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Abstract

We measure a sign interlacing phenomenon for Bessel sequences (uy) in L? spaces in terms of the
Kantorovich—Rubinstein mass moving norm [lug || x g. Our main observation shows that, quantitatively,
the rate at which |lug| g g — O heavily depends on Bernstein—Kolmogorov widths of a compact set of
Lipschitz functions. In particular, it depends on the dimension of the measure space. We also establish a
lower bound for the rate of convergence of the norms |ug||x — O of a basis/frame of L% in any larger
function space X D L2
© 2022 Published by Elsevier Inc.
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1. Introduction and a summary

Let ({2, p) be a metric space, and m a finite continuous (with no point masses) Borel measure
on {2. It is known [18] that for every frame (uy)i>1 in L*> = L3(£2, m), the “I*>-masses” of the
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positive and negative values uki(x) are infinite:
Zu,j(x)2 = Zu,:(x)2 = 00 a.e. on {2,
k k
where as usual u,jf(x) = max(0, u,(x)), x € 2. Moreover,

VEe LY. f=0,f #0= Y (fouf)i = oo
k

So, at almost every point x € {2, there are many positive and many negative values in the
sequence (uy(x))x>1. Below, we show that for a fixed k, positive and negative values are heavily
intermixed.

These statements can be considered in line with more general “positivity studies” for rep-
resenting systems u = Y, fe(u)uy, u € L?, with various possible meaning of convergence.
In particular, it is known [20] that the unconditional convergence is not compatible with the
non-negativity ui(x) > 0 a.e. (it also follows from our results quoted above). On the other
hand, there exists a Schauder basis (uy)r>; for L? consisting of non-negative functions, [6] by
Freeman, D., Powell, A., and Taylor, M. A., Schauder basis for L2 consisting of non-negative
functions., Math. Ann., 381, 1-2, 2021, 181-208 (which solves a long standing problem). The
issue was also treated for L” and for some more general spaces, see [10,18,20], and the
references quoted therein.

The point is that this is precisely the unconditional character of a representing system (uy)
(a frame/Riesz basis in our setting) which forces the functions u; oscillate more and more. In
this paper, we show that the measures ukidm should be closely interlaced, in the sense that the
Kantorovich—-Rubinstein (KR) mass moving distances ||uk || KR = ||u,2L —uy || KR (see below)
must be small enough. It is easy to see that if the supports supp(u,) are distance separated from
each other then | Uy HKR ~ ||uk ||L,(m), whereas in reality, as we will see, the norms ||uk ||KR
are much smaller, and so, the sets {x : ug(x) > 0} and {x : ux(x) < 0} should be increasingly
mixed. For example, it follows from our results that for every frame (u;)=; in L2(0, 1), we

have
Z H’"k ||?(R < 00, but Z H”kHZLl(o,l) = 0.

Historically, one of the first results on the sign intermixing phenomenon is that of O. Kellogg
[14], showing that on the unit interval {2 = [ =: (0, 1), the consecutive supports supp(uki)
are interlacing under quite general assumptions on an orthonormal sequence (u). Later on,
the sign interlacing properties were intensively studied for orthogonal polynomials (starting
from P. Chebyshev, and earlier, see any book on orthogonal polynomials). In particular, quite
a recent survey of the field [5] counts about 780 pages and hundreds of references; many new
quantitative results are also presented.

Our results are most complete for the classical case 2 = I¢ (d > 1) in R?, where
I = (0,1), m = my is the Lebesgue measure and p is the Euclidean distance on the cube.
They also suggest that in general, the magnitudes of ”uk || x g are defined by certain (unknown)
interrelations between m and p, and by a kind of the dimension of (2 (there are many in the
metric geometry). This is partially confirmed by the results of a forthcoming paper [17]. In
fact, all depends on and is expressed in terms of a compact subset Lip; of Lipschitz functions
in L2(2, m).

We now briefly summarize the contents of the resting sections of the paper.

2. Definitions and comments.
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3. Statements on the generic behavior of ||uk || KR For every Bessel sequence (uy) in L?(I%),
2 d+e
we have for d = 1: E ||uk||KR<oo, and for d > 1: E ”“k”KR < 00, Ye > 0.

k k
These claims are sharp, even in a much more general setting: for every compact triple
(£2, p,m) and for every sequence (€x)i>1, €& > 0, such that Zk e,f< 00, there exists an

orthonormal sequence (i )g>; in LDZQ(Q, m) such that ”uk HKR > ce,k=1,2,...(c >0) (in

particular, always there exists an orthonormal sequence (u;) with Z Huk HIZK_R6 = 00, Ve > 0).
k

Also, as it is shown already in [18] (and recalled above), Y |lux ||i, (w = oo for every frame

in L2(02, ).
For the unit cube case, there exists in L?(/¢) an orthonormal sequence (u;) such that

; o e = 00

For a generic compact triple ({2, p, m), we can only claim limy ||u;< || wr = 0 for every
Bessel sequence in LHZQ(Q, m). The property is sharp in the following sense: for every sequence
(ex)k>1, €x> 0, with limg €,= 0, there exists a compact triple (§2, p, m) (with usual properties)
and an orthonormal sequence (uy)r>; in Lﬂz{(ﬂ, m) such that ||uk HKR =ce, k =1,2,...
(G5 scs= %)-

4. Proofs of the statements of Section 3.

5. Further examples and comments. Here we show some 1-dimensional manifolds, where the
results of Section 3 still hold. Also, we give several examples to rather technical interpolation
Theorem 3.2, as well as a few other comments (a direct comparisons ||uk || KR with Bernstein
widths b, (Lip,); an explicit expression for HuH KR

6. The fastest rates of convergence |uy | ., — O for frames/bases on L*(I¢). It is shown that
(1) there exists an orthonormal basis (1) in L>(I?), d = 1,2, ... (namely, the Haar functions
basis), such that Z ||uk ||7:R€ < 00, Ve > 0, where o = dz_-f2’ but (2) Z ||uk ||7<R = 0o, for

k

k
every frame (uy) in L>(I¢) (in particular, for every Riesz basis).

