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Seventy Years of Radar and Communications

The road from separation to integration

adar and communications (R&C) as key utilities of electro-

magnetic (EM) waves have fundamentally shaped human

society and triggered the modern information age. Although
R&C had been historically progressing separately, in recent de-
cades, they have been converging toward integration, forming
integrated sensing and communication (ISAC) systems, giving
rise to new highly desirable capabilities in next-generation wire-
less networks and future radars. To better understand the essence
of ISAC, this article provides a systematic overview of the his-
torical development of R&C from a signal processing (SP) per-
spective. We first interpret the duality between R&C as signals
and systems, followed by an introduction of their fundamental
principles. We then elaborate on the two main trends in their
technological evolution, namely, the increase of frequencies and
bandwidths and the expansion of antenna arrays. We then show
how the intertwined narratives of R&C evolved into ISAC and
discuss the resultant SP framework. Finally, we overview future
research directions in this field.

Introduction
Background and motivation

Since the 20th century, the development of human civilization
has relied largely upon the exploitation of EM waves. Governed

oS TTERSTOOK ComTAE by Maxwell’s equations, EM waves are capable of traveling
over large distances at the speed of light, which makes them a
perfect information carrier. In general, one may leverage EM
waves to acquire information on physical targets, including
range, velocity, and angle, and to efficiently deliver artificial
information, e.g., texts, voices, images, and videos, from one
point to another. Among many applications, EM waves have
enabled information acquisition and delivery, which form the
foundation of our modern information era and have given rise
to the proliferation of R&C technologies.

While the existence of EM waves was theoretically predict-
ed by Maxwell in 1865 and experimentally verified by Hertz
in 1887, the waves’ capability of carrying information to travel
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wireless experiment in 1901 [1]. The successful reception of
the first transatlantic radio signal marked the beginning of the )
great information era. From then on, communication technol- A %
ogy rapidly grew thanks to the heavy demand for intelligence, £
intercept, and cryptography technologies during the two world ISAC Standardization @------- - 2022 E:’
wars. It is generally difficult to identify a precise date for the o) P §050 g
birth of radar. Some of the early records show that the German =
inventor Christian Hiilsmeyer was able to use radio signals to @
detect distant metallic objects as early as 1904. In 1915, the 3GPP MmWave Standardization 4---1 2019 g )
British radar pioneer Robert Watson Watt employed radio sig- Perceptive Mobile Network @ -------}- 2017 é. g
nals to detect thunderstorms and lightning. The R&D of mod- E £
ern radar systems was not carried out until the mid-1930s. The Hybrid Beamforming for mm-Wave Comms4---1 2014 5 £
term radar was first used by the U.S. Navy as an acronym for SSPARC Project @ -------1 2013 g g
“radio detection and ranging” in 1939. g E
. Desp%te the fact that both technologies originated from the SRR Eeee 6 QCMlsl}/éga(I_ ﬁén‘n?_f:: Lev 3 é
discoveries of Maxwell and Hertz, R&C have been largely Phased-MIMO Radar 4 g g
treated as two separate research fields, due to different con- MIMO Radar 4 . lLogos E g
straints in their respective applications, and were therefore % e
independently investigated and developed for decades. His- , e c 4
. . . . Chirp-Based ISAC Signaling@®-------+ 1996 © o
torically, the technological evolution of R&C follows two main =8
trends: 1) from low frequencies to higher frequencies and larger MIMO Comm 5 Patent 4--{ 1994 g g
bandwidths [2] and 2) from single-antenna to multiantenna and AMRFC Project @ -~ -- £
even massive antenna arrays [3], [4]. With recent developments, — ESPRIT Algorithm ‘ i 1989 g g
the combined use of large antenna arrays and millimeter-wave 2 § MUSIC Algorithm 4 e 1979 E g
(mm-wave)/terahertz (THz) band signals results in striking Qo SEW Waveform 4 -] 1968 E S
similarities among R&C systems in terms of hardware archi- ® < 3 =
tecture, channel characteristics, and SP methods. Hence, the 8>3 3 %
boundary between R&C is becoming blurred, and hardware g2 OFDM Modulation 4¢---1- 1967 E 2
and spectrum convergence has led to a design paradigm shift, '}z; § FFT Algorit@m W18 T3
where the two systems can be codesigned for efficiently uti- = % % é
lizing resources, offering tl.mable. tra.deoffs and unp.reced.ented Eo First ISAC Signaling SLcESrgeC;j-e-t 193 =z 2
synergies for mutual benefl.ts. ThlS. line of. research is typically 368 Swerling Targst Models < i) 1954 § é
referred to as ISAC, and is applicable in numerous emerg- N S
ing areas, including vehicular networks, Internet of Things sa
(IoT) networks, and activity recognition [5], [6]. Over the past B % E
. . Shannon’s Information Theory 4---1 1948 . £
decade, ISAC has been well recognized as a key enabling tech- . T S
nology for both next-generation wireless networks and radar NF Detection Criterion of---{-------1- 1947 5 g
systems [5]. Given the potential of ISAC, a deeper understand- Cramér-Rao Lower Bound &---:----+---1 1945 & &
ing of the various connections and distinctions between R&C, Phased-Array Radar 4 oot 1944 % 8
and learning from how they evolved from separation to inte- o 538
o o Matched Filtering l---+---1 1943 5 &
gration, is important for inspiring future research. =
In Figure 1 we summarize key milestones achieved in Birth of the Acronym “RADAR” d---1----+---1- 1939 ) =
R&C history, which are split into four categories with differ- & "':;
ent markers, namely, the individual R&C technologies, general . % g
technologies that are useful for both, and ISAC technologies. Bl e e RO <> =
In the remainder of the article, we discuss how these key tech- Nyquist Sampling Theorém -1 1928 g B
niques facilitate the development of R&C and ISAC systems. E £
i First Wireless Voice_TransmE?i(?Tf:: L 1915 é §
Summary and organization of the article ETSMTEEEEE ST, =8
In this article, we provide a systematic overview of the develop- é §
ment and key milestones achieved in the history of R&C from an Marconi’s Transatlantic Experiment 4¢--1 1901 ‘g =
SP perspective. We commence by introducing the fundamental Hertz's EM Experiment Bt ------- - 1887 E E
principles and SP theories of both R&C. We then present the spec- Maxwell's Equations . _______ | 1862 é <§»:
trum engineering of R&C, namely, from narrowband to wideband §
and from single-carrier to multicarrier systems. Furthermore, we T
elaborate on the expansion of R&C systems’ antenna arrays, i.e., 2
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from single-antenna systems to phased arrays and from multiple-
input, multiple-output (MIMO) to massive MIMO (mMIMO)
and distributed antenna systems. Following the two technological
trends, the paths of R&C eventually move from separation to inte-
gration and give rise to the ISAC technology,

which motivates the detailed discussion on

the SP framework of ISAC. Finally, we sum-

marize the article and identify future research

directions.

