








EigenEdge: Real-Time Software Execution at the Edge with RISC-V and Hardware Accelerators CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA

We profiled the implementation of the application and checked

the relative runtime for operations of matrix-matrix multiplication,

matrix-vector multiplication, and others. As shown in Fig. 7, the

results of the profiling confirm that matrix-matrix multiplication is

the most used operator, taking almost 49% of the total runtime of

the application.

We chose to integrate the EKFC++ application into the EigenEdge

shared library (Section 3) and evaluated it on FPGA.We investigated

the same three scenarios as we did for the matrix multiplication

(EigenFunc, EigenC, and EigenAcc), and focused on performance and

energy efficiency. The results are summarized in Table 3. They

show that EigenAcc provides a latency improvement of 9.2% when

compared to the original (EigenFunc). Even though EigenC achieves

a greater latency improvement of 43%, the normalized energy effi-

ciency of EigenAcc is 61% better than the one for EigenC and 180%

better than EigenFunc. The slowdown with EigenAcc can be ex-

plained by the fact that the EKF C++ application uses only small

matrices, with the largest size being 4×4. According to our analysis

in Fig. 4, we expected EigenC to provide a lower latency. However,

as Fig. 6 suggested, EigenAcc was expected to provide better energy

efficiency even for small-size matrices. Hence, the case study of

EKF C++ application confirms our prior analysis reported in Fig. 4,

while the better energy efficiency of EigenAcc compared to EigenC,

even for small-size matrices, confirms the prior analysis reported

in Fig. 6.

5 FUTUREWORK

In Section 4 we showed that EigenEdge can potentially provide

significant gains in performance and energy-efficiency for the case

of multiplying large-size matrices. In our case study, the EKF C++

application uses relatively small matrices, and did not maximize the

potential of the EigenEdge approach. Applications that use larger-

size matrices, such as ones for graphics and computer vision, may

be a better fit for EigenEdge.

EigenEdge was built to be scalable and adaptable for future needs.

The operators described in Section 3 can call any accelerator that is

present in the SoC, such as ones for Fast Fourier Transform (FFT),

Discrete Wavelet Transform (DWT), Singular Value Decomposi-

tion (SVD), 2D-Convolution, and more. The accelerators can be

integrated into the SoC by using ESP, along with Eigen software ap-

plications that utilize these kernels. We expect to extend EigenEdge

with more operators that invoke hardware accelerators and replace

the built-in CPU-centric operators from Eigen.

Furthermore, complex tasks can be split into multiple kernels,

and run in parallel on multiple specialized accelerators by using a

single operator or method. This will yield further performance and

energy efficiency gains for a variety of computationally-intensive

and power-hungry applications, enabling their execution in real-

time on lightweight edge devices.

6 CONCLUSION

We presented EigenEdge, a software approach that enables hard-

ware/software co-design to balance low-latency requirements and

low-power constraints for real-time computation at the edge. The

seamless development flow of EigenEdge combines a simple API, a

software architecture, and the access to efficient hardware accel-

erators in heterogeneous SoCs. EigenEdge keeps the system-level

integration hidden from the application level, which maintains

abstraction, and supports the promotion of further research and

development of applications for embedded systems.

Acknowledgments. This work was supported in part by DARPA and in

part by the NSF (A#: 1764000). The views and conclusions contained herein

are those of the authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements, either expressed or implied, of

Air Force Research Laboratory and DARPA or the U.S. Government.

REFERENCES
[1] GTSAM: a sensor fusion library for robotics and vision. 2023.
[2] Azzam Alhussain et al. 2022. Hardware-Efficient Deconvolution-Based GAN for

Edge Computing. In Proc. of CISS.
[3] Seonmyeong Bak et al. 2022. OpenMP Application Experiences: Porting to

Accelerated Nodes. Parallel Comput. (2022).
[4] Soumya Basu et al. 2018. Heterogeneous and Inexact: Maximizing Power Effi-

ciency of Edge Computing Sensors for Health Monitoring Applications. In Proc.
of ISCAS.

[5] Beatriz Blanco-Filgueira et al. 2019. Deep Learning-Based Multiple Object Visual
Tracking on Embedded System for IoT and Mobile Edge Computing Applications.
IoT-J (2019).

[6] Oliver Bringmann et al. 2021. Automated HW/SW Co-Design for Edge AI: State,
Challenges and Steps Ahead. In Proc. of CODES.

[7] Extended Kalman Filter C++. 2017. https://github.com/mez/extended_kalman_
filter_cpp

[8] Maurizio Capra et al. 2019. Edge Computing: A Survey on the Hardware Require-
ments in the Internet of Things World. Future Internet (2019).

[9] Luca P. Carloni. 2016. The Case for Embedded Scalable Platforms.
[10] Yao-Chung Chang et al. 2018. Campus Edge Computing Network Based on IoT

Street Lighting Nodes. IEEE Systems Journal (2018).
[11] QUIT: Processing QuantitaiveMRI Data. 2022. https://github.com/spinicist/QUIT
[12] Robert David et al. 2021. TensorFlow Lite Micro: Embedded Machine Learning

for TinyML Systems. In Proc. of MLSys.
[13] Guy Eichler et al. 2021. MasterMind: Many-Accelerator SoC Architecture for

Real-Time Brain-Computer Interfaces. In Proc. of ICCD.
[14] IFOPT: Interface for Nonlinear Optimizers. 2022. https://github.com/ethz-

adrl/ifopt
[15] SPARC LEON3 Cobham Gaisler. 2011. www.gaisler.com/index.php/products/

processors/leon3
[16] Davide Giri et al. 2021. Accelerator Integration for Open-Source SoC Design.

