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Abstract. In this note we give several counterexamples. One shows that small energy majorization on bi-tree
fails. The second counterexample shows that energy estimate [ VY dv < Ce|v| always valid on a usual tree
by a trivial reason (and with constant C = 1) cannot be valid in general on bi-tree with any C whatsoever.
On the other hand, a weaker estimate ng Vydv < Crel"T&WITIv|1 7 is valid on bi-tree with any 7 > 0. It is
proved in [14] and is called improved surrogate maximum principle for potentials on bi-tree. The estimate
fT3 Vydv = Crel"TEWIT V|17 with T = 2/3 holds on tri-tree. We do not know any such estimate with any
7 < 1 on four-tree. The third counterexample disproves the estimate sz VY dv < F(x) for any F whatsoever
for some probabilistic v on bi-tree T2. On a simple tree F(x) = x would suffice to make this inequality to hold.
The potential theories without any maximum principle are harder than the classical ones (see e.g. [1]), and
we prove here that in our potential theories on multi-trees maximum principle must be surrogate.
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Version francaise abrégée

Les théoremes de plongement sur les graphes sont intéressants en particulier parce qu’ils sont
liés a la structure des espaces de fonctions holomorphes dans le disque ou le polydisque. Le cas
du bi-disque est beaucoup plus difficile qu'un simple cas du disque car le graphe correspondant
n’est pas un arbre mais un bi-arbre, et le bi-arbre a des cycles.

La différence entre la théorie a un parametre (le graphe est un arbre) et la théorie a deux
parametres (le graphe est un bi-arbre) est énorme. Une explication est que dans une théorie
multi-parametres toutes les notions d’intégrales singuliéres, de para-produits, de BMO, de
classes de Hardy, etc. deviennent beaucoup plus subtiles que dans le cas a un seul parametre.
11 existe de nombreux exemples de cet effet. Cela a été démontré dans les résultats de S. Y. A.
Chang, R. Fefferman et L. Carleson, voir [8-10, 18]. Les articles traitant des polydisques et des
multi-arbres méntionnés ci-dessous ont tous une caractéristique commune : ils sont basés sur
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la théorie du potentiel sur les multi-arbres. Ici, nous montrons que de nombreuses parties es-
sentielles de la théorie potentielle sur les arbres ont échoué lorsqu’elles sont considérées sur le
bi-arbre. En particulier, cela empéche de créer des n-arbres théorie de potentiels, ou n > 3. Une
remarque: toutes les théories de potentiel sur multi-arbre manquent le principe de maximum.

1. Introduction. Potential theory on multi-trees

Embedding theorems on graphs are interesting in particular because they are related to the
structure of spaces of holomorphic functions. For Dirichlet space on disc D := {z : |z| < 1} this
fact has been explored in [5-7], and for Dirichlet space on bi-disc D? in [2-4, 12, 13]. Bi-disc case
is much harder as the corresponding graph has cycles. One particular interesting case is studied
in [17], where a small piece of bi-tree is considered.

The difference between one parameter theory (graph is a tree) and two parameter theory
(graph is a bi-tree) is huge. One explanation is that in a multi-parameter theory all the notions
of singular integrals, para-products, BMO, Hardy classes etc become much more subtle than in
one parameter settings. There are many examples of this effect. It was demonstrated in results of
S.Y. A. Chang, R. Fefferman and L. Carleson, see [8-10, 18].

A crucial difficulties of multi-parameter theory and one parameter theory can be also seen
in the study of paraproducts, the unweighted multi-parameter theory of which has been con-
structed in [15, 16]. The embedding theorems studies mentioned above can be also viewed, in
fact, as a certain studies of multi-parameter weighted paraproducts. The thing is that the terms
Carleson embedding theorems and weighted paraproduct are very often interchangeable and even
synonymous.

The papers dealing with poly-disc and multi-trees mentioned above are all have a common
feature: they are based on potential theory on multi-trees. Let us recall the reader the main
notations and facts of such a theory. We will do this for bi-tree just for the sake of simplicity.

Let T denote the dyadic rooted tree with root o, we can associate the vertices with dyadic sub-
intervals of I° := [0,1], and o with I? itself. Similarly, let T? denote the dyadic rooted bi-tree with
root 0, we can associate the vertices with dyadic sub-rectangles of Q° := [0,1] x [0,1], and o with
Q" itself. Both objects have partial order, which is the same as inclusion for intervals, rectangles
correspondingly.

