
5

Reliable Constructions for the Key Generator of Code-based
Post-quantum Cryptosystems on FPGA

ALVARO CINTAS CANTO,Marymount University, USA
MEHRAN MOZAFFARI KERMANI,University of South Florida, USA
REZA AZARDERAKHSH,Florida Atlantic University, USA

Advances in quantum computing have urged the need for cryptographic algorithms that are low-power, low-
energy, and secure against attacks that can be potentially enabled. For this post-quantum age, diferent solu-
tions have been studied. Code-based cryptography is one feasible solution whose hardware architectures have
become the focus of research in the NIST standardization process and has been advanced to the inal round
(to be concluded by 2022–2024). Nevertheless, although these constructions, e.g., McEliece and Niederreiter
public key cryptography, have strong error correction properties, previous studies have proved the vulnera-
bility of their hardware implementations against faults product of the environment and intentional faults, i.e.,
diferential fault analysis. It is previously shown that depending on the codes used, i.e., classical or reduced
(using either quasi-dyadic Goppa codes or quasi-cyclic alternant codes), laws in error detection could be ob-
served. In this work, eicient fault detection constructions are proposed for the irst time to account for such
shortcomings. Such schemes are based on regular parity, interleaved parity, and two diferent cyclic redun-
dancy checks (CRC), i.e., CRC-2 and CRC-8. Without losing the generality, we experiment on the McEliece
variant, noting that the presented schemes can be used for other code-based cryptosystems. We perform er-
ror detection capability assessments and implementations on ield-programmable gate array Kintex-7 device
xc7k70tfbv676-1 to verify the practicality of the presented approaches. To demonstrate the appropriateness
for constrained embedded systems, the performance degradation and overheads of the presented schemes
are assessed.

CCS Concepts: •Hardware→Application speciic integrated circuits;Hardware reliability screening;

Additional Key Words and Phrases: Code-based cryptography, low-power fault detection, McEliece cryptosys-
tem, post-quantum cryptography

ACM Reference format:
Alvaro Cintas Canto, Mehran Mozafari Kermani, and Reza Azarderakhsh. 2022. Reliable Constructions for
the Key Generator of Code-based Post-quantum Cryptosystems on FPGA.ACM J. Emerg. Technol. Comput.
Syst.19, 1, Article 5 (December 2022), 20 pages.
https://doi.org/10.1145/3544921

This work has been supported by the U.S. National Science Foundation (NSF) through Award No. SaTC-1801488.
Authors’ addresses: A. Cintas Canto, Marymount University, 2807 North Glebe Road, Arlington, VA 22207; email:
acintas@marymount.edu; M. Mozafari Kermani, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620;
email: mehran2@usf.edu; R. Azarderakhsh, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431; email:
razarderakhsh@fau.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and

the full citation on the irst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speciic permission and/or a fee. Request permissions frompermissions@acm.org.
© 2022 Association for Computing Machinery.

1550-4832/2022/12-ART5 $15.00
https://doi.org/10.1145/3544921

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

https://orcid.org/0000-0001-6800-3302
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868
https://doi.org/10.1145/3544921
mailto:permissions@acm.org
https://doi.org/10.1145/3544921

5:2 A. C. Canto et al.

1 INTRODUCTION

The potential of the advent of high-performance and low-power quantum computers has height-
ened the necessity for the development of public-key cryptosystems that are safe against faults that
such quantum-based computing systems may empower. In fact, the Shor’s quantum algorithm ef-
iciently factors integers in polynomial time, allowing conventional cryptosystems to be broken.
In late 2017, theNational Institute of Standards and Technology (NIST)launched a project
to standardize one or more quantum computer resistant public-key cryptographic algorithms [1],
which is currently in its inal round since July 2020. It is expected that in 2024, the details for a
portfolio of standardized algorithms are revealed. Such standardized algorithms will be alternated
to the current classical public-key cryptosystems.
Diferent algorithms have been studied for this post-quantum age, denoted aspost-quantum

cryptography (PQC). Among the diferent types of post-quantum cryptographic algorithms,
code-based cryptography is a potential approach for resisting quantum computer-based attacks.
The McEliece cryptosystem is a type of code-based cryptography whose security is based on the
hardness of decoding a general linear code, possibly chosen in a speciic family, e.g., quasi-dyadic
Goppa codes and quasi-cyclic alternant codes. The McEliece cryptosystem security and implemen-
tation complexity have been scrutinized over years. As eicient examples, implementations of the
McEliece cryptoprocessor (MECS)have been proposed in References [2–8].
Classic McEliece has progressed to the current and last stage of the NIST PQC standardization

process. However, the McEliece post-quantum algorithm is still vulnerable to side-channel attacks
[9]. Additionally, fault analysis attacks are studied in Reference [10] to prove that the probability
when the McEliece construction does not repair an error is not negligible. Mounting attacks and
recovering the secret information through fault attacks in the McEliece cryptosystem are also
discussed on other works [11,12]
The McEliece cryptosystem spends the majority of its runtime executing arithmetic operations

on inite ields to perform the key generation process. Among all the inite-ield arithmetic, in-
version takes the longest time to compute. Many approaches have been studied to improve the
performance of inversions inGF(2m)with polynomial basis. TheFermat’s little theorem (FLT)
and theItoh-Tsujii algorithm (ITA)are two of the most used methods for computing inversions
inGF(2m). ITA was originally designed to be used with elements overGF(2m)using normal basis
[13]; nonetheless, recent works demonstrate that ITA can be utilized with diferent ield element
representations [14,15]. Such methods signiicantly utilize squarings and multiplications, involv-
ing hundreds of gates. Thus, these architectures are vulnerable to faults and implementing them
robust to natural and intended faults is a diicult challenge. These structures not only require little
overhead, but they also require suicient error coverage.

1.1 Previous Works

For sensitive systems, degraded performance can lead to disastrous results; consequently, research
has explored strategies to reduce errors and provide higher reliability with acceptable overhead
[16–24]. In Reference [16], a ingerprint-based technique for detecting malicious programs in hard-
ware is presented. Fault diagnosis approaches based on multiterm signatures against false-alarms,
which may be unacceptable in critical intelligent infrastructures, are presented in Reference [17]. In
References [18,19], fault detection mechanisms are presented for the lightweight cryptographic
block cipher QARMA and polynomial basis inversions, respectively. Moreover, error detection
constructions based on recomputation with encoded (shifted) operands and recomputation with
encoded (negated) operands for the Ring-LWE and for the ring polynomial multiplication and
modular reduction of Ring-LWE are implemented in References [20,21], respectively. Last, error
detection schemes are proposed for secure cryptographic GCM structures in Reference [22], for

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:3

Table 1. Comparison with Other Works

Work Error Detection Scheme Limitations

[30] Parity, Multi-parity
Singular parity ofers up to 50% error coverage and both singular and multi-parity can be

vulnerable to intelligent fault injections

[20]–[23] Recomputing
Recomputing can add large overhead, since the operations are being performed twice. This
leads to an increased delay overhead of at least 100%, unless pipelining is used, which would

increase the number of registers and consequently, the area overhead is increased

[18], [19]CRC-10, CRC-3, CRC-5

CRC is an eicient choice to protect the systems against intelligent fault injections and
[24], adds acceptable overheads. These have been used for diferent applications in works [18],

[19], and [24]; however, those works do not provide lexibility in terms of security and
overhead. This article derives four diferent schemes for the Key Generator of McEliece
cryptosystem that can be combined to provide lexibility depending on the user needs

Hash-Counter-Hash tweakable enciphering constructions in Reference [23], and for cryptographic
applications using multipliers in Reference [24]. In Table1, a summary of the limitations of these
works on fault detection is shown. We note that the error detection schemes are not conined to
one speciic cryptographic algorithm, for example see References [25–29] for those related to the
AES and lightweight cryptography.
We present the irst work on fault detection in the underlying blocks of the McEliece cryptosys-

tem Key Generator, based on regular parity, interleaved parity, CRC-2, and CRC-8. Fault detection
is essential in the generation of the keys, especially for remote systems where the creation of fault-
free keys is required for the overall system dependability. The hardware implementation of the
Key Generator is the most complicated inside McEliece, since it has the largest area complexity.
Our suggested techniques are suitable to the generation of the control matrixH,andwehavealso
incorporated fault detection techniques in the other units of the Key Generator. Nonetheless, the
underlying blocks that execute inite-ield operations can be employed not just in these construc-
tions but also in other cryptographic systems. In Reference [30], fault detection techniques based
on parities are proposed for the composite-ield operations of the McEliece cryptosystem. This
work completes [30] by performing fault detection in inite ields and addingcyclic redundancy
checks (CRC)as a fault detection technique. Although we have presented our approach for the
Key Generator of the McEliece cryptosystem and implemented the diferent schemes onield-
programmable gate array (FPGA), the presented models are suitable to other code-based cryp-
tographic algorithms, e.g., Niederreiter cryptosystem. These models are also platform-oblivious,
anticipating comparable outcomes onapplication-speciic integrated circuit (ASIC)platforms.

