Reliable Constructions for the Key Generator of Code-based
Post-quantum Cryptosystems on FPGA

ALVARO CINTAS CANTO, Marymount University, USA
MEHRAN MOZAFFARI KERMANMNI, University of South Florida, USA
REZA A7ZARDERAKHSH, Florida Atlantic University, USA

Advances in quantum computing have urged the need for cryptographic algorithms that are low-power, low-
energy, and secure against attacks that can be potentially enabled. For this post-quantum age, different solu-
tions have been studied. Code-based cryptography is one feasible solution whose hardware architectures have
become the focus of research in the NIST standardization process and has been advanced to the final round
(to be concluded by 2022-2024). Nevertheless, although these constructions, e.g., McEliece and Niederreiter
public key cryptography, have strong error correction properties, previous studies have proved the vulnera-
bility of their hardware implementations against faults product of the environment and intentional faults, ie.,
differential fault analysis. It is previously shown that depending on the codes used, i.e., classical or reduced
(using either quasi-dyadic Goppa codes or quasi-cyclic alternant codes), flaws in error detection could be ob-
served. In this work, efficient fault detection constructions are proposed for the first time to account for such
shortcomings. Such schemes are based on regular parity, interleaved parity, and two different cyclic redun-
dancy checks (CRC), ie., CRC-2 and CRC-8. Without losing the generality, we experiment on the McEliece
variant, noting that the presented schemes can be used for other code-based cryptosystems. We perform er-
ror detection capability assessments and implementations on field-programmable gate array Kintex-7 device
xcTkT0HbveT6-1 to verify the practicality of the presented approaches. To demonstrate the appropriateness
for constrained embedded systems, the performance degradation and overheads of the presented schemes
are assessed.

CCS Concepts: - Hardware — Application specific integrated circuits; Hardware reliability screening;
Additional Key Words and Phrases: Code-based cryptography, low-power fault detection, McEliece cryptosys-
tem, post-quantum cry ptography

ACM Reference format:

Alvaro Cintas Canto, Mehran Mozaffari Kermani, and Reza Azarderakhsh. 2022. Reliable Constructions for
the Key Generator of Code-based Post-quantum Cryptosystems on FPGA. ACM 7. Emerg. Technol. Comput.

Syst. 19, 1, Article 5 (December 2022), 20 pages.
https://doiorg/10.1145/3544921

This work has been supported by the U5, National Science Foundation {(N5F) through Award No. 5aTC-1801488.
Authors’ addresses: A. Cintas Canto, Marymount University, 2807 North Glebe Road, Arlington, VA 22207; email:
acintas@marymount.edu; M. Mozaffan Kermani, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620
email: mehran?@usfedu; K. Azarderakhsh, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431; email:
razarderakhshi@fauedu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm ong,

& 2022 Association for Computing Machinery.

1550-4832/2022/12-ARTS $15.00

https//doiorg 10.1145/3544921

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

5

https://orcid.org/0000-0001-6800-3302
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868
https://doi.org/10.1145/3544921
mailto:permissions@acm.org
https://doi.org/10.1145/3544921

5.2 A. C. Canto et al.

1 INTRODUCTION

The potential of the advent of high-performance and low-power quantum computers has height-
ened the necessity for the development of public-key cryptosystems that are safe against faults that
such quantum-based computing systems may empower. In fact, the Shor’s quantum algorithm ef-
ficiently factors integers in polynomial time, allowing conventional cryptosystems to be broken.
In late 2017, the National Institute of Standards and Technology (NIST) launched a project
to standardize one or more quantum computer resistant public-key cryptographic algorithms [1],
which is currently in its final round since July 2020. It is expected that in 2024, the details for a
portfolio of standardized algorithms are revealed. Such standardized algorithms will be alternated
to the current classical public-key cryptosystems.

Different algorithms have been studied for this post-quantum apge, denoted as post-quantum
cryptography (PQC). Among the different types of post-quantum cryptographic algorithms,
code-based cryptography is a potential approach for resisting quantum computer-based attacks.
The McEliece cryptosystem is a type of code-based cryptography whose security is based on the
hardness of decoding a general linear code, possibly chosen in a specific family, e.g_, quasi-dyadic
Goppa codes and quasi-cyclic alternant codes. The McEliece cryptosystem security and implemen-
tation complexity have been scrutinized over years. As efficient examples, implementations of the
McEliece cryptoprocessor (MECS) have been proposed in References [2-8].

Classic McEliece has progressed to the current and last stage of the NIST PQC standardization
process. However, the McEliece post-quantum algorithm is still vulnerable to side-channel attacks
[9]. Additionally, fault analysis attacks are studied in Reference [10] to prove that the probability
when the McEliece construction does not repair an error is not negligible. Mounting attacks and
recovering the secret information through fault attacks in the McEliece cryptosystem are also
discussed on other works [11, 12]

The McEliece cryptosystem spends the majority of its runtime executing arithmetic operations
on finite fields to perform the key generation process. Among all the finite-field arithmetic, in-
version takes the longest time to compute. Many approaches have been studied to improve the
performance of inversions in GF(2™) with polynomial basis. The Fermat's little theorem (FLT)
and the Itoh-Tsujii algorithm (ITA) are two of the most used methods for computing inversions
in GF(2™). ITA was originally designed to be used with elements over GF(2™) using normal basis
[13]; nonetheless, recent works demonstrate that ITA can be utilized with different field element
representations [14, 15]. Such methods significantly utilize squarings and multiplications, involv-
ing hundreds of gates. Thus, these architectures are vulnerable to faults and implementing them
robust to natural and intended faults is a difficult challenge. These structures not only require little
overhead, but they also require sufficient error coverage.

1.1 Previous Works

For sensitive systems, degraded performance can lead to disastrous results; consequently, research
has explored strategies to reduce errors and provide higher reliability with acceptable overhead
[16-24]. In Reference [16], a fingerprint-based technique for detecting malicious programs in hard-
ware is presented. Fault diagnosis approaches based on multiterm signatures against false-alarms,
which may be unacceptable in critical intelligent infrastructures, are presented in Reference [17]. In
References [18, 19], fault detection mechanisms are presented for the lightweight cryptographic
block cipher QARMA and polynomial basis inversions, respectively. Moreover, error detection
constructions based on recomputation with encoded (shifted) operands and recomputation with
encoded (negated) operands for the Ring-LWE and for the ring polynomial multiplication and
modular reduction of Ring-LWE are implemented in References [20, 21], respectively. Last, error
detection schemes are proposed for secure cryptographic GCM structures in Reference [22], for

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:3

Table 1. Comparison with Other Works

| Work [Error Detection Scheme] Limatations |

Singular parity offers up to 50% error coverage and both singular and multi-parity can be
vulnerable to intelligent fault injections
HRecomputing can add large overhead, since the operations are being performed twice. This
[20]-[23] Recompating leads to an increased delay overhead of at least 100, unless pipelining is used, which would
increase the number of registers and consequently, the area overhead is increased
CRC is an efficient choice to protect the systems against intelligent fault injections and
[24]. adds acceptable overheads. These have been used for different applications in works [13],
[18], [19]| CRC-10, CRC-3, CRC-5| [19). and [24]; however, those works do not provide flexibility in terms of security and
overhead. This article derives four different schemes for the Key Generator of McEliece
cryptosystem that can be combined to provide flexibility depending on the user needs

[30] | Parity, Multi-parity

Hash-Counter-Hash tweakable enciphering constructions in Reference [23], and for cryptographic
applications using multipliers in Reference [24]. In Table 1, a summary of the limitations of these
works on fault detection is shown. We note that the error detection schemes are not confined to
one specific cryptographic alporithm, for example see References [25-29] for those related to the
AES and lightweight cryptography.

