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Abstract

Analyzing “large p small n” data is becoming increasingly paramount in a wide range of appli-
cation fields. As a projection pursuit index, the Penalized Discriminant Analysis (PDA) index,
built upon the Linear Discriminant Analysis (LDA) index, is devised in Lee and Cook (2010) to
classify high-dimensional data with promising results. Yet, there is little information available
about its performance compared with the popular Support Vector Machine (SVM). This paper
conducts extensive numerical studies to compare the performance of the PDA index with the
LDA index and SVM, demonstrating that the PDA index is robust to outliers and able to han-
dle high-dimensional datasets with extremely small sample sizes, few important variables, and
multiple classes. Analyses of several motivating real-world datasets reveal the practical advan-
tages and limitations of individual methods, suggesting that the PDA index provides a useful
alternative tool for classifying complex high-dimensional data. These new insights, along with
the hands-on implementation of the PDA index functions in the R package classPP, facilitate
statisticians and data scientists to make effective use of both sets of classification tools.
Keywords large p small n; linear discriminant analysis; penalized discriminant analysis;
supervised classification; SVM

1 Introduction
The projection pursuit is a statistical method, proposed by Kruskal (1969) and Friedman and
Tukey (1974), for uncovering “interesting” structures from the original multivariate dataset. It
is operated by pursuing an optimal projection of original data onto a low-dimensional space to
reveal interesting structural features, such as clusters, inhomogeneity and subgroup information.
The desired projection direction is found by numerically maximizing a “projection pursuit index”.
Yet, relatively few works on performing projection pursuit in high dimensions are available in
the statistics literature. Refer to Zhang et al. (2022) and references therein for a recent review.

This paper mainly investigates a projection pursuit index extended from the linear discrimi-
nant analysis (LDA) for multi-class classification. LDA is a classical statistical method, aimed
at developing a low-dimensional linear representation of multivariate data that separates the
classes as much as possible. In practice, consider the dataset of p-dimensional vectors,

Xij , i = 1, . . . , g, j = 1, . . . , ni, (1)

of the jth observation in the labeled class πi , where g is the total number of labeled classes,
and ni is the number of observations in class πi . Then n = ∑g

i=1 ni gives the total number of
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observations. The between-class sums of squares and within-class sums of squares of the data
vectors are captured by

B = ∑g

i=1 ni(Xi� − X��)(Xi� − X��)T ,

W = ∑g

i=1

∑ni

j=1(Xij − Xi�)(Xij − Xi�)T ,

respectively, where Xi� = ∑ni

j=1 Xij /ni is the ith group mean and X�� = ∑g

i=1

∑ni

j=1 Xij /n is the
total mean. The LDA projection of the original dataset (1) onto a k-dimensional space seeks the
optimal matrix A = (a1, . . . , ak) ∈ R

p×k, consisting of orthonormal column vectors a1, . . . , ak,
to maximize the projection pursuit index (Lee et al. (2005)),

ILDA(A) =
{

1 − |AT WA|
|AT (W+B)A| , for |AT (W + B)A| �= 0,

0, for |AT (W + B)A| = 0,
(2)

where |A| denotes the determinant of a matrix A. Particularly, the one-dimensional LDA pro-
jection direction is equivalent to solving the optimization problem:

max
a∈Rp

aT �Ba

aT �Wa
, (3)

where �B is the between-class covariance matrix and �W is the within-class covariance matrix.
This linear projection provides the basis for a classification rule, and can be modified to solve

the supervised classification problem of data consisting of p features measured on n observations,
each of which belongs to one of g classes. Nevertheless, the high-dimensional setting (p > n),
also known as the “large p small n”, causes the data piling issue in LDA. E.g., aT �Wa in (3)
tends to be very small for some a when the sample size is much smaller than the dimension.
One remedy is the Penalized Discriminant Analysis (PDA, Hastie et al. (1994)), which derives
the optimal projection a by solving the maximization problem:

max
a∈Rp

aT �Ba

aT (�W + λ�)a
,

where �W is regularized with a penalty matrix � and a regularization parameter λ.
Motivated from the PDA, Lee and Cook (2010) formulated a new projection pursuit index,

called Penalized Discriminant Analysis index, to resolve the data piling issue. Their approach
starts with the matrix �̃ = (1 − λ)�̂ + λ · diag(�̂), where 0 � λ < 1 and �̂ denotes the sample
covariance matrix of the data vectors. Using the standardized data vectors

Xs
ij = {diag(�̂)}−1/2(Xij − X��),

reduces the matrix �̃ to the matrix R̃ = (1 − λ)R̂ + λIp, where R̂ is the sample correlation
matrix of the data vectors, and Ip is a p × p identity matrix. Similarly, the between-class and
within-class sums of squares of standardized data vectors are

Bs = ∑g

i=1 ni(X
s

i� − X
s

��)(X
s

i� − X
s

��)
T ,

Ws = ∑g

i=1

∑ni

j=1(X
s
ij − X

s

i�)(X
s
ij − X

s

i�)
T ,

respectively, with Bs +Ws = nR̂, where X
s

i� is the i-th group mean of the standardized data and
X

s

�� is the total mean of the standardized data, namely 0. Consequently, the PDA index is then
defined as