1.2 Contributions

The following is a summary of our contributions in this work:

•We construct sets of formulations for the various inite-ield blocks of the McEliece cryp-
tosystem, e.g., addition, subtraction, multiplication, squaring, and inversion, based on reg-
ular parity, interleaved parity, CRC-2, and CRC-8. To account for the entire Key Generator,
we additionally ofer fault detection techniques in the remaining units of the Key Generator.
•The presented fault detection techniques are employed in the distinct units of the Key Gen-
erator to maximize the likelihood of error detection, since it is generally formed by multipli-
cations and inversions overGF(213).
•The fault coverage of the presented fault detection methods is examined. To assess the dif-
ferent overheads of the suggested techniques, we implemented our schemes on FPGA by
adding them to the original sub-blocks of McEliece cryptosystem Key Generator.

The following is the outline of the article: Preliminaries are discussed in Section2,where
the McEliece cryptosystem is introduced. Section3presents the proposed fault detection

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:4 A. C. Canto et al.

constructions based on regular parity, interleaved parity, and CRC for the diferent inite-ield
blocks in the McEliece cryptosystem. In Section4, the presented fault detection techniques
are implemented to calculate the diferent overheads when the derived schemes are used in
the original constructions. Moreover, we benchmark our derived work by implementing the
presented designs on FPGA. Finally, concluding observations are given in Section5.

2 PRELIMINARIES

There are three main parameters in the McEliece cryptosystem:m,which is used for the code
subspace dimension;t, which is the maximum number of faults that the system can correct; and
n, which stands for the code length. The cryptosystem presented in this article uses parameters
m=13,t=128, andn=8,192, since they were one of the proposed security metrics to NIST in
2020 [31]; although the presented schemes are oblivious of these metric sizes.
The McEliece cryptosystem has three main processes: Key generation, which consists of the gen-

eration of two keys, e.g., private and public and keys, required to maintain the data safe; encryption,
which uses the public key to create the ciphertext; and decryption, which utilizes the private key
to get the initial data. The private key is produced by a generator matrix while the public key is
provided by a control matrix. Initially, the Key Generator produces at random a monic irreducible
polynomial of degreetsuch asf(α)=αt+ft−1α

t−1+···+f1α+f0, known as the Goppa polyno-
mial. To create the Goppa polynomial, the coeicients of a basic inite ieldGF(2m)are utilized. In
the NIST submission, this basic inite ield has 8,192 elements whenm=13, i.e.,α0,α1,...,α8191,
which are all 13-bit vectors. The private key, which consists of the Goppa polynomial and a per-
mutation matrixP, is kept hidden, since the control matrixHis created by using such key and
three other matrices designated asX,Y,andZ. Thereafter, a permutation utilizing the matrixPis
done to produce the public key. This process yields a large public keyH̃, which gets shortened by
converting it into a binary formH2overGF(2)and by utilizing the matricesΠmtandRto convert
it into a systematic form̃G. Finally,̃Gis transposed intoG, obtaining the public key, represented
asRT.Algorithm1shows how the pair of keys are generated.
For the process of encryption in MECS, anl-bit plaintextmand the public keyRTare required.

Arandomn-bit error vectore,arandom(k−l)-bit vectorr1, and a randoml-bit vectorr2are
generated next. Then, public keyRTis expanded toG=[RT|Πk], a hash functionh=hash(m||r2)
is performed, and a safe plaintextm̃=r1||his created to be encoded intoz=m̃G. Finally, the
ciphertextzis calculated by performingz=(z⊕e)||(hash(r1)⊕m)||(hash(e)⊕r2).
The decryption process in MECS uses the ciphertextzand the private key(P,д(α))to obtain

the plaintextm. First, the ciphertextzis split into(z1,z2,z3),wherez1isnbits long andz2andz3

ALGORITHM 1:MECS key generation

1: Choose the parametersm,t,andn.
2: Calculatekaccording tom,t,andnwherek=n−mt.
3: Randomly create a monic, irreducible polynomialf(α)=αt+ft−1α

t−1+···+f1α+f0using
the coeicients inGF(2m)and degree oft.
4: Create the auxiliary matricest×tmatrixX,t×nmatrixY,andn×nmatrixZ.
5: Calculate thet×ncontrol matrixH=XYZ.
6: Randomly pick a permutation matrixPand compute the permuted control matrixH̃=HPT.
7: TransformH̃intoH2overGF(2)and then, into the formG̃=[Πmt|R].
8:G̃is transposed intoGobtainingRT.
9: ReturnRTas its public key, and(P,f(α))as its private key.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:5

arelbits long.z1is permuted intoc=z1Pand an error vectoreis reconstructed by employing
the Patterson algorithm [32]. Then, the error vector is permutede=ePTandzis reconstructed
by performingz=z1⊕e.Next,z1is split intor1(k−lbits long),h(lbits long), andm̃(n−kbits
long). Finally, the plaintext is reconstructedm=z2⊕hash(r1)as well asr2:r2=hash(e)⊕z3,
and ifhash(m||r2)≡h, then the plaintext has no errors and it is returned, meaning that the entire
process of decryption is completed.

3 PROPOSED FAULT DETECTION ARCHITECTURES

Diferential fault analysis (DFA)compares a correct output with a defective one (produced by
a natural cause or a third party) generally to obtain the private key. We can observe several fault
models based on the sort of attack. These models depend on the amount of bits compromised,
where the faults are located, how the faults are introduced, and the duration of the faults. Due to
technological limitations, an adversary may not be able to lip precisely one bit to capture sensitive
information. In practice, the attacker attempts to introduce as few faults as possible (ideally single
faults of varying intensities) to minimize the efort. Biased fault models with a single-bit (more
probable in low fault intensity), two-bit, three-bit, and four-bit (more frequent in higher intensities)
may be utilized to mimic fault intensity luctuation. In this work, techniques that can identify
multiple stuck-at faults (both stuck-at one and stuck-at zero cases), adjacent (for interleaved cases),
and single or multiple stuck-at faults are addressed, i.e., regular parity, interleaved parity, CRC-2,
and CRC-8. These schemes also aim to detect transient and permanent internal faults on the Key
Generator. We take into consideration an acceptable tradeof between the fault detection abilities
and the overheads to be accepted while providing the relevant error detection techniques. Because
of their low overhead and good error coverage, the schemes presented in this work are suitable
for embedded devices.
The Key Generator has the largest area complexity and, as a result, it is the most extensive

hardware implementation inside McEliece. TheH-generatoris the most involved and complex
block in the design of the Key Generator. It generates a control matrixHrequired to get the public
key of the McEliece cryptosystem. As previously stated,His generated by multiplying the matrices
X,Y,andZusing theG-memory,H-memory,Horner,GF(2m)Multiplication,GF(2m)Inverse,and
GF(2m)Generatorblocks. First, an auxiliary matrixtxtXis created by using theG-memory,which
contains the Goppa polynomial and is expressed as

X=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

дt 0 ··· 0
дt−1 дt ··· 0
...