7. Here we state without proof a partial analog of Section 6 results for the limit rate of
convergence Huk “ y in a larger function space X D L%

The main results of the paper are Theorems 3.1, 3.2, 6.1 and 7.1.

2. Definitions and comments

In order to simplify the statements, we always assume that our sequences (uy)x>1 (frames,
bases, etc.) lie in the codimension one subspace

L3(2,m) = {f € L3(2,m): f fdm = 0}.
2

However, most of the results below are still true for all Bessel sequences u = (ug)i>1 in
L2, i.e. the sequences with

Yol < Bw?|f
k

where B(u) > 0 stands for the best possible constant in such inequality. Recall also that a
Jframe (in L(z)) is a sequence having

bl fls =< Y [(fun’ < B|f

k

2 2
5 Vf €Ly,

2 2
, Vf €L,

3
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with some constants 0 < b, B < oo, and a Riesz basis is (by definition) an isomorphic image
of an orthonormal basis.

We always assume that the space ({2, p) is compact (unless the contrary explicitly follows
from the context) and the measure m is finite and continuous (has no point masses) .

Below, |[u H KR stands for the Kantorovich—Rubinstein (also called Wasserstein) norm (KR)
of a zero mean signed measure udm ( f udm = 0); this norm evaluates the work needed
to transport the positive mass u"dm into the negative one u~dm. In fact, the KR distance
d(u,fdx, u, dx) between measures ukidx (first invented by L.Kantorovich as early as 1942,
[11]) is a particular case of a more general setting. Namely, given nonnegative measures i, v
on {2 of an equal total mass, u({2) = v({2), the K R-distance d(u, v) is defined as the optimal
“transfer plan” of the mass distribution © to the mass distribution v:

d(p,v) = inf{/
2

where the family ¥(u,v) consists of all “admissible transfer plans” 1, i.e. non-negative
measures on {2 x {2 satisfying the balance (marginal) conditions ¥ (2 xo)— (0 x 2) = (u—
v)(0) for every o C (2. The value ¥(o X ¢’) has the meaning of how many mass is supposed
to be transferred from o to ¢’. The K R-norm of a real (signed) measure u = puy — p_,
w(§2) =0, is defined as

P Y ) € W),

X

”'““HKR = d(py, ).

It is shown in Kantorovich—Rubinstein theory [13](also see, for example [12, Ch.VIII, Section
4], or [22]) that the K R-norm of a real (signed) measure p, w(f2) = 0, is the dual norm of
the Lipschitz space

Lip == Lip(®) = {f : 2 — R: [f(x) = fO)] < eox, y)}

modulo the constants, where the least possible constant ¢ defines the norm Lip(f). Namely,
il gr = des. n) = sup{fgfdu: Lip(f) < 1

where, in fact, it suffices to test only functions f € lip, lip := {f € Lip : } fx)—f (y)] =
o(p(x,y))as p(x,y) — 0}. Of course, one can extend the above definition to an arbitrary
real valued measure p setting H,u” = H,u — M(Q)HKR + |u,((2)|. This makes it possible to
apply our results to L]%R spaces instead of Lﬂzm; using the last remark in the case of Bessel
sequences, we can use that the sequence fn urdm = (1, uy) is in [>. The K R-norm and its
variations (with various cost function A(x, y) instead of the distance p(x, y)) are largely used
in the Monge/Kantorovich transportation problems, in ergodic theory, etc. We refer to [12] for
a basic exposition and references, and to [1,2,22] for extensive and very useful surveys of the
actual state of the fields.

It is clear from the above definitions that, for measuring the sign intermixing of uzdm for
a Bessel sequence (u;) C L2, one can employ certain size characteristics of the following
compact subset of L2({2, m),

Lip = {£: 2 — R [£0) = FO)] = p(x, ), fGxo) =0},

where xo € {2 stands for a fixed point of (2; it will be easily seen that the choice of x¢ does
not matter. Below, we estimate ||uk H KR making use of the known Bernstein width numbers
b,(Lip;) (n # k, in general). In the case when there exists a linear Hilbert space operator T

4
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for which Lip, is (or, is included into) the range of the unit ball, b,(Lip,) can be replaced by
the singular numbers s, (7).

Recall that the S. Bernstein n-widths b,(A, X) of a compact, convex, centrally symmetric
subset A C X of a Banach space X are defined as follows (see [19]):

b,(A, X) = sup sup{A :AB(Xp41) C A, A > 0}
X1
where X, runs over all linear subspaces in X of dimX, | = n+ 1, and B(X,4) stands for
the closed unit ball of X, ;1. A subspace X, ,i(A) where supy . is attained, is called optimal; it
does not need to be unique (in general). In the case of a Hilbert space H (as everywhere below),
if A is the image of the unit ball with respect to a linear (compact) operator 7, A = T B(H),
we have b,(A, H) = s,(T), where 5,(T) \y 0 (n = 0,1,...) stands for the n-th singular
number of 7. In this case, optimal subspaces H,,.(T) are simply the linear hulls of yy, ..., y,
from the Schmidt decomposition of T,

T =Y se(T), x0) e

k>0

(x¢) and (yr) being orthonormal sequences in H.