We present the first work on fault detection in the underlying blocks of the McEliece cryptosys-
tem Key Generator, based on regular parity, interleaved parity, CRC-2, and CRC-8. Fault detection
is essential in the generation of the keys, especially for remote systems where the creation of fault-
free keys is required for the overall system dependability. The hardware implementation of the
Key Generator is the most complicated inside McEliece, since it has the largest area complexity.
Our suggested techniques are suitable to the generation of the control matrix H, and we have also
incorporated fault detection techniques in the other units of the Key Generator. Nonetheless, the
underlying blocks that execute finite-field operations can be employed not just in these construc-
tions but also in other cryptographic systems. In Reference [30], fault detection techniques based
on parities are proposed for the composite-field operations of the McEliece cryptosystem. This
work completes [30] by performing fault detection in finite fields and adding cyclic redundancy
checks (CRC) as a fault detection technique. Although we have presented our approach for the
Key Generator of the McEliece cryptosystem and implemented the different schemes on field-
programmable gate array (FPGA), the presented models are suitable to other code-based cryp-
tographic algorithms, e.g., Niederreiter cryptosystem. These models are also platform-oblivious,
anticipating comparable outcomes on application-specific integrated circuit (ASIC) platforms.

1.2 Contributions
The following is a summary of our contributions in this work:

e We construct sets of formulations for the various finite-field blocks of the McEliece cryp-
tosystem, e.g., addition, subtraction, multiplication, squaring, and inversion, based on reg-
ular parity, interleaved parity, CRC-2, and CRC-8. To account for the entire Key Generator,
we additionally offer fault detection techniques in the remaining units of the Key Generator.

¢ The presented fault detection techniques are employed in the distinct units of the Key Gen-
erator to maximize the likelihood of error detection, since it is generally formed by multipli-
cations and inversions over GF(2'%).

¢ The fault coverage of the presented fault detection methods is examined. To assess the dif-
ferent overheads of the suggested techniques, we implemented our schemes on FPGA by
adding them to the original sub-blocks of McEliece cryptosystem Key Generator.

The following is the outline of the article: Preliminaries are discussed in Section 2, where
the McEliece cryptosystem is introduced. Section 3 presents the proposed fault detection

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

G4 A. C. Canto et al.

constructions based on regular parity, interleaved parity, and CRC for the different finite-field
blocks in the McEliece cryptosystem. In Section 4, the presented fault detection techniques
are implemented to calculate the different overheads when the derived schemes are used in
the original constructions. Moreover, we benchmark our derived work by implementing the
presented designs on FPGA. Finally, concluding observations are given in Section 5.

2 PRELIMINARIES

There are three main parameters in the McEliece cryptosystem: m, which is used for the code
subspace dimension; t, which is the maximum number of faults that the system can correct; and
n, which stands for the code length. The cryptosystem presented in this article uses parameters
m= 13, t = 128, and n = 8,192, since they were one of the proposed security metrics to NIST in
2020 [31]; although the presented schemes are oblivious of these metric sizes.

The McEliece cryptosy stem has three main processes: Key generation, which consists of the gen-
eration of two keys, e.g., private and public and keys, required to maintain the data safe; encryption,
which uses the public key to create the ciphertext; and decryption, which utilizes the private key
to get the initial data. The private key is produced by a generator matrix while the public key is
provided by a control matrix. Initially, the Key Generator produces at random a monic irreducible
polynomial of degree t such as fa) = a' + fi_ja®' +--- + fia + f;, known as the Goppa polyno-
mial. To create the Goppa polynomial, the coefficients of a basic finite field GF(2™) are utilized. In
the NIST submission, this basic finite field has 8,192 elements when m = 13, Le., ag, @, @591,
which are all 13-bit vectors. The private key, which consists of the Goppa polynomial and a per-
mutation matrix P, is kept hidden, since the control matrix H is created by using such key and
three other matrices designated as X, ¥, and Z. Thereafter, a permutation utilizing the matrix P is
done to produce the public key. This process yields a large public key H, which gets shortened by
converting it into a binary form H; over GF(2) and by utilizing the matrices I1y; and R to convert
it into a systematic form G. Finally, G is transposed into G, obtaining the public key, represented
as R7. Algorithm 1 shows how the pair of keys are generated.

For the process of encryption in MECS, an [-bit plaintext m and the public key R” are required.
A random n-bit error vector e, a random (k — [)-bit vector r;, and a random [-bit vector r, are
generated next. Then, public key RT is expanded to G = [RT |I1;], a hash function h = hash(m||rz)
is performed, and a safe plaintext m = ry||h is created to be encoded into z' = mG. Finally, the
ciphertext z is calculated by performing z = (z' & &)||(hash(r,) & m)||{hash(e) & rz).

The decryption process in MECS uses the ciphertext z and the private key (P, g{z)) to obtain
the plaintext m. First, the ciphertext z is split into (z,, 2., 25), where z, is n bits long and z, and z,

ALGORITHM 1: MECS key generation

1: Choose the parameters m, ¢, and n.

2: Calculate k according to m, t, and n where k = n — mt.

3: Randomly create a monic, irreducible polynomial f(a) = a' + fi_ja®!' +--- + fiad + f; using
the coefficients in GF(2™) and degree of t.

4: Create the auxiliary matrices ¢ x t matrix X, t ¥ n matrix Y, and n % n matrix Z.

5: Calculate the ¢ % n control matrix H = XYZ.

6: Randomly pick a permutation matrix P and compute the permuted control matrix H = HPT.
7: Transform H into H; over GF(2) and then, into the form G = [[Ty¢|R].

8: G is transposed into G obtaining R7.

9: Return R” as its public key, and (P, f(a)) as its private key.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:5

are [bits long. z; is permuted into ¢ = z, P and an error vector ¢’ is reconstructed by employing
the Patterson algorithm [32]. Then, the error vector is permuted e = ¢’P and z’ is reconstructed
by performing z' = z; & e. Next, z, is split into ry (k — [bits long), h (I bits long), and 1 (n — k bits
long). Finally, the plaintext is reconstructed m = 2 & hash(r,) as well as r; : ro = hash(e) & z,
and if hash(m||rz)= h, then the plaintext has no errors and it is returned, meaning that the entire
process of decryption is completed.

3 PROPOSED FAULT DETECTION ARCHITECTURES

Differential fault analysis (DFA) compares a correct output with a defective one (produced by
a natural cause or a third party) generally to obtain the private key. We can observe several fault
models based on the sort of attack. These models depend on the amount of bits compromised,
where the faults are located, how the faults are introduced, and the duration of the faults. Due to
technological limitations, an adversary may not be able to flip precisely one bit to capture sensitive
information. In practice, the attacker attempts to introduce as few faults as possible (ideally single
faults of varying intensities) to minimire the effort. Biased fault models with a single-bit (more
probable in low fault intensity), two-bit, three-bit, and four-bit (more frequent in higher intensities)
may be utilized to mimic fault intensity fluctuation. In this work, techniques that can identify
multiple stuck-at faults (both stuck-at one and stuck-at zero cases), adjacent (for interleaved cases),
and single or multiple stuck-at faults are addressed, i.e., regular parity, interleaved parity, CRC-2,
and CRC-8. These schemes also aim to detect transient and permanent internal faults on the Key
Generator. We take into consideration an acceptable tradeoff between the fault detection abilities
and the overheads to be accepted while providing the relevant error detection techniques. Because
of their low overhead and good error coverage, the schemes presented in this work are suitable
for embedded devices.