...
...

...
д1 д2 ···дt

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪
⎭

.

MatrixYis then generated using theGF(2m)Generatorblock, which producesαielements where
i∈{0,1,...,8,191}(this work uses the composite ields of complex Goppa codes, i.e.,GF((213)128),
GF(213)with the ield polynomialp(α)=α13+α4+α3+α+1, andGF(2); however, numbers can
vary depending on the security parameters utilized). MatrixYis atxnmatrix expressed as

Y=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

1 0 ··· 0
α0 α1 ···αn−1
...

...
...

...
αt−10 αt−11 ···αt−1n−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪
⎭

.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:6 A. C. Canto et al.

ALGORITHM 2:Multiplicative Inversion Addition-Chain Itoh-Tsujii Algorithm

1:β0=A(α)
2: forifrom 1 totdo
3: βi=[βi1]

2
ci2·βi2(modp(α))

4. return((βt)
2(modp(α))

The inversion off(αi)is then used to calculate a matrixZsizenxn, requiring theGF(2
m)Inverse

block to obtain

Z=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

д(α0) 0 ··· 0
0 д(α1)

−1 ··· 0
...

...
...

...
0 0 ···д(αn−1)

−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪
⎭

.

TheH-Generatoroperates as follows: MatricesXandYare multiplied irst using theHornerblock,
which transforms high degree multiplications into easier and more eicient ones, e.g., the opera-
tionf1+f2α2+f3α

2
2is calculated asf1+(f2+f3α2)α2. To execute(XY)Z,GF(2

m)Multiplication
blocks are needed, sinceαiis multiplied by the corresponding element accessible fromXYto get
f(αi), e.g.,f1+f2α2+f3α

2
0, which is available in theH-memory, is multiplied byα0to obtainf(α0).

Then, utilizing theGF(2m)Inverseblock,f(αi)is inverted.
The process of obtaining a particular elementA−1ϵGF(2m)soA·A−1=1 is denoted as per-

forming the multiplicative inverse of the elementA 0overGF(2m). The FLT and ITA meth-
ods are investigated in this article to perform the multiplicative inverse of any inite-ield el-
ement overGF(2m). According to FLT, the inverse of a inite-ield elementAis calculated as
A2
m−2≡A−1modp(α).However, the FLT algorithm yields to 2m−2 multiplications overGF(2m)in
hardware implementations, needing additional memory to hold the precomputed data. There have
been many studies to reduce the amount of gates needed for inite-ield inversions, e.g., Kaliski
inversion, square-and-multiply algorithm, and ITA algorithm. The latter approach, which was de-
veloped by Itoh and Tsujii, greatly reduces the total amount of inite-ield multiplications involved
in the exponentiation by efectively using addition chains. The inverse of a inite-ield elementA

is represented asA−1=[βm−1(A)]
2,whereβk(A)=A

2k−1ϵGF(2m)andkϵN. To computeβm−1(A),
[15] uses a recursive sequence with an addition chain form−1 to calculateβm−1(A). To compute
the addition chainC={c1,c2,...,ct}usingp(α)or ield polynomial ofmdegree,we needc1=1
andct=m−1. Ifciis odd, thenci−1=ci−1; ifciis even, thenci−1=ci/2. Moreover, Algorithm2
shows the Multiplicative Inversion Addition-Chain ITA. To calculate the inversion of an element in
GF(213)using ITA with addition chains, 4 multiplications and 12 squarings inGF(213)are needed.
The hardware design to execute inite-ield multiplications overGF(2m)is split into three mod-

ules, i.e.,α,sum,andpass-thrumodules. Theαmodule reduces the output moduloF(α)after
multiplying a inite-ield element byα,thesummodule utilizesmnumber of XOR gates to add
two elements inGF(2m)(inite-ield additions only use thesummodule), and thepass-thrumod-
ule multiplies an element inGF(2m)with an element inGF(2). However, to perform inite-ield
squarings, only two modules are needed, i.e.,α2(where a inite-ield element is multiplied byα2)
andsummodules.

3.1 Regular and Interleaved Parity

Derivations for theαmodule with regular parity are formulated in the work of Reference [33].
This type of parity is suitable for single faults; however, it does not detect an even amount of faults.
Therefore, the goal of our initial derivations is to ensure that contiguous faults are identiied as

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:7

well. Next, Theorem3.1is proposed for error detection in theαmodule based on interleaved parity,
where elementAis the input andXis the output. Without compromising generality,mis assumed
to be odd in Theorem3.1; however, it is simple to adapt it for evenm.

Theorem 3.1.Consider aGF(2m)elementA, wherepAe=
m−1
2
i=0a2irepresents the even parity bits

of A, andpAo=
m−1
2
i=1a2i−1represents the odd parity bits of A. Letfi∈GF(2)fori=0,1,...,m−1

and m, which is used as the code subspace dimension, be odd. Then, the predicted parities of the output
X denoted asp̂Xeandp̂Xofor even and odd bits, respectively, are

p̂Xe=am−1+

m−1
2

i=1

(a2i−1+am−1·f2i), (1)

p̂Xo=

m−1
2

i=1

(a(2i−1)−1+am−1·f2i−1), (2)

and whenm=13,̂pXe=pAoandp̂Xo=pAe+a12are obtained.

Proof. TheXcoordinates are calculated by utilizing the following formula:

xi=
⎧⎪⎨
⎪
⎩

ai−1+am−1·fi 1≤i≤m−1,

am−1 i=0,
(3)

which divides the predicted parityp̂Xas

p̂X=am−1+
m−1

i=1

(ai−1+am−1·fi)

=am−1+

m−1
2

i=1

(a2i−1+am−1·f2i)

+

m−1
2

i=1

(a(2i−1)−1+am−1·f2i−1)

=p̂Xe+p̂Xo.

The ield polynomial used in our design isp(α)=α13+α4+α3+α+1, obtainingf13=f4=f3=
f1=f0=1. Then, from Equations (1) and (2), we have

p̂Xe=a12+a1+a3+a12+a5+a7+a9+a11
=pAo

and
p̂Xo=a0+a12+a2+a12+a4+a6+a8+a10

=pAe+a12.

This brings the proof to a close.

ElementsAandBinGF(2m)are added in thesummodule to produce the even and odd predicted
parities of outputD, denoted aŝpDeandp̂Do, respectively, obtaininĝpDe=pAe+pBeandp̂Do=
pAo+pBo.
Last, in thepass-thrumodule, aGF(2)elementbis multiplied by the parity bits ofA,which

are split intopAeandpAo, producing outputG. Next, the even and odd predicted parities ofG,
represented aŝpGeandp̂Go, are split intôpGe=b·pAeandp̂Go=b·pAo, respectively.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:8 A. C. Canto et al.

Fig. 1. The proposed design forα2module, whereaiandfi’s symbolize the inputs andxi’s symbolize the
outputs.

To perform a inite-ield squaring,α2andsummodules are required. In theα2module, element
Ais multiplied byα2, obtaining

A(α)·α2=am−1·α
m+1+am−2·α

m+···+a0·α
2, (4)

where

αm+1=fm−1·α
m+fm−2·α

m−1+···+f0·αmodp(α)

and

αm=fm−1·α
m−1+fm−2·α

m−2+···+f0modp(α),

usingp(α)as the ield polynomial. Moreover, using Equation (4), theXcoordinates are represented
as

xi=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

am−1·fi−1+(am−1

·fm−1+am−2)·fi

+ai−2 2≤i≤m−1,

am−1+(am−1·fm−1

+am−2)·f1 i=1,

am−1·fm−1+am−2 i=0.

