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R
adar and communications (R&C) as key utilities of electro-

magnetic (EM) waves have fundamentally shaped human 

society and triggered the modern information age. Although 

R&C had been historically progressing separately, in recent de-

cades, they have been converging toward integration, forming 

integrated sensing and communication (ISAC) systems, giving 

rise to new highly desirable capabilities in next-generation wire-

less networks and future radars. To better understand the essence 

of ISAC, this article provides a systematic overview of the his-

torical development of R&C from a signal processing (SP) per-

spective. We first interpret the duality between R&C as signals 

and systems, followed by an introduction of their fundamental 

principles. We then elaborate on the two main trends in their 

technological evolution, namely, the increase of frequencies and 

bandwidths and the expansion of antenna arrays. We then show 

how the intertwined narratives of R&C evolved into ISAC and 

discuss the resultant SP framework. Finally, we overview future 

research directions in this field.

Introduction

Background and motivation
Since the 20th century, the development of human civilization 

has relied largely upon the exploitation of EM waves. Governed 

by Maxwell’s equations, EM waves are capable of traveling 

over large distances at the speed of light, which makes them a 

perfect information carrier. In general, one may leverage EM 

waves to acquire information on physical targets, including 

range, velocity, and angle, and to efficiently deliver artificial 

information, e.g., texts, voices, images, and videos, from one 

point to another. Among many applications, EM waves have 

enabled information acquisition and delivery, which form the 

foundation of our modern information era and have given rise 

to the proliferation of R&C technologies.

While the existence of EM waves was theoretically predict-

ed by Maxwell in 1865 and experimentally verified by Hertz 

in 1887, the waves’ capability of carrying information to travel 

long distances was not validated until Marconi’s transatlantic 
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wireless experiment in 1901 [1]. The successful reception of 

the first transatlantic radio signal marked the beginning of the 

great information era. From then on, communication technol-

ogy rapidly grew thanks to the heavy demand for intelligence, 

intercept, and cryptography technologies during the two world 

wars. It is generally difficult to identify a precise date for the 

birth of radar. Some of the early records show that the German 

inventor Christian Hülsmeyer was able to use radio signals to 

detect distant metallic objects as early as 1904. In 1915, the 

British radar pioneer Robert Watson Watt employed radio sig-

nals to detect thunderstorms and lightning. The R&D of mod-

ern radar systems was not carried out until the mid-1930s. The 

term radar was first used by the U.S. Navy as an acronym for 

“radio detection and ranging” in 1939.

Despite the fact that both technologies originated from the 

discoveries of Maxwell and Hertz, R&C have been largely 

treated as two separate research fields, due to different con-

straints in their respective applications, and were therefore 

independently investigated and developed for decades. His-

torically, the technological evolution of R&C follows two main 

trends: 1) from low frequencies to higher frequencies and larger 

bandwidths [2] and 2) from single-antenna to multiantenna and 

even massive antenna arrays [3], [4]. With recent developments, 

the combined use of large antenna arrays and millimeter-wave 

(mm-wave)/terahertz (THz) band signals results in striking 

similarities among R&C systems in terms of hardware archi-

tecture, channel characteristics, and SP methods. Hence, the 

boundary between R&C is becoming blurred, and hardware 

and spectrum convergence has led to a design paradigm shift, 

where the two systems can be codesigned for efficiently uti-

lizing resources, offering tunable tradeoffs and unprecedented 

synergies for mutual benefits. This line of research is typically 

referred to as ISAC, and is applicable in numerous emerg-

ing areas, including vehicular networks, Internet of Things 

(IoT) networks, and activity recognition [5], [6]. Over the past 

decade, ISAC has been well recognized as a key enabling tech-

nology for both next-generation wireless networks and radar 

systems [5]. Given the potential of ISAC, a deeper understand-

ing of the various connections and distinctions between R&C, 

and learning from how they evolved from separation to inte-

gration, is important for inspiring future research.

In Figure 1 we summarize key milestones achieved in 

R&C history, which are split into four categories with differ-

ent markers, namely, the individual R&C technologies, general 

technologies that are useful for both, and ISAC technologies. 

In the remainder of the article, we discuss how these key tech-

niques facilitate the development of R&C and ISAC systems.

Summary and organization of the article
In this article, we provide a systematic overview of the develop-

ment and key milestones achieved in the history of R&C from an 

SP perspective. We commence by introducing the fundamental 

principles and SP theories of both R&C. We then present the spec-

trum engineering of R&C, namely, from narrowband to wideband 

and from single-carrier to multicarrier systems. Furthermore, we 

elaborate on the expansion of R&C systems’ antenna arrays, i.e., FI
G
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from single-antenna systems to phased arrays and from multiple-

input, multiple-output (MIMO) to massive MIMO (mMIMO) 

and distributed antenna systems. Following the two technological 

trends, the paths of R&C eventually move from separation to inte-

gration and give rise to the ISAC technology, 

which motivates the detailed discussion on 

the SP framework of ISAC. Finally, we sum-

marize the article and identify future research 

directions.

Fundamentals of radar and 
communications

Basic principles: A signals and  
systems perspective
The basic system setting for both R&C 

consists of three parts: a transmitter (Tx), which produces EM 

waves; a channel, over which EM waves propagate; and a re-

ceiver (Rx), which receives EM waves distorted by the channel. 

While communication Txs and Rxs are usually well separated, 

radar Txs and Rxs may be either colocated or separately posi-

tioned, leading to monostatic and bistatic radar settings, respec-

tively. In more complicated scenarios, multiple Txs and Rxs may 

be involved in both applications, which correspond to multiuser 

communications and multistatic radar systems.

It is often convenient to represent EM waves by the electri-

cal field intensity as a complex signal as a function of time t. 

The core tasks for R&C can then be defined as

 ■ Information acquisition for radar: The aim here is to 

extract target information embedded in the received signal, 

given knowledge of the transmit signal.

 ■ Information delivery for communications: The aim here is to 

recover useful information contained in the transmit signal at the 

communication Rx, with knowledge of the channel response.

By denoting the signals at the Tx and Rx at time t as s t^ h 
and ,y t^ h  respectively, the propagation of the signal within 

the channel can be modeled as a mapping from its input s t^ h 
to the output .y t^ h  Ideally, if the noise and disturbance are 

not considered, such a mapping is linear due to the physical 

nature of EM fields and waves and, equivalently, owing to the 

linearity of Maxwell’s equations. Furthermore, if the chan-

nel characteristics remain unchanged within a certain time 

period, the mapping can be approximated as a linear time-

invariant system characterized by its impulse response .h t^ h  

Thus, the linear mapping is expressed as a convolution integral 

.y t s h t)=^ ^ ^h h h  While the signaling pulses may be of dif-

ferent forms for R&C, we suppose that a Nyquist pulse is lev-

eraged such that s t^ h is substantially time limited on a finite 

interval , .T T-6 @  Therefore, a signal can be sampled in a nearly 

lossless manner after passing through the pulse shaping filter 

at the Rx, expressed as a convolution sum y n s h n)=^ ^ ^h h h  
at the nth sampling point. Let , ,s N s Ns T

f= -^ ^h h6 @  be the 

Tx signal, with length ; , ,N h h P2 1 0 1h T
f+ = -^ ^h h6 @  

be the channel impulse response, with length P; and 

, ,y N y N P 1y T
f= - + -^ ^h h6 @  be the Rx signal, with length 

.N P2 +  Then, the convolution can be recast as ,y Hs=  where 

ToepH h C
N P N2 2 1!=

#+ +^ ^ ^h h h is a Toeplitz matrix, with the 

nth column being , , .0 h 0n
T T

N n
T T

1 2 1- - +6 @  Alternatively, one may 

express y as y Sh=  by the commutative property of the con-

volution sum, where .ToepS s C
N P P2!=

#+^ ^h h
The preceding duality between inter-

changeable signals and systems implies an 

interesting connection between R&C. From 

the communication perspective, the process 

of the Tx signal passing through a chan-

nel may be viewed as a linear transform H 

applied to s, with the communication task 

being to recover the information embedded 

in s by receiving y. From the radar perspec-

tive, the sensing task is to recover the target 

parameters embedded in h, which is viewed 

as an input “signal,” by observing y, which 

is viewed as an output signal linearly transformed from h 

through a “system” S. This reveals that the basic SP problems 

in R&C are mathematically similar.