The Key Generator has the largest area complexity and, as a result, it is the most extensive
hardware implementation inside McEliece. The H-generator is the most involved and complex
block in the design of the Key Generator. It generates a control matrix H required to get the public
key of the McEliece cryptosystem. As previously stated, H is generated by multiplying the matrices
X, Y, and Z using the G-memory, H-memory, Horner, GF(2™) Multiplication, GF{2™) Inverse, and
GF(2™) Generator blocks. First, an auxiliary matrix ¢ x ¢ X is created by using the G-memory, which
contains the Goppa polynomial and is expressed as

gt o --- 0
_f?I—I gr []
X =
g1 gz 0

Matrix Y is then generated using the GF(2™) Generator block, which produces a; elements where
ie[0,1,...,8,191} (this work uses the composite fields of complex Goppa codes, i.e., GF((2%)'%),
GF(2") with the field polynomial p(a) = ' + &' + a* + & + 1, and GF(2); however, numbers can
vary depending on the security parameters utilized). Matrix Y is a t x n matrix expressed as

1 0 0
dp @y X1

Y= . . .
-1 -1 -1
oy @y Tn_y

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

56 A. C. Canto et al.

ALGORITHM 2: Multiplicative Inversion Addition-Chain Itoh-Tsujii Algorithm
1: fiy = Alx)

2: for i from 1 te t do
3 fi=[F " - By, (mod pla))
4. return ((f;)* (mod p(a))

The inversion of f{a;) is then used to calculate a matrix Z size n x n, requiring the GF(2™) Inverse
block to obtain

g{au} 0 0
_ 0 g{m}-' 0
EI} ﬂ g{anl|]"

The H-Generator operates as follows: Matrices X and Y are multiplied first using the Horner block,
which transforms high degree multiplications into easier and more efficient ones, e.g., the opera-
tion fi + fao + faal is calculated as fi + (fz + fazz)as. To execute (XY)Z, GF(2™) Multiplication
blocks are needed, since a; is multiplied by the corresponding element accessible from XY to get
fla), eg., fi+ foaz+ faa, which is available in the H-memory, is multiplied by a; to obtain f(ag).
Then, utilizing the GF(2™) Inverse block, f{a;) is inverted.

The process of obtaining a particular element A~ GF(2™) s0 A - A™! = 1 is denoted as per-
forming the multiplicative inverse of the element A # 0 over GF(2™). The FLT and ITA meth-
ods are investigated in this article to perform the multiplicative inverse of any finite-field el-
ement over GF(2™). According to FLT, the inverse of a finite-field element A is calculated as
AZ"? = A mod p(a). However, the FLT algorithm yields to 2™ —2 multiplications over GF(2™) in
hardware implementations, needing additional memory to hold the precomputed data. There have
been many studies to reduce the amount of gates needed for finite-field inversions, e.g., Kaliski
inversion, square-and-multiply algorithm, and ITA algorithm. The latter approach, which was de-
veloped by Itoh and Tsujii, greatly reduces the total amount of finite-field multiplications involved
in the exponentiation by effectively using addition chains. The inverse of a finite-field element A
is represented as A™! = [fn_1(A)]°, where fi(4) = AT eGF(2™) and k e M. To compute S (A),
[15] uses a recursive sequence with an addition chain for m — 1 to calculate fy_(A). To compute
the addition chain C = {¢}, ¢z ..., ;) using p(a) or field polynomial of m degree, we need ¢; = 1
and ¢; = m— 1. If ¢; is odd, then ¢;_; = ¢; — 1; if ¢; is even, then ¢;_; = ¢;/2. Moreover, Algorithm 2
shows the Multiplicative Inversion Addition-Chain ITA. To calculate the inversion of an element in
GF(2') using ITA with addition chains, 4 multiplications and 12 squarings in GF(2'*) are needed.

The hardware design to execute finite-field multiplications over GF(2™) is split into three mod-
ules, ie., @, sum, and pass-thru modules. The & module reduces the output modulo F(x) after
multiplying a finite-field element by a, the sum module utilizes m number of XOR gates to add
two elements in GF(2™) (finite-field additions only use the sum module), and the pass-thru mod-
ule multiplies an element in GF(2™) with an element in GF(2). However, to perform finite-field
squarings, only two modules are needed, i.e, a® (where a finite-field element is multiplied by «?)

and sum modules.

3.1 Regular and Interleaved Parity

Derivations for the @ module with regular parity are formulated in the work of Reference [33].
This type of parity is suitable for single faults; however, it does not detect an even amount of faults.
Therefore, the goal of our initial derivations is to ensure that contiguous faults are identified as

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:7

well. Next, Theorem 3.1 is proposed for error detection in the & module based on interleaved parity,
where element A is the input and X is the output. Without compromising generality, m is assumed
to be odd in Theorem 3.1; however, it is simple to adapt it for even m.

THEOREM 3.1. Cﬂnsnfer a GF(2™) element A, where p4, = E! Zp am represents the even parity bits

of A, and pa, = E! 1 dzi—1 represents the odd parity bits of A. Let f; € GF(2) fori=0,1,....m—1
and m, which is used as the code subspace dimension, be odd. Then, the predicted parities of the output
X denoted as fix. and fix, for even and odd bits, respectively, are

ﬁx: = dm-1 + Z{ﬂz!—l + am_1 - far), (1)

i=1

ml
Pxo = Z{ﬂ(2:_1}_1 +am-1 - fa)s (2)
i=1
and when m = 13, fixe = pao and fixp = pae + a2 are obtained.
ProoF. The X coordinates are calculated by utilizing the following formula:

. {ﬂ;_1+ﬂm_1‘ﬁ' l1=i<m-1,
=

Om-1 i=0,

(3)

which divides the predicted parity fx as

m—1
ﬁx =dm-1 + Z{ﬂ:—l +am-1- fi)
=1

a1
= dm-1 + Z (@zi-1 4+ @m-1 - fur)
=1

m1
+ Z[ﬂ{z;—qu +am-1 - fu-1)
=1
= ﬁXz +ﬁx:r-

The field polynomial used in our design is p(a) = a'* + a' + @® + @ + 1, obtaining fis = fi= fi =
fi = fo = 1. Then, from Equations (1) and (2), we have

Pxe =Gz +a)+as+ayz+as+ay+dg+day

= Pdo
and
Pxo=ap+ayz+a+daypp+ag+ag+ag+dy
= fae + d1z.
This brings the proof to a close. m|

Elements A and B in GF(2™) are added in the sum module to produce the even and odd predicted
parities of output D, denoted as fp, and fip,. respectively, obtaining fipe = pae + ppe and fip, =
PAo + PBo-

Last, in the pass-thru module, a GF(2) element b is multiplied by the parity bits of A, which
are split into pge and pa,, producing output G. Next, the even and odd predicted parities of G,
represented as fig, and fig,, are split into fig, = b - pae and pp = b - pa,, respectively.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

5.8 A. C. Canto et al.

ay
fy Y 5~ Xo
1 o
y ¥ "
— Y |,
a2), | L :
fy Ky
: S|
E‘::j)z> Ko

Fig. 1. The proposed design for a® module, where a; and f;’s symbolize the inputs and x,’s symbolize the
outputs.

To perform a finite-field squaring, a” and sum modules are required. In the o® module, element
A is multiplied by a®, obtaining

Ala)-a® =amy-a™ ' +amz-a™ +---+a-a’, {4)

where
a™ = fu-a™ 4 fua-a™ 4o+ fo - mod pla)
and
@™ = fn1-a™ '+ fuz-a™ 4+« + f; mod p(a),
using p(e) as the field polynomial. Moreover, using Equation (4), the X coordinates are represented

as
am-1 - fi-1 + (@m-1

fmo1 +am_z) - fi

+ g 2=i<m-1,

X =1 -2 {5]
am-1+ (@m-1 - fm-1
+ﬂm_2}‘f] ll=1,

am-1 - fm-1 +@m-z i=10.