Fundamentals of radar and
communications

Basic principles: A signals and

systems perspective

The basic system setting for both R&C

consists of three parts: a transmitter (Tx), which produces EM
waves; a channel, over which EM waves propagate; and a re-
ceiver (Rx), which receives EM waves distorted by the channel.
While communication Txs and Rxs are usually well separated,
radar Txs and Rxs may be either colocated or separately posi-
tioned, leading to monostatic and bistatic radar settings, respec-
tively. In more complicated scenarios, multiple Txs and Rxs may
be involved in both applications, which correspond to multiuser
communications and multistatic radar systems.

It is often convenient to represent EM waves by the electri-
cal field intensity as a complex signal as a function of time 7.
The core tasks for R&C can then be defined as

Information acquisition for radar: The aim here is to

extract target information embedded in the received signal,

given knowledge of the transmit signal.

Information delivery for communications: The aim here is to

recover useful information contained in the transmit signal at the

communication Rx, with knowledge of the channel response.

By denoting the signals at the Tx and Rx at time ¢ as s( )
and y(t), respectively, the propagation of the signal within
the channel can be modeled as a mapping from its input s( )
to the output y(7). Ideally, if the noise and disturbance are
not considered, such a mapping is linear due to the physical
nature of EM fields and waves and, equivalently, owing to the
linearity of Maxwell’s equations. Furthermore, if the chan-
nel characteristics remain unchanged within a certain time
period, the mapping can be approximated as a linear time-
invariant system characterized by its impulse response /(7).
Thus, the linear mapping is expressed as a convolution integral
y(#)=(s=h)(t). While the signaling pulses may be of dif-
ferent forms for R&C, we suppose that a Nyquist pulse is lev-
eraged such that s(¢) is substantially time limited on a finite
interval [—T, T]. Therefore, a signal can be sampled in a nearly
lossless manner after passing through the pulse shaping filter
at the Rx, expressed as a convolution sum y(n)= (s *h)(n)
at the nth sampling point. Let s =[s(—N),...,s(N)]" be the
Tx signal, with length 2N+ 1;h =[#(0),...,A(P—1)]"
be the channel impulse response, with length P; and
y=[y(=N),...,y(N+P—1)]" be the Rx signal, with length
2N + P. Then, the convolution can be recast as y = Hs, where

H = Toep(h) € CPN*P*CN*1) j5 3 Toeplitz matrix, with the
nth column being [0,{ L hT, 00y, ]T. Alternatively, one may
express y as y = Sh by the commutative property of the con-
volution sum, where S = Toep(s) € C*V*P*F,

The preceding duality between inter-
changeable signals and systems implies an
interesting connection between R&C. From
the communication perspective, the process
of the Tx signal passing through a chan-
nel may be viewed as a linear transform H
applied to s, with the communication task
being to recover the information embedded
in s by receiving y. From the radar perspec-
tive, the sensing task is to recover the target
parameters embedded in h, which is viewed
as an input “‘signal,” by observing y, which

is viewed as an output signal linearly transformed from h
through a “system” S. This reveals that the basic SP problems
in R&C are mathematically similar.

Linear Gaussian models
Consider the more general linear Gaussian signal model by
taking additive white Gaussian noise into account:

Y =H(n)S(§)+Z ()

where Y and S are the sampled receive and transmit signals,
which could be defined over multiple domains, e.g., the time—
space and time—frequency domains; H is the corresponding
channel matrix (not necessarily Topelitz); and Z is the white
Gaussian noise signal, with variance o2. The channel H is a
function of the physical parameters 7, e.g., range, angle, and
Doppler. The transmit signal S may be encoded/modulated
with some information codewords &. Model (1) represents
many R&C systems, as elaborated in the following:
Radar signal model: Radar systems aim at extracting target
parameters 77 from Y. For both radar Txs and Rxs, S is typ-
ically a known deterministic signal, in which case & can be
omitted since the radar waveform contains no information.
This can be expressed as

Yr == Hr(ﬂ>Sr+Zr (2)

Communication signal model: Communication systems
aim at recovering codewords & from Y. The channel H,
which is sometimes regarded as an unstructured matrix,
can be estimated a priori via pilots. Therefore, knowing 7
may not be the first priority. The resulting model is

Y. = HS: (&) + Ze. 3)

The subscripts (+) and (), are to differentiate R&C sig-
nals, channels, and noises, respectively. We highlight that (2)
and (3) describe a variety of R&C signal models. For example,
(2) can be viewed as the target return of a MIMO radar in a
given range-Doppler bin, where 7 represents angles of targets.
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Similarly, (3) may be considered a narrowband MIMO com-
munication signal. Alternatively, both (2) and (3) can be viewed
as orthogonal frequency-division multiplexing (OFDM) sig-
nal models for R&C, respectively. In the following, we do not
specify the signal domain but focus on generic models (2) and
(3). More concrete signal models are discussed in the “Spec-
trum Engineering: The Road to Higher Frequency and Larger
Bandwidth” and “Scaling Up the Antenna

Array: The Road From Single Antenna to

mMIMO?” sections. In addition to individual

R&C systems, (1) may also characterize the

general ISAC signal model. That is, a uni-

fied ISAC signal serves dual purposes of

information delivery and target sensing,

whereas R&C channels may differ from one

another. More details on ISAC systems will

be discussed in the “ISAC: The Road From

Separation to Integration” section.

Fundamental signal processing theories
In the following, we elaborate on the fundamental SP theories
of R&C and, in particular, focus on (2) and (3).

Signal defection
Signal detection problems arise from many R&C applications.
One essential task for radar is to determine whether a target
exists by observing Y, modeled as a binary hypothesis testing
(BHT) problem:
Ho:Y: =71
f:{‘Hl Yo =H:()S: + Z: @

where Ho represents the null hypothesis, i.e., the radar receives
nothing but noise, and i stands for the hypothesis where the
radar receives both the target return and noise. To address the
preceding BHT problem, one may need to design a detector
77( - ) that maps the received signal Y; to areal number and then
compare the output with a preset threshold y to determine which
hypothesis to choose as true. A target detector may, for example,
maximize the detection probability Pp = Pr(H,|H) while
maintaining a low false alarm probability Pra = Pr(H:1|Ho),
following the Neyman—Pearson (NP) criterion [7].

Signal detection also plays a critical role at the communication
Rx. In (3), the communication Rx observes Y. = HcSc (f )+ Ze
and seeks to yield an estimate £ of the information symbol vector
E=[&1,&2..., En]" € A. This problem can be solved by lever-
aging the minimum error probability (MEP) criterion, that is, to
minimize the error probability P. = AL Pr (& # £) Pr (&),
where | A is the cardinality of A. The MEP criterion can be
translated to the maximum a posteriori criterion; i.e., the recov-
ered symbols should be the maximizer of the a posterior prob-
ability. Note that the decision region in the MEP criterion for
communication symbols is determined by their a priori probabil-
ity, while the decision thresholds in the NP criterion for radar are
determined by the required false alarm probability, resulting in
different designs for R&C detectors.