(5)

The hardware design of theα2module is presented in Figure1,wherea0-am−1are the coeicients
of inputA,f0-fm−1are the ield polynomialp(α)coeicients, andα0-αm−1are denoted as the output
Xcoeicients. Additionally, the derivations from Equation (5) are shown in Figure1, using several
XOR and AND gates to obtain such formulations. For instance, the outputx0is obtained by XORing
the inputam−2with the result of adding through an AND gate the inputsam−1andfm−1, the output
x1is obtained by XORingam−1with the result of(am−1·fm−1+am−2)·f1(using two AND gates
and an extra XOR gate), and so on. To derive the regular and interleaved parities of theα2module,
Theorems3.2and3.3are presented next.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:9

Theorem 3.2.Consider aGF(2m)elementA,wherepA =
m−1
i=0airepresents the parity bits of

A. Letfi∈GF(2)fori=0,1,...,m−1and m be used as the code subspace dimension. Then, the
predicted parity of the output X is

p̂X=am−1·fm−1+am−2+am−1+(am−1

·fm−1+am−2)·f1+
m−1

i=2

(am−1·fi−1

+(am−1·fm−1+am−2)·fi+ai−2),

(6)

and whenm=13,̂pX=pA+a11+a12is obtained.

Proof. Our proposed scheme uses the ield polynomialp(α)=α13+α4+α3+α+1. Therefore,
f13=f4=f3=f1=f0=1. Then from Equation (6), one obtains

p̂X=a11+a12+a11+a12+a0+a11+a1+a12+a11
+a2+a12+a3+a4+a5+a6+a7+a8+a9+a10

=pA+a11+a12.

This brings the proof to a close.

Theorem 3.3.Consider aGF(2m)elementA, wherepAe=
m−1
2
i=0a2irepresents the even parity bits

of A, andpAo=
m−1
2
i=1a2i−1represents the odd parity bits of A. Letfi∈GF(2)fori=0,1,...,m−1

and m, which is used as the code subspace dimension, be odd. Then, predicted parities of the output X
denoted asp̂Xeandp̂Xofor even and odd bits, respectively, are

p̂Xe=am−1·fm−1+am−2+

m−1
2

i=1

(am−1

·f2i−1+(am−1·fm−1+am−2)·f2i+a2i−2),

(7)

p̂Xo=am−1+(am−1·fm−1+am−2)·f1+

m−3
2

i=1

(am−1

·f2i+(am−1·fm−1+am−2)·f2i+1+a2i−1),

(8)

and whenm=13,̂pXe=pAe+a12andp̂Xo=pAo+a11are obtained.

Proof. The predicted parityp̂Xis divided into

p̂X=am−1·fm−1+am−2+am−1+(am−1

·fm−1+am−2)·f1+
m−1

i=1

(am−1·f2i−1

+(am−1·fm−1+am−2)·f2i+a2i−2)
=p̂Xe+p̂Xo.

The ield polynomial utilized in our design isp(α)=α13+α4+α3+α+1; therefore, one obtains
f13=f4=f3=f1=f0=1. Then, from Equations (7) and (8), we have

p̂Xe=a11+a12+a0+a12+a11+a2+a4+a6+a8+a10
=pAe+a12

and
p̂Xo=a12+a11+a11+a1+a12+a3+a5+a7+a9

=pAo+a11.

This brings the proof to a close.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:10 A. C. Canto et al.

Fig. 2. The presented fault detection scheme of theH-generatorfor MECS.

Figure2shows both the originalH-generatorarchitecture (top) and theH-generatorwith the
presented fault detection blocks (bottom). The proposed design produces the matrixHby multi-
plying matricesX,Y,andZ. In Figure2,theH-generatormay employ both regular and interleaved
parities represented asP1−P4. The diferent fault detection blocks have been simpliied in Figure2
as four big white blocks; however, each of thosePblocks contain many XOR gates, OR gates, and
error lags. In Section4, we calculate the amount of signatures, which relate to the footprint of the
output of an error-detecting block, for the entire Key Generator. Nevertheless, let us go over a spe-
ciic example to show how thePblocks behave. For instance, theGF(213)Mult(2)block performs
a total of 8,192·128 multiplications to obtainXYZ. Each of those multiplications uses 12α,12
sum,and13pass-thrumodules, which translates into(8,192·128)mult·(12α+12sum+13pass)sub-
outputs. Each of these sub-outputs are compared with the predicted sub-outputs of theP4block,
obtaining(8,192·128)mult ·(12α+12sum+13pass)or close to 3.9×10

7signatures, which are
then ORed with each other. We note that the term signature here refers to appended bits used for
error detection through error-detecting codes and not the typical signatures commonly used for
proof of authenticity in cryptography. If the fault detection scheme used is based on interleaved
parity, then the number of error lags will double. As deducted from Theorem3.1for inite-ield

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:11

Fig. 3. CRC applied to the originalα,α2,sum,andpass-thrumodules.

multiplications,P2andP4blocks contain the diferent gates to obtain Equations (1) and (2). After
the Horner derivations are performed,P1is used, using Equations (1) and (2) to provide error detec-
tion. Regular and interleaved parities for multiplications and squarings overGF(2m)formulated
in Theorem3.1and Theorems3.2and3.3, respectively, are performed by theP3block. Therefore,
theP3block uses the Equations (1), (2), and (6)–(8) to provide error detection capabilities to the
GF(213)inverse block. All the diferent error detection blocks are connected together through an
OR gate that indicates if a fault has been detected in any block of theH-generator.

3.2 CRC

CRC uses cyclic error-correcting codes. First, a generator polynomialд(α)is selected to perform
CRC. Next, a long division of polynomials is calculated, whereд(α)becomes the divisor, the data
becomes the dividend, the remainder generates the result, and the quotient is disregarded. Last,
the data is appended with a speciied number of check bits, which are examined when the output
is retrieved to identify any faults. The CRCs that are used along this work are customizable
depending on the security considerations and the amount of overhead that may be accepted. To
put it another way, for applications like gaming consoles where performance is crucial (because
they are plugged in, their power usage is not), the CRC size may be increased. Nonetheless,
smaller CRCs are desirable for constrained devices.
CRCs in thesumandpass-thrumodules need fewer formulations than those in theαandα2

modules. The predicted CRC-1 for thesummodule is equivalent to the parity bits of the inputsA
andBinGF(2m)addition, which give uŝpX=pA+pB. Furthermore, CRC for thepass-thrumodule,
wherebis an element inGF(2), corresponds tôpX=b·pA. Instead of adding all the parity bits as
in CRC-1, thesumandpass-thrumodules for each CRC-Xscheme verifyXbits at a time. The NIST
ieldGF(213)is utilized next in conjunction with CRC-2 and CRC-8. Figure3shows how CRC is
added to the originalα,α2,sum,andpass-thrumodules. The number of error lags, denoted asEx,
is directly related to the CRC scheme used.

3.2.1 CRC forαModule.In theαmodule, multiplying an element inGF(213)byαproduces

A(x)·x=a12·α
13+a11·α

12+a10·α
11+a9·α

10

+a8·α
9+a7·α

8+a6·α
7+a5·α

6+a4·α
5

+a3·α
4+a2·α

3+a1·α
2+a0·α,

(9)

where

α13=f12α
12+f11α

11+···+f1α+f0modp(α).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:12 A. C. Canto et al.

The irreducible polynomialp(α)=α13+α4+α3+α+1isthenemployedtoget

A(α)·α≡a12α
4+a12α

3+a12α+a12+a11α
12

+a10α
11+a9α

10+a8α
9+a7α

8+a6α
7+a5α

6 (10)

+a4α
5+a3α

4+a2α
3+a1α

2+a0αmodp(α).

•For the case study ofm=13 with CRC-2 in theαmodule,д0(α)=α
2+α+1 is utilized as

the generator polynomial, which is used to ind its derivations as follows:

α2≡α+1modд0(α),
α3≡1modд0(α),
α4≡αmodд0(α),
α5≡α+1modд0(α),
α6≡1modд0(α),
α7≡αmodд0(α),
α8≡α+1modд0(α),
α9≡1modд0(α),
α10≡αmodд0(α),
α11≡α+1modд0(α),
α12≡1modд0(α).