The hardware design of the &® module is presented in Figure 1, where ag-ap,_, are the coefficients
of input A, fj-fm_, are the field polynomial p(a) coefficients, and ay-aq_; are denoted as the output
X coefficients. Additionally, the derivations from Equation (5) are shown in Figure 1, using several
WOR and AND gates to obtain such formulations. For instance, the output x; is obtained by XORing
the input am_» with the result of adding through an AND gate the inputs ap_y and fin_j, the output
xy is obtained by XORing ap_; with the result of (ap_) - fm—1 + am-z) - fi (using two AND gates
and an extra XOR gate), and so on. To derive the regular and interleaved parities of the @ module,
Theorems 3.2 and 3.3 are presented next.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 59

THEOREM 3.2. Consider a GF(2™) element A, where pa = ¥, a; represents the parity bits of
A. Let f; € GF(2) fori= 0,1,...,m— 1 and m be used as the code subspace dimension. Then, the
predicted parity of the output X is

fx = am-1 - fm-1 + @m- 2+ﬂm 1+ (@m—1

fru1 + ama) - fi + Ztaml fis)

+(am-1 - fm-1 +am- 2} fi+aa),
and when m = 13, fix = pa + ay + ayz is obtained.
ProoF. Our proposed scheme uses the field polynomial p(a) = a'* + a® + a* + @ + 1. Therefore,
fis= fi=fi = fi = fi = 1. Then from Equation (6), one obtains

Px=ap t+apzt+ay tapt+agtay+a+aetap
+dz +ayz +ay + ay + as +ag + ay + dag + ag + dyg
= 4 +ay + daz.

This brings the proof to a close. m|

THEOREM 3.3. Consider a GF(2™) element A, wherepa, = ¥ ::5;1 azy represents the even parity bits

of A, andp,a_g—z:n‘rl dzy_y represents the odd parity bits of A. Let f; € GF(2) fori=0,1,... ., m—1
and m, which is used as the code subspace dimension, be odd. Then, predicted parities of the output X
denoted as fix, and fix, for even and odd bits, respectively, are

Pxe = @m-1 - fmo1 + am_ 2+Z|:ﬂm1 (7
=1
far-1 + (@m-1 - fm-1 + Gm-z) - _ﬁz;+ﬂz; 2)s

.ﬂf.i
f'x:r = am-1+ (@Gm-1 - fm-1 + am-2) - i + Z{ﬂm—1 (8)
fu 4 (@m-1 - fm-1 + @m-z) - far + ﬂz:_—ﬂ,
and when m = 13, fixe = pae + ayz and fixy = pag + ay, are obtained.
ProoF. The predicted parity fix is divided into

Px =am-1 - fm—l"‘ﬂm 2+ﬂm 1+ (@m—1

fmo1 + @m-z) - ﬁ"‘Z{ﬂm 1- faa
+(am-1 - fmo1 + am- 2} fu+az2)
—PXZ"'FXD-

The field polynomial utilized in our design is p(a) = a®® + a® + &® + @ + 1; therefore, one obtains
fis= fi=fi = fi = fi = 1. Then, from Equations (7) and (8), we have

ﬁxt=ﬂ|1+ﬂ|2+ﬂﬂ.+ﬂ12+ﬂn+ﬂz+ﬂq+ﬂﬁ+ﬂg+ﬂm

= Pae +az
and .
Pxo=ayz +ay +ay +a; +apz+as+as +ay +as
= Pao + an.
This brings the proof to a close. m|

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

510 A. C. Canto et al.

. P,
G & — H
F
5
2

H_GEN_ERROR

Fig. 2. The presented fault detection scheme of the H-generator for MECS.

Figure 2 shows both the original H-generator architecture (top) and the H-generator with the
presented fault detection blocks (bottom). The proposed design produces the matrix H by multi-
plying matrices X, Y, and Z. In Figure 2, the H-generator may employ both regular and interleaved
parities represented as Py — Py. The different fault detection blocks have been simplified in Figure 2
as four big white blocks; however, each of those P blocks contain many XOR gates, OR gates, and
error flags. In Section 4, we calculate the amount of signatures, which relate to the footprint of the
output of an error-detecting block, for the entire Key Generator. Nevertheless, let us go over a spe-
cific example to show how the P blocks behave. For instance, the GF(2'*) Mult(2) block performs
a total of 8,192 - 128 multiplications to obtain XYZ. Each of those multiplications uses 12 &, 12
sum, and 13 pass-thru modules, which translates into (8,192 - 128)mure - (12 + 125um + 13pass) sub-
outputs. Each of these sub-outputs are compared with the predicted sub-outputs of the Py block,
obtaining (8,192 - 128)muit - (122 + 125um + 13pass) or close to 3.9 x 107 signatures, which are
then ORed with each other. We note that the term signature here refers to appended bits used for
error detection through error-detecting codes and not the typical signatures commonly used for
proof of authenticity in cryptography. If the fault detection scheme used is based on interleaved
parity, then the number of error flags will double. As deducted from Theorem 3.1 for finite-field

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 51

a, a® E
sum, or =N : 1
pass-thru [REIES .
module

L]
L]
L
| Predicted .
crox M

Fig. 3. CRC applied to the original o, @%, sum, and pass-thru modules.

multiplications, P; and P; blocks contain the different gates to obtain Equations (1) and (2). After
the Horner derivations are performed, P; is used, using Equations (1) and (2) to provide error detec-
tion. Regular and interleaved parities for multiplications and squarings over GF(2™) formulated
in Theorem 3.1 and Theorems 3.2 and 3.3, respectively, are performed by the P; block. Therefore,
the P; block uses the Equations (1), (2), and (6)-(8) to provide error detection capabilities to the
GF(2") inverse block. All the different error detection blocks are connected together through an
OR gate that indicates if a fault has been detected in any block of the H-generator.

3.2 CRC

CRC uses cyclic error-correcting codes. First, a generator polynomial g(a) is selected to perform
CRC. Next, a long division of polynomials is calculated, where g{a) becomes the divisor, the data
becomes the dividend, the remainder generates the result, and the quotient is disregarded. Last,
the data is appended with a specified number of check bits, which are examined when the output
is retrieved to identify any faults. The CRCs that are used along this work are customizable
depending on the security considerations and the amount of overhead that may be accepted. To
put it another way, for applications like gaming consoles where performance is crucial (because
they are plugged in, their power usage is not), the CRC size may be increased. Nonetheless,
smaller CRCs are desirable for constrained devices.

CRCs in the sum and pass-thru modules need fewer formulations than those in the o and o®
modules. The predicted CRC-1 for the sum module is equivalent to the parity bits of the inputs A
and B in GF(2™) addition, which give us fix = pa+pp. Furthermore, CRC for the pass-thru module,
where b is an element in GF(2), corresponds to fix = b - p4. Instead of adding all the parity bits as
in CRC-1, the sum and pass-thru modules for each CRC-X scheme verify X bits at a time. The NIST
field GF(2") is utilized next in conjunction with CRC-2 and CRC-8. Figure 3 shows how CRC is
added to the original &, @®, sum, and pass-thru modules. The number of error flags, denoted as Ey,
is directly related to the CRC scheme used.

321 CRC for @ Module. In the & module, multiplying an element in GF(2'%) by a produces
Alx) - x=ap-a®+ay -a®+ay - a' + ao - a'”
tag-a +ar-at+ag-a vas-at +ag-a” {9)
+ﬂ3‘tx"+ﬂz‘ﬂ'3+ﬂ] ‘H2+II|]‘|5!',,
where

a” = fpa® + fua' +--- + fia + fy mod p(a).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

5:12 A. C. Canto et al.
The irreducible polynomial p(a) = a® + a* + a® + @ + 1 is then employed to get
Ala) -a= apa’ + apa” + apa + ajz +apa'
+ape + ax'™ + aga’ + ara® + aga” + asa® (10)
+aa” + agat + apa® + aa’ + aye mod pla).
» For the case study of m = 13 with CRC-2 in the @ module, gy(a) = a® + a + 1 is utilized as
the generator polynomial, which is used to find its derivations as follows:

a® = a+ 1 mod gyla),
1 mod gy(a),
a mod ggle),
a + 1 mod gyla),
a® = 1 mod gy(x),
a’ = o mod gy(),
a® = a + 1 mod gyla),
a’ = 1 mod ggia),
a' = o mod gy(=),
a'l = a +1 mod g,(a),
a'® = 1 mod gg(e).