IPDA(A, λ) = 1 − |AT {(1 − λ)Ws + nλIp}A|
|AT {(1 − λ)(Bs + Ws) + nλIp}A| , (4)
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which reduces to the LDA index (2) when λ = 0. Likewise, the PDA orthogonal projection onto
a k-dimensional space is numerically obtained by maximizing IPDA(A, λ) over A = (a1, . . . , ak)

with orthonormal columns.
The PDA index serves as an alternative way in classifying large p small n data, by incor-

porating regularization into the optimization algorithm to avoid the data piling issue. Besides
projection pursuit indexes, classical multivariate analysis methods could solve classification prob-
lems and typically rely on taking the inverse of the sample covariance matrix �̂; but usually
fail in the setting p > n, because �̂ is not full rank, and is not invertible. The Support Vec-
tor Machine (SVM), proposed by Cortes and Vapnik (1995) as a supervised machine learning
technique for classification, aims to find a hyperplane that maximizes the separation of the data
points to their potential classes in the feature space; the SVM algorithm can be implemented
to linearly separable data points with a linear kernel or applied to linearly non-separable data
with the Radial Basis Function (RBF) kernel. Refer to Marron (2015) for a new view of the
SVM’s performance in the “large p small n” context. Regardless of the kernel functions, Marron
(2015) indicated that SVM will lose generalizability in the high-dimensional setting due to the
data piling problem.

This paper contributes to assessing the performance of the PDA index under the “large p

small n” setup and, for the first time, comparing its classification outcomes with the LDA index
and SVM simultaneously. These three methods are trained on both simulated datasets and a
wide range of real-world datasets to reveal the advantages and limitations of each method.
Another main contribution of this paper is to illustrate the hands-on R implementation of
the PDA index, together with some helper functions to facilitate more data analysts, machine
learning engineers, and biologists to make effective use of the PDA index. Section 2 presents
how to implement LDA and PDA indexes in R and some useful helper methods. Section 3
investigates PDA performances in simulation studies by comparing with the LDA index and
SVM. Section 4 illustrates the performance of LDA, PDA, and SVM on real-world datasets.
Section 5 concludes as well as makes recommendations regarding the suitable datasets and
scenarios to apply supervised classification tools.

2 Description of PDA Index
The LDA and PDA indexes can be implemented in the package classPP in Lee and Cook
(2010). PPindex.class() calculates the projection pursuit index for the given data and the
class information. The argument PPmethod supplies the choice of the projection pursuit index,
by taking either “LDA” or “PDA” as the input. If “PDA” is given as the input, a hyperparameter
input is also required, and then the argument lambda should not be set as NULL. The input data
must be a numeric data matrix without class information, while the input class could be a
character vector or a numeric vector.

library(classPP) #load the package
str(PPindex.class)

function (PPmethod, data, class, weight = TRUE, r = NULL, lambda = NULL,
...)

PP.optimize.anneal() applies the “simulated annealing optimization algorithm for pro-
jection pursuit” (SAPP) to find the optimal projection that maximizes the projection pursuit
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index for the given dataset. This R function provides the argument projdim to change the
dimension of projection users want to find. To implement SAPP, some default optimization pa-
rameters are given in the function, but with more flexibility, users are allowed to specify cooling,
temp, and energy. They may use temp to determine the convergence speed or change cooling
to control the number of iterations required to converge, which may decide whether the final
result is the local maximum or global maximum. This function eventually returns two values,
index.best and proj.best. Here, index.best is the projection pursuit index and could also be
derived from PPindex.class(), while proj.best is the optimal projection from p dimensions
to projdim dimensions. Other optimization functions, including PP.optimize.random() and
PP.optimize.Huber(), are also provided in the package for users to choose from.

str(PP.optimize.anneal)

function (PPmethod, projdim, data, class, std = TRUE, cooling = 0.999,
temp = 1, energy = 0.01, r = NULL, lambda = NULL, weight = TRUE, ...)

PP.optimize.plot() returns an optimal projection plot by taking in PP.opt, the opti-
mal projection retrieved from PP.optimize.anneal() or any other optimization functions. The
function is capable of plotting projections in one dimension or two dimensions.

str(PP.optimize.plot)

function (PP.opt, data, class, std = TRUE)

The code below provides an example of using PP.optimize.plot() and PP.optimize.an-
neal() in the package classPP. It first generates a toy dataset with 40 samples and 40 dimensions
in 2 classes. Data points in one of the dimensions have differing means in each class, while data
in other dimensions are normally distributed, unable to separate data into groups. The code
computes the LDA and PDA (λ = 0.7) projection onto one dimension and two dimensions, with
corresponding plots for visualization in Figure 1.

set.seed(123) # set a seed for reproducibility
n = 40 #number of observations
p = 40 #number of dimensions
#generate a simulated dataset
df = scale(as.data.frame(cbind(

rbind(matrix(rnorm(n/2,2.2),,1),
matrix(rnorm(n/2, -2.2),,1)),

matrix(rnorm(n*(p-1)),,p-1)))) #data matrix
class = c(rep(1, n/2), rep(2, n/2)) #class vector
#optimal projection plots
par(mfrow = c(2, 2))
PP.opt = PP.optimize.anneal(‘‘LDA’’,1,df,class)
PP.optimize.plot(PP.opt, df, class)
title(‘‘LDA’’)
PP.opt = PP.optimize.anneal(‘‘LDA’’,2,df,class)
PP.optimize.plot(PP.opt, df, class)
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title(‘‘LDA’’)
PP.opt = PP.optimize.anneal(‘‘PDA’’,1,df,class, lambda = 0.7)
PP.optimize.plot(PP.opt, df, class)
title(‘‘PDA’’)
PP.opt = PP.optimize.anneal(‘‘PDA’’,2,df,class, lambda = 0.7)
PP.optimize.plot(PP.opt, df, class)
title(‘‘PDA’’)

Figure 1: Projection plots generated by PP.optimize.plot(). The top left is LDA projection
into one dimension and the top right is LDA projection into two dimensions. For PDA with
a hyperparameter λ = 0.7, the bottom left shows data projected into one dimension and the
bottom right shows data projected into two dimensions.