Next, to determine the predicted CRC-2 equation forGF(213)in theαmodule, denoted as
(PCRC213),д0(α)is applied in Equation (10), obtaining

A(α)·α≡a11+a10(α+1)+a9α+a8+a7(α

+1)+a6α+a5+a4(α+1)+a3α+a2+a1(α

+1)+a0αmodд0(α),

or

PCRC213=(a10+a9+a7+a6+a4+a3

+a1+a0)α+(a11+a10+a8+a7+a5 (11)

+a4+a2+a1).

Then, the coeicients from Equation (10) are renamed to determine the actual CRC-2 equa-
tion forGF(213)in theαmodule (AC RC213):a11asγ12,...,a0asγ1,

A(x)·x≡γ12α
12+γ11α

11+γ10α
10+γ9α

9

+γ8α
8+γ7α

7+γ6α
6+γ5α

5+γ4α
4 (12)

+γ3α
3+γ2α

2+γ1α
1+γ0modд0(α),

and we applyд0(α)as follows:

A(α)·α≡γ12+γ11(α+1)+γ10α+γ9

+γ8(α+1)+γ7α+γ6+γ5(α+1)+γ4α

+γ3+γ2(α+1)+γ1α+γ0modд0(α),

or

AC RC213=(γ11+γ10+γ8+γ7+γ5+γ4

+γ2+γ1)α+(γ12+γ11+γ9+γ8+γ6+γ5 (13)

+γ3+γ2+γ0).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:13

•For the case study ofm=13 with CRC-8 in theαmodule,д1(α)=α
8+α2+α+1isutilized

as the generator polynomial, which is used to ind its derivations as follows:

α8≡α2+α+1modд1(α),
α9≡α3+α2+αmodд1(α),
α10≡α4+α3+α2modд1(α),
α11≡α5+α4+α3modд1(α),
α12≡α6+α5+α4modд1(α).

Next, to determine the predicted CRC-8 equation forGF(213)in theαmodule, denoted as
(PCRC813),д1(α)is applied in Equation (10), obtaining

A(α)·α≡a12(α
4+α3+α+1)+a11(α

6+α5+α4)

+a10(α
5+α4+α3)+a9(α

4+α3+α2)+a8(α
3

+α2+α)+a7(α
2+α+1)+a6α

7+a5α
6+a4α

5

+a3α
4+a2α

3+a1α
2+a0αmodд1(α),

or

PCRC813=a6α
7+(a11+a5)α

6+(a11+a10

+a4)α
5+(a12+a11+a10+a9+a3)α

4+ (14)

(a12+a10+a9+a8+a2)α
3+(a9+a8+a7

+a1)α
2+(a12+a8+a7+a0)α+(a12+a7).

Then, the coeicients from Equation (10) are renamed to determine the actual CRC-8 equa-
tion, denoted asAC RC813,forGF(2

13)in theαmodule:a11asγ12,...,a0asγ1,

A(α)·α≡γ12α
12+γ11α

11+γ10α
10+γ9α

9

+γ8α
8+γ7α

7+γ6α
6+γ5α

5+γ4α
4 (15)

+γ3α
3+γ2α

2+γ1α+γ0modд1(α),

and we applyд0(α)as follows:

A(α)·α≡γ12(α
6+α5+α4)+γ11(α

5+α4+α3)

+γ10(α
4+α3+α2)+γ9(α

3+α2+α)+γ8(α2

+α+1)+γ7α
7+γ6α

6+γ5α
5+γ4α

4+γ3α
3

+γ2α
2+γ1α+γ0modд1(α),

or

AC RC813=γ7α
7+(γ12+γ6)α

6+(γ12+γ11

+γ5)α
5+(γ12+γ11+γ10+γ4)α

4+(γ11 (16)

+γ10+γ9+γ3)α
3+(γ10+γ9+γ8+γ2)α

2

+(γ9+γ8+γ1)α+(γ8+γ0).

The NIST ieldGF(213)is utilized next with CRC-2 and CRC-8 for theα2module; nonetheless,
the presented error detection techniques can be applied with any ield sizes or CRCs.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:14 A. C. Canto et al.

3.2.2 CRC forα2Module.In theα2module, multiplying any element inGF(213)byα2produces

A(α)·α2=a12·α
14+a11·α

13+a10·α
12

+a9·α
11+a8·α

10+a7·α
9+a6·α

8

+a5·α
7+a4·α

6+a3·α
5+a2·α

4

+a1·α
3+a0·α

2,

(17)

whereα14=f12α
13+f11α

12+···+f1α
2+f0αmodp(α)andα

13=f12α
12+f11α

11+···+f1α+
f0modp(α). Form=13,p(α)=α

13+α4+α3+α+1, which is the irreducible polynomial, is
employed to get

A(α)·α2≡a12α
5+a12α

4+a12α
2+a12α+a11α

4

a11α
3+a11α+a11+a10α

12+a9α
11+a8α

10

+a7α
9+a6α

8+a5α
7+a4α

6+a3α
5+a2α

4

+a1α
3+a0α

2modp(α).

•Form=13 with CRC-2 in theα2module,д0(α)is utilized in Equation (17) to determine the
predicted CRC-2 equation forGF(213), denoted asPCRC213, obtaining

A(α)·α2≡a10+a9(α+1)+a8α+a7+a6(α

+1)+a5α+a4+a3(α+1)+a2α+a1+a0(α

+1)modд0(α),

or

PCRC213=(a9+a8+a6+a5+a3+a2+a0) (18)

·α+(a10+a9+a7+a6+a4+a3+a1+a0).

Then, the coeicients from Equation (17) are renamed to determine the actual CRC-2 equa-
tion forGF(213)in theα2module, denoted asAC RC213, getting the same derivations as for
theαmodule.
•Form=13 with CRC-8 in theα2module,д1(α)is utilized in Equation (17) to determine the
predicted CRC-8 equation forGF(213), denoted asPCRC813, obtaining

A(α)·α2≡a12(α
5+α4+α2+α)+a11(α

4+α3

+α+1)+a10(α
6+α5+α4)+a9(α

5+α4+α3)

+a8(α
4+α3+α2)+a7(α

3+α2+α)+a6(α
2

+α+1)+a5α
7+a4α

6+a3α
5+a2α

4+a1α
3

+a0x
2modд1(α),

or

PCRC813=a5α
7+(a10+a4)α

6+(a12+a10+a9

+a3)α
5+(a12+a11+a10+a9+a8+a2)α

4+(a11 (19)

+a9+a8+a7+a1)α
3+(a12+a8+a7+a6

+a0)α
2+(a12+a11+a7+a6)α+(a11+a6).

Then, the coeicients from Equation (17) are renamed to determine the actual CRC-8 equa-
tion forGF(213)in theα2module, denoted asAC RC813, getting the same derivations as for
theαmodule.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:15

Table 2. Steps Required to Complete the Inverse of an
ElementAinGF(213)Employing the Addition ChainC

Step βVi(α) βVj+Uk(α) Exponentiation
1 β1(α) − A

2 β2(α) β1+1(α) (β1)
21β1=A

22−1

3 β3(α) β2+1(α) (β2)
21β1=A

23−1

4 β6(α) β3+3(α) (β3)
23β3=A

26−1

5 β12(α) β6+6(α) (β6)
26β6=A

212−1

4 ERROR COVERAGE AND FPGA IMPLEMENTATIONS

As previously stated, multiplications inGF(2m)require three distinct modules (α,sum,andpass-
thrumodules), squarings inGF(2m)utilize theα2andsummodules, and additions inGF(2m)
require just thesummodule. Form=13 using a bit-parallel design with regular parity, 12α,12
sum,and13pass-thrumodules are utilized to perform each multiplication inGF(213);12α2and 12
summodules are required for each squaring inGF(213);andjust12summodules are used on each
addition inGF(213). The number of signatures for regular parity utilized by thePiblocks, where
1≤i≤4, is determined as:

(1) A 128×128 matrixXis generated to calculate the matrixXY. To achieve eicient polynomial
multiplications, the Horner algorithm is performed. Each column of the 128×8,192XY
matrix needs a total of 127 multiplications and 127 additions inGF(213), resulting in a total
of 8,192column·127mult.·(12α+12sum+13pass)signatures for inite-ield multiplications
and 8,192column·127add.·12sumsignatures for inite-ield additions. Therefore, theHorner
block requires more than 5·107signatures.