Linear Gaussian models
Consider the more general linear Gaussian signal model by 

taking additive white Gaussian noise into account:

 Y H S Zh p= +^ ^h h  (1)

where Y and S are the sampled receive and transmit signals, 

which could be defined over multiple domains, e.g., the time–

space and time–frequency domains; H is the corresponding 

channel matrix (not necessarily Topelitz); and Z is the white 

Gaussian noise signal, with variance .2v  The channel H is a 

function of the physical parameters ,h  e.g., range, angle, and 

Doppler. The transmit signal S may be encoded/modulated 

with some information codewords .p  Model (1) represents 

many R&C systems, as elaborated in the following:

 ■ Radar signal model: Radar systems aim at extracting target 

parameters h  from Y. For both radar Txs and Rxs, S is typ-

ically a known deterministic signal, in which case p  can be 

omitted since the radar waveform contains no information. 

This can be expressed as

 .Y H S Zr r r rh= +^ h  (2)

 ■ Communication signal model: Communication systems 

aim at recovering codewords p  from Y. The channel H, 

which is sometimes regarded as an unstructured matrix, 

can be estimated a priori via pilots. Therefore, knowing h  

may not be the first priority. The resulting model is

 .Y H S Zc c c cp= +^ h  (3)

The subscripts r$^ h  and c$^ h  are to differentiate R&C sig-

nals, channels, and noises, respectively. We highlight that (2) 

and (3) describe a variety of R&C signal models. For example, 

(2) can be viewed as the target return of a MIMO radar in a 

given range-Doppler bin, where h represents angles of targets. 

R&C have been largely 

treated as two separate 

research fields, due to 

different constraints 

in their respective 

applications, and were 

therefore independently 

investigated and 

developed.
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Similarly, (3) may be considered a narrowband MIMO com-

munication signal. Alternatively, both (2) and (3) can be viewed 

as orthogonal frequency-division multiplexing (OFDM) sig-

nal models for R&C, respectively. In the following, we do not 

specify the signal domain but focus on generic models (2) and 

(3). More concrete signal models are discussed in the “Spec-

trum Engineering: The Road to Higher Frequency and Larger 

Bandwidth” and “Scaling Up the Antenna 

Array: The Road From Single Antenna to 

mMIMO” sections. In addition to individual 

R&C systems, (1) may also characterize the 

general ISAC signal model. That is, a uni-

fied ISAC signal serves dual purposes of 

information delivery and target sensing, 

whereas R&C channels may differ from one 

another. More details on ISAC systems will 

be discussed in the “ISAC: The Road From 

Separation to Integration” section.

Fundamental signal processing theories
In the following, we elaborate on the fundamental SP theories 

of R&C and, in particular, focus on (2) and (3).

Signal detection
Signal detection problems arise from many R&C applications. 

One essential task for radar is to determine whether a target 

exists by observing ,Yr  modeled as a binary hypothesis testing 

(BHT) problem:

 
:

:
Y

Y H S Z

Y ZH

H1
r

0 r r

r r r rh
=

= +

=

^ h)  (4)

where H0  represents the null hypothesis, i.e., the radar receives 

nothing but noise, and H1  stands for the hypothesis where the 

radar receives both the target return and noise. To address the 

preceding BHT problem, one may need to design a detector 

T $^ h that maps the received signal Yr  to a real number and then 

compare the output with a preset threshold c  to determine which 

hypothesis to choose as true. A target detector may, for example, 

maximize the detection probability PrP H HD 1 1= ^ h while 

maintaining a low false alarm probability ,PrP H HFA 1 0= ^ h  

following the Neyman–Pearson (NP) criterion [7].

Signal detection also plays a critical role at the communication 

Rx. In (3), the communication Rx observes Y H S Zc c c cp= +^ h  

and seeks to yield an estimate pt  of the information symbol vector 

A, , , .N
T

1 2 f !p p p p= 6 @  This problem can be solved by lever-

aging the minimum error probability (MEP) criterion, that is, to 

minimize the error probability ,Pr PrP
A

e i i i i1 !p p pR= =
t^ ^h h  

where A  is the cardinality of A. The MEP criterion can be 

translated to the maximum a posteriori criterion; i.e., the recov-

ered symbols should be the maximizer of the a posterior prob-

ability. Note that the decision region in the MEP criterion for 

communication symbols is determined by their a priori probabil-

ity, while the decision thresholds in the NP criterion for radar are 

determined by the required false alarm probability, resulting in 

different designs for R&C detectors.

Parameter estimation
Parameter estimation represents another category of basic SP 

techniques in R&C systems. For a radar system, once a tar-

get is confirmed to be present, the system needs to further 

extract the target’s parameters h  from Yr  by conceiving an 

estimator mapping Yr  from the signal space to an estimate 

,ht  defined as .YF rh =t ^ h  To measure how accurate an esti-

mator is, a possible performance metric is 

the mean square error (MSE), expressed as 

.E
2

h hf = - t^ h  The average may be over 

the noise and also over the parameters if 

they are assumed to be random. When the 

parameters are assumed to be deterministic, 

the MSE of any unbiased estimate is lower 

bounded by the Cramér–Rao bound (CRB), 

defined as the inverse of the Fisher informa-

tion matrix J [7]:

 
;ln p

J
Y

E E
H 1

2

2
r

1

2

2
*h h h h

h

h
- - = -

-

-

t t^ ^ ^h h h6 =@ G) 3  (5)

where ;p Yr h^ h is the probability density function of Yr  pa-

rameterized by .h  While the maximum likelihood estimate 

(MLE) asymptotically achieves the CRB, attaining the MLE 

can be highly computationally expensive. To that end, low-

complexity parameter estimation algorithms, e.g., MUSIC and 

ESPRIT [8], [9], have been widely applied in practical situa-

tions, such as angle-of-arrival estimation.

In communication systems, the channel Hc  should be esti-

mated before delivering the useful information. For channel esti-

mation, the Tx sends pilots to the Rx, which are reference signals 

known to both. The Rx then estimates the channel based on both 

the received signals and pilots. Channel estimation is mathemat-

ically similar to the target estimation problem, where the to-be-

estimated parameters h are entries of ,Hc  which is regarded as 

an unstructured matrix. We elaborate on similarities and differ-

ences among estimation tasks for communication channels and 

radar targets in the “Scaling Up the Antenna Array: The Road 

From Single Antenna to Massive MIMO” section.

Information theory
Information theory serves as the foundation of communication 

SP. A remarkable result attained by Shannon in his landmark 

paper [10], published in 1948, states that, for any discrete mem-

oryless channel with input X and output Y, the channel capacity 

is ; ,maxC I X Y
p X

= ^^ hh  where the maximum is taken over all pos-

sible input distributions ,p X^ h  and ;I X Y^ h is the mutual in-

formation (MI) between X and Y. The channel coding theorem 

states that a coding rate R below C is achievable. Conversely, 

if ,R C2  an arbitrarily small decoding error is not possible. 