3. Statements

Recall that ({2, p) stands for a compact metric space, and m is a finite Borel measure on {2
having no point masses (for convenience normalized to 1).

Lemma | shows what kind of the intermixing of signs we have for free, for every Bessel
sequence (uy). Lemma 2 shows that for no triples ({2, p, m), one can have an intermixing for
generic sequences (uy) better than /> smallness of ||uk|| kg All intermediate cases can occur,
following the widths properties of the compact Lip; C L-(§2, m), see Theorems 3.1, 3.2 and
the comments below.

Lemma 1. For every Bessel sequence (uy)i>1 in LDZQ{(.Q, m), we have

im | = 0.

Lemma 2. For every compact measure triple ({2, p, m) (with the above conditions) and every
sequence (€p)i>1, € > 0, such that Zk e,f < o9, there exists an orthonormal sequence (Uy)i>1
in L%(£2, m) satisfying

||ukHKR2 ce, k=1,2,... ¢>0.

In particular, there exists an orthonormal sequence (Uy)i>1 in LHZQ(Q, m) such that

Z H”k”i(_; = o0, Ve > 0.
X

Lemma 3. For every sequence (€x)i>1, €k > 0, with limg €, = O, there exists a compact
measure triple (2, p, m) (with the above conditions) and an orthonormal sequence (uy)x>1 in
Lé(!), m) such that

”ukHKR =ce, k=1,2,....

And (315 < ¢ < 22
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Theorems 3.1 and 3.2 describe the behavior of Huk || KR for generic (“worst”) Bessel
sequences/frames/bases in LDZQ(I 4y in their dependence on the dimension d.

Theorem 3.1. (1) Given a Bessel sequence (uy)x> in LDZQ(I, dx), I = (0, 1), we have

2 g < 0.
k

(2) Given a Bessel sequence (uy)i>1 in L]é(ld, dx), d = 2,3,... we have
Z Huk”;l;;; < oo Ve >0.
k
(3) For the Sin orthonormal sequence (u,),cond in L%(Id, dx),
U,(x) = 2412 sin(rrnyxy) sin(wnoxy)... sin(wngxy), n=(ny,...,ng) € (ZN)d
we have

> unllcr =
Un|| g p = OO
n

Remark. For a generic Bessel sequence (or, an orthonormal sequence), the /2-convergence
property (1) is a best possible result (see Lemma 2). However, for certain specific sequences,
(1) can be much improved . For example, let u € LHZQ’O(’JI‘) and

Then, as it easy to see,

Janlcr = o1l

14+€

(in fact, there is an equality), and so Z ||un || KR

< 00 (Ye > 0). Such a dilated sequence (i),

n
is Bessel if and only if the Bohr transform of u, Bu(¢) = Y., a(n)¢*™, t*™ = "¢, is
bounded on the multitorus ¢ = (¢1, &3, ...) € T®; here a(n) = (o, &0z, ...) and n = 2*13%2 .
stands for the Euclid prime representation of an integer n € N. For this claim, see [16], for
example.

In fact, Theorem 3.1 is an immediate corollary of the next Theorem 3.2. We extend the
property (””k H xr) € 1% to any “one dimensional smooth manifold”, see Proposition 5.1 for the
exact statement. Lemma 2 shows that this condition describe the fastest convergence to zero of
the K R-norms for a generic Bessel sequence. On spaces ({2, p) of the dimension higher than
1, it need not be true that (||uk || kr) € 1% for every Bessel (or even an orthonormal) sequence.

In Theorem 3.2, we develop the approach mentioned at the end of Section 2: we compare
the compact set Lip, with the T-range T(B(L?)) of the unit ball for an appropriate compact
operator T. For a direct comparison between Hun and the Bernstein numbers b,(Lip,) see
Section 5.

Ik

Theorem 3.2. Let T : Lﬁ(ﬂ, m) — Lﬂzg(.(?, m) be compact linear operator, si(T) its singular
numbers, and ¢ : [0,00) — [0, 00) be a continuous increasing function on [0, 0c0) whose
inverse ¢! satisfies

e ') = xr/x7Y? Vx>0
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with a function x — r(x) concave on (0, 00) (or is equivalent to a concave function ry:
cro <r < Cry).

(1) If Lip; C T(B(LHZQ(Q, m))) and Y, ¢(si(T)) < oo, then, for every Bessel sequence
(up) C LE(2, m),

Z(p(a ||uk ||KR) < oo for a suitable a > 0.
k=1

(2) If Lip, D T(B(L]%(Q,m))), then there exists an orthonormal sequence (uy)i>o in
L%(Q, m), such that

lep = (M) k=0,1,...

e

In particular (in order to compare with (1)), Y, h(||uk HKR) = oo for every h for which
> h(si(T)) = oo.

Remark. See Section 5.III below for a version of Theorem 3.2, point (2), employing the
Bernstein widths b, (Lip,) instead of s,(7T") (T" does not need to exist for the compact set Lip,).