(2) In Figure2, it is shown that to derive the matrixZ,theGF(213)Mult(1)block is needed.
Such block performs 8,192 multiplications and 8,192 additions inGF(213), resulting in a
total of 8,192mult.·(12α+12sum+13pass)signatures for inite-ield multiplications, and
8,192add.·12sumsignatures for inite-ield additions. Therefore, theGF(2

13)Mult(1)block
requires more than 4·105signatures.

(3) Next, a total of 8,192 inversions inGF(2m)are performed by theGF(213)Inverseblock shown
in Figure2. Form=13, the addition chain utilized isC={1,2,3,6,12}.Table2shows the
diferent steps required to obtain the inverse ofAϵGF(213)using addition chains. In Table2,
the integers in the calculated addition chain are denoted asVi,Vj=Vi−1,andUk=Vi−Vj,
requiring 4 multiplications and 12 squaring inGF(213). Therefore, a total of 8,192inv.·(4mult.·
(12α+12sum+13pass)+12add.·(12α+12sum))or close to 3.6·10

6operations and signatures
are required. We note that each inite-ield multiplication and squaring requires a total of
seven and six clock cycles, respectively, specifying a main clock time constraint of 20 ns,
which corresponds to a frequency of 50 MHz.

(4) Then, theGF(213)Mult(2) block from Figure2requires 8,192·128 multiplications to obtain
XYZ.Moreover,theGF(213)Mult(2)block uses(8,192·128)mult·(12α+12sum+13pass)signa-
tures to perform all the inite-ield multiplications needed, totaling about 3.9·107signatures.

(5) After the control matrixHis generated, other steps are computed. The matrixHis
multiplied with a matrixPto be permuted, obtainingH̃. Our fault detection schemes
can be integrated in this process, since it requires approximately 8.6·109multiplications
(8,192·8,192·128) and approximately 8.6·109additions (8,192·8,192·128) inGF(213).
The Gauss Systemizer unit, which conducts row permutations and XOR additions of two
rows, is also used in the key generation. Permutations can be achieved in this situation by

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:16 A. C. Canto et al.

Table 3. Area and Delay Results Obtained Ater Adding Fault Detection into the Original Horner and
Inversion Architectures on FPGA Kintex-7 (Device xc7k70tfbv676-1)

Architecture
Area

Delay (ns)
(occupied slices)

Original Horner block 2,976 28.267
Horner Reg. Parity (predicted/actual/compressor) 3,138 (5.44%) 28.541 (Neg. over.)
Horner Inter. Parity (predicted/actual/compressor) 3,402 (14.31%) 29.410 (Neg. over.)
Horner CRC-2 (predicted/actual/compressor) 3,285 (10.38%) 28.850 (Neg. over.)
Horner CRC-8 (predicted/actual/compressor) 3,572 (20.03%) 29.803 (5.43%)

Original Inversion block 783 28.820
Inversion Reg. Parity (predicted/actual/compressor) 976 (24.65%) 29.013 (Neg. over.)
Inversion Inter. Parity (predicted/actual/compressor) 1,083 (38.31%) 28.995 (Neg. over.)
Inversion CRC-2 (predicted/actual/compressor) 1,121 (43.17%) 28.720 (Neg. over.)
Inversion CRC-8 (predicted/actual/compressor) 1,166 (48.91%) 31.124 (7.99%)

Table 4. Power and Throughput Results Obtained Ater Adding Fault Detection into the Original Horner
and Inversion Architectures on FPGA Kintex-7 (Device xc7k70tfbv676-1)

Architecture
Power (mW)

Throughput (Gbps)
Eiciency

@50 MHz (Gbps/slices)

Original Horner block 0.144 0.460 1.54×10−4

Horner Reg. Parity (predicted/actual/compressor) 0.147 (Neg. over.) 0.455 (Neg. over.) 1.45×10−4(5.84%)
Horner Inter. Parity (predicted/actual/compressor) 0.157 (9.03%) 0.442 (Neg. over.) 1.30×10−4(15.58%)
Horner CRC-2 (predicted/actual/compressor) 0.154 (6.94%) 0.451 (Neg. over.) 1.37×10−4(11.04%)
Horner CRC-8 (predicted/actual/compressor) 0.158 (9.72%) 0.446 (Neg. over.) 1.25×10−4(18.83%)

Original Inversion block 0.101 0.451 5.76×10−4

Inversion Reg. Parity (predicted/actual/compressor) 0.108 (6.93%) 0.448 (Neg. over.) 4.59×10−4(20.31%)
Inversion Inter. Parity (predicted/actual/compressor) 0.110 (8.91%) 0.448 (Neg. over.) 4.14×10−4(28.12%)
Inversion CRC-2 (predicted/actual/compressor) 0.112 (10.89%) 0.453 (Neg. over.) 4.04×10−4(29.86%)
Inversion CRC-8 (predicted/actual/compressor) 0.113 (11.88%) 0.418 (–7.31%) 3.58×10−4(37.84%)

rewiring, which does not require to add signatures, and XOR additions (perform between
13-bit vectors), which can integrate the signatures mentioned above.

The formula 100·(1−(12)
#siдn)%, where #siдn.stands as the number of signatures, is used to

compute the fault coverage percentage of the presented schemes. Moreover, the presented regular

parity has a high fault coverage percentage of close to 100·(1−(12)
108)%, the presented interleaved

parity and CRC-2 have a fault coverage percentage of close to 100·(1−(12)
2·108)%, and the presented

CRC-8 has a fault coverage percentage of close to 100·(1−(12)
8·108)%. Additionally, only the

signatures required for one block out of the four in our presented method illustrated in Figure1
would be considered for local faults. For regular parity, the fault coverage is close to 100·(1−

(12)
3.6·106)%, 100·(1−(12)

7.2·106)% for interleaved parity and CRC-2, and 100·(1−(12)
2.9·107)%for

CRC-8, if the errors are restricted to theGF(213)Inverseblock.
In Tables3and4, the overheads of our fault detection schemes are shown in terms of area (occu-

pied slices), delay, power (with a 50 MHz frequency), throughput, and performance for theHorner
and theGF(213)Inverseblock, whereneд.over.stands for negligible overhead. The presented
constructions are not fully pipelined, and they are implemented on Xilinx FPGA family Kintex-7
device xc7k70tfbv676-1 using the Vivado tool and Verilog as the hardware design language. How-
ever, we note that because our schemes are platform-oblivious, the outcome is not necessarily

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:17

inluenced by the intended platform. To get the area, the Vivado’s place utilization report reads
CLBs, which are the main resources for creating general purpose combinational and sequential
circuits. To compute the delay, we utilize Vivado’s Timing Constraints Wizard, specifying a main
clock time constraint of 20 ns, which corresponds to a frequency of 50 MHz. The total on-chip
power, which is the power utilized internally within the FPGA and is calculated by combining de-
vice static power and design power, is also reported. Throughput is obtained by dividing the total
number of output bits over the delay, eiciency is obtained by dividing throughput over area, and
performance is obtained by dividing throughput over slices.
Let us go over an example to show how our fault detection schemes are incorporated to the Key