IEEE Micro (2021).
[17] Cong Hao et al. 2021. Enabling Design Methodologies and Future Trends for

Edge AI: Specialization and Codesign. IEEE Design & Test (2021).
[18] Jude Haris et al. 2021. SECDA: Efficient Hardware/Software Co-Design of FPGA-

based DNN Accelerators for Edge Inference. In Proc. of SBAC-PAD.
[19] Yuquan He et al. 2021. Picovo: A Lightweight RGB-D Visual Odometry Targeting

Resource-Constrained IoT Devices. In Proc. of ICRA.
[20] Maher Jridi et al. 2018. SoC-Based Edge Computing Gateway in the Context of

the Internet of Multimedia Things: Experimental Platform. JLPEA (2018).
[21] Simon J. Julier et al. 1997. New Extension of The Kalman Filter to Nonlinear

Systems. In Proc. of AEROSENSE.
[22] Rudolph Emil Kalman. 1960. A New Approach to Linear Filtering and Prediction

Problems. Transactions of the ASME–Journal of Basic Engineering (1960).
[23] W Kayankit et al. 2009. Hardware/Software Co-Design for Line Detection Algo-

rithm on FPGA. In Proc. of ECTI-CON.
[24] Hamed F Langroudi et al. 2019. Cheetah: Mixed Low-Precision Hardware &

Software Co-Design Framework for DNNs on the Edge. arXiv (2019).
[25] Eigen Other Languages. 2022. http://eigen.tuxfamily.org/index.php?title=FAQ#

Other_languages
[26] Cheng Li et al. 2020. The Design and Implementation of a Scalable Deep Learning

Benchmarking Platform. In Proc. of CLOUD.
[27] En Li et al. 2019. Edge AI: On-demand Accelerating Deep Neural Network

Inference via Edge Computing. TWC (2019).
[28] CGAL: Computational Geometry Algorithms Library. 2022. https://www.cgal.

org/
[29] Eigen C++ Library. 2010. http://eigen.tuxfamily.org
[30] Quantum++: A Quantum Computing Library. 2022. https://github.com/

softwareQinc/qpp
[31] RISC-V Ibex lowRISC. 2022. https://github.com/lowRISC/ibex
[32] Dipan Kumar Mandal et al. 2019. Visual Inertial Odometry at the Edge: A

Hardware-Software Co-Design Approach for Ultra-Low latency and Power. In

213



CPS-IoT Week Workshops ’23, May 09ś12, 2023, San Antonio, TX, USA Chiu and Eichler, et al.

Proc. of DATE.
[33] P. Mantovani et al. 2020. Agile SoC Development with Open ESP. In Proc. of

ICCAD.
[34] Matías Mendieta et al. 2019. A Novel Application/Infrastructure Co-Design

Approach for Real-Time Edge Video Analytics. In Proc. of SoutheastCon.
[35] Eigen Projects. 2023. https://eigen.tuxfamily.org/index.php?title=Main_Page#

Projects_using_Eigen
[36] Adrian Sampson et al. 2015. Hardware-Software Co-Design: Not Just a Cliché. In

Proc. of SNAPL.
[37] Changyang She et al. 2019. Cross-Layer Design for Mission-Critical IoT in Mobile

Edge Computing Systems. IoT-J (2019).
[38] ROS: Robot Operating System. 2022. https://www.ros.org/
[39] Eigen Backend Inside Tensorflow. 2023. https://github.com/tensorflow/

tensorflow/tree/5dcfc51118817f27fad5246812d83e5dccdc5f72/third_party/
eigen3

[40] Kizheppatt Vipin. 2019. ZyNet: Automating Deep Neural Network Implementa-
tion on Low-Cost Reconfigurable Edge Computing Platforms. In Proc. of ICFPT.

[41] Xiaying Wang et al. 2020. An Accurate EEGnet-Based Motor-Imagery Brain-
Computer Interface for Low-Power Edge Computing. In Proc. of MeMeA.

[42] Ming Xia et al. 2021. SparkNoC: An Energy-Efficiency FPGA-Based Accelerator
Using Optimized Lightweight CNN for Edge Computing. JSA (2021).

[43] Huihui Xue et al. 2020. Edge Computing for Internet of Things: A Survey. In
Proc. of iThings.

[44] Wei Yu et al. 2017. A Survey on the Edge Computing for the Internet of Things.
IEEE Access (2017).

[45] Florian Zaruba et al. 2019. The Cost of Application-Class Processing: Energy and
Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm
FDSOI Technology. ITVL (2019).

[46] Mi Zhang et al. 2020. Deep Learning in the Era of Edge Computing: Challenges
and Opportunities. Fog Computing: Theory and Practice (2020).

[47] Zongwei Zhu et al. 2019. A Hardware and Software Task-Scheduling Framework
Based on CPU+ FPGA Heterogeneous Architecture in Edge Computing. IEEE
Access (2019).

214


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Software Architecture
	4 Experimental Results
	5 Future Work
	6 Conclusion
	References