Even though the package classPP is a powerful tool that is easy to implement, it lacks sev-
eral significant features when it comes to practice for people unfamiliar with projection pursuit
methods. First of all, to validate classification accuracy, people prefer to split data into train-
ing and test sets, and they might need to visualize the two different projections on the same
plot for comparison. However, the plotting method in the package classPP fails to plot both
datasets simultaneously. Second, the absence of a method performance scale in classPP makes it
harder for users to evaluate performance for the task of supervised classification. A more precise
and quantitative evaluation like an accuracy score might be necessary other than the visual
inspection. Lastly, users who are not familiar with the projection pursuit index might need a
data-driven approach for selecting the hyperparameter in the PDA index. To learn the utility of
this method, a helper function for parameter selection should be provided. The next part focuses
on demonstrating the code and examples for the significant features that are missing from the
package classPP.

Since PP.optimize.plot() fails to plot both training and test sets simultaneously, a helper
function plot_test_train() is provided to draw projected training and test data on the same
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plot for evaluation. In the output plot, the training data are plotted as numerical labels in black
while the test data are plotted as geometric shapes in dark grey. The first two arguments of
the function are the test and training data after projection, and the third and fourth arguments
are classes of the test and training data. Users need to input a vector of all distinct classes
as cls_tot. Figure 2 demonstrates an example of the projection of the toy dataset mentioned
earlier after the train-test-split.

#proj.data.test: test dataset after projection
#proj.data.train: train dataset after projection
#cls_test: vector of classes of test dataset
#cls_train: vector of classes of train dataset
#cls_tot: vector of distinct classes in the entire dataset
plot_test_train = function(proj.data.test, proj.data.train, cls_test,

cls_train, cls_tot){
lim = c(min(min(proj.data.test), min(proj.data.train)),

max(max(proj.data.test), max(proj.data.train)))

plot(x=NA, y=NA, xlim = lim, ylim= lim, xlab=’’’’, ylab=‘‘’’, main=‘‘’’,
axes=FALSE, frame.plot=TRUE)

for (i in 1:length(cls_tot)){
#plot projected test data
points(proj.data.test[,1][cls_test == cls_tot[i]],

proj.data.test[,2][cls_test == cls_tot[i]],
pch = i, col = ‘‘darkgrey’’)

}
#plot projected train data
text(proj.data.train[,1], proj.data.train[,2], as.numeric(factor(cls_train)),

cex=1)
}

#split the dataset into test and train dataset
ind = sample(1:n, n/4, replace=FALSE)
test = df[ind,]
train = df[-ind,]
cls_test = class[ind]
cls_train = class[-ind]

PP.opt = PP.optimize.anneal(‘‘PDA’’, 2, train, cls_train, lambda = 0.6)
proj.data.test = as.matrix(test)%*%PP.opt$proj.best
proj.data.train = as.matrix(train)%*%PP.opt$proj.best
plot_test_train(proj.data.test, proj.data.train, cls_test, cls_train,

levels(as.factor(class)))

This paper adopts an accuracy score to quantitatively evaluate the percentage of data points
correctly allocated to previously defined groups. The R function acc() takes in the optimal
projection, training and test datasets, and class labels of training and test datasets, with a
return of the accuracy score.
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Figure 2: The projected training and test dataset from the toy data using plot_test_train().
The black digits represent the training data, and the grey symbols represent the test data.

#a: the optimal projection (PP.opt$proj.best)
#train: traversed train dataset
#test: traversed test dataset
#cls_test: vector of classes of test dataset
#cls_train: vector of classes of train dataset
acc = function(a, train, test, cls_train, cls_test){

#get the average of classes in the training dataset
cls_mean = data.frame(rep(NA, nrow(train)))
for (i in unique(cls_train))

cls_mean = cbind(cls_mean, rowMeans(train[, cls_train==i]))
cls_mean = cls_mean[,-1] #remove the first column of NA

rst = c() #storing predicted class of each test data point
for (i in 1:ncol(test)){ #iterate through each test data point

temp=c() #storing the distance of one data point to each class
for (j in 1:ncol(cls_mean)){ #iterate through each class

x = 0 #storing the distance of one data point to one class
for (k in 1:ncol(a)) #iterate through the projected dimension

x=x+(a[,k]%*%(test[,i]-cls_mean[,j]))ˆ2
temp=c(temp, x)

}
rst = c(rst, unique(cls_train)[which.min(temp)])

}
return (sum(rst==cls_test)/length(cls_test))

}

acc(PP.opt$proj.best, t(train), t(test), cls_train, cls_test)