Next, to determine the predicted CRC-2 equation for GF(2'%) in the @ module, denoted as
{PCRC243), go(cx) is applied in Equation (10), obtaining
Ala)-a=ay +apla + 1) + aga + ag + a;(a
+1) + agxr + as + agla + 1) + gz + az + ay (o
+1) + agex mod gy (),
or
PCRC2y3 = (ayg +ag + a; + ag + ag + as
+ay + ag)a + (ay + ayg + ag + a; + as (11)
+ay +as +ap).

Then, the coefficients from Equation (10) are renamed to determine the actual CRC-2 equa-
tion for GF(2") in the @ module (ACRC2,3): ay, as yya, . . ., ag as yy,

Alx) -x = prza®™ + yna'' + ypa'® + poa’
+ e + yra’ + ppa® + ysa® + yaa’ (12)
+pa + e + ' + yp mod go(a),
and we apply gq(a) as follows:
Ala) - a=yiz +yule + 1) + yua +ys
+ysla + 1) + yra + e + pslo + 1) + e
+¥3 + yala + 1) + pya + yp mod gyla),
or
ACRC2is =(ru+yu+r+r+rs+h
trt+tn)a+(rztm+typtatrstys (13)

+¥ys+)2+ Yn}.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:13

s For the case study of m = 13 with CRC-8 in the @ module, g,(a) = a® + a® + o + 1 is utilized
as the generator polynomial, which is used to find its derivations as follows:

a® = a® +a + 1 mod g (),
a’ = a’+a® +amod g,(a),
a'® = a' + a* + o mod gy (a),

U=g®+a'+a mod g,(a),

2=ga%+a® +a' mod g (a).

R R

MNext, to determine the predicted CRC-8 equation for GF(2'?) in the @ module, denoted as
(PCRC8y3), g1() is applied in Equation (10), obtaining
Alg)-a=apl(a'+a’ +a+1) +ay(a®+a +a')
taple” +a' +a°) +as(a’ +a” +a”) + ag(a”
+a’+a)+arfa’ +a+1)+asa’ +asa’ +aa’
+azat + apar” + aya® + aga mod gy (),
or
PCRCBys = agar’ + (ay; + as)a® + (ay +ay
+ag)a + (a2 + ayy + ay + ag + a3)a’+ (14)
(@12 + @p + @s + ag + az)a” + (a@y + ag + a;
+ay)a® + (@ + ag + ay + ap)a + (a2 + az).

Then, the coefficients from Equation (10) are renamed to determine the actual CRC-8 equa-
tion, denoted as ACRCS,3, for GF(2'*) in the @ module: ay; as yya, ..., ag as y1,

Ala)-a= 1"1215!'2 + l’ll'-‘-'f:lI + ‘.I"1I1'f1'1|:| + 1"‘?'5'9
+ya’ + e +yea® 4 psa + paa’ (15)
+ yﬂas + }fzaz + y1 + yp mod gy (),
and we apply go(a) as follows:
Ala)-a=y(a® +a +a') +yule® +a* +2%)
+yla' +a’ + &) +pela” +a” + a) + ys(a
+a+1)+pra’ + paa® + ysa® + et + pat
+y2a” + p1 + yp mod gy (a),
or
ACRCBy3 = yra’ + (y12 + Ye)a® + (y1z + yun
+ys)a® + (yiz + yu +ywo + va)a' + (yn (16)
+Yw+) +p)a + (o +ye +ys + p)a’
+(r+r+nla+(s+r).

The NIST field GF(2") is utilized next with CRC-2 and CRC-8 for the a® module; nonetheless,
the presented error detection techniques can be applied with any field sizes or CRCs.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

514 A. C. Canto et al.

3.22 CRC fora® Module. In the * module, multiplying any element in GF(2'*) by a® produces

Ala) -a® =ap-a +ay -a® +ay - a?

+ﬂg‘txn+ﬂg‘ﬂm+ﬂ?‘ﬂ'g+ﬂﬁ‘ﬂa

17
+ﬂ5‘ﬂ'T+ﬂq‘HE+ﬂ3‘txs+ﬂz‘ﬂ" { :l

+ﬂl‘ﬂ'3+ﬂn‘ﬂz,

where a'! = flza™ + e + - + fia® + fo mod pla) and &® = floa'? + fla' +---+ fla+
fo mod p(a). For m = 13, p(a) = a + a* + & + a + 1, which is the irreducible polynomial, is
employed to get
Ala) - a® = apa” + apa’ + apa® + apa + aypa’
ﬂnﬂs + ap i + apy + ﬂmﬂ'm + ﬂgtxn + ﬂgHm
+ ﬂ'gﬂ'g + ﬂﬁHB + a;-:x? + ﬂqﬂ'ﬁ + GSHS + ﬂgtxd

+aa’ + aga” mod p(a).

s For m = 13 with CRC-2 in the a® module, g;(r) is utilized in Equation (17) to determine the
predicted CRC-2 equation for GF(2'*), denoted as PCRC2,s, obtaining

Ala) - a® = ay + agla + 1) + agax + a; + agla
+1) + asax + ag + asa + 1) + @ + a; + apla
+ 1) mod gq{a),
or
PCRC2y3 = (ag + ag + ag + as + az + az + ag) (18)
@ + (@ + @y + ay + ag +aq +as + a; + ag).

Then, the coefficients from Equation (17) are renamed to determine the actual CRC-2 equa-
tion for GF(2") in the a® module, denoted as ACRC2,3, getting the same derivations as for
the @ module.

s For m = 13 with CRC-8 in the «® module, g, () is utilized in Equation (17) to determine the
predicted CRC-8 equation for GF(2'*), denoted as PCRCS,3, obtaining

Alg)-a’ =apla’ +a* +a” +a) +apla* + o

+a+1)+apla®+a +a')+a(a’ +a +a%)

+agla’ +a’ + o) +ar(e’ + o + a) + agla”

+a+1) + asa” + aga® + aza® + azat + aya’

+ apx” mod gy (a),

or
PCRCBys = asax’ + (ayp + ag)a® + (ayz + ayg + as
+as)a” + (@2 + ayy + @y + ag + ag + az)a’ + (ay, (19)

+ag+ag+a;+a)a + (az+ag+ay +ag
+ag)a” + (a2 + ayy + a7 + ag)a + (ay; + ag).

Then, the coefficients from Equation (17) are renamed to determine the actual CRC-8 equa-
tion for GF(2") in the a® module, denoted as ACRCS,3, getting the same derivations as for
the @ module.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:15

Table 2. Steps Required to Complete the Inverse of an
Element A in GF(2'*) Employing the Addition Chain C

Step | fva) | By (a) Exponentiation
1 Bila) - A

2 Bala) Prsi(a) (B)* pr =A"""

3 Bs(a) Basr(a) (B)* pr = A"

4 Bsla) Bss3(a) (Bs)* s = A

3 Prz(a) Po+sla) (Bs)* B = A !

4 ERROR COVERAGE AND FPGA IMPLEMENTATIONS

As previously stated, multiplications in GF(2™) require three distinct modules (@, sum, and pass-
thru modules), squarings in GF(2™) utilize the a® and sum modules, and additions in GF(2™)
require just the sum module. For m = 13 using a bit-parallel design with regular parity, 12 a, 12
sum, and 13 pass-thru modules are utilized to perform each multiplication in GF(2'%); 12 ® and 12
sum modules are required for each squaring in GF(2"); and just 12 sum modules are used on each
addition in GF(2"). The number of signatures for regular parity utilized by the P; blocks, where
1 <i< 4, is determined as:

(1) A 128x 128 matrix X is generated to calculate the matrix XY. To achieve efficient polynomial
multiplications, the Horner algorithm is performed. Each column of the 128 x 8,192 XY
matrix needs a total of 127 multiplications and 127 additions in GF(2'®), resulting in a total
of 8,192corumn - 127 mure. - (122 + 125um + 13pass) signatures for finite-field multiplications
and 8,192 ;. mn - 127044, 12,4 m signatures for finite-field additions. Therefore, the Horner
block requires more than 5 - 107 signatures.