Corollary 3.1. Let Lip, = T(B(L%(£2, m))) and
p(T) = inf{ax : Zsk(T)“ < 00}.
k

(1) If p(T) < 2, then ), ”uk ||2R < 09, for every Bessel sequence (u;) C L%(Q,m}.
On the other hand, there exists T with p(T) = 1 and an orthonormal sequence such that
Yk ||uk ||§;RE =00 (Ve > 0) (see Lemma 2).

(2) If Y, s:(T)? < oo, p > 2, then ), Huk HI;(R < 00 for every Bessel sequence
(ur) C LE(£2,m).

As we will see, Theorem 3.1, in fact, is a consequence of the last Corollary. Some concrete
examples to Theorem 3.2 are presented below, in Section 5.

4. Proofs

I. Proof of Lemma | Since (u)r>1 is a Bessel sequence, it tends weakly to zero: (uy, f) —
0 as k — oo, for every f € L%({2,m). On a (pre)compact set f € Lip;, the limit is uniform:

lilgn”uk”KR:lignsup[/ﬁukfd,u:feLipl}: 0. O

I1. Proof of Lemma 2. The Borel measure m being continuous satisfies the Menger property:
the values mE, E C {2 fill in interval [0, m(2)]; if m is normalized, they fill in the interval
[0, 1]. See [9], Section 41 for the history (with many retrospective references, the oldest one
is to K. Menger, 1928), and [4], Prop. Al, p.645 for a complete and short proof. Below, we
use that property many times.

Let E; C {2 be disjoint Borel sets, E| (| E, = @, mE; = 1/2, and further, K; C E; be
compacts such that mK; = 1/3 (i = 1,2). Denote § = dist(K;, K») > 0, and set

f)y=«10- %dist(x, K)™ — (- %dist(x, K)", x e .

Then, f € Lip({2, p), Lip(f) < 2/5 and f(x) = 1 for x € Ky, f(x) = —1 for x € K.
7
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Now, using the Menger property, one can find two sequences (A,i), (A,%), k=12,...,
of pairwise disjoint sets such that Ai C K, A}(ﬂA’] =0 = 1,2,k # j), and
mA, = mA} = a’e}, where a > 0 is chosen in such a way that a® ), { < 1/3. Setting

U = Ck(XAIE - XA%), k=1,2,...

with ”uk ||§ = ZC]%mAi = 1, we obtain an orthonormal sequence (u;) C L*(f2, m) such that

8 s 8 da
””kHKR > /;Zuk(if)dm = EchmA,lc = E mA,l< = Eek.

O

II1. Proof of Lemma 3 Let {2 = T, the infinite topological product of compact abelian
groups T x T x ---, endowed with its normalized Haar measure mo, = m x m x ---. The
product topology on {2 is metrizable by a variety of metrics. We choose p = p., € = (€x)i>1
defined by

pe(¢, ¢ = maxeo —¢lf, ¢ ¢ = Gzt €T,

Setting
up(€) = V2Re(s), ¢ eT™,

we define an orthonormal sequence in L2(T, my,) with ‘uk({) — uk(g/)| < ‘e/—kzp({, ¢’), and

so Lip(uy) < ﬁ/ek. _
Further, we need the follol)ving notation: let f € Lip,(T*), f(¢&) = f(,¢) where
=k, ¢) e T® =T x T, ¢ consists of variables different from ¢, and

() = V2Re(gr), G €T

(in fact, this is one and the same function e’

> +/2cos(f) for every k). Finally, we set
o) = / (&, O)dmo(¢) and observe that Lip(f) < :
T{XJ

T - Fap| < /T 17D~ £ Dldma® <

< /Tooekm — gfdmse@) = et — &,
Now,

/ k() f (G, Ddmoo(C) = f T(Z) / £ Ddmos@)dm(5e) =
T T Too

= /;rﬁk(gk)?@k)dm(fk) < & ”ﬁk”KR(T),

and hence |ug | g g ooy = € [Tk g g
Conversely, if & € Lip,(T) and h(¢) := h(g) for ¢ € T*, then |h(&)—h(g))| < ép({, £,
and so

/ Tehdm(&,) = / dmoo(@) / TR (g) = / Uk (OB )dmao() <
T Toe T Toe

< —

1
= o ” U ” KR(T®)’
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Finally,

which entails ||ﬁk ||K R(T) < €x ||ﬁk ”K R(D)' Moreover,

i H“k “KR(TOO)' Uk ”KR(TOO) =

since Lip(itz) < v/2,
2‘% _ /T 0 i /N 2)dm (&) <
272

”ﬁkHKR(T) = H”k ”Ll(’]l‘) = .

O

Remark. For the same space L*(T*®, my), but with a non-compact (bounded) metric
P, &) = supeey |Gk — &), Pk

we have ”uk”KR > 1 for ui(¢) = sinmwxy, &= (€1, e¥2, .. ek,
..) € T, so that (Huk HKR x>1 does not tend to zero.

IV. Proof of Theorem 3.1. (1) Since u; € LHZ&O(I, dx), f, urdx = 0. Taking a smooth
function f with Lip(f) < 1 (which are dense in the unit ball of Lip) and

ve(x) = Jup(x) = / urdx,
0

we get vx(0) = v (1) = 0, and hence

/fukdx = (fur)y — kaf’dx = —/ka/dx.
1
Making sup over all f with |f (x)| < 1, we obtain ||u/< ||KR || Vg HLI But the mapping
J o LX) — L*(I)

is a Hilbert-Schmidt operator, and hence Y | Juy HiZ < oo, and s0 >, |w ”il = > |u ||§(R
< 00.