[1] 0.9

As the PDA index requires a hyperparameter λ, Lee and Cook (2010) suggests an empirical
way of selecting an appropriate hyperparameter for a certain dataset. Let WPP be the within-
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class sum of squares of the optimal projected data using the PDA index with λ, and define S(λ)

as follows:
S(λ) = tr(WPP)/(nk)

where n is the total number of observations and k is the projection dimension. The optimal
hyperparameter is chosen to satisfy S(λ) = 1, when there is a balance in the within-class sum
of squares between the training dataset and the test dataset. In the code below, the R function
S() calculates a list of S(λ) for the input λ vector and returns a plot S(λ) vs. λ helping users
select the optimal λ. Figure 3 shows a PDA hyperparameter selection plot for the Leukemia
dataset, gathered by Golub et al. (1999), containing 3571 dimensions and 72 observations of 3
different classes. Each point symbolizes S(λ) for the corresponding λ, and the red line is a fitted
smoothing spline of all S(λ), allowing users to better visualize the overall trend. The intersection
between the red line and the blue line gives the optimal hyperparameter value, which in this
case is λ = 0.95.

library(DiscriMiner) #import function withinSS()
#data: the original dataset
#class: vector of classes of the dataset
#method: ’’PDA’’ or ’’LDA’’
#dim: projection dimensions
#hyperparameter: vector of multiple hyperparameters
S = function(data, class, method, dim, hyper){

S = c()
for (i in hyper){

PP.opt = PP.optimize.anneal(method,dim,data,class,lambda = i)
W = withinSS(data%*%PP.opt[[’’proj.best’’]], class) #calculate within-class

sum of squares
S = c(S, sum(diag(W))/dim/nrow(data))

}

smoothingSpline = smooth.spline(hyper, S, spar=0.8)
plot(hyper, S)
lines(smoothingSpline, col = ’’red’’)
abline(h=1, col=’’blue’’)

}

3 Simulation Evaluation
To study the performance of the PDA index, we conducted simulation experiments under four
different scenarios, where all datasets were randomly generated under certain rules and standard-
ized. To prevent contingency and ensure the reliability and robustness of results, we repeated
the data generation process for 20 times under the same condition and trained as well as tested
all methods repetitively 20 times, where the mean of classification accuracy is computed for
performance evaluation. The PDA index is compared with the LDA index and SVM (using both
linear kernel and RBF kernel). The PDA indexes with λ ∈ {0.4, 0.6, 0.8} are experimented with
to examine the results for different choices of λ. For the SVM, hyperparameters are selected by
10-fold cross-validation.
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Figure 3: S(λ) vs. λ for the Leukemia dataset. The optimal hyperparameter value is selected to
be λ = 0.95.

3.1 Percentage of Important Variables
The important variable is defined as any variable able to separate different classes, and con-
versely, the unimportant variable is any variable that failed to distinguish between class infor-
mation. All simulated datasets contain 40 samples with 2 classes in p = 500 dimensions, and
thus each class has 20 data points. Each data point is generated from standard Gaussian dis-
tributions, except that the means of the two classes for the important variables are respectively
shifted to 2.2 and −2.2. We simulated 21 sets of data with different percentages of important
variables, where 21 different percentages are generated from 3% to 5% with a step of 0.1%.

A plot of how the accuracy changes with different percentages of important variables is
shown in Figure 4. The LDA index exhibits the worst performance among all methods, and its
accuracy score never exceeds 85%. For both the LDA index and SVM (RBF), their accuracy
scores are significantly lower if the proportion of important variables is lower than 3.3%, prov-
ing that they are not suitable to classify datasets containing little discrimination information.
Nevertheless, there is an increasing trend in accuracy scores when the percentage of important
variables increases from 3.0% to 3.5% for both methods. This can be explained by more class
information received by the model with an increasing percentage of important variables. For
large percentages of important variables, the SVM (RBF) outperforms the LDA index but is
less stable compared with the PDA index and SVM (linear). The PDA indexes and SVM (linear)
hardly misclassify any sample, and they are not very sensitive to the percentage of important
variables.

3.2 Ratio of Sample Sizes to Dimensions
The ratio of sample sizes to dimensions is defined as n/p. All simulated datasets here contain
2 different classes in 500 dimensions. The number of important variables is always 10, and
therefore, the amount of information used for classification is kept the same for different datasets.
In this case, with dimensionality keeping the same, the number of observations in each class varies
according to the ratio between sample sizes and dimensions. The number of observations in each
class is chosen between 5 and 50 with a step of 3.
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Figure 4: A line plot of the accuracy score of LDA indexes, PDA indexes with λ ∈ {0.4, 0.6, 0.8},
SVM with linear kernel and SVM with RBF kernel versus the percentage of important variables.
Different colors and linetypes in the graph correspond to methods.

When the ratio is more than 15%, all models except LDA achieved an accuracy score of
over 95% as shown in Figure 5, proving that more observations provide more information to
the classification methods. As the ratio decreases, all models exhibit a decline in classification
performance. This might be explained by “the curse of dimensionality” where more data features
lead to a sparsity problem as the distance between data points becomes larger. Despite the
low ratio complicating the task of allocating new samples, the PDA indexes manage to obtain
accuracy no lower than 70%, demonstrating its ability to handle “large p small n” data. Even
though SVM (linear) has stable performance with high accuracy when the ratio is over 5%, its
performance plunges to only 20% when there is an extreme disparity between sample size and
dimensionality. SVM (RBF) has unstable performance with small ratios, and in this scenario
unable to surpass the performance of SVM (linear). For the LDA index, its accuracy score is
vibrating between 55% and 80%, and there is no indication that its disappointing performance
is affected by different ratios.