Generator. First, the top module calls a functional unit, e.g.,Hornerblock,GF(213)Inverseblock,
GF(213)Mult(1)block,GF(213)Mult(2)block, andGF(213)Gen.block. For instance, if theHorner
block is called, this functional unit calls many multiplications and additions inGF(2m). When
each inite-ield multiplication is called, our error detection scheme is called as well to compare
the predicted output of that speciic inite-ield operation and the actual output with XOR gates,
producing an error lag. Last, when theHornerunit has made all the calls to the diferent inite-ield
multiplications and additions, it compares all the error lags with OR gates to check that all the
inite-ield operations have been performed free of faults. Additionally, we have implemented the
Inverseblock with diferent inite-ield sizes, i.e.,GF(212), which is the other inite-ield option for
the McEliece cryptosystem NIST submission and is considered a Category 3 parameter set in terms
of expected strength (as opposed toGF(213), which is considered Category 5), andGF(211),toshow
the feasibility of our schemes for other ields. For theInverseblock using the inite ieldGF(212),
the area overheads are 37.92% (451 slices), 42.51% (466 slices), and 46.79% (480 slices) when using
normal parity, interleaved parity, and CRC-2, respectively; the delay overheads are 6.14% (14.796
ns), negligible (13.654 ns), and negligible (13.704 ns) when using normal parity, interleaved parity,
and CRC-2, respectively; and the power overheads and 7.06% (0.091 mW), 5.88% (0.090 mW), and
5.88% (0.090 mW) when using normal parity, interleaved parity, and CRC-2, respectively. For the
Inverseblock using the inite ieldGF(211), to show the feasibility, the area overheads for the irst
two cases are 33.50% (267 slices), 19.50% (239 slices), the delay overheads are 6.30% (4.519 ns), 8.89%
(4.629 ns), and the power overheads are negligible, i.e., 0.085 mW.
To obtain the area, the utilization report from Vivado reads the occupied slices, which are

essential for the implementation of general purpose combinational and sequential circuits. To
compute the delay, we utilize Vivado’s Timing Constraints Wizard, specifying a main clock time
constraint of 20 ns, or a 50 MHz frequency. Total on-chip power, which is the power utilized
internally through the FPGA is reported as well and is calculated by combining the design power
and the device static power. Last, the number of bits from the output is divided by the delay to
get the throughput. As demonstrated in Tables3and4, when stronger schemes with better error
coverage are added to the original designs, they result in increased area and power overheads.
The overhead diference in terms of delay is small and changes based on the gates employed in
each design. Furthermore, it is certain that the larger the overall design is, the lower the overhead
is. Since theGF(213)Inverseblock does fewer operations than theHornerblock, the overall
overheads are higher. Both interleaved parity and CRC-2 are quite comparable, since they have
the same amount of error lags, while CRC-8 is the most costly fault detection architecture. This is
to be expected, given CRC executes more operations, resulting in larger error coverage, as seen by
our studies. The overall area overheads of the strategies proposed in this article are less than 49%,
which corresponds to the overhead obtained by theGF(213)Inverseblock when it uses CRC-8, and
more than 5%, which corresponds to the overhead obtained by theHornerblock when it uses regu-
lar parity. Low delay overheads are observed for the presented fault detection schemes. As shown
in Table3, the worst-case scenarios in terms of delay overhead are less than 6% and less than 8%

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

5:18 A. C. Canto et al.

Table 5. Worst-case Overhead Comparison of the Presented Schemes with Other Fault Detection Works

Work Fault Detection Scheme
Worst-Case Overhead %

Area Delay Power Throughput Eiciency

[18] CRC-10 25.51Not given Not given Not given Not given
[19] CRC-3 20.81 18.71 10.29 15.77 28.99
[20] Recom. shifted operands 40.74 21.23 22.41 Not given Not given
[23] Recom. customizable swapped entries 5.1 Not given Not given 13.5 18.0
[24] CRC-5 18.33 11.25 0 10.10 Not given
[30] Multi-parity 8.54 4.68 3.90 2.91 Not given

This work CRC-8 (Goppa Horner) 20.03 5.43 9.72 Neg. over. 18.83
This work CRC-8 (Inversion) 48.91 7.99 11.88 7.31 37.84

for theHornerandGF(213)Inverseblock when using CRC-8, respectively. Furthermore, the power
overheads added to the original architectures are less than 12%, which is obtained by theGF(213)
Inverseblock using CRC-8. Last, Table4shows how the throughput decreases when fault detection
is added to the original constructions, obtaining a worst-case throughput overhead scenario of less
than 8%. The fault detection schemes used are customizable based on the level of security required
and the amount of overheads to be accepted. The scheme sizes can be increased for situations
where performance is crucial, while smaller schemes are preferable for deeply-embedded systems.
To the best of the authors’ knowledge, there has been no past studies on this sort of fault detec-

tion methods for the McEliece’s Key Generator has been done. Let us look at some case studies for
a qualitative assessment to verify that the overheads generated are reasonable. In Reference [29],
fault detection techniques using parity prediction for multiplication inGF(2m)with normal basis
are presented in Reference [34], getting approximately 58% of combined area and delay overhead
(worst-case scenario). One of the drawbacks of regular parity prediction is that intelligent fault
injection can get around this predictable countermeasure by injecting an even number of faults.
Therefore, we present interleaved parity as well as CRC-2 and CRC-8 to resolve this issue. Concur-
rent error detection constructions to perform the Extended Euclidean-based division overGF(2m)
are provided in Reference [35]. The schemes utilized are based on parity prediction and they have
a combined worst-case area and delay overhead of 25.18%. Moreover, Table5shows a compari-
son in terms of worst-case area, delay, and power overheads of the presented schemes with other
works on fault detection. These and related earlier research on traditional cryptography demon-
strate that the presented fault detection constructions acquire comparable overheads to existing
works on error detection, obtaining a tolerable overhead.

5 CONCLUSION

In this work, fault detection schemes are used in the diferent blocks of the Key Generator and
other units of code-based cryptosystems. Key generation has the largest area complexity and, as a
result, it is the most involved hardware implementation inside McEliece, using inite-ield addition,
multiplication, squaring, and inversion operations. McEliece has been advanced to the current and
inal round in the NIST standardization process as of July 2020. Our work has a special focus on
theH generator,which provides the control matrixHrequired to get the McEliece cryptosystem
public key. We have derived closed formulations for regular parity, interleaved parity, CRC-2, and
CRC-8 for the inite-ield blocks, and we have implemented these signatures on FPGA to assess the
overheads and performance deterioration of the presented schemes and demonstrate their appli-
cability for constrained embedded systems. The overall area and delay overheads of the strategies
proposed in this article are less than 49%, which corresponds to the overhead obtained by the
GF(213)Inverseblock when it uses CRC-8, and more than 5%, which corresponds to the overhead

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

Reliable Constructions for the Key Generator 5:19

obtained by theHornerblock when it uses regular parity. The provided fault detection construc-
tions produce high error coverage at a reasonable overhead, as the results show.

REFERENCES

[1] D. Moody. 2016. Post-quantum cryptography: NIST’s plan for the future. Retrieved fromhttps://pqcrypto2016.jp/data/
pqc2016_nist_announcement.pdf.

[2] A. Shoufan, T. Wink, H. G. Molter, S. A. Huss, and E. Kohnert. 2010. A novel cryptoprocessor architecture for the
McEliece public-key cryptosystem.IEEE Trans. Comput.59, 11 (2010), 1533–1546.

[3] R. Agrawal, L. Bu, and M. A. Kinsy. 2020. Quantum-proof lightweight McEliece cryptosystem co-processor design. In
Proceedings of the IEEE 38th International Conference on Computer Design (ICCD’20). 73–79.

[4] M. Lopez-Garcia and E. Cant-Navarro. 2020. Hardware-software implementation of a McEliece cryptosystem for post-
quantum cryptography. InProceedings of the Future Information and Communication Conference. 814–825.

