4 - - - - {3, 8, 9} 397

2

6

4

8

SoC_X SoC_Y SoC_Z

2

4

acc_exec_time
reconf time
energy efficiency

Jo
ul
es
/F
ra
me
 (
no
rm
al
iz
ed
)

To
t_
ex
ec
_t
im
e(
no
rm
al
iz
ed
)

Fig. 4. Total execution time and energy efficiency of the WAMI SoC
implementations.

VII. RELATED WORKS

The efficient implementation of partially reconfigurable SoCs

continues to be challenging despite the growing research on

several aspects of DPR designs. This include efforts to automate

the DPR FPGA flow [4]–[6], as well as software frameworks

to abstract several DPR related services [8], [9]. Recently some

works [7], [18] had also been proposed to enable parallel

compilations of DPR designs to reduce the daunting FPGA

design runtime. But most of the proposed approaches focus

on one or a few combinations of the challenges. Furthermore,

most of the proposed works rarely take advantage of porting

DPR into well matured SoC integration tools [1], [2], that

enable to integrate several independently-designed components.

To address the DPR-related design challenges in a compre-

hensive way, we propose PR-ESP, an open-source platform

to design partially reconfigurable SoCs. Our platform adopts

the ESP platform but augments the architecture, methodology,

and introduces a novel size-driven parallel FPGA compilation

technique to reduce design runtime.

VIII. CONCLUSION

We presented an open-source platform for a system-level

design flow of partially reconfigurable SoC architectures tar-

geting FPGA implementations. Our approach combines ESP,

an agile open-source SoC design platform, with our custom

DPR automation tool for Xilinx FPGAs. We augmented both

the architecture and the methodology of ESP with capabilities

that allow it to support dynamic partial reconfiguration in a

modular and scalable manner. Furthermore, we introduced a

robust yet flexible FPGA flow that fully automates design

implementation.

Acknowledgments.This work was supported in part by DARPA (C#:
FA8650-18-2-7862) and in part by the NSF (A#: 1764000). The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory and DARPA or
the U.S. Government.

REFERENCES

[1] P. Mantovani et al., “Agile SoC development with Open ESP,” in Proc.
of the Intl. Conf. on Computer-Aided Design (ICCAD), 2020.

[2] A. Amid et al., “Chipyard: Integrated design, simulation, and implemen-
tation framework for custom SoCs,” IEEE Micro, vol. 40, no. 4, pp.
10–21, 2020.

[3] C. Heinz et al., “The TaPaSCo open-source toolflow,” Journal of Signal
Processing Systems, vol. 93, no. 5, pp. 545–563, 2021.

[4] B. Seyoum et al., “Automating the design flow under dynamic partial
reconfiguration for hardware-software co-design in FPGA SoC,” in Pro-
ceedings of the 36th Annual ACM Symposium on Applied Computing,
2021, pp. 481–490.

[5] K. Vipin et al., “Mapping adaptive hardware systems with partial re-
configuration using CoPR for Zynq,” in NASA/ESA Conf. on Adaptive
Hardware and Systems (AHS), 2015, pp. 1–8.

[6] C. Beckhoff et al., “Go ahead: A partial reconfiguration framework,”
in 2012 IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 2012, pp. 37–44.

[7] Y. Xiao et al., “Reducing FPGA compile time with separate compilation
for FPGA building blocks,” in 2019 International Conference on Field-
Programmable Technology (ICFPT). IEEE, 2019, pp. 153–161.

[8] M. Pagani et al., “A linux-based support for developing real-time appli-
cations on heterogeneous platforms with dynamic fpga reconfiguration,”
in 2017 30th IEEE International System-on-Chip Conference (SOCC).
IEEE, 2017, pp. 96–101.

[9] A. Bucknall et al., “Build automation and runtime abstraction for partial
reconfiguration on xilinx zynq ultrascale+,” in 2020 International Con-
ference on Field-Programmable Technology (ICFPT). IEEE, 2020, pp.
215–220.

[10] L. P. Carloni, “The case for embedded scalable platforms,” in Proc. of
the Design Automation Conf. (DAC), 2016, pp. 1–6.

[11] Xilinx, “Vivado Design Suite User Guide: Dynamic Function eX-
change,” https://www.xilinx.com/support/documentation/sw manuals/xilinx2019

2/ug909-vivado-partial-reconfiguration.pdf, 2020.
[12] E. G. Cota et al., “An analysis of accelerator coupling in heterogeneous

architectures,” in Proc. of the Design Automation Conf. (DAC), Jun. 2015,
pp. 202:1–202:6.

[13] Cobham Gaisler, “Leon3 processor,” www.gaisler.com/index.php/products/

processors/leon3.
[14] F. Zaruba et al., “The cost of application-class processing: Energy and

performance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in
22-nm FDSOI technology,” IEEE Trans. on VLSI Systems, 2019.

[15] “NVDLA Deep Learning Accelerator,” https://github.com/nvdla/.
[16] Xilinx, “Vivado Design Suite User Guide: Partial Reconfigura-

tion,” https://www.xilinx.com/support/documentation/sw manuals/xilinx2018 1/

ug909-vivado-partial-reconfiguration.pdf, 2018.
[17] B. Seyoum et al., “FLORA: floorplan optimizer for reconfigurable areas

in FPGAs,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s, Oct.
2019. [Online]. Available: https://doi.org/10.1145/3358202

[18] L. Guo et al., “Rapidstream: Parallel physical implementation of fpga
hls designs,” in Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2022, pp. 1–12.

[19] K. Barker et al., “PERFECT (power efficiency revolution for embedded
computing technologies) benchmark suite manual,” Pacific Northwest
National Laboratory and Georgia Tech Research Institute, 2013.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 03,2023 at 13:42:52 UTC from IEEE Xplore. Restrictions apply.