Both objects have a natural integration operator, if f is a non-negative function on T or T?,
and «a is a vertex of T or T2, then

If(@:= ) fla).
a'za
We can call | the Hardy operator on a corresponding graph: it sums up values from a to o along
all directed paths from o to a. For T such a path is unique for any a, for T? there are many such
paths.
The formally adjoint operator is [* and
" fla@):= ) fl).
a'sa
Let us make a convention that always our T and/or T2 are finite graphs, maybe very deep, but
finite, and leaves are dyadic intervals of size 2"V in the case of T or dyadic squares of size
27N x 27N in the case of T2. Then I* is always defined. The set of leaves is a “boundary” of the
graph and is denoted T or T? correspondingly.

Now we want to introduce potential of measure. Again for simplicity (this is not at all impor-
tant) let us call measure the function y on T? that is identically zero on T2\ dT? and just an ar-
bitrary non-negative function on dT2. We have the same way to define measure on T. Of course,
what we really doing is defining granular measures on Q° and I° correspondingly. Here granular
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means that our measure have constant density with respect to dyadic squares of size 2~V x2=N or
dyadic intervals of size 2~V correspondingly. We wish to have all estimates ever met in our theory
to not depend on N. Then by making limit when N — co we can consider all measures on Q° or
1° eventually.

Given such a measure y we define its potential at a vertex a of T or T? as

VA (@) = Tol* (1) (@) .

Notice that as «a is actually a dyadic rectangle R = I x J inside Q° (or dyadic interval I inside
19), then I* (u) (@) is just u(R) (u(I) correspondingly).

But V¥ (a) is a more complicated object, it is the sum of u(R’) over all R’ containing R, where R
is associated with vertex a € T? (correspondingly the sum of u(I') over all I’ containing I, where
Iis associated with vertex a € T).

Let us be on T for a while and let V¥ < 1 on supp u (these are vertices of T where mu > 0.
Then we can easily see that V¥ < 1 everywhere. In fact, without loss of generality u # 0, and let
BedT and let u(B) =0.

We can find unique smallest predecessor y > 8 such that there is @ € 0T, u(a) >0, and a has
the same predecessor y. The key statement here is that the smallest such y >  is unique because
we are on a simple tree 7. Now V¥(y) < V¥(a) < 1 as a € supp ¢ and potential V of any positive
measure on T (and on T?) is a decreasing function always.

But VH¥(B) = V¥(y) because I* (1) = 0 for all 7 : § < 7 < y by the definition of y as the smallest
interval containing interval 8 for which u(y) > 0.

So we proved that V* < 1 on supp p implies V¥ < 1 everywhere on dT. Then by monotonicity
of potentials it is < 1 everywhere on 7.

This claim is blatantly false on T2. The problems is that there can be a huge family I of y > f8
such that y(y) > 0 and for any pair y;, Y2 € I none is smaller than the other. The reasoning above
fails, and moreover there are plenty of simple examples of u on T2 such that

V# <1 on suppp, but supV* = C,
T2
where C is as large as one wishes (if V is chosen large enough).
This phenomena is called the lack of maximum principle, and it reveals itself prominently in
the following effect.

Let  denote either T or T2. Let us fix § > 0 (not necessarily small but can be small) and
consider

Es:={ae T :Vi@) <6}.
Let
V(@) = 1(Lg, 1" ) (a).

The expression (integration in the second equality is with respect to counting measure on )

&lul =f VHdp =f 0* ())?
T T
is called the energy of u. The expression
Eslul =f Vi du =f 0" ()?
g Es

is called the partial energy of p.
Given a compact K €. (and all sets are compact on finite graphs) we define its capacity by

capKzinf{Ilfll2 :lf=z1onKj.

This infimum is actually realized by fg =1* ur with a unique measure yg: a capacitary measure.
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It is trivial that if 9~ = T then
VE<é 1
uniformly. The reasoning is exactly the same as above for maximum principle. The consequence
is the following partial energy estimate:
Eslpl <0 1ul. 2)

But (1) can be easily false if 7 = T2. We will show below the example that even (2) can be
false. All estimates in papers [2—4] are based on a weaker version of (2), see [14], which we call the
surrogate maximum principle:

Theorem 1 (Surrogate Maximum Principle). If&[v] = 2¢|v| then

&lv]
&e[v] < ge®V log &1 [v|.