[5] L. Mariot, S. Picek, and R. Yorgova. 2021. On McEliece type cryptosystems using self-dual codes with large minimum
weight. Cryptology ePrint Archive. Retrieved fromhttps://eprint.iacr.org/2021/837.

[6] J. Roth, E. Karatsiolis, and J. Kramer. 2020. Classic McEliece implementation with low memory footprint. InProceedings
of the International Conference on Smart Card Research and Advanced Applications. 34–49.

[7] Z. Li, C. Xing, and S. L. Yeo. 2019. Reducing the key size of Mceliece cryptosystem from automorphism-induced Goppa
codes via permutations. InProceedings of the IACR International Workshop on Public Key Cryptography. 599–617.

[8] M. S. Chen and T. Chou. 2021. Classic McEliece on the ARM Cortex-M4. InProceedings of the International Workshop
on Cryptographic Hardware and Embedded Systems2021, 3, 125–148.

[9] F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan. 2008. Side channels in the McEliece PKC. InProceedings
of the International Workshop on Post-Quantum Cryptography.216–229.

[10] P. L. Cayrel and P. Dusart. 2010. McEliece/Niederreiter PKC: Sensitivity to fault injection. InProceedings of the Inter-
national Conference on Future Information Technology.1–6.

[11] F. Strenzke. 2013. Eiciency and implementation security of code-based cryptosystems. Ph.D. Thesis.
[12] P. L. Cayrel, B. Colombier, V. F. Drăgoi, A. Menu, and L. Bossuet. 2021. Message-recovery laser fault injection attack on

the classic McEliece cryptosystem. InProceedings of the Annual International Conference on the Theory and Applications
of Cryptographic Techniques. 438–467.

[13] T. Itoh and S. Tsujii. 1988. A fast algorithm for computing multiplicative inverses inGF(2m)using normal bases.Info.
Comput.78, 3 (1988), 171–177.

[14] J. Guajardo and C. Paar. 2002. Itoh-Tsujii inversion in standard basis and its application in cryptography and codes.
Designs, Codes Cryptogr.25 (2002), 207–216.

[15] F. Rodriguez-Henriquez, N. A. Saqib, and N. Cruz-Cortes. 2005. A fast implementation of multiplicative inversion over
GF(2m).InProceedings of the International Symposium on Information Technology. 574–579.

[16] B. Liu and R. Sandhu. 2015. Fingerprint-based detection and diagnosis of malicious programs in hardware.IEEE Trans.
Reliabil.64, 3 (2015), 1068–1077.

[17] M. Mozafari-Kermani, R. Azarderakhsh, and A. Aghaie. 2015. Reliable and error detection architectures of Pomaranch
for false-alarm-sensitive cryptographic applications.IEEE Trans. Very Large Scale Integr. Syst.23, 2804–2812.

[18] A. Cintas-Canto, M. Mozafari-Kermani, and R. Azarderakhsh. 2021. CRC-based error detection constructions for FLT
and ITA inite ield inversions over GF(2m).IEEE Trans. Very Large Scale Integr. Syst.29, 5 (2021), 1033–1037.

[19] J. Kaur, M. Mozafari Kermani, and R. Azarderakhsh. 2021. Hardware constructions for lightweight cryptographic
block cipher QARMA with error detection mechanisms.IEEE Trans. Emerg. Top. Comput., accepted.

[20] A. Sarker, M. Mozafari Kermani, and R. Azarderakhsh. 2021. Fault detection architectures for inverted binary Ring-
LWE construction benchmarked on FPGA.IEEE Trans. Circ. Syst. II68, 4 (2021), 1403–1407.

[21] A. Sarker, M. Mozafari Kermani, and R. Azarderakhsh. 2021. Error detection architectures for ring polynomial multi-

plication and modular reduction of Ring-LWE inZ=
pZ[x]
xn+1benchmarked on ASIC.IEEE Trans. Reliabil.70, 1 (2021),

362–370.
[22] M. Mozafari Kermani and R. Azarderakhsh. 2019. Reliable architecture-oblivious error detection schemes for secure

cryptographic GCM structures.IEEE Trans. Reliabil.68, 4 (2019), 1347–1355.
[23] M. Mozafari Kermani, R. Azarderakhsh, A. Sarker, and A. Jalali. 2018. Eicient and reliable error detection architec-

tures of Hash-Counter-Hash tweakable enciphering schemes.ACM Trans. Embed. Comput. Syst.17, 2 (2018), 54:1–
54:19.

[24] A. Cintas-Canto, M. Mozafari-Kermani, and R. Azarderakhsh. 2021. Reliable CRC-based error detection constructions
for inite ield multipliers with applications in cryptography.IEEE Trans. Very Large Scale Integr. Syst.29, 1 (2021), 232–
236.

[25] M. Mozafari Kermani and A. Reyhani-Masoleh. 2009. Fault detection structures of the S-boxes and the inverse s-boxes

for the advanced encryption standard.J. Electr. Testing: Theory Appl.25, 4 (2009), 225–245.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://eprint.iacr.org/2021/837

5:20 A. C. Canto et al.

[26] M. Mozafari Kermani and A. Reyhani-Masoleh. 2009. A low-cost S-box for the advanced encryption standard using
normal basis. InProceedings of the IEEE International Conference Electro/Information Technology (EIT’09). 52–55.

[27] S. Subramanian, M. Mozafari Kermani, R. Azarderakhsh, and M. Nojoumian. 2017. Reliable hardware architectures

for cryptographic block ciphers LED and HIGHT.IEEE Trans. Comput.-Aided Design Integr. Circ. Syst.36, 10 (2017),
1750–1758.

[28] S. Bayat-Sarmadi, M. Mozafari Kermani, and A. Reyhani-Masoleh. 2014. Eicient and concurrent reliable realization
of the secure cryptographic SHA-3 algorithm.IEEE Trans. Comput.-Aided Design Integr. Circ. Syst.33, 7 (2014), 1105–
1109.

[29] M. Mozafari Kermani and A. Reyhani-Masoleh. 2011. A high-performance fault diagnosis approach for the AES
SubBytes utilizing mixed bases. InProceedings of the IEEE Workshop Fault Diagnosis and Tolerance in Cryptography

(FDTC’11), pp. 80–87.
[30] A. Cintas-Canto, M. Mozafari-Kermani, and R. Azarderakhsh. 2021. Reliable architectures for composite-ield-

oriented constructions of McEliece post-quantum cryptography on FPGA.IEEE Trans. Comput.-Aided Design Integr.
Circ. Syst.40, 5 (2021), 999–1003.

[31] D. J. Bernstein, T. Chuo, T. Lange, I. Von Maurich, R. Misoczki, R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe,
N. Sendrier, J. Szefer, and W. Wang. 2017. Classic McEliece: Conservative code-based cryptography. Retrieved from
https://classic.mceliece.org/nist/mceliece-20171129.pdf.

[32] N. Patterson. 1975. Algebraic decoding of Goppa codes.IEEE Trans. Info. Theory21, 2 (1975), 203–207.
[33] A. Reyhani-Masoleh and M. A. Hasan. 2002. Error detection in polynomial basis multipliers over binary extension

ields. InProceedings of the Workshop Cryptographic Hardware and Embedded Systems(CHES’02). 515–528.
[34] C. Y. Lee, P. K. Meher, and J. C. Patra. 2009. Concurrent error detection in bit-serial normal basis multiplication over

GF(2m)using multiple parity prediction schemes.IEEE Trans. Very Large Scale Integr. Syst.18, 8 (2009), 1234–1238.
[35] M. Mozafari-Kermani, R. Azarderakhsh, C. Y. Lee, and S. Bayat-Sarmadi. 2013. Reliable concurrent error detec-

tion architectures for Extended Euclidean-based division overGF(2m).IEEE Trans. Very Large Scale Integr. Syst.22,
5 (2013), 995–1003.

Received 29 November 2021; revised 10 May 2022; accepted 1 June 2022

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

https://classic.mceliece.org/nist/mceliece-20171129.pdf