The penultimate inequality is obvious if (u;) is an orthonormal (or only Riesz) sequence,
but it is still true for every Bessel sequence (uy)r>;. Indeed, taking an auxiliary orthonormal
basis (¢;);>1 in L%(I, dx), we can write

Yo luelys = 30D (e[ = D03 | Iep| <
k ko ik

2
Zconst . || J¥e; || < 00,
J
since the adjoint J* is a Hilbert—Schmidt operator. [J
(2) This is a d-dimensional version of the previous reasoning. Anew, we use the dual formula
for the KR norm,

lui| ¢ o = sup{/ld fugdx : f € C™, Lip(f) < 1, /fdx = 0},

the last requirement does not matter since Lip(f) = Lip(f + const). Notice that for f €
C®(I), Llp(f) <1 <& |Vf(x)|Rd < 1 (x € I%), where V f stands for the gradient vector
Vf= (L ax; )i<j<d- Now, define a linear mapping on the set P of vector valued trigonometric

polynomlals of the form ), 4 ¢, Ve e L2(14, C%) with the zero mean (co = 0) by the
9
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formula
A(V i) — |H|Rd€2m(n‘x), n e Z4\{0}.
It is clear that A extends to a unitary operator
A = clos 2 cay (Vo) — LiUID).
Further, let M : L3(1?) — L3(I?) be a (bounded) multiplier,
;ezni(n,x)7 n € Z\(0},
14
and finally, T(Vf)= f, f € Cgo(ld). Then,

M(ezrfi(n,x)) —

[ rwax = [ @@ pmar= [ vr-@uax
g e Iz
T* being the adjoint between L? Hilbert spaces. It follows

”ukHKR = sup{/d V(T up)dx ‘Vf(x)’Rd =lLxe Rd} < |T"u HLI(Id,cd) =
I

= “ T"uy ||L2(1d,(cd)'

Moreover, T = MA, where A is unitary up to numerical multiple (between the corre-
sponding spaces) and M in a Schatten—von Neumann class &, for every p, p > d, since M
is diagonal and ), 74\ (o) # < 00 & p > d. Using the dual definition of the Bessel

n
RrRd
sequence as H > agug HZ < X a,f) for every real finite sequence (a;), we can write (u;) as
the image u; = Be; of an orthonormal sequence (e;) under a linear bounded map B. This
gives

””kHKR = HT*BekHLZ'

For every p > d, this implies Z ||uk HiR < Z ||T*Bek ||i2 < oo since T*B € 6, and
k

k
d > 2 (see Remark below). [

Remark. For the last argument in the proof, we refer for example to [7]. Here is a brief
explanation: given a linear bounded operator S : H —> K between two Hilbert spaces and
an orthonormal sequence (e;) in H, define a mapping j : S —> (Sex); then, j is bounded
as a map Gy — [2(K) and as a map S, +—— co(K) (compact operators); by operator
interpolation, j : &, —— [”(K) is also bounded for 2 < p < co. [

For 1 < p < 2, the things go differently: the best summability exponent «, Z || Sey ||a < 00,

which one can generally guarantee for § € &,, is « = 2 (look at rani one operators
S = (-, x)y). This observation explains the jump behavior of the summability exponent for
K R-norms from o = d + € in the dimension d > 2 to exactly « = 2 in the dimension 1 (and
not « = 1+ € as one can expect).

(3) We use anew the duality formula

H”"”kR = sup{/ld Sfu,dp : Lip(f) < 1}.

10
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> 1/Lip(u,) where Lip(u,) < max ||Vu,(x)| <

Taking f = u,/Lip(u,) we get ”"‘” ”KR =

2¢/2|n|, and so

—d2 -
Polwalie = 2747 37 Inlgi = 0o O
n

ne(2Nyd

V. Proof of Theorem 3.2. Let T = >, si(T)(-, x¢)yx be the Schmidt decomposition of
a compact operator T acting on a Hilbert space H, sx(T) \, 0 being the singular numbers.
Let further, A : H — H be a bounded operator, and (e;)r>0 an arbitrary (fixed) orthonormal
basis. Given a sequence o = (ct;) ;>0 of real numbers, o € [*°, define a bounded operator

Ty =) ol xi) Vi

k>0

and then a mapping
j o —> (T;A€k>k2(),

a H-vector valued sequence in [*°(H).

We are using a J. Gustavsson—J. Peetre interpolation theorem [8] for Orlicz spaces. Recall
that, in the case of sequence spaces, an Orlicz space I¢, where ¢ : R, — R, = (0, 00) is
increasing and continuous, and meets the so-called A,-condition p(2x) < Ce(x), x € Ry, is
the vector space of real sequences ¢ = (cy) satisfying

Zgo(a|ck|) < 00
k

for a suitable a > 0. Similarly, a vector valued Orlicz space consists of sequences ¢ = (cg),
cx € H, having ), (p(a|ck|) < oo for a suitable @ > 0. We need the Hilbert space valued
spaces only. The Gustavsson—Peetre interpolation theorem (Theorem 9.1 in [8]) implies that if
the mappings j : [* —> [®(H) and j : [> —> [?(H) are bounded, then

ji1? — 1°(H)

is bounded whenever the measuring function ¢ satisfies the conditions given in Theorem 3.2.

(1) Now, in the notation and the assumptions of statement (1), the Bessel sequence (i) is
of the form u; = Aey, where A is a bounded operator and (e;) an orthonormal sequence. It
follows

luelxp = sup [(Aew. )] = sup  [(Aer. f)i2| = [T Aer] 2.
fé€Lip; feT(B(L?)