Parameter estimation
Parameter estimation represents another category of basic SP
techniques in R&C systems. For a radar system, once a tar-
get is confirmed to be present, the system needs to further
extract the target’s parameters 7 from Y: by conceiving an
estimator mapping Y: from the signal space to an estimate
7, defined as 1 = F(Yr). To measure how accurate an esti-
mator is, a possible performance metric is
the mean square error (MSE), expressed as
e= ]E(|| n—n Hz) The average may be over
the noise and also over the parameters if
they are assumed to be random. When the
parameters are assumed to be deterministic,
the MSE of any unbiased estimate is lower
bounded by the Cramér—Rao bound (CRB),
defined as the inverse of the Fisher informa-
tion matrix J [7]:

IZ{E

where p(Y:; 1) is the probability density function of Y; pa-
rameterized by 7. While the maximum likelihood estimate
(MLE) asymptotically achieves the CRB, attaining the MLE
can be highly computationally expensive. To that end, low-
complexity parameter estimation algorithms, e.g., MUSIC and
ESPRIT [8], [9], have been widely applied in practical situa-
tions, such as angle-of-arrival estimation.

In communication systems, the channel Hc should be esti-
mated before delivering the useful information. For channel esti-
mation, the Tx sends pilots to the Rx, which are reference signals
known to both. The Rx then estimates the channel based on both
the received signals and pilots. Channel estimation is mathemat-
ically similar to the target estimation problem, where the to-be-
estimated parameters n are entries of He, which is regarded as
an unstructured matrix. We elaborate on similarities and differ-
ences among estimation tasks for communication channels and
radar targets in the “Scaling Up the Antenna Array: The Road
From Single Antenna to Massive MIMO” section.

Bl(n - ) -] = Finp¥s) 1“”““'”]}

Information theory

Information theory serves as the foundation of communication
SP. A remarkable result attained by Shannon in his landmark
paper [10], published in 1948, states that, for any discrete mem-
oryless channel with input X and output Y, the channel capacity
isC= max I(X;Y), where the maximum is taken over all pos-
sible 1nput distributions p(X), and I(X;Y) is the mutual in-
formation (MI) between X and Y. The channel coding theorem
states that a coding rate R below C is achievable. Conversely,
if R > C, an arbitrarily small decoding error is not possible.
Information theory may also be adopted to measure radar per-
formance [11] and may reveal profound connections between
R&C. Let us consider a generic real-valued Gaussian channel
with an input X, which is assumed to be random, and output Y.
In the communication case, X can be an information-carrying
signal emitted by the Tx, and Y can be the signal received at the
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communication Rx. In the radar case, X can be some random
target parameter/channel to be estimated, and ¥ can be the echo
signal received at the radar Rx. In both R&C tasks, we may
wish to accurately/approximately recover X by observing Y.
We denote the MI between X and Y as I(X;Y) and
the minimum MSE (MMSE) of estimating X from Y as
MMSE(X |Y)=E{|X—-E(X|Y)]}, both of which may
be expressed as functions of the signal-to-noise ratio (SNR),
namely, /(snr) and MMSE((snr). We then have the following
I-MMSE identity, which holds for Gaussian channels [12]:

d

dsnr

I(snr) = %MMSE(snr). 6)

The preceding relationship implies that the increasing rate
(derivative) of the MI between X and Y with respect to the SNR
is half of the MMSE for estimating X given Y. For a Gaussian
channel, I(snr) is maximized by inputting a Gaussian distrib-
uted X under a given SNR. More precisely, a Gaussian input
always results in the most rapidly growing MI and, accordingly,
yields the maximum MMSE, making it the most favorable for
communication yet the least favorable for radar sensing. From
a communication perspective, the channel input should be “as
random as possible” to carry more information. From a radar
perspective, estimation performance becomes more inaccurate
if the target parameters change more randomly. The Gauss-
ian distribution has the highest entropy (randomness) under a
second-order moment constraint (i.e., a fixed power budget),
resulting in this interesting tradeoff.

Interplay between radar and communications
While communication happens between cooperative Txs and
Rxs, radar sensing is essentially uncooperative, even if the ra-
dar Tx and Rx are colocated. This distinction results in inher-
ently different R&C SP frameworks. First, R&C SP aims at
recovering useful information contained in the received signal,
with minimum distortion. The communication system, how-
ever, needs another level of performance guarantee, i.e., to
transmit, receive, and actively control as much information as
possible. This requires sophisticatedly tailored encoding and
decoding and modulation and demodulation strategies at the
Tx and Rx, respectively, which motivates the development of
information theory, whose spirit forms the foundation of the
modern communication SP framework. Moreover, as the com-
munication Tx and Rx are highly cooperative, they are able to
share the SP complexities in a rather flexible manner, depend-
ing on the specific scenarios. For instance, in a downlink com-
munication setup where a powerful base station (BS) sends
information to the user, most of the complicated SP is done at
the Tx’s side, e.g., precoding, to ease the computational burden
at the user’s side. In a radar system, however, the complexity
of the Rx SP always dominates its Tx counterpart, yet they are
typically unable to share design complexities.

In what follows, we elaborate on the evolution of R&C in
terms of both spectrum engineering and antenna array technolo-
gies and further reveal their interplay in spectral and spatial SP.

Spectrum engineering: The road to higher
frequency and larger bandwidth

Spectrum characteristics and management
The radio frequency (RF) EM spectrum, extending from be-
low 1 MHz to above 100 GHz, has been used for a wide range
of applications, including communications, radio and televi-
sion broadcasting, radio navigation, and sensing [13]. Figure 2
displays the frequency bands where R&C systems operate and
highlights the modes and usage that are performed in each band.
For radar sensing, the lower bands offer some unique capabili-
ties, such as long-range surveillance and weather monitoring
[13]. For communications, lower bands exhibit low signal at-
tenuation, making them suitable for long-distance transmission.

The higher-frequency bands provide some advantages to
R&C. For a fixed fractional bandwidth, increasing the operat-
ing frequency subsequently increases the achievable bandwidth,
thus providing finer range resolution for radar and higher data
rates for communications. However, in these higher bands, long-
range operation becomes more strongly affected by attenuation
due to the atmosphere. Moreover, the diffraction effect of high-
frequency EM wave signals decreases, which leads to a reduc-
tion in the number of paths propagated. Thus, radar sensing and
wireless communication via these bands are limited to short-
range applications. For example, radars from X to W-bands are
used for automotive collision avoidance, police radar, airport
surveillance, and scientific remote sensing. As for communica-
tion, the mm-wave band is soon to be finalized as part of the 5G
New Radio standards and has been exploited by the 802.11ad/ay
wireless local area network (WLAN) protocols. More advanced
radar SP tasks, such as real-time range-Doppler imaging and
target recognition, typically rely on sparse recovery methods, as
sparse channels are usually required in radar applications. For
communication with high frequency and wideband, algorithms
are required to be specifically conceived for channel estimation
and demodulation to achieve higher data rates.

As a representative wideband signaling strategy, multicar-
rier technologies have been extensively applied in both R&C
systems, which we overview in the following.