Information theory may also be adopted to measure radar per-

formance [11] and may reveal profound connections between 

R&C. Let us consider a generic real-valued Gaussian channel 

with an input X, which is assumed to be random, and output Y. 

In the communication case, X can be an information-carrying 

signal emitted by the Tx, and Y can be the signal received at the 

The boundary between  

R&C is becoming blurred, 

and hardware and 

spectrum convergence 

has led to a design 

paradigm shift, where 

the two systems can be 

codesigned.
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communication Rx. In the radar case, X can be some random 

target parameter/channel to be estimated, and Y can be the echo 

signal received at the radar Rx. In both R&C tasks, we may 

wish to accurately/approximately recover X by observing Y.

We denote the MI between X and Y as ;I X Y^ h and 

the minimum MSE (MMSE) of estimating X from Y as 

,X Y X X YMMSE E E; ; ; ;= -
2^ ^h h" ,  both of which may 

be expressed as functions of the signal-to-noise ratio (SNR), 

namely, I snr^ h and .MMSE snr^ h  We then have the following 

I-MMSE identity, which holds for Gaussian channels [12]:

 .
d

d
I

snr
snr

2
1

MMSE snr=^ ^h h  (6)

The preceding relationship implies that the increasing rate 

(derivative) of the MI between X and Y with respect to the SNR 

is half of the MMSE for estimating X given Y. For a Gaussian 

channel, I snr^ h is maximized by inputting a Gaussian distrib-

uted X under a given SNR. More precisely, a Gaussian input 

always results in the most rapidly growing MI and, accordingly, 

yields the maximum MMSE, making it the most favorable for 

communication yet the least favorable for radar sensing. From 

a communication perspective, the channel input should be “as 

random as possible” to carry more information. From a radar 

perspective, estimation performance becomes more inaccurate 

if the target parameters change more randomly. The Gauss-

ian distribution has the highest entropy (randomness) under a 

second-order moment constraint (i.e., a fixed power budget), 

resulting in this interesting tradeoff.

Interplay between radar and communications
While communication happens between cooperative Txs and 

Rxs, radar sensing is essentially uncooperative, even if the ra-

dar Tx and Rx are colocated. This distinction results in inher-

ently different R&C SP frameworks. First, R&C SP aims at 

recovering useful information contained in the received signal, 

with minimum distortion. The communication system, how-

ever, needs another level of performance guarantee, i.e., to 

transmit, receive, and actively control as much information as 

possible. This requires sophisticatedly tailored encoding and 

decoding and modulation and demodulation strategies at the 

Tx and Rx, respectively, which motivates the development of 

information theory, whose spirit forms the foundation of the 

modern communication SP framework. Moreover, as the com-

munication Tx and Rx are highly cooperative, they are able to 

share the SP complexities in a rather flexible manner, depend-

ing on the specific scenarios. For instance, in a downlink com-

munication setup where a powerful base station (BS) sends 

information to the user, most of the complicated SP is done at 

the Tx’s side, e.g., precoding, to ease the computational burden 

at the user’s side. In a radar system, however, the complexity 

of the Rx SP always dominates its Tx counterpart, yet they are 

typically unable to share design complexities.

In what follows, we elaborate on the evolution of R&C in 

terms of both spectrum engineering and antenna array technolo-

gies and further reveal their interplay in spectral and spatial SP.

Spectrum engineering: The road to higher  
frequency and larger bandwidth

Spectrum characteristics and management
The radio frequency (RF) EM spectrum, extending from be-

low 1 MHz to above 100 GHz, has been used for a wide range 

of applications, including communications, radio and televi-

sion broadcasting, radio navigation, and sensing [13]. Figure 2 

displays the frequency bands where R&C systems operate and 

highlights the modes and usage that are performed in each band. 

For radar sensing, the lower bands offer some unique capabili-

ties, such as long-range surveillance and weather monitoring 

[13]. For communications, lower bands exhibit low signal at-

tenuation, making them suitable for long-distance transmission.

The higher-frequency bands provide some advantages to 

R&C. For a fixed fractional bandwidth, increasing the operat-

ing frequency subsequently increases the achievable bandwidth, 

thus providing finer range resolution for radar and higher data 

rates for communications. However, in these higher bands, long-

range operation becomes more strongly affected by attenuation 

due to the atmosphere. Moreover, the diffraction effect of high-

frequency EM wave signals decreases, which leads to a reduc-

tion in the number of paths propagated. Thus, radar sensing and 

wireless communication via these bands are limited to short-

range applications. For example, radars from X to W-bands are 

used for automotive collision avoidance, police radar, airport 

surveillance, and scientific remote sensing. As for communica-

tion, the mm-wave band is soon to be finalized as part of the 5G 

New Radio standards and has been exploited by the 802.11ad/ay 

wireless local area network (WLAN) protocols. More advanced 

radar SP tasks, such as real-time range-Doppler imaging and 

target recognition, typically rely on sparse recovery methods, as 

sparse channels are usually required in radar applications. For 

communication with high frequency and wideband, algorithms 

are required to be specifically conceived for channel estimation 

and demodulation to achieve higher data rates.

As a representative wideband signaling strategy, multicar-

rier technologies have been extensively applied in both R&C 

systems, which we overview in the following.

Signal models and processing techniques

Multicarrier radar signal processing
Let us consider a pulsed radar with a nonzero support [ , ]0 x  for 

each pulse. The radar works by transmitting a short burst of en-

ergy, or pulse, toward the target and then listening for the echo 

that bounces back. The pulse repetition interval (PRI) is ,TPRI  

and the total transmit bandwidth available at the baseband is 

,Br  resulting in a duty cycle of / .TPRIx  The carrier frequency 

fn  of the nth pulse is chosen from [ / , / ]f B f B B2 2c c rD D- + -  

for the multicarrier radar system, where fc  is the lowest car-

rier frequency within the band and BD  is the bandwidth of 

each subpulse. Specifically, for single-carrier systems, we have 

f fn c=  for all n with .f Bc r&  The nth transmit pulse is

 ( ) ( )s t P x t nT e,
( )

n
j f t nT

PRI
2

r r r
n PRI

= -
r -  (7)
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where Pr  is the radar transmit power. For the linear fre-

quency-modulated (LFM) waveform, we have ( )x tr =

/ ,e trect/j B t2
r xr x ^ h  where /trect x^ h is one for t0 # # x  

and zero elsewhere. The target response is

 ( ) ( )h t e tl

l

L
j t

l

0

1
2 la d x= -
ro

=

-

r/  (8)

where (·)dr  is the Dirac delta function, la  is the reflec-

tion coefficient, and lx  and lo  are the delay and Doppler 

of the lth target, corresponding to its range and velocity. 

The time delay between the transmitted and received 

signals is used to calculate the distance to the target. 

In general, the radar cannot separate the two targets in 

range if / .B1l l r1 2 1; ;x x-  In many sensing problems, 

obtaining information at high range resolution is crucial 

to distinguish closely spaced targets [14], which incurs 

larger bandwidth needs.

In 1968, Ruttenburg and Ghanzi proposed the stepped 

frequency waveform (SFW), which can be viewed as a 

form of interpulse phase coding [15]. It transmits a series 

of linearly increasing or decreasing frequency signals, or 

steps, toward the target. The frequency of the received 

signal is compared to the frequency of the transmitted 

signal to calculate the distance to the target. By sweep-

ing through a range of frequencies, the radar can also 

measure the target’s speed. The SFW was later used in 

sets of radars, in which coherent integration of a burst of 

pulses yields high range resolution. Conventional SFW 

sets the carrier frequency sequence as f f n fn c D= +  for 

all n. To improve the data rate and avoid interference, 

more recent approaches randomly draw frequencies 

from the set ,f f f d fF n n c n; D= = +" ,  where fD  is a 

step size and d Zn !  is chosen from a subset of [ , ]D0  so 

that D f B2D  is the synthesized bandwidth.