For every a € I?, T,, € &, (Hilbert-Schmidt), and then 7 A € &, and hence j(a) € [*(H).
By Gustavsson—Peetre, o € ¥ = j(w) € [¥(H). Applying this with « = (5x(T)), we get
> ela ””k”KR) <Y .l HT*Aek ”) < oo for a suitable a > 0. O

(2) In the assumptions of (2), and with the Schmidt decomposition

T =Y (M) x)y, k=0
k>0

st uy = y. Then Huk”KR = SUPseLip, |<)’kaf>| = SuP_feT(B(LZ))|()’kaf>| = ||T*yk||2 =
Sk(T). O

11
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5. Examples and comments to Sections 3—4

I. Fastest and slowest rates of convergence “”k H kr 0. Lemma 2 shows that, the K R-
norms of a generic Bessel sequence do not have to be smaller than required by the condition
> ||uk HiR < 00. On the other hand, point (1) of Theorem 3.1 gives an example of ({2, p, dx),
where every Bessel sequence meets this property.

Below, in Proposition 5.1, we extend the latter result to measure spaces over (almost)
arbitrary 1-dimensional “smooth manifolds” of finite length.

As to the fastest possible convergence ||uk H xr — 0 for frames/bases, we treat the question
in Section 6 for spaces L2(I?) over the cubes.

Proposition 5.1. Let ¢ : [ —> X be a continuous injection of I = [0, 1] in a normed space
X differentiable a.e. (with respect to Lebesgue measure dx), and the distance on I be defined
by

px.y) = |lpx) =M. x.yel
Let further, |1 be a continuous (without point masses) probability measure on 1, satisfying
1
f du(y) / l¢'(0)] ydx =: C*(1. ¢) < 0.
1 y
Then, every Bessel sequence u = (uy) in L*(i) =: L%([, w) fulfills

S uklyg < BAC(u. 9)? < o0,
k

where B(u) > 0 comes from the Bessel condition.

Proof. Following the proof of Theorem 3.1 (1) and using that for f € C*,

Lip(f)< 1 & [f() = fO)] = o) —e| & |f®] < @], xel,
we obtain, for every h € L3(n) and J,(h)(x) == [, hdu,

17l xz = SUP{/Ifhdu  fec™ Lip(f) =1} =
sup{/;f’Ju(h)dx D] < ||go/(x)||X} = /I|Jﬂ(h)(x)| '] dx <

= ” JM (h) ” L2(1,vdx)’

where v(x) = ||¢/(x)|,. Mapping Th = J,(h), Th(x) = [ k(x, y)h(y)dp acting as
T : L>(u) — L*(I, vdx) is in the Hilbert—Schmidt class &, if and only if

1 1
IT]; = / /I ke duwends = /0 du(y) / v(x)dx = C2(1, ) < 0.
X y

If u = (u) is a Bessel sequence (with 3, |(h, ug)|” < B@)?|k|>, Vi € L2(w)), and the last
condition is fulfilled, then u; = Ae; where (e;) is orthonormal and ||A|| < B(u), and hence

S hulie = SITaal; < 1741 < ITEIAF < #0c . O

12



N. Nikolski and A. Volberg Journal of Approximation Theory 281-282 (2022) 105798

Remark. In particular, the following formula appeared in the proof:

lilx = [ 1300w

see also Remark V below.

I1. Examples of interpolation spaces appearing conspicuously in Theorem 3.2. Lemma 3
suggests that all decreasing rates of Huk H xr can really occur, and so all cases of conver-
gence/divergence of ), ¢( || uy H «g) are different and non empty. The following examples make
explicit the links between some Orlicz functions ¢ and the corresponding singular numbers
sk(T).

(1) The most well-known interpolation space between I2and [®is P, 2 < p < 0o, which
is included in Theorem 3.2 with

-2
ry=1"7r,

it serves for the case of power-like decreasing of b,(Lip,), or s,(T) (if Lip, = T(B(L?))), and

consequently of ||un || KR

1
log — ~ log(n), n — oo.
Sn
In particular, point (2) of Theorem 3.1 (where £2 = I¢, d > 2) can be seen now as a partial
case of Theorem 3.2 since, in the hypotheses of 3.1 (2), Lip; = TB(L*) C TB(L?) and
T €[4 S,(L> —> L?) (which was already observed in the proof of Theorem 3.1).

(2) The following spaces [¥ of slowly decreasing sequences (s,) can appear as s-numbers
(or Bernstein n-widths) of Lip, for the triples 2 = T, p = pe, Mmoo, described in the proof
of Lemma 3, for convenient choices of the sequence € = (€,)n>1.

Cloglog % . 1 log(”)

E Sn " < oo corresponding to log — ~ ————
- s,  loglog(n)

the case is included in Theorem 3.2 with

1 log(t?)
H=t- —— . ——1 1 } t
ro=r-exp | —= oglogm 1 O | 1o
(follows from the known b~ !(y) = mg}ﬁ(l + o(1)) for b(x) = x - log(x)), which is eventually
concave (since t —> r(t) = o(t) fort —> oo and lies in the Hardy fields, see [3], L’ Appendice

du Ch.V);
C(log L) 1
an( 850 < 00, «a > 1 corresponding to log — = (log(n))"/*;
s

n n

the case is included in Theorem 3.2 with
1
r(0) = 1-exp|~(Z - log™)},

which is eventually concave as t — oo (by the same argument as above);
C

- B 1 1
Z e o< 00, B > 0 corresponding to log — ~ (¢ + E loglog(n));
s

n n

13
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the case is included in Theorem 3.2 with

r(t) = Ct/(log(t*))"/*,
which is eventually concave as ¢t — oo (by the same argument as above).