2. Statements of the problems
2.1. Majorization with small energy in bi-parameter case

The key estimate on the way to prove the surrogate maximum principle (1) is the following
“majorization theorem with small energy” that holds true on the dyadic tree T

Theorem 2. Let f,g: T — Ry, and 1) g is superadditive, 2) supp f c {lg < 6}. Let A = 100. Then
there exists ¢ : T — R, such that

(1) lp=1f on{2A <lg <4A};

@ fro?sCh ;1

The proofin [4, 14] uses a sort of “redistribution of masses” or “mass transport” approach. For
a while we tried to prove the similar statement for T? to obtain a “proper” proof of surrogate
maximum principle (SMP) for the tri-tree. Namely, we conjectured

Conjecture 3. Let f,g: T> — R, such that g is superadditive in each variable, and supp f c {Ig <
6}. Let A = 106. Then there exists ¢ : T2 — R, such that

(1) lp=1f on{2A <lg <4A};

(2) sz (,02 < C% sz f2.

For some very special cases, e. g. for f = g, this has been proved, and turned out to be a
key result in proving a surrogate maximum principle on tri-tree and describing the embedding
measures p for the Dirichlet spaces in tri-disc into [2(D3, dp). See [2,12,13]. But to extend our
key results to four-tree we would wish this conjecture hold true as stated.

It turns out that this is not true in general, and the counterexample is provided in Section 3.
Actually we show more: that even a weaker estimate

szwzsCh(%)szfz

is unattainable for any £ with lim;_.q h(¢) = 0.

2.2. Maximum principle must be surrogate on T?

From Theorem 1 it is easy to deduce a more transparent estimate:
& = CeTEWITIVIYTT, YTe(0,). 3)

For 9~ = T® we can prove that with 7 = 2/3, for 7 = T? we could originally prove it for 7 = 1/2
and lately for any 7 > 0. For 9~ = T* we cannot prove (3) at all, even for a very small 1 — 1.
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It turns out that the right hand side of (2) generally fails to hold on T?, even if we multiply
it by any finite constant C, or, in other words, it is not possible to get rid of 7 in (3) altogether.
In Section 5 we construct a sequence of pairs v,& which prohibits putting T = 0. In itself this
argument is a special case of a counterexample that answers a question posed by Fedor Nazarov.

3. Counterexample to small energy majorization on bi-tree

Below f, g have special form, namely

f=0pg=0v,
with certain positive measures on T2, where the measure g is trivial — it is just a unit mass at the
root o of T2. In particular, f(0) =1, f(v) =0,V v # 0. Clearly If = 1 on T?.

The choice of v is more sophisticated. First we choose a large number M. Consider now
another number 1 = 22° > M for some natural s, its value is defined in a few lines. In the unit
square Q° consider dyadic sub-squares Q, ..., Q,n, which are South-West to North-East diagonal
squares of sidelength 2~M,

In each Q; choose wj, the South-West corner dyadic square of sidelength 27"=M Nowlet v be
a sum of identical masses at w; and let n and these masses satisfy the following relation

V) :=—, j=1,..,2"
n 4)
oM =
logn
We have immediately
* 1 n 1
glo)=V'v(o)=Ivl=— =0

n? 'logn - nlogn
Clearly we have chosen f, g satisfying supp f = {0} c {lg < §} with g being sub-additive in both
variables on T?: it is true for any function of the form I*v.
Now what is A, and what is the set {21 < Ig < 41}? For Q; and w; consider the family %, of
dyadic rectangles containing w; and contained in Q; of the following sort:

0,272 M x [0,27M],[0,27"22M] x [0,27227M], ..., [0,27"/2 27 M) x [0,272" 27 M),

there is llzgg;z of them, and they are called g1, g11, ..., g1k, k =logn. We do the same for each w ;, Q;

and we get gjo, qj1,---,qjk-

Lemmad4. Ig(q;) =< Vj,i.

n

Itis proved in [11].
Let

F:={Jqik. (5)
ik

So we choose 1 = % with an appropriate c. Then F c {21 <lg < 4A}. Since [f = 1, then if ¢ as in
Conjecture 3 would exist, we would have lg = 1 on F and (by the second claim of Conjecture 3)

Cc C
'<p25—f' = .
T2 logn J72 logn

By the definition of capacity this would mean that

cap(F) < ¢
p “logn’

In the next Subsection 3.1 we show that cap(F) = 1. Hence, conjecture is false.
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3.1. Capacity of F is equivalent to 1

Let p on F be a capacitary measure of F, and let u be a measure charging - L on each ¢ ik with
_n_ 3logn

10% <k< —313‘%”, and zero otherwise. Clearly |u| = Zlogn Z o u(qjk) =1. We claim that

V¥ =1 on suppp. (6)

Assuming for a moment that this estimate holds, we write for € > 0

Osé"[p—eulz(f \/”dp—e/ VP du +£(ef \/"du—/ \/pdu). @)
T2 T2 T2 T2

Since p is capacitary for F > supp u and T? is finite (i.e. every singleton has positive capacity), we
have VP = 1 on supp y, and [;» VP du = |u|. By (6) there is some absolute € such that e [;» V¥ dpu <
|ul, so that the second term in (7) must be negative. But then the first term is positive, which
means

caszf \/pdpzef VP du = elul = 1.
T2 T2

It remains to prove (6). By symmetry it is enough to estimate the potential at g; . For that we split
VH to V1, this is the contribution of rectangles containing Q, to V,, the contribution of rectangles
containing q;; and contained in Q;, and V3, the contribution of rectangles containing g, that
strictly intersect Q; and that are “vertical”, meaning that there vertical side contains vertical side
of Q; (there is V, totally symmetric to V3).