Conventional SFW SP follows the matched filtering 

(MF) process, in which , ,Y Sr r  and Hr h^ h are the Rx 

signal, Tx signal, and target response in the frequen-

cy domain, respectively. With this, we may represent 

the discretized signal as ,y Sh z= +  with h  being the 

time-domain target response and S being the Toeplitz 

matrix composed of the transmitted signal. For sparse 

SFW, MF may lead to high sidelobes due to the vacancy 

in frequency bands. To mitigate the effects of sidelobes, 

radar designers can use a variety of techniques, such as 

antenna designs that minimize sidelobes, SP algorithms 

that filter out sidelobes, and adjusting the radar’s oper-

ating parameters to avoid sidelobe interference. More 

recent approaches consider the sparse nature of radar 

signals and estimate the target parameters by using 

sparse recovery algorithms. Assuming that the targets 

are composed of very few scatterers compared with the 

number of measurements, h  can be estimated by solv-

ing the optimization problem

  min s.t.h y Sh0 2
h

# g-  (9)
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where g  is a positive constant dependent on the noise variance. 

This problem can be solved using compressed sensing algo-

rithms, e.g., norm-1,  minimization, and greedy algorithms, 

such as orthogonal matching pursuit [16], [17].

Multicarrier communication SP
As for the communication system, we assume it occupies a 

frequency band of .Bc  Setting / ,T B1c c=  the radiated signal 

is given by

 ( ) ( ) ( )s t P x n t nT e
n

N

c
j f t

0

1
2

c c c c

s

c}= -
r

=

-

/  (10)

where Pc  is the transmit power, ( )x nc  for all n is the symbol 

sequence to be transmitted with length ,Ns  and (·)c}  satisfies 

the Nyquist criterion with respect to .Tc  Classic amplitude shift 

keying (ASK), frequency shift keying (FSK), and phase shift 

keying (PSK) could be applied for generating ( ).x nc

The model in (10) is a single-carrier system, which has limi-

tations in bandwidth and data rates. Following a 1965 article, 

Zimmerman and Kirsch designed a high-frequency radio multi-

carrier transceiver [18]. When the structure in signal space relies 

on multiple subcarriers, it corresponds to a multicarrier scheme 

represented by letting ( ) ( ) ( ).x n x n t nT, ,m
N

m m0
1

c c c c
c }R= -=

-
 

Here ( )x n,mc  is the symbol sequence being transmitted, Nc  

is the number of subcarriers, and ( )t,mc}  is the synthesis 

function that satisfies the Nyquist criterion with respect to 

/B1 c  and maps ( )x n,mc  into the signal space. The family of 

( ) ( )t t e,m
j m ft2

c c} ~= r D  is referred to as a Gabor system, where 

( )tc~  is the prototype filter and fD  is the subcarrier spacing. It 

is easy to show that an N -pointc  inverse discrete Fourier trans-

form operating on the data generates samples of the OFDM 

signal, which can be accelerated by the fast Fourier transform 

(FFT) algorithm proposed by Cooley et al. [19]. At the com-

munication Rx, we remove the cyclic prefix and take the signal 

samples for , , , ,n N0 1 1sf= -  yielding

 ( ) ( )S F X b cN
H T

cc 9 x o= l^ h (11)

where FN  is an N-dimensional discrete Fourier transform  

matrix; 9  is the Hadamard product; [ ( ), ( ), ,0 1X x xc c c f=   

( )],N 1x sc -  with ( ) [ ( ), ( ), , ( )] ;n x n x n x px , , ,N
T

0 1 1c c c c cf= -

( ) [ , , , ] ,e e1b ( )j f j N f T2 2 1c
fx = r x r xD D- - -

l
l l

 with xl being the time 

delay; and ( ) [ , , , ] ,e e1c ( )j f T j f N T T2 2 1c c sc c
fo = r o r o- - -  with fco  

being the Doppler shift. Then, the FFT could be applied before 

the detection of symbols ( )x n,mc  for , , , .m N0 1 1cf= -

In most practical scenarios, the radio channel is both 

time and frequency dispersive such that the channel output 

spreads over time and frequency domains. Such channel dis-

tortion results in so-called intersymbol interference (ISI) and 

interchannel interference (ICI) onto the received signals. By 

defining the time–frequency lattice based on symbol duration 

and subcarrier bandwidth, namely, the time–frequency plane, 

ISI and ICI can be reduced via well-localized 2D pulse shap-

ing filters. Unfortunately, simultaneously sharply localizing 

a time- and frequency-limited signal on the time–frequency 

plane to well concentrate its energy is impossible, as stated by 

the Heisenberg uncertainty principle.

Interplay between radar and communications

Pulse shaping for radar and communications
Pulse shaping is essential for both R&C to shape the waveform 

of the transmitted signal. Although signaling pulses serve a 

similar purpose in both cases, there are some key differences 

in their design and implementation. In communication sys-

tems, pulse shaping is used primarily to minimize ISI and 

control the bandwidth of the transmitted signal. This helps op-

timize the data rate, signal quality, and spectral efficiency. In 

radar systems, in addition to bandwidth control, pulse shaping 

is applied to control the sidelobes of the transmitted waveform. 

This helps to improve the range resolution and target detection 

capability. Furthermore, in communication systems, common 

pulse shaping filters include the raised cosine filter, root raised 

cosine filter, Gaussian filter, and various others. These filters 

are chosen based on the specific modulation scheme, chan-

nel conditions, and system requirements. In radar systems, 

common pulse shaping filters include the Hamming window, 

Blackman window, Chebyshev window, and Taylor window, 

among others. These filters are chosen based on the radar’s 

specific requirements, such as the desired peak sidelobe level 

and range resolution.

OFDM-based radar versus delay-Doppler  
communications
Multicarrier techniques have been extensively used over the 

past decade for wideband systems. Examples include the SFW 

for radars and OFDM for communications. It is worth not-

ing that the OFDM signal can also be used for radar sensing, 

which is known as the communication-centric ISAC waveform, 

which is elaborated later. In such a system, the ISAC Tx trans-

mits signals jointly for radar sensing and communicating with 

other communication systems by using the same OFDM signal, 

where each symbol is individually modulated with data belong-

ing to a constellation. Accordingly, the OFDM blocks are in-

dividually processed at the Rx of the ISAC system. While the 

communication processing consists of extracting modulated 

data from each block, the radar processing consists of estimat-

ing the range-Doppler profile through the 2D FFT operation 

[20]. As discussed in the previous section, ISI and ICI cannot 

be fully eliminated in OFDM systems. To ease such issues, the 

recently developed orthogonal time–frequency space (OTFS) 

modulation proposed to use the delay-Doppler (DD)-based 

signal representation to convert the time–frequency channel 

responses into simple 2D time-invariant channel response [21], 

thus alleviating the time–frequency selective effects. In such a 

case, the available signal propagation paths become physically 

explainable, observable, and probably predictable by, for exam-

ple, moving object tracking strategies [22]. These key observa-

tions mandate that the OTFS be a novel ISAC SP paradigm that 

goes beyond separately performing R&C SP on the DD and 

time–frequency domains.
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Scaling up the antenna array: The road from  
single antenna to massive MIMO
In the past decade, the evolution of R&C systems has gained 

considerable spatial efficiency by scaling up antenna arrays. 

The more antennas equipped at the Tx/Rx, the more degrees 

of freedom (DoFs) signaling strategies can exploit from the 

propagation channel, and better reliability can be achieved in 

the transmission. In this section, we investigate the evolution 

path of the array structure.