(2) In Figure 2, it is shown that to derive the matrix Z, the GF(2"%) Mult{1) block is needed.
Such block performs 8,192 multiplications and 8,192 additions in GF(2'?), resulting in a
total of 8,192myuse. - (124 + 125um + 13pass) signatures for finite-field multiplications, and
8,192,544, - 125ym signatures for finite-field additions. Therefore, the GF(2'3) Mult(1) block
requires more than 4 - 10° signatures.

(3) Next, a total of 8,192 inversions in GF(2™) are performed by the GF(2'?) Inverse block shown
in Figure 2. For m = 13, the addition chain utilized is C = {1, 2, 3, 6, 12}. Table 2 shows the
different steps required to obtain the inverse of A e GF(2") using addition chains. In Table 2,
the integers in the calculated addition chain are denoted as V;, V; = Vi_y, and Uy = V; - V),
requiring 4 multiplications and 12 squaring in GF(2'*). Therefore, a total of 8,192;n0_-(4muir.-
(122 +125um +13pass) + 12,44 - (125 + 1254)) or close to 3.6 10° operations and signatures
are required. We note that each finite-field multiplication and squaring requires a total of
seven and six clock cycles, respectively, specifying a main clock time constraint of 20 ns,
which corresponds to a frequency of 50 MHz.

(4) Then, the GF(2'*) Mult(2) block from Figure 2 requires 8,192 - 128 multiplications to obtain
XYZ. Moreover, the GF(2"*) Mult(2) block uses (8,192-128) ;- (122 +12;4m +13pa55) signa-
tures to perform all the finite-field multiplications needed, totaling about 3.9 - 107 signatures.

(5) After the control matrix H is pgenerated, other steps are computed. The matrix H is
multiplied with a matrix P to be permuted, obtaining H. Our fault detection schemes
can be integrated in this process, since it requires approximately 8.6 - 10° multiplications
(8,192 - 8,192 - 128) and approximately 8.6 - 10° additions (8,192 - 8,192 - 128) in GF(2").
The Gauss Systemizer unit, which conducts row permutations and XOR additions of two
rows, is also used in the key generation. Permutations can be achieved in this situation by

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

G516 A. C. Canto et al.

Table 3. Area and Delay Results Obtained After Adding Fault Detection into the Original Horner and
Inversion Architectures on FPGA Kintex-7 (Device xc7 k7 0tfbwa76-1)

Area
{occupied slices)
2976
3.138 (5.44%)
3,402 (14.31%)
3,285 (10.38%)
3,572 (20.03%)
783
976 (24.65%)
1,083 (38.31%)
1,121 (43.17%)

Architecture Delay (ns)

28.267
28.541 (Neg. over.)
29.410 (Neg. over.)
28.850 (Neg. over.)

29,803 (5.43%)

28.820
29.013 (Neg. over.)
28.995 (Neg. over.)
28.720 (Neg. over.)

Original Horner block
Horner Reg. Parity (predicted/actual/compressor)
Horner Inter. Parity (predicted/actual/compressor)
Horner CRC-2 (predicted/actual/compressor)
Horner CRC-§ (predicted/actual/compressor)
Original Inversion block
Inversion Reg. Parity (predicted/actual/compressor)
Inversion Inter. Parity (predicted/actual/compressor)
Inversion CRC-2 (predicted/actual/compressor)

Inversion CRC-8 (predicted/actual/compressor)

1,166 (48.91%)

31.124 (7.99%)

Table 4. Power and Throughput Results Obtained After Adding Fault Detection into the Original Horner
and Inversion Architectures on FPGA Kintex-7 {Device xcTk70tfbwaTa-1)

Architecture Fgﬁ;rﬁf{rr&f} Throughput (Gbps) fgl.fg:::]:gs}

Original Homer block 0.144 0.460 1.54 % 1077
Horner Reg. Panity (predicted/actual/compressor) | 0.147 (Neg. over.) | 0.455 (Neg. over) | 1.45x 107" (5.84%)
Horner Inter. Panty (predicted/actual/compressor) 0.157 (9.03%) 0442 (Neg. over) [1.30% 1077 (15.58%)
Horner CRC-2 (predicted/actual/compressor) 0.154 [5.9_4';&} 0451 (Neg. over) | 1.37% 107% (11.04%)
Horner CRC-8 {predicted/actual/compressor) 0.158 (9.72%) 0446 (Neg. over.) | 1.25% 107" (18.83%)

Original Inversion block 0.101 0.451 5.76% 1077
Inversion Reg. Panty (predicted/actual/compressor) 0.108 (6.93%) 0.448 (Neg. over) | 4.59% 107% (20.31%)
Inversion Inter. Panty (predicted/actual/compressor) | 00110 (8.91%) 0448 (Neg. over.) | 4.14% 1077 (28.12%)
Inversion CRC-2 (predicted/actual/compressor) 0.112 {10.89%) 1.453 (Neg. over)) | 4.04% 1077 (20.86%)
Inversion CRC-8 (predicted/actual/compressor) 0.113 {11.88%) 0418 (-731%) 358 1077 (37.84%)

rewiring, which does not require to add signatures, and XOR additions (perform between
13-bit vectors), which can integrate the signatures mentioned above.

The formula 100 - (1 — (3)*'9")%, where #sign. stands as the number of signatures, is used to
compute the fault coverage percentage of the presented schemes. Moreover, the presented regular
parity has a high fault coverage percentage of close to 100- (1— {%}10'}%, the presented interleaved
parity and CRC-2 have a fault coverage percentage of close to 100-(1- {%}2']"3)%, and the presented
CRC-8 has a fault coverage percentage of close to 100 - (1 — {%}E'M}%. Additionally, only the
signatures required for one block out of the four in our presented method illustrated in Figure 1
would be considered for local faults. For regular parity, the fault coverage is close to 100 - (1 —
(£)*61%)%, 100 - (1 — (£)7*'™)% for interleaved parity and CRC-2, and 100 - (1 — (3)**")% for
CRC-8, if the errors are restricted to the GF(2'*) Inverse block.

In Tables 3 and 4, the overheads of our fault detection schemes are shown in terms of area (occu-
pied slices), delay, power (with a 50 MHz frequency), throughput, and performance for the Horner
and the GF(2") Inverse block, where neg. over. stands for negligible overhead. The presented
constructions are not fully pipelined, and they are implemented on Xilinx FPGA family Kintex-7
device xcTkT0tfbv676-1 using the Vivado tool and Verilog as the hardware design language. How-
ever, we note that because our schemes are platform-oblivious, the outcome is not necessarily

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 517

influenced by the intended platform. To get the area, the Vivado's place utilization report reads
CLBs, which are the main resources for creating general purpose combinational and sequential
circuits. To compute the delay, we utilize Vivado's Timing Constraints Wizard, specifying a main
clock time constraint of 20 ns, which corresponds to a frequency of 50 MHz. The total on-chip
power, which is the power utilized internally within the FPGA and is calculated by combining de-
vice static power and design power, is also reported. Throughput is obtained by dividing the total
number of output bits over the delay, efficiency is obtained by dividing throughput over area, and
performance is obtained by dividing throughput over slices.