Signal models and processing techniques

Multicarrier radar signal processing

Let us consider a pulsed radar with a nonzero support [0, 7] for
each pulse. The radar works by transmitting a short burst of en-
ergy, or pulse, toward the target and then listening for the echo
that bounces back. The pulse repetition interval (PRI) is 7pri,
and the total transmit bandwidth available at the baseband is
By, resulting in a duty cycle of ©/Teri. The carrier frequency
fa of the nth pulse is chosen from [f. — AB/2, f. + Br — AB/2]
for the multicarrier radar system, where f. is the lowest car-
rier frequency within the band and AB is the bandwidth of
each subpulse. Specifically, for single-carrier systems, we have
Jao = fe for all n with f. > B;. The nth transmit pulse is

Sr.n(t) — ﬁxr ([ _ nTPRI)eﬂﬂf},(tfnTPR]) (7)
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A summary of frequency bands and their usage in R&C applications. AEW: airborne early warning; ACC: automobile cruise control; UAV: unmanned aerial vehicle; LR: long range; FOPEN: foliage
penetration; GPR: ground penetrating radar; OTH: over the horizon; ATCC: air traffic control communications; LMRAS: land mobile radio system; TETRA: terrestrial trunked radio; TEMC: terrestrial microwave
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where { is a positive constant dependent on the noise variance.
This problem can be solved using compressed sensing algo-
rithms, e.g., {;1-norm minimization, and greedy algorithms,
such as orthogonal matching pursuit [16], [17].

Multicarrier communication SP

As for the communication system, we assume it occupies a
frequency band of B.. Setting 7. = 1/B., the radiated signal
is given by

Ns—1

se(t) = 2 VPexemy(t —nTo) e (10)
n=0

where P is the transmit power, xc(n) for all n is the symbol
sequence to be transmitted with length Ny, and w.(-) satisfies
the Nyquist criterion with respect to 7¢. Classic amplitude shift
keying (ASK), frequency shift keying (FSK), and phase shift
keying (PSK) could be applied for generating xc(n).

The model in (10) is a single-carrier system, which has limi-
tations in bandwidth and data rates. Following a 1965 article,
Zimmerman and Kirsch designed a high-frequency radio multi-
carrier transceiver [18]. When the structure in signal space relies
on multiple subcarriers, it corresponds to a multicarrier scheme
represented by letting xc(n) = N Xeum ) yem(t—nTe).
Here xc.m(n) is the symbol sequence being transmitted, N
is the number of subcarriers, and .. (f) is the synthesis
function that satisfies the Nyquist criterion with respect to
1/B. and maps xc.(n) into the signal space. The family of
Ven(t) = wc(f) e’ 22mAft i veferred to as a Gabor system, where
w.(t) is the prototype filter and Af is the subcarrier spacing. It
is easy to show that an N.-point inverse discrete Fourier trans-
form operating on the data generates samples of the OFDM
signal, which can be accelerated by the fast Fourier transform
(FFT) algorithm proposed by Cooley et al. [19]. At the com-
munication Rx, we remove the cyclic prefix and take the signal
samples for n = 0,1,..., Ny— 1, yielding

S=Fi(X.Ob()ew)T) )

where Fy is an N-dimensional discrete Fourier transform
matrix; O is the Hadamard product; Xc = [Xc(0), xc(1),...,
Xe(Ns—= D], with  Xe(n) = [xc0(n), X1 (), ..., xen—1(p)] "
bty =[1,e 7N e N DT ith ¢/ being the time
delay; and c(v) = [1, e 72HTY | e 72N DIVT D gith £y
being the Doppler shift. Then, the FFT could be applied before
the detection of symbols xc.(n) for m =0,1,..., No. — 1.

In most practical scenarios, the radio channel is both
time and frequency dispersive such that the channel output
spreads over time and frequency domains. Such channel dis-
tortion results in so-called intersymbol interference (ISI) and
interchannel interference (ICI) onto the received signals. By
defining the time—frequency lattice based on symbol duration
and subcarrier bandwidth, namely, the time—frequency plane,
ISI and ICI can be reduced via well-localized 2D pulse shap-
ing filters. Unfortunately, simultaneously sharply localizing
a time- and frequency-limited signal on the time—frequency

plane to well concentrate its energy is impossible, as stated by
the Heisenberg uncertainty principle.

Interplay between radar and communications

Pulse shaping for radar and communications

Pulse shaping is essential for both R&C to shape the waveform
of the transmitted signal. Although signaling pulses serve a
similar purpose in both cases, there are some key differences
in their design and implementation. In communication sys-
tems, pulse shaping is used primarily to minimize ISI and
control the bandwidth of the transmitted signal. This helps op-
timize the data rate, signal quality, and spectral efficiency. In
radar systems, in addition to bandwidth control, pulse shaping
is applied to control the sidelobes of the transmitted waveform.
This helps to improve the range resolution and target detection
capability. Furthermore, in communication systems, common
pulse shaping filters include the raised cosine filter, root raised
cosine filter, Gaussian filter, and various others. These filters
are chosen based on the specific modulation scheme, chan-
nel conditions, and system requirements. In radar systems,
common pulse shaping filters include the Hamming window,
Blackman window, Chebyshev window, and Taylor window,
among others. These filters are chosen based on the radar’s
specific requirements, such as the desired peak sidelobe level
and range resolution.

OFDM-based radar versus delay-Doppler

communications

Multicarrier techniques have been extensively used over the
past decade for wideband systems. Examples include the SEW
for radars and OFDM for communications. It is worth not-
ing that the OFDM signal can also be used for radar sensing,
which is known as the communication-centric ISAC waveform,
which is elaborated later. In such a system, the ISAC Tx trans-
mits signals jointly for radar sensing and communicating with
other communication systems by using the same OFDM signal,
where each symbol is individually modulated with data belong-
ing to a constellation. Accordingly, the OFDM blocks are in-
dividually processed at the Rx of the ISAC system. While the
communication processing consists of extracting modulated
data from each block, the radar processing consists of estimat-
ing the range-Doppler profile through the 2D FFT operation
[20]. As discussed in the previous section, ISI and ICI cannot
be fully eliminated in OFDM systems. To ease such issues, the
recently developed orthogonal time—frequency space (OTES)
modulation proposed to use the delay-Doppler (DD)-based
signal representation to convert the time—frequency channel
responses into simple 2D time-invariant channel response [21],
thus alleviating the time—frequency selective effects. In such a
case, the available signal propagation paths become physically
explainable, observable, and probably predictable by, for exam-
ple, moving object tracking strategies [22]. These key observa-
tions mandate that the OTFS be a novel ISAC SP paradigm that
goes beyond separately performing R&C SP on the DD and
time—frequency domains.
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Scaling up the antenna array: The road from

single antenna to massive MIMO

In the past decade, the evolution of R&C systems has gained
considerable spatial efficiency by scaling up antenna arrays.
The more antennas equipped at the Tx/Rx, the more degrees
of freedom (DoFs) signaling strategies can exploit from the
propagation channel, and better reliability can be achieved in
the transmission. In this section, we investigate the evolution
path of the array structure.