Array structure evolution and signal models
In general, an antenna array can be described by its response 

(also known as a steering vector), which is a vector function of 

angle parameters ,i  denoted as .a i^ h  For an N-antenna uni-

form linear array with antenna spacing d and wavelength ,m  

the steering vector is expressed as

 , , , ,e e e1a sin sin sinj
d

j
d

j N
d

2 4 1
fi = r

m
i r

m
i r

m
i- - - -^ ^ ^ ^ ^h h h h h8 B (12)

where ,!i r r-6 @ and d is typically set as / .2m  Suppose that 

the radar or communication system is equipped with Nt  and 

Nr  antennas at its Tx and Rx and that the signal arrives from 

L resolvable paths. The general channel matrix for both R&C 

can be modeled as

 H b al l
T

l
l

L

1
a i z=

=
^ ^h h/  (13)

where ,la  ,lz  and li  are the channel coefficient, direction of 

departure, and direction of arrival (DOA) for the lth signal 

path; a C
N 1t!z #^ h  and b C

N 1r!i #^ h  are Tx and Rx steering 

vectors, respectively. The channel model (13) may represent L 

resolvable point targets for radar or L propagation paths for 

communication. In the communication case, la  is contributed 

by both the path loss and small-scale fading effect. In the radar 

case, la  may also be contributed by the radar cross section 

(RCS) of the targets in addition to the round-trip path loss, 

which follows Swerling’s target models [23].

Phased array
Having the capability of generating a highly directive beam 

through rapid electronic phase control, phased-array tech-

niques triggered various R&C innovations. The phased-array 

system, in its simplest form, consists of a single RF chain 

connected with multiple antennas through phase shifters 

(Figure 3). In other words, the signal transmitted over each 

antenna is a phase-shifted counterpart of the signal generated 

in the RF chain. If both the Tx and Rx are equipped with 

phased arrays, the discrete receive signal at time instant n can 

be expressed as

 ,y s z nw Hfn
H

n n 6= +  (14)

where sn  is the signal transmitted within the Tx’s RF chain 

and f C
N 1t! #  and w C

N 1r! #  consist of the phase shifters 

at the Tx and Rx, with each of their entries being constant 

modulus, which are also known as the transmit beamformer 

and receive combiner, respectively, and are referred to as RF/

analog beamforming.

MIMO (digital) array
In contrast to the phased array, the MIMO system is equipped 

with multiple RF chains, where each RF chain is connected to 

a single antenna port. The receive signal for a MIMO system 

can be modeled as

 , ny HFs zn n n 6= +  (15)

where s Cn
K 1! #  and y Cn

N 1r! #  are transmit and receive 

signal vectors at the Tx and Rx, respectively, with K being 

the number of independent signals and F C
N Kt! #  a digital 

precoder. In MIMO radar applications, , nsn 6  are spatially 

orthogonal waveforms, and F may be designed to steer the 

signals to multiple directions simultaneously and to keep the 

orthogonality for omnidirectional searching. In MIMO com-

munication applications, F may be designed to equalize and 

exploit the multipath effect by using various precoding tech-

niques, e.g., zero forcing and MF precoding. MIMO commu-

nication technology was first patented in 1994 [24], which in-

spired the invention of the MIMO radar concept, in 2003 [25].

mMIMO array
When the antenna number grows extremely large, e.g., above 

100, the MIMO system becomes an mMIMO system, or a 

large-scale antenna system. In this case, the steering vectors are  

yn = wHHfsn + zn yn = Hfsn + zn yn = HFRFFBBsn + zn H = αlb(ql) aT(ql)
l = 1
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FIGURE 3. The antenna array evolution and signal models: the (a) phased array, (b) MIMO/mMIMO array, (c) hybrid array, and (d) distributed array.
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asymptotically orthogonal to one another. Moreover, in a richly 

scattering environment with a large L, for , ,N N Nt t r" 3 &  we 

have , i0var h hEk k
2 2

" 6< < < <^ ^h h  and ,N1 HH It
H

Nr.^ h  

which are known as the channel hardening effect and favor-

able propagation effect. While the basic signal model for 

mMIMO remains the same as (15), it has additional superi-

orities over small-scale MIMO [4]. First, one may attain even 

more DoFs if equipping both the Tx and Rx with mMIMO ar-

rays. More importantly, the channel hardening effect improves 

the communication reliability by generating a nearly determin-

istic channel, which considerably simplifies the SP. Recent re-

search has also shown the superiority of applying the mMIMO 

technology to the radar system, which is able to detect a target 

via a single snapshot in the presence of a disturbance with un-

known statistics [26].

Hybrid array
Massive MIMO achieves dramatic gains at the price of a grow-

ing number of antennas and RF chains, incurring larger hard-

ware costs. To that end, the hybrid analog–digital array was 

proposed as a promising solution [27]. The hybrid array can 

be viewed as a tradeoff between the phased-array and fully 

digital MIMO array, as it connects fewer RF chains with mas-

sive antennas through phase shifters and switches. Consider a 

hybrid array with NRF  RF chains and Nt  antennas. The phase 

shifter-based design has the following signal model:

 , ny HF F s zn n nRF BB 6= +  (16)

where F C
N N

RF
t RF! #  is the analog beamforming matrix con-

taining constant-modulus entries representing phase shifters 

and F C
N K

BB
RF! #  is a digital precoder multiplexing K data 

streams. The hybrid array is also known as the phased-MIMO 

structure in the radar community [28]. In addition to reducing 

the cost for implementing MIMO radar, it achieves a balance 

between phased-array and MIMO radars via harvesting per-

formance gains from both. By partitioning the antenna array 

into different subarrays, phased-MIMO radar may formulate 

highly directional beams toward targets at each subarray, im-

proving the SNR of the echoes. In the meantime, it may also 

transmit orthogonal waveforms over different subarrays, thus 

reaping the gain of waveform diversity.

Distributed array
The continually growing demands for connectivity, coverage, 

and high-resolution sensing necessitate research of the distrib-

uted antenna array system for both R&C. Instead of colocating 

the antennas in a compact space, distributed antennas are spread 

over a large area while connecting to a central processing unit 

(CPU), providing a much higher probability of coverage and an 

improved diversity gain. Distributed antenna systems have been 

extensively studied from the communication viewpoint under 

different names, including networked MIMO, coordinated mul-

tipoint and cell-free mMIMO [29]. Their radar counterparts, on 

the other hand, are known as multistatic radar and MIMO radar 

with widely separated antennas [30]. The distributed array may 

also be described by its response, which, however, is no longer 

a function of the angle; rather, it is a function of the coordinates 

of the targets and scatterers in each signal path. By denoting the 

coordinates of the lth target/scatterer as , ,x yql l l= ^ h  the distrib-

uted channel matrix can be expressed as

 .H b q a ql l
T

l
l

L

1
a=

=
^ ^h h/  (17)

Note that the specific array geometry relies upon the overall 

deployment of the distributed system.

Signal processing for MIMO radar and communications

Colocated MIMO radar
With colocated antennas, MIMO radars can mimic beamform-

ers utilizing low-probability-of-intercept waveforms. Rather 

than focusing energy on a target, the transmitted energy is evenly 

distributed in space [3], [30]. Compared to conventional phased-

array beamforming, the loss of processing gain due to the uni-

form illumination is compensated by the gain in time since there 

is no need to scan a narrow beam [3], [30]. The beamforming 

of classic colocated MIMO computes the correlations between 

the observation vectors from the previous step and the steering 

vectors corresponding to each azimuth/elevation on the grid de-

fined by the array aperture. Then, the targets can be detected in 

the angular domain. It is worth noting that a heuristic detection 

process, in which there is knowledge of the number of targets, 

clutter location, and so on, may help in discovering targets’ posi-

tions [31]. For example, if we know there are M targets, then we 

can choose the M strongest points in the targets profile. Alter-

natively, constant false alarm rate detectors determine a power 

threshold, above which a peak is considered to originate from a 

target so that a required false alarm probability is achieved.