Let us go over an example to show how our fault detection schemes are incorporated to the Key
Generator. First, the top module calls a functional unit, e.g., Horner block, GF(2') Inverse block,
GF(2'*) Mult(1) block, GF(2") Mult{2) block, and GF(2") Gen. block. For instance, if the Horner
block is called, this functional unit calls many multiplications and additions in GF(2™). When
each finite-field multiplication is called, our error detection scheme is called as well to compare
the predicted output of that specific finite-field operation and the actual output with XOR gates,
producing an error flag. Last, when the Horner unit has made all the calls to the different finite-field
multiplications and additions, it compares all the error flags with OR gates to check that all the
finite-field operations have been performed free of faults. Additionally, we have implemented the
Inverse block with different finite-field sizes, i.e., GF(2'?), which is the other finite-field option for
the McEliece cryptosystem NIST submission and is considered a Category 3 parameter set in terms
of expected strength (as opposed to GF(2'*), which is considered Category 5), and GF(2'"), to show
the feasibility of our schemes for other fields. For the Inverse block using the finite field GF(2'?),
the area overheads are 37.92% (451 slices), 42.51% (466 slices), and 46.79% (480 slices) when using
normal parity, interleaved parity, and CRC-2, respectively; the delay overheads are 6.14% (14.795
ns), negligible (13.654 ns), and negligible (13.704 ns) when using normal parity, interleaved parity,
and CRC-2, respectively; and the power overheads and 7.06% (0.091 mW), 5.88% (0.090 mW), and
5.88% (0.090 mW) when using normal parity, interleaved parity, and CRC-2, respectively. For the
Inverse block using the finite field GF(2'"), to show the feasibility, the area overheads for the first
two cases are 33.50% (267 slices), 19.50% (239 slices), the delay overheads are 6.30% (4.519 ns), 8.89%
{4.629 ns), and the power overheads are negligible, i.e., 0.085 mW.

To obtain the area, the utilization report from Vivado reads the occupied slices, which are
essential for the implementation of general purpose combinational and sequential circuits. To
compute the delay, we utilize Vivado's Timing Constraints Wizard, specifying a main clock time
constraint of 20 ns, or a 50 MHz frequency. Total on-chip power, which is the power utilized
internally through the FPGA is reported as well and is calculated by combining the design power
and the device static power. Last, the number of bits from the output is divided by the delay to
get the throughput. As demonstrated in Tables 3 and 4, when stronger schemes with better error
coverage are added to the original designs, they result in increased area and power overheads.
The overhead difference in terms of delay is small and changes based on the gates employed in
each design. Furthermore, it is certain that the larger the overall design is, the lower the overhead
is. Since the GF(2'®) Inverse block does fewer operations than the Horner block, the overall
overheads are higher. Both interleaved parity and CRC-2 are quite comparable, since they have
the same amount of error flags, while CRC-8 is the most costly fault detection architecture. This is
to be expected, given CRC executes more operations, resulting in larger error coverage, as seen by
our studies. The overall area overheads of the strategies proposed in this article are less than 49%,
which corresponds to the overhead obtained by the GF(2") Inverse block when it uses CRC-8, and
more than 5%, which corresponds to the overhead obtained by the Horner block when it uses regu-
lar parity. Low delay overheads are observed for the presented fault detection schemes. As shown
in Table 3, the worst-case scenarios in terms of delay overhead are less than 6% and less than 8%

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

518 A. C. Canto et al.

Table 5. Worst-case Overhead Comparison of the Presented Schemes with Other Fault Detection Works

] Worst-Case Overhead %
Work Fault Detection Scheme Ares| Delay | Power |Throughput|Efficiency
18] CRC-10 25.51 | Not given | Not given | Not given | Not given
19 CRC-3 20.81 18.71 10.29 15.77 28.99
20] Recom. shifted operands 4074] 2123 22.41 Mot given | Not given
23] Becom. customizable swapped entries | 5.1 |Not given [Not given 13.5 12.0
74] CRC5 1833| 1.5 =0 T0.10 | Mot given
30] Multi-parity B54 | 468 3.90 701 ot given
This work CRC-8 (Goppa Horner) 20.03 5.43 9.72 MNeg. over. 18.83
This work CRC-8 (Inversion) 48.91 7.99 11.88 731 37.54

for the Horner and GF(2'®) Inverse block when using CRC-8, respectively. Furthermore, the power
overheads added to the original architectures are less than 12%, which is obtained by the GF(2')
Inverse block using CRC-8. Last, Table 4 shows how the throughput decreases when fault detection
is added to the original constructions, obtaining a worst-case throughput overhead scenario of less
than 8%. The fault detection schemes used are customizable based on the level of security required
and the amount of overheads to be accepted. The scheme sizes can be increased for situations
where performance is crucial, while smaller schemes are preferable for deeply-embedded systems.

To the best of the authors’ knowledge, there has been no past studies on this sort of fault detec-
tion methods for the McEliece's Key Generator has been done. Let us look at some case studies for
a qualitative assessment to verify that the overheads generated are reasonable. In Reference [29],
fault detection techniques using parity prediction for multiplication in GF(2™) with normal basis
are presented in Reference [34], getting approximately 58% of combined area and delay overhead
{worst-case scenario). One of the drawbacks of regular parity prediction is that intelligent fault
injection can get around this predictable countermeasure by injecting an even number of faults.
Therefore, we present interleaved parity as well as CRC-2 and CRC-8 to resolve this issue. Concur-
rent error detection constructions to perform the Extended Euclidean-based division over GF(2™)
are provided in Reference [35]. The schemes utilized are based on parity prediction and they have
a combined worst-case area and delay overhead of 25.18%. Moreover, Table 5 shows a compari-
son in terms of worst-case area, delay, and power overheads of the presented schemes with other
works on fault detection. These and related earlier research on traditional eryptography demon-
strate that the presented fault detection constructions acquire comparable overheads to existing
works on error detection, obtaining a tolerable overhead.

5 CONCLUSION

In this work, fault detection schemes are used in the different blocks of the Key Generator and
other units of code-based cryptosystems. Key generation has the largest area complexity and, as a
result, it is the most involved hardware implementation inside McEliece, using finite-field addition,
multiplication, squaring, and inversion operations. McEliece has been advanced to the current and
final round in the NIST standardization process as of July 2020. Our work has a special focus on
the H generator, which provides the control matrix H required to get the McEliece cryptosystem
public key. We have derived closed formulations for regular parity, interleaved parity, CRC-2, and
CRC-8 for the finite-field blocks, and we have implemented these signatures on FPGA to assess the
overheads and performance deterioration of the presented schemes and demonstrate their appli-
cability for constrained embedded systems. The overall area and delay overheads of the strategies
proposed in this article are less than 49%, which corresponds to the overhead obtained by the
GF(2') Inverse block when it uses CRC-8, and more than 5%, which corresponds to the overhead

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:19

obtained by the Horner block when it uses regular parity. The provided fault detection construc-
tions produce high error coverage at a reasonable overhead, as the results show.

REFERENCES

[1] D.Moody. 2016. Post-quantum cryptography: NIST's plan for the future. Retrieved from https://pgery pto2016.jp/data/
pqc2016_nist_announcement.pdf.

[2] A. Shoufan, T. Wink, H. G. Maolter, 5. A. Huss, and E. Kohnert. 2010. A novel cryptoprocessor architecture for the
McEliece public-key cryptosystem. IEEE Trans. Comput. 59, 11 (2010), 1533-1546.

[3] R Agrawal, L. Bu, and M. A. Kinsy. 2020. Quantum-proof lightweight McELece cryptosystem co-processor design. In
Proceedings of the IEEE 38th Internat ional Conference on Computer Design (ICCDY20). 73-79.

[4] M. Lopex-Garcia and E. Cant-Navarro. 2020. Hardware-softer are implementation of a McEliece cryptosystem for post-
quantum cryptography. In Proceedings of the Future Information and Communication Conference. 814-825.

[5] L. Mariot, 5. Picek, and R. Yorgova. 2021. On McEliece type cryptosystems using self-dual codes with large minimum
weight. Cryptology ePrint Archive. Retrieved from hitps://eprint.iacr.org/2021/837.