3.3 Number of Classes
The number of classes for simulation ranges from 2 to 10. For the important variables, the mean
of the first labeled class is 4, and the mean increase by 4 for the second labeled class, and the
pattern continues for the rest of the classes. All simulated datasets contain 20 observations for
each class in 500 dimensions, including 10 important variables.
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Figure 5: A line plot of the accuracy score of LDA indexes, PDA indexes with λ ∈ {0.4, 0.6, 0.8},
SVM with linear kernel and SVM with RBF kernel versus the ratio (n/p) of the total number of
observations to dimensions. Different colors and line types in the graph correspond to methods.

Different performance metrics are evaluated other than the accuracy score, since there is an
inherent ordering between classes. According to Gaudette and Japkowicz (2009), Mean Squared
Error (MSE) and Mean Absolute Error (MAE) are the best metrics for ordinal classification
so they are also measured in this case. As the number of classes increases for all methods,
classification accuracy diminishes in Figure 6, and both MSE and MAE increase in Figure 7 and
Figure 8, probably due to the great difficulty of maximizing differences among multiple classes.
When there are more than 4 different classes, no method is able to achieve an accuracy score
higher than 50%. Nevertheless, PDA indexes rank at the top among all methods when there are
more than 8 classes with the highest accuracy and smallest MSE and MAE. For fewer class labels,
PDA indexes and SVM (linear) obtain similar performance. The LDA index underperforms in
comparison to PDA indexes. The SVM (RBF) has the lowest accuracy score and highest MSE
and MAE among all methods when allocating more than 2 class labels. In conclusion, no method
is able to address the challenge of multi-class classification with high accuracy or small error,
but the PDA index generally has the best performance among all methods.

3.4 Effect of Outliers
Including outliers in the simulated datasets could better resemble datasets collected in practical
applications. Under this scenario, two types of datasets are simulated according to whether
outliers are added to all unimportant variables or outliers are only added to important variables.
For both cases, outliers are generated from a normal distribution with a mean of 0 and a



Classifying high dimension low sample size data 321

Figure 6: A line plot of the accuracy score of LDA indexes, PDA indexes with λ ∈ {0.4, 0.6, 0.8},
SVM with linear kernel and SVM with RBF kernel versus the number of classes. Different colors
and linetypes in the graph correspond to methods.

standard deviation of 15, and the number of outliers in each variable ranges from 0 to 16. Again,
all simulated datasets contain 20 observations for two classes in 500 dimensions, including 10
important variables. The means of the two classes for the important variables are respectively
shifted to 2.2 and −2.2.

When the outliers are added to only important variables, there is no distinct advantage
observed in any classification method for a large number of outliers. As shown in the top panel
of Figure 9, for more than two outliers in each variable, the accuracy scores for all models
are mostly lower than 60% and there is no significant difference among all models. Due to the
small sample size, a small increase in the number of outliers might substantially contaminate
the datasets, and the added noise makes it harder for the classification task. Even though all
methods are sensitive to the effect of many outliers, the PDA index and SVM (linear) are able
to identify one or two outliers from important variables.

When the outliers are added to unimportant variables as shown in the bottom panel of
Figure 9, the performance of the PDA indexes is hardly influenced, maintaining an accuracy
score around 95%. This indicates that the PDA index is able to identify the important variables
in the datasets and robust to any outliers added to unimportant variables. Similarly, SVM
(linear) has an accuracy slightly lower than the PDA index but generally greater than 80%. In
contrast, the accuracy lines for the LDA index and SVM (RBF) are unstable and there are several
sudden drops and rises in performance as the number of outliers added to unimportant variables
increases, especially when there are more than 5 outliers. This observation signifies that the
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Figure 7: A line plot of MSE of LDA indexes, PDA indexes with λ ∈ {0.4, 0.6, 0.8}, SVM
with linear kernel and SVM with RBF kernel versus the number of classes. Different colors and
linetypes in the graph correspond to methods.

outliers added to unimportant variables sometimes confuse the LDA and SVM (RBF) algorithm,
leading to an undesired performance. Nevertheless, the LDA and SVM (RBF) index sometimes
are able to identify the outliers in unimportant variables and instead use the important variables
for classification when the number of outliers is around 12, or 15, reaching an accuracy score as
high as 80%.

4 Real-World Data Analysis
The simulated dataset might not be able to capture the complexity or characteristics of real-life
data, and thus it is paramount to explore the performances of PDA indexes on real-world data
as well to draw meaningful insights. The PDA index is compared with the LDA index and SVM
in this section. All datasets are standardized before training. For the SVM, hyperparameters are
selected by 10-fold cross-validation.