Array structure evolution and signal models

In general, an antenna array can be described by its response
(also known as a steering vector), which is a vector function of
angle parameters 6, denoted as a(0). For an N-antenna uni-
form linear array with antenna spacing d and wavelength A,
the steering vector is expressed as

a(g) = [l,e—jzﬂ%sin(e), e—_j4n%sm(9)’m’e—j(N—l)n%sin(e)] (12)

where 6 € [—7,7] and d is typically set as A/2. Suppose that
the radar or communication system is equipped with N; and
N, antennas at its Tx and Rx and that the signal arrives from
L resolvable paths. The general channel matrix for both R&C
can be modeled as

H= zlelalb(el)aT(¢1) (13)

where a;, ¢;, and 6; are the channel coefficient, direction of
departure, and direction of arrival (DOA) for the Ith signal
path; a(¢) € C¥*! and b(6) € CV*! are Tx and Rx steering
vectors, respectively. The channel model (13) may represent L
resolvable point targets for radar or L propagation paths for
communication. In the communication case, ¢; is contributed
by both the path loss and small-scale fading effect. In the radar
case, a; may also be contributed by the radar cross section
(RCS) of the targets in addition to the round-trip path loss,
which follows Swerling’s target models [23].

Phased array

Having the capability of generating a highly directive beam
through rapid electronic phase control, phased-array tech-
niques triggered various R&C innovations. The phased-array

v, = WiHfs,, + z,, v, =Hfs, +z,

(R Chain]-*
'RF Chain]-*
RF Chain]*
'RF Chain |-’
‘RF Chain]-*
(R Chain]-*

(a) (b)

| | RF
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Baseband SP
|
Baseband SP

Yn = HFppFpps, + 2,

system, in its simplest form, consists of a single RF chain
connected with multiple antennas through phase shifters
(Figure 3). In other words, the signal transmitted over each
antenna is a phase-shifted counterpart of the signal generated
in the RF chain. If both the Tx and Rx are equipped with
phased arrays, the discrete receive signal at time instant n can
be expressed as

yu = WTHfs, + 24, V1 (14)

where s, is the signal transmitted within the Tx’s RF chain
and fe€ C"*' and we CV™' consist of the phase shifters
at the Tx and Rx, with each of their entries being constant
modulus, which are also known as the transmit beamformer
and receive combiner, respectively, and are referred to as RF/
analog beamforming.

MIMO (digital) array

In contrast to the phased array, the MIMO system is equipped
with multiple RF chains, where each RF chain is connected to
a single antenna port. The receive signal for a MIMO system
can be modeled as

y» = HFs,+z,,Vn (15)

where s, € C¥*! and y, € CV*! are transmit and receive
signal vectors at the Tx and Rx, respectively, with K being
the number of independent signals and F € C"*¥ a digital
precoder. In MIMO radar applications, s,, Vn are spatially
orthogonal waveforms, and F may be designed to steer the
signals to multiple directions simultaneously and to keep the
orthogonality for omnidirectional searching. In MIMO com-
munication applications, F may be designed to equalize and
exploit the multipath effect by using various precoding tech-
niques, e.g., zero forcing and MF precoding. MIMO commu-
nication technology was first patented in 1994 [24], which in-
spired the invention of the MIMO radar concept, in 2003 [25].

mMIMO array

When the antenna number grows extremely large, e.g., above
100, the MIMO system becomes an mMIMO system, or a
large-scale antenna system. In this case, the steering vectors are

H=)"  ab(a)a’(a)
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The antenna array evolution and signal models: the (a) phased array, (b) MIMO/mMIMO array, (c) hybrid array, and (d) distributed array.
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asymptotically orthogonal to one another. Moreover, in a richly
scattering environment with a large L, for N; — oo, N; > N,, we
have Val"(||hk”2)/]E("hk I*) - 0,vi and (1/N,)HH" =~ 1y,
which are known as the channel hardening effect and favor-
able propagation effect. While the basic signal model for
mMIMO remains the same as (15), it has additional superi-
orities over small-scale MIMO [4]. First, one may attain even
more DoFs if equipping both the Tx and Rx with mMIMO ar-
rays. More importantly, the channel hardening effect improves
the communication reliability by generating a nearly determin-
istic channel, which considerably simplifies the SP. Recent re-
search has also shown the superiority of applying the mMIMO
technology to the radar system, which is able to detect a target
via a single snapshot in the presence of a disturbance with un-
known statistics [26].

Hybrid array

Massive MIMO achieves dramatic gains at the price of a grow-
ing number of antennas and RF chains, incurring larger hard-
ware costs. To that end, the hybrid analog—digital array was
proposed as a promising solution [27]. The hybrid array can
be viewed as a tradeoff between the phased-array and fully
digital MIMO array, as it connects fewer RF chains with mas-
sive antennas through phase shifters and switches. Consider a
hybrid array with Nrr RF chains and N; antennas. The phase
shifter-based design has the following signal model:

y» = HFreFgBS) + 2, Vn (16)
where Frr € CY¥ s the analog beamforming matrix con-
taining constant-modulus entries representing phase shifters
and Fgg € CV*X is a digital precoder multiplexing K data
streams. The hybrid array is also known as the phased-MIMO
structure in the radar community [28]. In addition to reducing
the cost for implementing MIMO radar, it achieves a balance
between phased-array and MIMO radars via harvesting per-
formance gains from both. By partitioning the antenna array
into different subarrays, phased-MIMO radar may formulate
highly directional beams toward targets at each subarray, im-
proving the SNR of the echoes. In the meantime, it may also
transmit orthogonal waveforms over different subarrays, thus
reaping the gain of waveform diversity.

Distributed array

The continually growing demands for connectivity, coverage,
and high-resolution sensing necessitate research of the distrib-
uted antenna array system for both R&C. Instead of colocating
the antennas in a compact space, distributed antennas are spread
over a large area while connecting to a central processing unit
(CPU), providing a much higher probability of coverage and an
improved diversity gain. Distributed antenna systems have been
extensively studied from the communication viewpoint under
different names, including networked MIMO, coordinated mul-
tipoint and cell-free mMIMO [29]. Their radar counterparts, on
the other hand, are known as multistatic radar and MIMO radar
with widely separated antennas [30]. The distributed array may

also be described by its response, which, however, is no longer
a function of the angle; rather, it is a function of the coordinates
of the targets and scatterers in each signal path. By denoting the
coordinates of the /th target/scatterer as q; = (x1,y:), the distrib-
uted channel matrix can be expressed as

H=)7 ab(q)a’(q). (17)

Note that the specific array geometry relies upon the overall
deployment of the distributed system.