Distributed MIMO radar
Widely separated transmit/receive antennas capture the spatial 

diversity of the target’s RCS [30]. Practical realization of phase 

coherency may be difficult, thus often necessitating noncoher-

ent combining to perform target detection using the distributed 

apertures [30]. It is shown that with noncoherent processing, 

a target’s RCS spatial variations can be exploited to obtain a 

diversity gain for target detection and for estimation of various 

parameters, such as the DOA and Doppler. Again, Swerling 

models [23] can be used to represent the statistical RCS fluctu-

ations as a function of the target decorrelation time. In distrib-

uted MIMO radars, a multidimensional signal space is created 

when the returns from multiple scatterers and targets combine 

to generate a rich backscatter. By exploiting the spatial dimen-

sion, MIMO radar with widely separated antennas may over-

come bandwidth limitations and support high-resolution target 

localization [30].

MIMO communications
MIMO communication has been playing a critical role in cellular 

and Wi-Fi systems since the 2010s, the beginning of the 4G era. 

Early SP methods focused on single-user MIMO (SU-MIMO)  
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communication, where a multiantenna BS serves a single or 

multiantenna user, which is also known as the point-to-point 

MIMO channel. In addition to multiplexing more data streams, 

the MIMO array is able to serve multiple us-

ers over the same time–frequency resource 

block, which is known as multiuser MIMO 

(MU-MIMO) communications technology. 

Compared to SU-MIMO, the MU-MIMO 

configuration offers significant complexity 

reduction at the users’ side. For MU-MIMO 

systems, the coordinated signal detection at 

the Rx’s side is not as straightforward as in 

SU-MIMO since cooperation among users is difficult. There-

fore, the BS needs to precancel the interference by employing 

various precoding methods, which also simplifies the SP at the 

users’ side. While dirty paper coding is capacity achieving, it 

suffers from high complexity [32]. Therefore, suboptimal linear 

precoders are more commonly employed in practical systems.

Interplay between radar and communications

Multiplexing versus diversity
The expansion of the antenna array brings diversity and multi-

plexing gains, which are cornerstones of MIMO communica-

tion theory. Transmit or receive diversity is a means to combat 

deep fading by creating different propagation paths through 

the Tx–Rx antenna pairs. Multiplexing, on the other hand,  

exploits the DoFs provided by the multipath propagation  

environment through sending different data streams over in-

dependent subchannels. In 2003, Zheng and Tse revealed that 

there is an inherent tradeoff between the two gains, namely, 

the diversity–multiplexing tradeoff (DMT) [33]. For an in-

dependent identically distributed Rayleigh MIMO channel 

,H C
N N

c
r t! #  the maximum diversity gain and multiplex-

ing gain are N Nt r  and , ,min N Nt r" ,  respectively. From a 

broader viewpoint, the DMT is essentially a tradeoff between 

reliability and efficiency.

The spirit of MIMO radar SP can be interpreted in a simi-

lar manner. On the one hand, colocated MIMO radar pos-

sesses the superior attribute of waveform diversity, which 

means that diverse waveforms are flexibly emitted through 

different antennas. Waveform diversity may be implemented 

in either the baseband or RF band, e.g., through phase cod-

ing or frequency coding. It significantly improves parameter 

identifiability compared to its phased-array counterpart. That 

is, the colocated MIMO radar is able to uniquely identify up 

to N NO t r^ h targets, which is Nt  times of that of phased-array 

radar [3]. This connects more closely to the multiplexing gain 

in communications. On the other hand, distributed MIMO 

radar provides target RCS diversity. By widely spreading the 

antennas, distributed MIMO radar is able to observe a target 

from different directions, thus providing stable sensing perfor-

mance by overcoming the drastic RCS fluctuations in high-

mobility targets [30].

The preceding discussion again reflects the signals and 

systems duality. Since the signals and systems are interchange-

able, we may view radar target channels as “signals” and radar 

waveforms as “systems.” While the basic model for MIMO 

communications is that multiple data streams (signals) are 

transmitted through multiple spatial chan-

nels (systems), the model for MIMO radar 

is, conversely, that multiple target channels 

(signals) pass through diverse waveforms 

(systems). This duality creates the interest-

ing interplay between R&C, and may imply 

more essential connections and tradeoffs in 

ISAC systems.

Statistical versus geometrical channel representations
Most of the MIMO radar channels are geometrically modeled, 

as the ultimate goal of the radar is to extract the physical pa-

rameters of targets. The MIMO communication channel, on 

the other hand, can be modeled either statistically or geometri-

cally, depending on the specific scenarios and systems. The 

distinct models of the same channel are representations in dif-

ferent coordinate systems. For instance, an N Nr t#  commu-

nication channel matrix Hc  may be generally seen as a point 

in the Euclidean space .C
N Nr t#  If it is geometrically modeled, 

then it may be viewed as a point in a subspace spanned by 

steering vectors a lz^ h and .b li^ h  In sub-6-GHz bands with 

richly scattering environments, the small-scale MIMO chan-

nel is modeled as an unstructured matrix subject to certain 

distributions, e.g., Rayleigh and Rician distributions, since the 

number of propagation paths could be far greater than that of 

the channel entries. In such a case, the communication channel 

estimation task is to recover all the entries in .Hc  In mm-wave 

and THz bands with much fewer propagation paths than an-

tennas, the mMIMO channel is well characterized by a geo-

metrical clustered model, such as the Saleh–Valenzuela model, 

which enables beam space SP for mm-wave and THz commu-

nications that mimics MIMO radar SP. In fact, beam training 

and tracking in mm-wave and THz communications may be 

analogously viewed as target searching and tracking, all of 

which can be operated on a hybrid array-based RF platform. 

This also builds a solid foundation to merge R&C into a single 

system by ISAC technologies.

ISAC: The road from separation to integration

ISAC: From competitive coexistence to codesign
The ubiquitous deployment of R&C systems leads to severe 

competition over various resource domains. To date, both tech-

nologies exhibit explosively growing demands for spectral and 

spatial resources and are thus evolving toward higher frequen-

cies and larger antenna arrays. As exemplified in the “Spec-

trum Characteristics and Management” section, a variety of 

R&C systems have to cohabitate within multiple frequency 

bands, which, inevitably, incurs significant mutual interference 

between the two functionalities [31], [34]. To ensure harmoni-

ous coexistence between R&C, orthogonal resource allocation 

became a viable approach. Nevertheless, orthogonal allocation 

results in low resource efficiency for both R&C. Aiming for 

Since the signals 

and systems are 

interchangeable, we may 

view radar target channels 

as “signals” and radar 

waveforms as “systems.”
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fully maximizing the potential of limited wireless resources, 

e.g., bandwidth, and to enable the codesign of the R&C func-

tionalities, ISAC was proposed as a key technology for both 

next-generation wireless networks and radar systems.

The technological vision of ISAC can be divided into four 

levels, as shown in Figure 4. The first level is to share spectral 

resources between individual R&C systems, 

without interfering with each other. At the 

second level, the R&C functionalities may 

be deployed on the same hardware platform. 

At the third level, wireless resources may 

be fully reused between R&C via a com-

mon waveform, a single transmitting device, 

and a unified SP framework. Finally, at the 

fourth level, both R&C can share a common 

networking infrastructure, constructing a 

perceptive network to serve both sensing and communications 

functionalities. This underpins a large number of emerging IoT, 

5G Advanced, and 6G applications that require high-quality 

communication, sensing, and localization services [5].