II1. In terms of the Bernstein n-widths. It is quite easy to see that a part of Theorem 3.2,
namely point (2), is still true with a relaxed hypothesis: we replace the assumption that Lip,;
is of the form Lip; D T(B(L?)) for a compact T with a hypothesis that the optimal subspaces
for Bernstein widths b,(Lip,) are ordered by inclusion (see Section 2 for the definitions):
H,(Lip,) C H,4i(Lip,),n = 1,2, ... The latter is always true if Lip, is of the form T'(B(L?)).
Namely, the following property holds.

Proposition 5.2. Let (2, p, m) be a compact probability triple for which there exist Bernstein
optimal subspaces H,(Lip,) C L*(£2, m) such that
H,(Lip;) C H,11(Lip;), n=1,2,...
Then there exists an orthonormal sequence (u)r>0 C Lip(£2) C LHZQ(L(Z, m), such that
|tn ¢ p = buLip), n=1,2,...
Proof.
Let ey € Hy, | e H2 = bj, and assume that e, k < n are chosen in a way that ¢, € H,,
ex L ej (k # j)and Hek ||2 = by. Since b,1B(H,+1) C Lip,, there exists a vector

ent1 € Hypy © Hy, C Lip(£2) with |e,41|, = bus1 (and hence, e,41 € Lip,). For the
constructed sequence (e,), we set

u, = e,/b,

and obtain an orthonormal sequence (u,) C Lip(f2) such that Lip(u,) < 1/b,, and hence
|| 4 p = [ unendm = b,(Lip)). O

IV. Remark: an “uncertainty inequality” for Hu“ «g- Lhe following simple inequality
implicitly appeared several times (in the proofs of points II-IV of Section 4, or just above, in
the proof of 5.2). It merits to be stated separately: for a function u € Lip({2) the following
“uncertainty principle” holds

el LipGo) = [l

(Indeed, |u| ., = [qu(u/Lipu)dm 0O).
As a consequence, one can observe that for every normalized Bessel sequence (uy), its Lip
norms must be sufficiently large, so that ), (p(m) < oo for any monotone increasing

function ¢ > 0 for which )", (p(”uk || xr) < 00 (compare with the statements of Section 3).

V. Remark: an explicit formula for Hu“ «g- The definitions of the K R-norm are rather
implicit, and the question on a simpler formula was discussed, for example in [21,22]. In our

setting, there are some cases where the norm || . can be explicitly expressed in terms of

|
14
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the triple ({2, p, m). In particular, if Lip; = T(B(L°({2, m))) then

lufl e = HT*uHLl(Q,m)’ Vu e L'(2,m).

Indeed, |u ., = sup{fQ ufdm: f € Lipl} = ”T*u”Ll(Q,m)' O

In particular, such a formula holds for ({2, m) = (/ 4 my), as it was mentioned in the proof
of Theorem 3.1. The corresponding operator T'(3_, o cxe”™ “¥) = 3 |k|pacee®™®0) s a
multiplier on LP: for d = 1, the formula is mentioned in [21]. See also Remark after the proof
of Proposition 5.1.

6. The fastest rate of convergence ||uy||,, — 0 for frames/bases in L*(I?)

As before, we measure the rate mentioned in the title with the convergence/divergence ex-
ponents. The following theorem shows that the best possible sign intermixing for bases/frames
(ur) C L*(I%) gives the much smaller convergence exponents « than for generic sequences
treated in Sections 3—4. In particular, always o < 2, and ford = 1 it is simply ¢ = 2/34+€ <
1.

Theorem 6.1. Letd =1,2,...and o« = 7% (a < 2). Then,

(1) there exists an orthonormal basis (uy) in L*(I?) such that > ”uk H(;;;; < 00, for all
€ >0, but
(2) Z ||uk H;R = 00, for every frame (uy) in L*(I%) (in particular, for every Riesz basis).
k

Proof. (1) Let (u,) be the Haar basis in L%(I 4) enumerated with the following notation:

h = X©,1/2) — X1/2,1)

stands for the Haar basic wavelet on I C R; taking a subset o0 C D := {1,2,...,d}, 0 # 0,
and a multiinteger k = (k1, ko, ..., kg) € Z‘i, where 0 < k, < 2/ for every s and j € Z,,
define the Haar functions (u,) = (hj o) as

hjko(x) =202 Th@x —k) [ xon@x — k)

seo seD\o

where x = (x1,x2,...,x4) € I%. Then (see for example, [15, Section 3.9]), (u,) forms an
orthonormal basis in L(Z)(I 4) (j and k run over all mentioned above values, o runs a finite set
of 2¢ — 1 elements). Obviously,

d
supp(hjue) = Qi = {x € RY: Vx —k e 1) = [ [tks2 7/, (ks + D271,
s=1
Lemma 4. Let u € L®(I?), supp(u) C Q;« and [,y udx = 0. Then,

d o
lullgr = 5 luf 27"

Proof of the Lemma. Since f 1d udx = 0, we can restrict ourselves in the formula

Jul = sop{ [ ustx s Lipcr) <1]