Signal processing for MIMO radar and communications

Colocated MIMO radar

With colocated antennas, MIMO radars can mimic beamform-
ers utilizing low-probability-of-intercept waveforms. Rather
than focusing energy on a target, the transmitted energy is evenly
distributed in space [3], [30]. Compared to conventional phased-
array beamforming, the loss of processing gain due to the uni-
form illumination is compensated by the gain in time since there
is no need to scan a narrow beam [3], [30]. The beamforming
of classic colocated MIMO computes the correlations between
the observation vectors from the previous step and the steering
vectors corresponding to each azimuth/elevation on the grid de-
fined by the array aperture. Then, the targets can be detected in
the angular domain. It is worth noting that a heuristic detection
process, in which there is knowledge of the number of targets,
clutter location, and so on, may help in discovering targets’ posi-
tions [31]. For example, if we know there are M targets, then we
can choose the M strongest points in the targets profile. Alter-
natively, constant false alarm rate detectors determine a power
threshold, above which a peak is considered to originate from a
target so that a required false alarm probability is achieved.

Distributed MIMO radar

Widely separated transmit/receive antennas capture the spatial
diversity of the target’s RCS [30]. Practical realization of phase
coherency may be difficult, thus often necessitating noncoher-
ent combining to perform target detection using the distributed
apertures [30]. It is shown that with noncoherent processing,
a target’s RCS spatial variations can be exploited to obtain a
diversity gain for target detection and for estimation of various
parameters, such as the DOA and Doppler. Again, Swerling
models [23] can be used to represent the statistical RCS fluctu-
ations as a function of the target decorrelation time. In distrib-
uted MIMO radars, a multidimensional signal space is created
when the returns from multiple scatterers and targets combine
to generate a rich backscatter. By exploiting the spatial dimen-
sion, MIMO radar with widely separated antennas may over-
come bandwidth limitations and support high-resolution target
localization [30].

MIMO communications

MIMO communication has been playing acritical rolein cellular
and Wi-Fi systems since the 2010s, the beginning of the 4G era.
Early SP methods focused on single-user MIMO (SU-MIMO)
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communication, where a multiantenna BS serves a single or
multiantenna user, which is also known as the point-to-point
MIMO channel. In addition to multiplexing more data streams,
the MIMO array is able to serve multiple us-

ers over the same time—frequency resource

block, which is known as multiuser MIMO

(MU-MIMO) communications technology.

Compared to SU-MIMO, the MU-MIMO

configuration offers significant complexity

reduction at the users’ side. For MU-MIMO

systems, the coordinated signal detection at

the Rx’s side is not as straightforward as in

SU-MIMO since cooperation among users is difficult. There-
fore, the BS needs to precancel the interference by employing
various precoding methods, which also simplifies the SP at the
users’ side. While dirty paper coding is capacity achieving, it
suffers from high complexity [32]. Therefore, suboptimal linear
precoders are more commonly employed in practical systems.

Interplay between radar and communications

Multiplexing versus diversity

The expansion of the antenna array brings diversity and multi-
plexing gains, which are cornerstones of MIMO communica-
tion theory. Transmit or receive diversity is a means to combat
deep fading by creating different propagation paths through
the Tx—Rx antenna pairs. Multiplexing, on the other hand,
exploits the DoFs provided by the multipath propagation
environment through sending different data streams over in-
dependent subchannels. In 2003, Zheng and Tse revealed that
there is an inherent tradeoff between the two gains, namely,
the diversity—multiplexing tradeoff (DMT) [33]. For an in-
dependent identically distributed Rayleigh MIMO channel
H. € C""M, the maximum diversity gain and multiplex-
ing gain are N,N, and min{N,N,}, respectively. From a
broader viewpoint, the DMT is essentially a tradeoff between
reliability and efficiency.

The spirit of MIMO radar SP can be interpreted in a simi-
lar manner. On the one hand, colocated MIMO radar pos-
sesses the superior attribute of waveform diversity, which
means that diverse waveforms are flexibly emitted through
different antennas. Waveform diversity may be implemented
in either the baseband or RF band, e.g., through phase cod-
ing or frequency coding. It significantly improves parameter
identifiability compared to its phased-array counterpart. That
is, the colocated MIMO radar is able to uniquely identify up
to O(N;N.,) targets, which is N; times of that of phased-array
radar [3]. This connects more closely to the multiplexing gain
in communications. On the other hand, distributed MIMO
radar provides target RCS diversity. By widely spreading the
antennas, distributed MIMO radar is able to observe a target
from different directions, thus providing stable sensing perfor-
mance by overcoming the drastic RCS fluctuations in high-
mobility targets [30].

The preceding discussion again reflects the signals and
systems duality. Since the signals and systems are interchange-

able, we may view radar target channels as “signals” and radar

waveforms as “systems.” While the basic model for MIMO

communications is that multiple data streams (signals) are
transmitted through multiple spatial chan-
nels (systems), the model for MIMO radar
is, conversely, that multiple target channels
(signals) pass through diverse waveforms
(systems). This duality creates the interest-
ing interplay between R&C, and may imply
more essential connections and tradeoffs in
ISAC systems.

Statistical versus geometrical channel representations

Most of the MIMO radar channels are geometrically modeled,
as the ultimate goal of the radar is to extract the physical pa-
rameters of targets. The MIMO communication channel, on
the other hand, can be modeled either statistically or geometri-
cally, depending on the specific scenarios and systems. The
distinct models of the same channel are representations in dif-
ferent coordinate systems. For instance, an N, X N; commu-
nication channel matrix Hc may be generally seen as a point
in the Euclidean space C""*™' If it is geometrically modeled,
then it may be viewed as a point in a subspace spanned by
steering vectors a(¢;) and b(6;). In sub-6-GHz bands with
richly scattering environments, the small-scale MIMO chan-
nel is modeled as an unstructured matrix subject to certain
distributions, e.g., Rayleigh and Rician distributions, since the
number of propagation paths could be far greater than that of
the channel entries. In such a case, the communication channel
estimation task is to recover all the entries in Hc. In mm-wave
and THz bands with much fewer propagation paths than an-
tennas, the mMIMO channel is well characterized by a geo-
metrical clustered model, such as the Saleh—Valenzuela model,
which enables beam space SP for mm-wave and THz commu-
nications that mimics MIMO radar SP. In fact, beam training
and tracking in mm-wave and THz communications may be
analogously viewed as target searching and tracking, all of
which can be operated on a hybrid array-based RF platform.
This also builds a solid foundation to merge R&C into a single
system by ISAC technologies.

ISAC: The road from separation to integration

ISAC: From competitive coexistence to codesign

The ubiquitous deployment of R&C systems leads to severe
competition over various resource domains. To date, both tech-
nologies exhibit explosively growing demands for spectral and
spatial resources and are thus evolving toward higher frequen-
cies and larger antenna arrays. As exemplified in the “Spec-
trum Characteristics and Management” section, a variety of
R&C systems have to cohabitate within multiple frequency
bands, which, inevitably, incurs significant mutual interference
between the two functionalities [31], [34]. To ensure harmoni-
ous coexistence between R&C, orthogonal resource allocation
became a viable approach. Nevertheless, orthogonal allocation
results in low resource efficiency for both R&C. Aiming for
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fully maximizing the potential of limited wireless resources,
e.g., bandwidth, and to enable the codesign of the R&C func-
tionalities, ISAC was proposed as a key technology for both
next-generation wireless networks and radar systems.