During the past three decades, the development of ISAC 

has been supported by a number of governmental projects 

worldwide, among which the most influential ones were 

the “Advanced Multifunction Radio Frequency Concept 

(AMRFC)” program initiated by the U.S. Office of Naval 

Research in the 1990s and the “Shared Spectrum Access 

for Radar and Communications (SSPARC)” project funded 

by DARPA in the 2010s [6]. While both projects were moti-

vated by the need for sharing resources between R&C, the 

AMRFC mainly focused on colocating multifunctional 

modules (radar, communications, and electronic warfare) on 

the same RF front ends, and the SSPARC aimed for releas-

ing part of the sub-6-GHz spectrum from the radar bands 

for shared use between R&C. Most of the technical outcome 

of these projects was used in formulating the level 1 to level 3  

ISAC approaches. In the 2020s, networked sensing (level 4  

ISAC) was recognized by major enterprises in the communica-

tions industry (Huawei, Ericsson, ZTE, Intel, and Nokia) as one 

of the core air interface technologies for Wi-Fi 7, 5G Advanced, 

and 6G [5]. In 2020, IEEE 802.11 formed the 802.11bf task 

group to realize WLAN sensing in Wi-Fi 7, which is expected 

to be commercialized in 2024 [35]. In 2022, the 3rd Generation 

Partnership Project (3GPP) established the first study item on 

ISAC toward Release 19 standards for 5G Advanced [36].

To fully realize the promise of the ISAC technology, 

advanced SP techniques are indispensable. In this section, we 

briefly review the recent research progress 

on the SP for ISAC. In particular, we focus 

on levels 3 and 4, where a unified signaling 

strategy is designed to serve the dual pur-

poses of R&C.

ISAC signal processing
We investigate the linear Gaussian models 

considered in the “Fundamentals of Radar 

and Communications” section. The only 

difference is that a unified ISAC signal S is employed for both 

R&C, leading to

 
;Radar signal model:  

communcation signal model:  

Y H S Z

Y H S Z

r r r

c c c

h= +

= +

^ h
 (18)

where S is a discrete representation of the ISAC signal. We high-

light that (18) consists of abstractions for many existing ISAC 

models. That is, an ISAC Tx transmits a signal S to communi-

cate information while detecting targets. For radar sensing ap-

plications, the radar Rx observes Yr  and wishes to extract an 

estimate of h with the knowledge of the reference waveform S, 

which is known to both the ISAC Tx and radar Rx. For commu-

nication applications, on the other hand, the communication Rx 

observes Yc  and wishes to recover S, which is unknown to the 

communication Rx.

A generic ISAC SP framework is presented in Figure 5, 

where the R&C functionalities are jointly coordinated at 

the ISAC Tx to form a baseband ISAC signal. After being 

upconverted to the RF band, the signal propagates through 

the R&C channels and arrives at the Rx. The received sig-

nal, which may consist of both target and communication 

information, first goes through a preprocessing procedure, 

including synchronization, separa-

tion, filtering, and transformation, 

and is then processed following the 

regular R&C SP pipelines. ISAC SP 

is rather different from individual 

R&C SP. That is, when the wireless 

resources are shared between R&C, 

there exists an intrinsic performance 

tradeoff, as their design objectives are 

distinct and even contradictory. As 

illustrated in Figure 6, such a tradeoff 

can be framed as the Pareto frontier 

in terms of different R&C perfor-

mance metrics, e.g., the radar’s CRB 

and communication rate. The com-

plete characterization of such a Pareto 

Networked Sensing

Joint Waveform
Design and SP

Colocated Hardware

Joint Signaling
and Processing

Spectral Coexistence

Multifunctional
RF Front End

Radar and
Communications

CoexistenceLevel 1

Level 2

Level 3

Level 4
Perceptive
Network

FIGURE 4. The evolution path for ISAC technologies.

A variety of R&C systems 

have to cohabitate within 

multiple frequency 

bands, which, inevitably, 

incurs significant mutual 

interference between the 

two functionalities.
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frontier still remains wide open. The two corner points, 

PCS  and ,PSC  represent the communication-optimal and 

radar-optimal performance, with the corresponding achiev-

able rate–CRB pairs denoted by ,CCS CSe^ h and , ,CSC SCe^ h  

respectively. This results in three categories of ISAC SP 

designs, i.e., communication-centric, radar-centric, and joint 

design, which target approaching the points PCS, PSC  and the 

Pareto frontier in between, respectively.

Communication-centric design
Communication-centric design (CCD) simply implements the 

radar sensing functionality over an existing and even com-

mercialized communication waveform, in which case the 

communication functionality has priority. The most represen-

tative CCD approach is OFDM-based ISAC signaling, which 

directly exploits the OFDM communication waveform to si-

multaneously accomplish R&C tasks [20], [37]. Assume that 

the ISAC Tx emits the OFDM signal to communicate with a 

user while sensing a point target with delay x  and Doppler .o  

After receiving the echo signal reflected from the target, the 

radar Rx, which is colocated with the ISAC Tx, samples at 

each OFDM symbol, followed by block-wise FFT processing. 

The resultant discrete signal can be arranged into a matrix, 

with its (n, m)th entry associating with the nth symbol at the 

mth subcarrier, given as

 y x e e z, , , ,n m n m n m
j m f j n T

n m
2 1 2 1 ca= +
r x roD- - -^ ^h h  (19)

where ,n ma  and z ,n m  are the channel coefficient and noise. The 

random communication data x ,n m  impose a negative impact 

on radar sensing, which can be simply mitigated by element-

wise division:

 

.

y
x

y

e e
x

z

,
,

,

,
,

,

n m
n m

n m

n m
j m f j n T

n m

n m2 1 2 1 ca

=

= +
r x roD- - -

u

^ ^h h
 

(20)

Then, a 2D FFT can be applied to (20) to get the DD profile 

of the target.

Radar-centric design
In contrast to CCD schemes, radar-centric design (RCD) 

aims at implementing communication capability over exist-

ing radar infrastructures, targeting approaching the perfor-

mance at .PSC  Since the classical radar waveform contains 

no information, RCD schemes are also referred to as infor-

mation embedding approaches in the literature; namely, the 

communication data are embedded into the radar waveform 

in a way that will not unduly degrade the sensing perfor-

mance. Early RCD schemes mainly focused on exploiting 

the LFM signal as an information carrier [38]. In addition 

to the conventional modulation formats, including amplitude, 

phase, and FSKs, LFM signals have another design DoF, i.e., 

the slope that the frequency increases with the time, which 

may also be utilized for data embedding. To fully guarantee 

the radar performance, recent research proposed to realize 
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ISAC by index modulation (IM), which was first proposed 

in [39] for MIMO radar transmitting orthogonal waveforms. 

In such a case, the communication information is conveyed 

by shuffling the waveforms across multiple antennas, which 

does not break the orthogonality. As a step forward, more 

recent RCD schemes implement IM-based ISAC signaling 

on carrier-agile phased-array radar, namely, the multicarrier-

agile joint radar–communication (MAJoRCom) system [40]. 

During each PRI, the MAJoRCom randomly selects the car-

rier frequencies from a frequency set and randomly allocates 

these frequencies to each antenna, which again keeps the or-

thogonality unaffected.