Two of these are easy, V; “almost” consists of “diagonal squares containing Q;”. Not quite, but
other rectangles are also easy to take care of. Denote

n
r=|,u|, M:log@

Then we write diagonal part ﬁrst and then the rest:
ror r r r
\/1_r+ + - + =+ = +2 +2 +..k=+2—+---=1
2 4 T2M 2 2 T4 2k T2k
To estimate V; notice that there are at most cn rectangles containing ¢, and contained in Q
that do not contain any other g, there are ' of rectangles contain g, and one of its sibling (and
lie in Qy), there are < of rectangles contaln g1k and two of its sibling (and lie in Qy), et cetera.

Hence,

1
Vo=sCn—+——+——+---<1
n 2 n 4 n

Now consider V3. The horizontal size of g1 is 2~M.9-72" s vertical size is 2~M - 272" So the
rectangles of the third type that do not contain the siblings: their number is at most (we are using
that k > 1logn)

n27k(2k +M)<n+ n% logn.
Those that contain g, and one sibling, there number is at most

n
1127]‘(2’671 +M) < 5 + n% logn.

We continue, and get that

n2 n3 3 log? n

1 3
Vs=sn—+—-—+——+---+ntlogn
n n n

<1.

We deal with V4 in exactly the same way, only now we use that k < %log n. Finally after adding all

V; we get
loggn
Vi+Vo+V34+Vy<Ci+Co+Cs

=

n
Since the inverse estimate is already given by V;, we obtain (6).
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4. The shape of the graph of function x — cap(V" = x)
Let E be a subset of T or T? and v be a capacitary measure for E,
cap(E) = |v|, V¥ =1on suppv, f:=0"v= {f:ff2 — min forlf =1 onE} .
First consider the case of T. Let x € [|v|, 1] and we study the set
Dy={aeT:V'(a)=x}.
We want to understand a bit the shape of the graph of
C(x) :=cap(Dy).

We start with x = |v| = cap(E). Notice that o, the root of T, is obviously such that V(o) = |v|, so
0 € Dyy. But cap(0) = cap(T) = 1. Thus
C(vlh)=1.

Now consider x = 1. On E we have V¥ = 1 and maximum principle (we are on T, so it exists) says
that E = {a : V¥ = 1}. Therefore,

C(1) =cap(E) =|vI|.

Now let |v| < x < 1. We know (again this is maximum principle) that

fﬂugsx-gzzf\/;dvsxm 8)
T T

Notice thatiflg(a) < xandlg(sona) > x thenlg(a) = x/2 just because g = [* v is monotonically
increasing on T'. But this means that

I(Lig<x-8) = x/2, onDy={lg=V"=x}. 9)
The definition of capacity and relationships (8), (9) show the following:
Theorem 5. On a simple tree T the capacity of the level set Dy = {a € T : VY(a) = x} for any

capacitary measure v of a set E satisfies the following inequality

4 E 4
X

Cx)=cap(aeT:V'(a)=x}) <

This is absolutely not the case for T2. The capacity of level set of capacitary potentials on T?

behave in a much stranger and wild way. We saw it in Section 3.1. In fact, our measure v in the
previous Section is (after multiplying by a constant) a capacitary measure,

1
lvl= .
nlogn

We put
x=—.
n
But we saw above that if the absolute constant c is chosen correctly, then
c v

cap((a, B) € T?: V¥ (a, B) = =1 % (10)
This means that Theorem 5 is false for T? because if it were true, that we would have cap((a, ) €
T%:VV(a,f) = £) < o

logn*
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4.1. The reason for the effect (10)

On T2 we do not have (2), which is (8) above. Instead we have (3) that makes the estimate of
capacity much faster blowing up than in Theorem 5. In fact, (3) claims

Crcap(E)

cap({V¥ = x}) < e

and we saw that T is indispensable. Of course the capacity of any subset of T2 is bounded by 1, so
we have

C;cap(E)
Cap({\/V = x}) = max(l, ?)
This explains a flat piece of graph C(x) = 1, when x is between - l(}g — and ,11

5. Lack of [ V) dv < Ce|v| estimate and more

Here is the question asked by Fedor Nazarov. He also hinted us a possible construction of a
counterexample.