4.1 Microarray Data
Not all real-world data are high-dimensional with small sample sizes, but microarray data gen-
erally satisfies this requirement and is one of the most important applications of the “large p

small n” problem. Each patient sample is usually analyzed into a large list of gene expressions
but patient samples for each class are hard to collect. We investigated 7 different microarray
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Figure 8: A line plot of MAE of LDA indexes, PDA indexes with λ ∈ {0.4, 0.6, 0.8}, SVM
with linear kernel and SVM with RBF kernel versus the number of classes. Different colors and
linetypes in the graph correspond to methods.

datasets with the data collection process for each dataset listed below. A summary of the number
of samples, dimensions, and classes of microarray datasets is displayed in Table 1.
(i) Leukemia: Yeoh et al. (2002) acquired the diagnostic bone marrow samples from 248 pedi-

atric acute lymphoblastic leukemia (ALL) patients who were determined to have one and
only one of the six known pediatric ALL prognostic subtypes, which include T-cell lineage
ALL (T-ALL), E2A-PBX1, TEL-AML1, MLL rearrangements, BCR-ABL, and hyperdiploid
karyotypes with more than 50 chromosomes (HK50). The 248 patients included 43 T-ALL,
27 E2A-PBX1, 79 TEL-AML1, 15 BCR-ABL, 20 MLL, and 64 HK50 patients.

(ii) Breast cancer: Sørlie et al. (2001) examined 85 experimental samples gathered from cDNA
microarrays to identify breast carcinoma. The data consist of 456 cDNA clones from 427
unique genes for 78 carcinomas, 3 benign tumors, and 4 normal tissues.

(iii) Prostate cancer: Singh et al. (2002) have examined 235 radical prostatectomy specimens
from surgery patients between 1995 and 1997. The authors used oligonucleotide microar-
rays containing probes for approximately 12, 600 genes and expressed sequence tags. They
have reported that 102 of the radical prostatectomy specimens, including 52 prostate tumor
samples and 50 non-tumor prostate samples.

(iv) Crohn’s disease: According to Burczynski et al. (2006), Crohn’s Disease and Ulcerative Col-
itis patients were classified according to transcriptional profiles in peripheral blood mononu-
clear cells from 42 healthy individuals, 59 Crohn’s Disease patients, and 26 Ulcerative Colitis
patients by hybridization to microarrays interrogating 22283 sequences.



324 Wu, Z. and Zhang, C.

Figure 9: A line plot of the accuracy score of LDA indexes, PDA indexes with λ ∈ {0.4, 0.6, 0.8},
SVM with linear kernel and SVM with RBF kernel versus the number of outliers added to each
variable. Different colors and linetypes in the graph correspond to methods. Top: All outliers are
added to important variables. Bottom: All outliers are added to all variables except important
variables.

(v) Sarcoma: Soft tissue sarcomas were studied by Nakayama et al. (2007) genetically, using
105 samples from 10 types of soft tissue tumors containing 22283 probe sets, consisting
of 16 synovial sarcoma, 19 myxoid/round cell liposarcoma, 3 lipoma, 3 well-differentiated
liposarcoma, 15 dedifferentiated liposarcoma, 15 myxofibrosarcoma, 6 leiomyosarcoma, 3
MPNST, 4 fibrosarcoma and 21 MFH.

(vi) Central nervous system disorder: Pomeroy et al. (2002) predicted central nervous system
embryonal tumor outcome based on gene expression with 60 samples, containing 39 medul-
loblastoma survivors and 21 treatment failures.

(vii) Lung cancer: Malignant pleural mesothelioma (MPM)and adenocarcinoma (ADCA) of the
lung were distinguished by Gordon et al. (2002) based on the expression levels of genes from
181 tissue samples (31 MPM and 150 ADCA).
Figure 10 illustrates the projection pursuits of LDA and PDA for seven microarray datasets.

Since the SVM is not devised from the projection pursuit index, its performance cannot be
examined on the projected data, but Table 2 includes the accuracy score for both projection
pursuit indexes and SVM with different kernel functions.

LDA projections of breast cancer, prostate cancer, Crohn’s disease, and central nervous
system disorder contain data points from the same class piling up in the same projection space.
For breast cancer in Figure 10(b), LDA seems to get confused with classes 2, 4, and 5, resulting
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Table 1: Real-life microarray datasets of different diseases.

Disease # Samples # Dimensions # Classes
Leukemia 248 12625 6
Breast cancer 85 456 5
Prostate cancer 102 12600 2
Crohn’s disease 127 22283 3
Sarcoma 105 22283 10
Central nervous system disorder 60 7128 2
Lung cancer 181 12533 2

Table 2: The accuracy scores of 7 real-life microarray datasets of different diseases using LDA
indexes, PDA indexes with λ ∈ {0.4, 0.6, 0.8} and SVM.

Disease LDA
PDA

(λ = 0.4)
PDA

(λ = 0.6)
PDA

(λ = 0.8)
SVM

(linear)
SVM

(RBF)