Joint design
As discussed in the preceding, CCD and RCD schemes at-

tempt to approach the performance of PCS  and ,PSC  which 

may be implemented in existing communication and radar 

systems, respectively. However, they lack the flexibility to 

formulate a scalable tradeoff between R&C and, equivalently, 

to approach the performance of an arbitrary point on the Pa-

reto frontier in Figure 6. To resolve this issue, JD-based ISAC 

signaling becomes a promising strategy, which is often con-

ceived through convex optimization techniques [41]. Consider 

a MIMO ISAC BS that serves Ku  single-antenna users while 

detecting a point target locating at an angle .i  An ISAC signal 

S constrained by the energy ET  can be obtained by solving 

the following angle CRB minimization problem under the 

sum–rate constraint:

 , ,min R R k ECRB s.t. Sk
k

K

F T
1

0
2

S

u

6$ #i
=

^ h /  (21)

where Rk  is the achievable rate for the kth user and R0  is a pre-

defined sum–rate threshold. The Pareto frontier between R&C 

can be obtained by increasing ,R0  which leads to an increased 

objective CRB.

Interplay between radar and communications
From the preceding ISAC SP strategies, it is interesting to 

note that there is a twofold tradeoff between R&C, namely, 

the deterministic versus random tradeoff (DRT) and subspace 

tradeoff (ST).

Deterministic-random tradeoff
Communication systems require random signals to convey 

as much information as possible, whereas radar systems pre-

fer deterministic signals for achieving stable sensing perfor-

mance. This has been an intuitive insight consistent with both 

engineers’ experience and R&C SP theory. For instance, con-

stellation shaping for communications always targets approxi-

mating a Gaussian distribution, thus approaching the Shannon 

capacity. Radar systems, on the other hand, prefer to transmit 

constant-modulus waveforms at the maximum available power 

budget, which motivates the use of phase-coded signals. For 

clarity, this concept is shown in Figure 6.

The DRT has also been reflected in the preceding CCD 

and RCD approaches. For OFDM-based CCD signaling, the 

element-wise division of the random data changes the sta-

tistical characteristics of the noise across the symbols and 

subcarriers, imposing performance loss on the threshold-

ing and peak detection in the 2D FFT processing. To tackle 

this issue, a natural idea is to transmit PSK-modulated data, 

which rotates the phase of the circularly symmetric Gauss-

ian noise without changing its distribution. For the IM-based 

RCD scheme, the radar transmits communication data by the 

random selections of waveforms across the antennas, i.e., the 

information is carried by permutation and selection matrices, 

while keeping the radar waveform orthogonality unchanged. 

In both cases, the communication rate can be increased by 

embedding more random data (exploiting more DoFs) into 

the ISAC signal, which is, however, at the price of deterio-

rated radar sensing performance.

Subspace tradeoff
Another fundamental tradeoff in ISAC is the ST. The column 

vectors of R&C channel matrices and H Hr c  span the sensing 

and communication subspaces. To fully radiate the transmit 

power toward targets/users, radar-optimal and communica-

tion-optimal signals should align to the two subspaces, respec-

tively. Consequently, the R&C performance can be balanced in 

an ISAC system by allocating resources into the two subspaces. 

Apparently, if two subspaces are partially overlapped, then re-

sources allocated to the intersection are shared between R&C, 

improving the efficiency. On the contrary, if two subspaces are 

orthogonal to each other, no resources can be reused, leading 

to zero performance gain. Based on the 

overlapped degree of two subspaces, 

one may categorize R&C channels as 

weakly coupled, moderately coupled, 

and strongly coupled scenarios, which 

are intuitively illustrated in Figure  7. 

The higher coupling degree between 

two subspaces results in better tradeoff 

performance, as more resources are re-

used between R&C.

The ST can be observed in the JD 

signaling scheme discussed in (21). 

That is, by increasing the communi-

cation sum–rate threshold ,R0  more 
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FIGURE 6. The performance tradeoff between R&C.

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 05,2024 at 00:56:52 UTC from IEEE Xplore.  Restrictions apply. 



119IEEE SIGNAL PROCESSING MAGAZINE   |   July 2023   |

signal power is transmitted toward the directions of commu-

nication users, while less power is radiated to sense the tar-

get, resulting in a higher CRB. To illustrate this, we provide 

a numerical example of solving problem (21) in Figure 8 for 

a single-target, single-user scenario. In particular, we con-

sider the correlation coefficient between the communication 

channel hc  and the target steering vector ,a i^ h  defined as 

.h a h ac
H

c; ; < << <t i i= ^ ^^ ^h hh h  By varying the signal-to-

interference-plus-noise constraint of the user, we observe that 

the resultant ISAC signal indeed formulates a scalable tradeoff 

between the radar CRB and the communication achievable 

rate, where the ISAC signal rotates from the communica-

tion subspace to the sensing subspace. More interestingly, by 

increasing the correlation coefficient t  from zero to one, the 

ISAC tradeoff performance becomes better, which is consis-

tent with our analysis on weakly, moderately, and strongly 

correlated subspaces. That is, higher correlation between two 

subspaces indicates that more resources can be shared between 

R&C. In the extreme case of ,1t =  the performance of both 

R&C reaches its optimum without jeopardizing one another. 

This is because the two subspaces are fully aligned to each 

other, and the signal resources can be fully reused between 

R&C, leading to the maximum gain.

Open challenges and future research directions
Although ISAC has been well investigated from various di-

rection in recent years, there are still many open challenges 

that remain widely unexplored. Here, we overview some of the 

open problems in fundamental tradeoff, SP, and networking 

aspects, where tremendous research efforts are needed.

Full characterization of the ISAC performance tradeoff
Characterizing the ISAC performance tradeoff is a multiobjec-

tive functional optimization problem by its nature. Neverthe-

less, the current results are able to depict only the performance 

at the two corner points [42]. It is unclear where the exact Pa-

reto frontier lies in Figure 6 and what the optimal signaling 

strategies are to achieve that boundary. Moreover, the research 

on the fundamental ISAC tradeoff in more practical scenarios, 

e.g., the multiuser multitarget regime, is still at its early stage, 

where tighter estimation-theoretical bounds and the multiuser 

capacity region need to be jointly considered.

Practical ISAC signal processing
Most of the current ISAC signaling schemes were proposed 

under ideal assumptions. However, there is a large number of 

practical constraints that prevent the implementation of these 

ISAC designs. For instance, CCD approaches that adopt a stan-

dardized communication waveform, e.g., 5G New Radio, face 

the challenges of insufficient bandwidth and a high peak-to-

average-power ratio, which leads to severe performance loss of 

radar sensing. In addition to that, the imperfection of hardware 

components, e.g., quantized phase shifters and uncalibrated 

antenna arrays, also needs to be taken into account in design-

ing practical ISAC SP pipelines.

Networked ISAC
Current state-of-the-art research mainly concentrates on the SP 

for single-node ISAC systems. To realize networked ISAC us-

ing commercialized networking infrastructures, which are not 
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 originally tailored for radar sensing, a series of SP challenges 

need to be carefully coped with. For instance, clock-level net-

work synchronization is needed to achieve high sensing accu-

racy. Moreover, to detect short-range targets, e.g., humans and 

vehicles, the future ISAC BS should operate in full-duplex mode 

to avoid self-interference between the transmit signal and target 

return. Equipping the network with ubiquitous sensing capa-

bilities has also raised concerns on security and privacy issues, 

which needs to be addressed in future ISAC systems.

Conclusions
In this article, we overviewed the technological evolution of 

R&C from an SP viewpoint. We first focused our discussion on 

the general principles and fundamental SP techniques for both 

R&C. We then introduced two main trends and the resulting 

SP schemes in the historical development of R&C, namely, the 

increase of frequencies and bandwidths and the expansion of 

the antenna arrays. Following these two trends, we provided a 

detailed discussion on the recent progress of SP techniques for 

ISAC systems. Finally, we identified a number of major open 

challenges in ISAC technologies.

Although concerning two long-established disciplines, the 

story of R&C will continue in the foreseeable future. In par-

ticular, ISAC, the marriage between R&C, will have a large 

impact on modern society.
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