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We profiled the implementation of the application and checked

the relative runtime for operations of matrix-matrix multiplication,

matrix-vector multiplication, and others. As shown in Fig. 7, the

results of the profiling confirm that matrix-matrix multiplication is

the most used operator, taking almost 49% of the total runtime of

the application.

We chose to integrate the EKFC++ application into the EigenEdge

shared library (Section 3) and evaluated it on FPGA.We investigated

the same three scenarios as we did for the matrix multiplication

(EigenFunc, EigenC, and EigenAcc), and focused on performance and

energy efficiency. The results are summarized in Table 3. They

show that EigenAcc provides a latency improvement of 9.2% when

compared to the original (EigenFunc). Even though EigenC achieves

a greater latency improvement of 43%, the normalized energy effi-

ciency of EigenAcc is 61% better than the one for EigenC and 180%

better than EigenFunc. The slowdown with EigenAcc can be ex-

plained by the fact that the EKF C++ application uses only small

matrices, with the largest size being 4×4. According to our analysis

in Fig. 4, we expected EigenC to provide a lower latency. However,

as Fig. 6 suggested, EigenAcc was expected to provide better energy

efficiency even for small-size matrices. Hence, the case study of

EKF C++ application confirms our prior analysis reported in Fig. 4,

while the better energy efficiency of EigenAcc compared to EigenC,

even for small-size matrices, confirms the prior analysis reported

in Fig. 6.

5 FUTUREWORK

In Section 4 we showed that EigenEdge can potentially provide

significant gains in performance and energy-efficiency for the case

of multiplying large-size matrices. In our case study, the EKF C++

application uses relatively small matrices, and did not maximize the

potential of the EigenEdge approach. Applications that use larger-

size matrices, such as ones for graphics and computer vision, may

be a better fit for EigenEdge.

EigenEdge was built to be scalable and adaptable for future needs.

The operators described in Section 3 can call any accelerator that is

present in the SoC, such as ones for Fast Fourier Transform (FFT),

Discrete Wavelet Transform (DWT), Singular Value Decomposi-

tion (SVD), 2D-Convolution, and more. The accelerators can be

integrated into the SoC by using ESP, along with Eigen software ap-

plications that utilize these kernels. We expect to extend EigenEdge

with more operators that invoke hardware accelerators and replace

the built-in CPU-centric operators from Eigen.

Furthermore, complex tasks can be split into multiple kernels,

and run in parallel on multiple specialized accelerators by using a

single operator or method. This will yield further performance and

energy efficiency gains for a variety of computationally-intensive

and power-hungry applications, enabling their execution in real-

time on lightweight edge devices.

6 CONCLUSION

We presented EigenEdge, a software approach that enables hard-

ware/software co-design to balance low-latency requirements and

low-power constraints for real-time computation at the edge. The

seamless development flow of EigenEdge combines a simple API, a

software architecture, and the access to efficient hardware accel-

erators in heterogeneous SoCs. EigenEdge keeps the system-level

integration hidden from the application level, which maintains

abstraction, and supports the promotion of further research and

development of applications for embedded systems.
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