[6]]. Roth, E. Karatsiolis, and]. Kramer. 2020. Classic McEliece implementation with low memory footprint. In Proceedings
of the Internat ional Conference on Smart Card Research and Advanced Applications. 3449,

[7] Z.Li, C. Xing, and 5. L. Yeo. 2019. Reducing the key size of Mceliece cryptosystem from automorphism-induced Goppa
codes via permutations. In Proceedings of the IACR International Workshop on Public Key Cryptography. 599-617.

[8] M. 5. Chen and T. Chouw. 2021. Classic McEliece on the ARM Cortex-M4. In Proceedings of the International Workshop
on Cryptographic Hardware and Embedded Systems 2021, 3, 125-148.

[9] E Strenzke, E. Tews, H. G. Molter, B. Overbeck, and A Shoufan. 2008, Side channels in the McEliece PEC. In Proceedings
of the Internat ional Workshop on Post-Quantum Cryptography 216-229,

[10] P. L Cayrel and P. Dusart. 2010. McEliece/Niederreiter PEC: Sensitivity to fault injection. In Proceedings of the Inter-
national Conference on Future Information Technology 1-6.

[11] E Strenzke. 2013. Efficiency and implementation security of code-based cryptosystems. Ph.D). Thesis.

[12] P.L. Cayrel, B. Colombier, ¥. F. Driigoi. A. Menu, and L. Bossuet. 2021. Message-recovery laser fault injection attack on
the classic McEliece cryptosy stem. In Proceedings of the Annual International Conference on the Theory and Applications
of Cryptographic Techniques. 438-467.

[13] T Itoh and 5. Tsujii. 1988. A fast algonithm for computing multiplicative imverses in GF{2™) using normal bases. Info.
Comput. 78, 3 (1988), 171-177.

[14] J. Guajardo and C. Paar. 2002. Itoh-Tsujii inversion in standard basis and its application in cryptography and codes.
Designs, Codes Cryptogr. 25 (2002), 207-216.

[15] E Rodriguez-Henriquez, N. A. Saqib, and N. Cruz-Cortes. 2005. A fast implementation of multiplicative inversion over
GF(2™). In Proceedings of the International Symposium on Information Technology. 574-579.

[16] B.Liuand R. Sandhuw. 2015. Fingerprint-based detection and diagnosis of malicious programs in hardw are. IEEE Trans.
Reliabil. 64, 3 (2015), 1068-1077.

[17] M. Mozaffari-Kermani, B. Azarderakhsh, and A Aghaie. 2015. Reliable and error detection architectures of Pomaranch
for false-alarm-sensitive cryptographic applications. IEEE Trans. Very Large Scale Integr. Syst. 23, 2804-2812

[18] A. Cintas-Canto, M. Mozaffari-Kermani, and B. Azarderakhsh. 2021. CRC-based error detection constructions for FLT
and ITA finite field inversions over GF(2™). IEEE Trans. Very Large Scale Integr. Syst. 29, 5 (2021), 1033-1037.

[19]]. Kaur, M. Mozatfari Kermani, and R. Azarderakhsh. 2021. Hardware constructions for lightweight cryptographic
block cipher QARM A with error detection mechanisms. JEEE Trans. Emerg. Top. Comput., accepted.

[20] A. Sarker, M. Mozaffari Kermani, and R. Azarderakhsh. 2021. Fault detection architectures for inverted binary Ring-
LWE construction benchmarked on FPGA. IEEE Trans. Circ. Syst. Il 68, 4 (2021), 1403-1407.

[21] A. Sarker, M. Mozaffari Kermani, and B. Azarderakhsh. 2021. Emmor detection architectures for ning polynomial multi-
plication and modular reduction of Ring-LWE in Z = %ﬁ[;ll benchmarked on ASIC. IEEE Trans. Reliabil. 70, 1 (2021).
362-370.

[22] M. Mozaffari Kermani and B. Azarderakhsh. 2019. Reliable architecture-oblivious error detection schemes for secure
cryptographic GCM structures. IEEE Trans. Reliakil 68, 4 (2019), 1347-1355.

[23] M. Mozaffari Kermani, B. Azarderakhsh, A. Sarker, and A. Jalali. 2018. Efficient and relisble error detection architec-
tures of Hash-Counter-Hash tweaksble enciphering schemes. ACM Trans. Embed. Comput. Syst. 17, 2 (2018), 54:1-
54:19.

[24] A.Cintas-Canto, M. Mozaffari-Kermani, and B. Azarderakhsh. 2021. Reliable CRC-based error detection constructions
for finite field multipliers with applications in cryptography. [EEE Trans. Very Large Scale Integr. Syst. 29, 1 (2021), 232-
236.

[25] M. Mozaffari Kermani and A. Reyhani-Masoleh. 2009. Fault detection structures of the 5-boxes and the inverse s-boxes
for the advanced encryption standard. J Electr. Testing: Theory Appl 25, 4 (2009), 225-245.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022,

https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://eprint.iacr.org/2021/837

520 A. C. Canto et al.

[26] M. Mozaffari Kermani and A. Reyhani-Masoleh. 2009, A low-cost 5-box for the advanced encryption standard using
normal basis. In Proceedings of the IEEE International Conference Electradnformation Technology (EIT'09). 52-55.

[27] 5. Subramanian, M. Mozaffari Kermani, R. Azarderakhsh, and M. Nojoumian. 2017. Reliable hardware architectures
for cryptographic block ciphers LED and HIGHT. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 36, 10 (2017),
1750-1758.

[28] 5. Bayat-Sarmadi, M. Mozaffari Kermani, and A. Reyhani-Masoleh. 2014. Efficient and concurrent reliable realization
of the secure cryptographic SHA-3 algorithm. JEEE Trans. Comput.-Aided Design Imtegr. Circ. Syst. 33, 7 (2014), 1105~
1109,

[29] M. Mozaffarn Kermani and A. Reyhani-Masoleh. 2011. A high-performance fault diagnosis approach for the AES
SubBytes utilizing mixed bases. In Proceedings of the IEEE Workshop Fault Diagnosis and Tolerance in Cryplography
(FDTC’11), pp. B0-87.

[30] A. Cintas-Canto, M. Mozaffan-Kermani, and R. Azarderakhsh. 2021. Reliable architectures for composite-field-
oriented constructions of McEliece post-quantum cryptography on FRGA. IEEE Trans. Comput.-Aided Design Integr
Circ. Syst. 40, 5 (2021), 999-1003.

[31] D]. Bernstein, T. Chuo, T. Lange, L Von Maurich, B. Misoczki, B. Niederhagen, E. Persichetti, C. Peters, P. Schwabe,
M. Sendnier,]. Szefer, and W. Wang. 2017. Classic McEliece: Conservative code-based cryptography. Retrieved from
https:/{classic. meeliece org/mist/meeliece- 20171129 pdf.

[32] N. Patterson. 1975. Algebraic decoding of Goppa codes. [EEE Trans. Info. Theory 21, 2 (1975), 203-207.

[33] A. Reyhani-Masoleh and M. A. Hasan. 2002. Error detection in polynomial basis multipliers over binary extension
fields. In Proceedings of the Workshop Cryptographic Hordware and Embedded Systems (CHES'02). 515-528.

[34] C.Y. Lee, P. K. Meher, and]. C. Patra. 2009. Concurrent error detection in bit-serial normal basis multiplication over
GF(2™) using multiple panity prediction schemes. IEEE Trans. Very Large Scale Integr. Syst. 18, B (2009), 1234-1238.

[35] M. Mozaffan-Kermani, . Azarderakhsh, C. Y. Lee, and 5. Bayat-Sarmadi. 2013. Reliable concurrent error detec-
tion architectures for Extended Euclidean-based division over GF(2™). IEEE Trans. Very Large Scale Integr. Syst. 22,
5 (2013), 995-1003.

Received 29 November 2021; revised 10 May 2022; accepted 1 June 2022

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

https://classic.mceliece.org/nist/mceliece-20171129.pdf