The technological vision of ISAC can be divided into four
levels, as shown in Figure 4. The first level is to share spectral
resources between individual R&C systems,
without interfering with each other. At the
second level, the R&C functionalities may
be deployed on the same hardware platform.

At the third level, wireless resources may

be fully reused between R&C via a com-

mon waveform, a single transmitting device,

and a unified SP framework. Finally, at the

fourth level, both R&C can share a common

networking infrastructure, constructing a

perceptive network to serve both sensing and communications
functionalities. This underpins a large number of emerging IoT,
5G Advanced, and 6G applications that require high-quality
communication, sensing, and localization services [5].

During the past three decades, the development of ISAC
has been supported by a number of governmental projects
worldwide, among which the most influential ones were
the “Advanced Multifunction Radio Frequency Concept
(AMRFC)” program initiated by the U.S. Office of Naval
Research in the 1990s and the “Shared Spectrum Access
for Radar and Communications (SSPARC)” project funded
by DARPA in the 2010s [6]. While both projects were moti-
vated by the need for sharing resources between R&C, the
AMRFC mainly focused on colocating multifunctional
modules (radar, communications, and electronic warfare) on
the same RF front ends, and the SSPARC aimed for releas-
ing part of the sub-6-GHz spectrum from the radar bands
for shared use between R&C. Most of the technical outcome
of these projects was used in formulating the level 1 to level 3
ISAC approaches. In the 2020s, networked sensing (level 4
ISAC) was recognized by major enterprises in the communica-
tions industry (Huawei, Ericsson, ZTE, Intel, and Nokia) as one
of the core air interface technologies for Wi-Fi 7, 5G Advanced,
and 6G [5]. In 2020, IEEE 802.11 formed the 802.11bf task
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and Processing

Level 3

Level 2 Colocated Hardware

Spectral Coexistence Commqnications

The evolution path for ISAG technologies.

s> Networked Sensing
: Joint Waveform
Design and SP

Multifunctional
mmmm> CF Front End

group to realize WLAN sensing in Wi-Fi 7, which is expected
to be commercialized in 2024 [35]. In 2022, the 3rd Generation
Partnership Project (3GPP) established the first study item on
ISAC toward Release 19 standards for 5G Advanced [36].
To fully realize the promise of the ISAC technology,
advanced SP techniques are indispensable. In this section, we
briefly review the recent research progress
on the SP for ISAC. In particular, we focus
on levels 3 and 4, where a unified signaling
strategy is designed to serve the dual pur-
poses of R&C.

ISAC signal processing

We investigate the linear Gaussian models

considered in the “Fundamentals of Radar

and Communications” section. The only
difference is that a unified ISAC signal S is employed for both
R&C, leading to

Radar signal model: Y: = H:(n)S + Z;

communcation signal model: Y. =HcS + Z. (18)

where S is a discrete representation of the ISAC signal. We high-
light that (18) consists of abstractions for many existing ISAC
models. That is, an ISAC Tx transmits a signal S to communi-
cate information while detecting targets. For radar sensing ap-
plications, the radar Rx observes Y: and wishes to extract an
estimate of 7 with the knowledge of the reference waveform S,
which is known to both the ISAC Tx and radar Rx. For commu-
nication applications, on the other hand, the communication Rx
observes Y. and wishes to recover S, which is unknown to the
communication Rx.

A generic ISAC SP framework is presented in Figure 5,
where the R&C functionalities are jointly coordinated at
the ISAC Tx to form a baseband ISAC signal. After being
upconverted to the RF band, the signal propagates through
the R&C channels and arrives at the Rx. The received sig-
nal, which may consist of both target and communication
information, first goes through a preprocessing procedure,
including synchronization, separa-
tion, filtering, and transformation,
and is then processed following the
regular R&C SP pipelines. ISAC SP
is rather different from individual
R&C SP. That is, when the wireless
resources are shared between R&C,
there exists an intrinsic performance
tradeoff, as their design objectives are
distinct and even contradictory. As
illustrated in Figure 6, such a tradeoff
can be framed as the Pareto frontier
in terms of different R&C perfor-
mance metrics, e.g., the radar’s CRB
and communication rate. The com-
plete characterization of such a Pareto

Radar and

Authoruéd licensed use limited to: Rutgers University Libraries. Dokﬁﬁ'ié'%éh%ﬂ?‘éé%!&%‘éﬁy%dzd%%58%6152 UTC from IEEE Xplore. Restrictions apply.



frontier still remains wide open. The two corner points,
Pcs and Psc, represent the communication-optimal and
radar-optimal performance, with the corresponding achiev- Pt O =

S 3
able rate—CRB pairs denoted by (Ccs,€cs) and (Csc,€sc), 5 z,'é gﬁ o,
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In contrast to CCD schemes, radar-centric design (RCD) + E
?lims at im.plementing communi.cation capabi.lity over exist- < W 5 2
ing radar 1nfrast.ructures, targétlng approaching the perf.or— o Z o < X Lz 2
mance at Psc. Since the classical radar waveform contains S P =& P> | ue_ >
no information, RCD schemes are also referred to as infor- S
mation embedding approaches in the literature; namely, the t | =
communication data are embedded into the radar waveform p é
in a way that will not unduly degrade the sensing perfor- '% & s m?,; S
mance. Early RCD schemes mainly focused on exploiting £ T L 9 g | GE &
the LFM signal as an information carrier [38]. In addition E % o 'g é % S
to the conventional modulation formats, including amplitude, § = 8 = §,
phase, and FSKs, LFM signals have another design DoF, i.e., é’
the slope that the frequency increases with the time, which T T

may also be utilized for data embedding. To fully guarantee
the radar performance, recent research proposed to realize
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ISAC by index modulation (IM), which was first proposed
in [39] for MIMO radar transmitting orthogonal waveforms.
In such a case, the communication information is conveyed
by shuffling the waveforms across multiple antennas, which
does not break the orthogonality. As a step forward, more
recent RCD schemes implement IM-based ISAC signaling
on carrier-agile phased-array radar, namely, the multicarrier-
agile joint radar—communication (MAJoRCom) system [40].
During each PRI, the MAJoRCom randomly selects the car-
rier frequencies from a frequency set and randomly allocates
these frequencies to each antenna, which again keeps the or-
thogonality unaffected.

Joint design

As discussed in the preceding, CCD and RCD schemes at-
tempt to approach the performance of Pcs and Psc, which
may be implemented in existing communication and radar
systems, respectively. However, they lack the flexibility to
formulate a scalable tradeoff between R&C and, equivalently,
to approach the performance of an arbitrary point on the Pa-
reto frontier in Figure 6. To resolve this issue, JD-based ISAC
signaling becomes a promising strategy, which is often con-
ceived through convex optimization techniques [41]. Consider
a MIMO ISAC BS that serves K, single-antenna users while
detecting a point target locating at an angle 6. An ISAC signal
S constrained by the energy Er can be obtained by solving
the following angle CRB minimization problem under the
sum-rate constraint:

min CRB(6) s.t. 3, R > Ro, VK,

SIF<Er (D

where R is the achievable rate for the kth user and Ro is a pre-
defined sum-rate threshold. The Pareto frontier between R&C
can be obtained by increasing Ro, which leads to an increased
objective CRB.