Question. Consider normalized measures on the unit square, |u| = 1. Let x > 1. Is it always
possible to have the estimate

sz\/’;dusz I*w? < F(x)? (11)
=X

The meaning of this question is that we always (see Theorem 1 and (3)) have some trace of
total energy in the right hand side of our estimates of partial energy. What if total energy is huge
or “infinite”? Maybe one does not need this total energy contribution into the right hand side
or even the partial energy is always bounded by a function of its “cut-off” parameter x for all
normalized measures?

We will show that no estimate as above exists (but on T it does exist with the simplest F(x) = x).

Observe now that the lack of the “universal” estimate (2) for T2 follows immediately. Indeed,
notice that change of variables 6 — t6,v — tv gets both the left hand side and the right hand
side of (2) multiplied by the same #>. Thus we can normalize measure and always think that
|v| = 1. Inequality above becomes |’ T2 \/g dv = Cé for probability measures v, which must be false
since (11) is false regardless of function F. Notice that on T function F(x) = x makes the above
inequality valid.

We repeat the construction from Section 3 with different values of M, n. Namely we now fix
any dyadic x > 1 and put n2™ = x, and p(w;) :=27M.

We claim that

VH(gj)<Cx Y j,i. (12)

We have already seen that given j, i there are approximately n dyadic rectangles containing g ;;
and contained in Q;. Each gives contribution 2~M into V¥ (g i). So if we would count only them
in VH (g i) then we get the total of = n2~M and (12) would follow. Let us call this contribution the
main contribution and try to justify its title.

Clearly there are much more dyadic rectangles containing ¢;; and contained in Q. Let us
bookkeep their contributions to VA (¢ ji)- We hope that those are not too big in order to prove (12).
Notice that if (12) is proved, we have many rectangles R with V(R) < Cx; so many that we can hope
to prove that

Y u®*=zF). 13)
R:VE(R)=Cx
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So we fix, say, qo; = [0,2‘”’212‘M] X [0,2‘212‘M], and we can see that apart of = n rectangles
between ¢p; and Qy, there are also
(a) tall rectangles [0,2772" =My [o,sz—M ],i<i'<logn, 1< m < M, containing qo;;
(b) long rectangles [0,2m2~M] x [0,2‘2J 27M) o< j'<j, 1< m< M, containing qo;;
(c) m-large rectangles, containing qo;: these are rectangles containing dyadic square Q
with side 2"2~M that contains Qo, but not containing Q(()m”), m=2,...,M.

The contribution of tall rectangles into V(gy;) is bounded by M2~ logn << x, the same holds
for the contribution of the long rectangles, hence the contribution from rectangles listed in (a)
and (b) above can be absorbed into the main contribution.

The contribution of M-large rectanglesis 1. There is only one such rectangle, namely our initial
unit square Q°. The contribution of M — 1-large rectangles is % -(1+1+1). In fact we would have 3
rectangles in the family of M — 1-large rectangles: Qg/[‘l square itself and its two predecessors,
one long, one tall. The contribution of M — 2-large rectangles is % -(1+2+2), et cetera (see
similar computation in Section 3.1 above). Thus the total contribution of all m-large rectangles

containing ¢o; is at most

(m)
0

M1
mZZIZ—m(ZmH) <C.
This is definitely smaller than then main contribution and can be just absorbed into the main
contribution = n2™M = x> 1.

We finally proved (12). Now let us estimate ¥ g.yu(r<cx 4(R)? from below. From [11, 14] we
know that for each qj; there is a family of dyadic rectangles & ;; such that 1) every R € ;
contains g;; and is contained in Q;, j = 1,.. ,2M 9) the cardinality of &; is at least cn, ¢ > 0, 3)
families &; are disjoint, j =1,.. .,2M i < Clogn. Each rectangle R of Uj U; &j; has the property
that

VH(R) < Cx.

We proved this in (12). So each of those R gives a contribution into the sum }, R;w(R)ScX/J(R)Z )
and this contribution is 272 . Therefore,

Y u®*=z27Mojtig(F ) = c27*M2Mlogn-n=c2Mn-logn =
RVK(R)=<Cx

cx-(logx+M).
Now, given x > 1, we can freely choose M, e.g. M = x,x?,2*, F(x)..., and then choose n from
n2~M = x and do the construction above. So (13) is proved.
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