Leukemia 60.3% 74.6% 76.2% 74.6% 98.4% 82.5%
Breast cancer 45.5% 77.3% 81.9% 72.7% 77.3% 81.8%
Prostate cancer 68.0% 98.0% 100.0% 96.0% 88.1% 88.1%
Crohn’s disease 71.0% 90.3% 77.5% 87.1% 84.4% 65.6%
Sarcoma 14.3% 42.9% 32.1% 28.6% 59.2% 59.2%
Lung cancer 46.7% 60.0% 53.4% 66.7% 100% 97.8%
Central nervous system disorder 100.0% 100.0% 100.0% 100.0% 66.7% 66.7%

in a low accuracy score of 45.5%. In contrast, the PDA index is able to project the 3 classes in
different data spaces, achieving accuracy as high as 81.9%, similar to SVM. For prostate cancer
in Figure 10(c), there is a large between-class variance in the training set of the LDA index,
but test samples from different class labels seem to aggregate together. PDA accuracy scores
of prostate cancer under different hyperparameters are between 92.0% and 100.0%. However,
the LDA accuracy score is approximately 30% lower than PDA, and SVM is around 10% lower
than PDA, even though this is a binary classification task. Similarly for Crohn’s disease, the
difference in accuracy scores between PDA indexes and the LDA index could be as high as 20.0%
as shown in Table 2. For SVM (RBF), its accuracy score is even more than 5% lower than the
LDA index. More specifically, as the value of the hyperparameter increases in the PDA method,
data points are projected in a more scattered pattern in Figure 10(d), corresponding to the
larger penalty added to the method. For central nervous system disorder, apparently, no sample
is misclassified for projection pursuit indexes. In Figure 10(g), the PDA indexes seem to project
test data points with lower within-class variance than the LDA index, informing that PDA
indexes are more robust regardless of the same accuracy metrics. In contrast, SVM achieved
an accuracy score of only 66.7%, indicating that projection pursuit indexes are more suitable
for the classification task in this case. In a nutshell, when handling the 4 microarray datasets
mentioned above, the PDA index displays better performance than SVM and the LDA index,
where the latter suffers from a severe data piling issue.

To project leukemia, sarcoma, and lung cancer, the PDA indexes fail to maintain in the
first place among all methods but still achieve decent performance. In Figure 10(a), employing
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Figure 10: Projection pursuit on real-life microarray datasets of different diseases using different
LDA indexes and PDA indexes with λ ∈ {0.4, 0.6, 0.8}. Numbers in the plot represent the
training set classes, and symbols in the plot represent the test set classes. Plot (a): Leukemia.
Plot (b): Breast cancer. Plot (c): Prostate cancer. Plot (d): Crohn’s disease. Plot (e): Sarcoma.
Plot (f): Lung cancer. Plot (g): Central nervous system disorder.

different hyperparameters of PDA indexes in the Leukemia dataset has little impact on both its
projection pursuits and the performances. Even though the accuracy score of SVM (linear) is
more than 20% higher than the PDA indexes, PDA accuracy scores are more than 10% higher
than the LDA index. The task of classifying 6 different leukemia class labels is challenging, and
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achieving an accuracy of around 75% is a satisfactory performance for the PDA indexes. For
sarcoma, both projection pursuit indexes struggle to classify all categories except categories 9
and 8 as shown in Figure 10(e). The LDA prediction accuracy is only 14.3%, namely almost all
samples in the test set are misclassified, while PDA obtains a score around 30% higher than the
LDA index in Table 2. The accuracy scores of SVM are slightly lower than 60% in this case. A
large number of classes might justify the poor performance of three methods, conforming to the
simulation result in Section 3.3. To predict lung cancer, the LDA index fails to reach an accuracy
score above 50.0% while PDA accuracy is only around 60.0%, even though there are only two
classes in total. In Figure 10(f), both methods manage to position training data in two different
clusters for different classes, but test data points from different classes mix with each other. In
contrast, SVM has almost perfect performance, implying that this method is more suitable for
classifying lung cancer than projection pursuit indexes.

For the LDA index, there is a smaller within-class variance in the training set than that
in the PDA index, suggesting a tendency for overfitting in LDA. This might corroborate why
most of LDA accuracy scores are over 10% lower than PDA accuracy scores as found in Table 2.
Moreover, there are certain datasets that certain methods are more suitable to analyze. For
example, classifying central nervous system disorder is a simple task for projection pursuit
indexes but a hard problem for SVM. On the other hand, projection pursuit indexes find it
hard but SVM find it simple to classify leukemia and lung cancer datasets. There is no absolute
advantage of one method over the other method, but there are scenarios where some method
exhibit relative advantages. It is recommended that users mainly adopt the PDA index and may
sometimes refer to SVM in practice for comparison, but avoid using the LDA index under the
high-dimensional setting.

4.2 Music Data
One music dataset, similar to the one generated by Lee and Cook (2010), is explored, and in this
paper, we present an even more detailed analysis and different results from the original paper.
In particular, we examine two classification problems, classifying music genres and classifying
music artists. For music data collected, rock music tracks are created by Abba, the Beatles,
and the Eels, while classical music tracks are composed by Vivaldi, Mozart, and Beethoven.
With the python package Librosa, 81 different features are extracted, including mean, standard
deviation, kurtosis, skew, zero crossing rate, spectral centroids, spectral rolloff, mel-frequency
cepstral coefficients, chromogram, as well as spectral bandwidth. In total, there are 52 different
samples in 81 dimensions, as demonstrated in Table 3. We treat the music genre as the major
class, including rock and classical music, and meanwhile, we regard the music artist as the
minor class, including six different classes. Even though the ratio between the total number
of observations and dimensions in this scenario is not as extreme as the microarray data, it is
meaningful to compare the model performances in classifying the same data on different class
labels (major class labels and minor class labels).

All methods accomplish classifying genre labels with zero misclassification errors. Figure 11
illustrates the data piling problem in LDA projection pursuits, where training labels fall onto
two straight lines. This implies that the LDA index might not be as robust as PDA indexes due
to the low training set variance and high test set variance.