Interplay between radar and communications

From the preceding ISAC SP strategies, it is interesting to
note that there is a twofold tradeoff between R&C, namely,
the deterministic versus random tradeoff (DRT) and subspace
tradeoff (ST).

Rate 4

Cos- et

Csc

Gaussian Constellation .
one may categorize R&C channels as

Deterministicrandom tradeoff

Communication systems require random signals to convey
as much information as possible, whereas radar systems pre-
fer deterministic signals for achieving stable sensing perfor-
mance. This has been an intuitive insight consistent with both
engineers’ experience and R&C SP theory. For instance, con-
stellation shaping for communications always targets approxi-
mating a Gaussian distribution, thus approaching the Shannon
capacity. Radar systems, on the other hand, prefer to transmit
constant-modulus waveforms at the maximum available power
budget, which motivates the use of phase-coded signals. For
clarity, this concept is shown in Figure 6.

The DRT has also been reflected in the preceding CCD
and RCD approaches. For OFDM-based CCD signaling, the
element-wise division of the random data changes the sta-
tistical characteristics of the noise across the symbols and
subcarriers, imposing performance loss on the threshold-
ing and peak detection in the 2D FFT processing. To tackle
this issue, a natural idea is to transmit PSK-modulated data,
which rotates the phase of the circularly symmetric Gauss-
ian noise without changing its distribution. For the IM-based
RCD scheme, the radar transmits communication data by the
random selections of waveforms across the antennas, i.e., the
information is carried by permutation and selection matrices,
while keeping the radar waveform orthogonality unchanged.
In both cases, the communication rate can be increased by
embedding more random data (exploiting more DoFs) into
the ISAC signal, which is, however, at the price of deterio-
rated radar sensing performance.

Subspace fradeoff

Another fundamental tradeoff in ISAC is the ST. The column
vectors of R&C channel matrices H; and Hc span the sensing
and communication subspaces. To fully radiate the transmit
power toward targets/users, radar-optimal and communica-
tion-optimal signals should align to the two subspaces, respec-
tively. Consequently, the R&C performance can be balanced in
an ISAC system by allocating resources into the two subspaces.
Apparently, if two subspaces are partially overlapped, then re-
sources allocated to the intersection are shared between R&C,
improving the efficiency. On the contrary, if two subspaces are
orthogonal to each other, no resources can be reused, leading
to zero performance gain. Based on the
overlapped degree of two subspaces,

a weakly coupled, moderately coupled,

¥ i ‘ o and strongly coupled scenarios, which
are intuitively illustrated in Figure 7.
- The higher coupling degree between

two subspaces results in better tradeoff
performance, as more resources are re-
used between R&C.

The ST can be observed in the JD
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The performance tradeoff between R&C.

signaling scheme discussed in (21).
That is, by increasing the communi-
cation sum-rate threshold Ro, more
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signal power is transmitted toward the directions of commu-
nication users, while less power is radiated to sense the tar-
get, resulting in a higher CRB. To illustrate this, we provide
a numerical example of solving problem (21) in Figure 8 for
a single-target, single-user scenario. In particular, we con-
sider the correlation coefficient between the communication
channel h. and the target steering vector a(0), defined as
p=(nfa(6)])/(Ih|la(6)]). By varying the signal-to-
interference-plus-noise constraint of the user, we observe that
the resultant ISAC signal indeed formulates a scalable tradeoff
between the radar CRB and the communication achievable
rate, where the ISAC signal rotates from the communica-
tion subspace to the sensing subspace. More interestingly, by
increasing the correlation coefficient p from zero to one, the
ISAC tradeoff performance becomes better, which is consis-
tent with our analysis on weakly, moderately, and strongly
correlated subspaces. That is, higher correlation between two
subspaces indicates that more resources can be shared between
R&C. In the extreme case of p = 1, the performance of both
R&C reaches its optimum without jeopardizing one another.
This is because the two subspaces are fully aligned to each
other, and the signal resources can be fully reused between
R&C, leading to the maximum gain.

Open challenges and future research directions
Although ISAC has been well investigated from various di-
rection in recent years, there are still many open challenges
that remain widely unexplored. Here, we overview some of the
open problems in fundamental tradeoff, SP, and networking
aspects, where tremendous research efforts are needed.

Full characterization of the ISAC performance tradeoff

Characterizing the ISAC performance tradeoff is a multiobjec-
tive functional optimization problem by its nature. Neverthe-
less, the current results are able to depict only the performance
at the two corner points [42]. It is unclear where the exact Pa-
reto frontier lies in Figure 6 and what the optimal signaling
strategies are to achieve that boundary. Moreover, the research
on the fundamental ISAC tradeoff in more practical scenarios,
e.g., the multiuser multitarget regime, is still at its early stage,

where tighter estimation-theoretical bounds and the multiuser
capacity region need to be jointly considered.

Practical ISAC signal processing

Most of the current ISAC signaling schemes were proposed
under ideal assumptions. However, there is a large number of
practical constraints that prevent the implementation of these
ISAC designs. For instance, CCD approaches that adopt a stan-
dardized communication waveform, e.g., 5G New Radio, face
the challenges of insufficient bandwidth and a high peak-to-
average-power ratio, which leads to severe performance loss of
radar sensing. In addition to that, the imperfection of hardware
components, e.g., quantized phase shifters and uncalibrated
antenna arrays, also needs to be taken into account in design-
ing practical ISAC SP pipelines.

Networked ISAC

Current state-of-the-art research mainly concentrates on the SP
for single-node ISAC systems. To realize networked ISAC us-
ing commercialized networking infrastructures, which are not
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originally tailored for radar sensing, a series of SP challenges
need to be carefully coped with. For instance, clock-level net-
work synchronization is needed to achieve high sensing accu-
racy. Moreover, to detect short-range targets, e.g., humans and
vehicles, the future ISAC BS should operate in full-duplex mode
to avoid self-interference between the transmit signal and target
return. Equipping the network with ubiquitous sensing capa-
bilities has also raised concerns on security and privacy issues,
which needs to be addressed in future ISAC systems.

Condlusions

In this article, we overviewed the technological evolution of
R&C from an SP viewpoint. We first focused our discussion on
the general principles and fundamental SP techniques for both
R&C. We then introduced two main trends and the resulting
SP schemes in the historical development of R&C, namely, the
increase of frequencies and bandwidths and the expansion of
the antenna arrays. Following these two trends, we provided a
detailed discussion on the recent progress of SP techniques for
ISAC systems. Finally, we identified a number of major open
challenges in ISAC technologies.

Although concerning two long-established disciplines, the
story of R&C will continue in the foreseeable future. In par-
ticular, ISAC, the marriage between R&C, will have a large
impact on modern society.
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