Classifying artists should be a difficult task as there are more class labels but fewer samples
in each class, where the methods not only need to decipher between rock music and classical music
but also be required to learn the differences in artist styles. Both SVM and PDA(λ ∈ {0.6, 0.8})
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Table 3: This table demonstrates the number of samples composed by different artists in different
genres.

Genre Artist # Samples

Classical music
Beethoven 7
Mozart 6
Vivaldi 10

Rock music
Abba 10
the Beatles 10
the Eels 9

Figure 11: Projection pursuit on the music data for genre classification between rock music and
classical music. The accuracy scores for LDA indexes and PDA indexes with λ ∈ {0.4, 0.6, 0.8}
are all 100%. Numbers in the plot represent the training set classes, and symbols in the plot
represent the test set classes.

achieve a perfect accuracy score of 100% while the LDA index and PDA(λ = 0.4) only give
an accuracy score of 69%. According to Figure 12, distinguishing between class 6 and class 3
puzzles the LDA index and PDA with λ = 0.4, as the projection of the two classes seems to be
mixed with each other. For PDA(λ ∈ {0.6, 0.8}), the within-class variance of the training set is
much larger than the other two methods, but it manages to differentiate all test classes. It seems
like giving more weight to the PDA penalty matrix improves model performance when there are
more class labels and fewer samples in each class.
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Figure 12: Projection pursuit of the music data for artist classification. The accuracy scores for
LDA indexes and PDA indexes with λ ∈ {0.4, 0.6, 0.8} are respectively 85%, 91%, 100%, 100%.
Numbers in the plot represent the training set classes, and symbols in the plot represent the
test set classes.

5 Discussion and Conclusion
In the statistics literature, relatively few works relevant to performing projection pursuit on
high-dimensional data are available. For classification of large p small n data, Lee and Cook
(2010) devised and implemented a new projection pursuit index, called the “PDA index”, with
promising results. Yet, there is little information available about its performance compared with
the popular Support Vector Machine (SVM) in supervised classification.

This paper focuses on, for the first time, comparing the performances of the LDA index,
PDA index, and SVM (using two different kernels). As projection pursuit indexes, the LDA index
and PDA index are mainly applied for classification tasks and dimension reduction and provide
a visually appealing way to project high-dimensional data. As a supervised learning method,
SVM has been popularly used for classification. From the simulated and empirical evaluations,
the PDA index is able to outperform the other two methods in most cases. In practice, it is
recommended to apply the PDA index under the “large p small n” setting because PDA could
better deal with the additional penalty matrix to avoid the data piling issue. Users may apply
the PDA index for visual inspection of projected data and meanwhile train the SVM for further
comparison. On the other hand, it is not ideal to apply the LDA index which suffers from the
data piling issue on high dimensional data.

According to the simulation results, the PDA index especially outperforms other methods
on datasets with certain characteristics. As long as there are some distinguishing features for
different class labels, the PDA index gives perfect performance regardless of the percentage of
important variables, meaning that adding or deleting more important variables from the data



330 Wu, Z. and Zhang, C.

does not affect the PDA performance. One potential application is gene expression analysis
where the number of genes for a given sample is substantial, but only few genes are contributing
to class prediction. For the different ratios n/p of the number of observations to dimensions,
the PDA index gives excellent and stable performance except when the ratio is below 3%. This
is particularly helpful for biologists to analyze microarray data where information about gene
expression profiles is massive but only limited samples are available. Even if the ratio is below
3%, the PDA index still has performance superior or comparable to the other two methods.
Furthermore, the PDA index is robust to outliers in the simulation studies, suggesting that
it avoids learning statistical noise by generalized training. Data scientists and statisticians are
encouraged to apply this method to their own datasets in practice without worrying about noisy
data. Even though the PDA index suffers from inaccuracy when dealing with a larger number of
classes, it still has better performance than the LDA index and SVM. To classify a large number
of class labels, users may apply the PDA index and some other classification algorithms to make
a comparison and choose the best method for their needs.

To explore the performances of projection pursuit indexes for classifying non-Gaussian data,
we randomly generate a bimodal dataset (n = 40, p = 500, k = 2), where unimportant variables
follow the mixture Gaussian distribution 0.5N (−2, 1/4) + 0.5N (2, 1/4), while the distribution
of class 1 important variables is 0.5N (0, 1/4) + 0.5N (4, 1/4) and the distribution of class 2
important variables is 0.5N (−4, 1/4)+0.5N (0, 1/4). Both SVM and PDA achieved an accuracy
score of more than 90%, but LDA only reached around 65% accuracy. From this exploratory
study, both SVM and PDA are preferable to LDA in handling bimodal data. For various other
types of non-Gaussian data points, a systematic comparison of different projection pursuit indices
could be an interesting future work.

Overall, it is recommended for researchers to apply the PDA index in classifying high-
dimensional datasets due to its robustness to outliers and high accuracy score under a wide
range of circumstances. It might not be the optimal method in all cases but can be implemented
as an alternative to the SVM. Both statisticians and other data-driven researchers may use the
package classPP and the helper methods introduced in this paper to draw provoking insights
from their own “large p small n” datasets.

Supplementary Material
All of our code is open source in the following GitHub repository https://github.com/zwu363/
projection-pursuit-index.
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