15
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>

to the functions f with f(I) = 0, Lip(f) < 1 where [ = (k,27/)*_,, and so | f(x)| < [/ —x
x € Q. Changing variables, we have

d
KR — oo R4 — 00 s =
lulge = | lullxlgadx < | Jul D xedx
Qj.0 Qj.0 s=1

= ||u] ‘_12—2/‘2—;([1—1): u| gz—j(d-ﬁ-l). 0
) o)

Applying Lemma to u = hj; ,,

nd
”hj,k,aHKR < 2]d/252 Jd+1)

2d

Summing up (with a y > «, & = 75), we get
d v
Y lunllen = 2D P Ml = 232 (27°527740) < 00, D
n o j=0 &k o j=0

(2) Recall that the space L(l)(l 4) endowed with the K R-norm is isometrically embedded into
the dual space (Lipy)* (with respect to the standard duality (u, f) = f e ufdm).

The plan of the proof (suggested by E. Gluskin) is the following: consider some metric
properties of the embedding E* : L3(IY) —> (Lipy)* and its predual embedding E :
Lip, — L(z)(l ) from two different point of view. Namely, assuming that there exists a frame
(ug) in L3(1) such that Z |uc|% p < o0, we show that

k
(I) embeddings E, E* are 2-nuclear operators (see below) and the 2-nuclear approximation

numbers aﬁ)(E*) decrease as o(1/N'/?) when N — oo;

(II) on the other hand, one can see that — at least for N = 279, j = 1,2,...— the numbers
aﬁ)(E) (which coincide with aﬁ)(E*)) cannot be less than ¢cN~1/4,
The above contradiction shows property (2) of Theorem 6.1.

Proof of point (I). A linear operator 7 : X —> Y between Banach spaces X and Y is said
p-nuclear if Tx = ), Tix, x € X (norm convergence), rank(7;) < 1 and ), H Tk Hp < 00;

inf{ (Z | 7% ||p>1/p : over all such representations } = | T“N(p)
k

is called its p-norm. N-th p-nuclear approximation number of T (N = 1,2,...) is

AD(T) = inf[ IT = Ay, : At X —> Y. rank(A) < N].

Assume now that there exists a frame (u;) in L%(I 4y such that Z ”uk H(;( R < 00 where

k
a = %. Let Sf = ) (f, ux)uy be the frame operator on L(Z)(I"); S is an isomorphism
S: L(z)(ld) — Lé([d), and E*S : L%(Id) — (Lipy)* is a 2-nuclear operator,

E*Sf = (f w)E*u,
k>1
16
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since || E*uy || = ||uk ||KR and o < 2. Moreover, letting (u;) in the decreasing order of ||uk ”KR,
we get ||uk ||‘;(R = o(l/k) (as k — 00), and hence

a;é)(E*S)z Z [ ”KR ’”N” Z Huk”KR N2/(x i)
k=N k=N
and a(z)(E*S) = 1/a ~Tasiz) = 0(+/d), as N — oo. Since § is invertible, and
|| UTV||N(p) ||U || |(\7," “N(p) “ VH for every T, U, V, we have

. 1
aj?(E):a(WL N —o0o. O

Proof of point (II). We need to show that there exists a constant ¢ > 0 such that for
every operator Ay : Lip, — LO(Id) rank(Ay) < N = 2/4 (j = 1,2,...), one has
|E — An| Ny = CNT 174 To this end, we construct two linear mappings V = VN RY —
Lip, and U = Uy : L}(1?) —> RY such that

UEV = idgn, |V :RY — Lip, | < CN3*4,

§aH —RY| =1,
where C > 0 does not depend on N.
Having these mappings at hand, we get Uoy (E — Ayn)Vay = idgeny — By, where rank(By) <
N and so,
” Uan(E — An)Vay ”N(z) = ”idRzN — By ”N(Z) = N2,
and on the other hand,

|20 (E = An)Van o) = |Uaw ][ - [ E = Ay | Var ] <

= C(ZN)7+E ”E - AN||N(2)’

which gives ||E — AN”N(Z) > ¢N~4,

Construction of the mappings V = Vy : RY — Lip; and U = Uy : L}(I?) — RV,
N = 2/4 j =1,2,.... We use the similar scaling procedure as in the above proof of part
(1) of Theorem 6.1: let ¥ be a smooth function on R? such that supp(yy) C Qo = I¢,
||1//|| Lady = 1, [, ¥dm = 0, and, for every j € Z,

Ui = Yia(x) = 279792 x — k), keK;,

where K; = {k = (ky, ... kd)eZd 0<ky <2/ (1<s <d)} Then, v, (k € K;) have
pairwise dlS]Oll’lt supports and form an orthonormal family in L2 o 4y, card(K;) = 2/ d = N.
Now, setting

Va = Z ayr, aeRY,
kEKj
we obtain

[Val|,,, <c-sup |V(Va)x)|z = ¢ max sup |ax Vi (x)|ps < C2jd/22j|a|RN,
g xeld kEKj xeld

where ¢ > 0, C > 0 depend only on d (and the choice of ), which gives the needed
|v:RY —>L1p0U < CN#*a.
ForU = Uy : 0(I") — RN weletUf = ({f, V) )kek ;> and obviously get UEV = idgn
and |U: L3I — RV| =1. O
17
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7. Limiting the rate of convergence of ||u;||, in a function space X > L?

Here, we briefly explain an application of the techniques of Section 6 to a lower estimate
for the convergence exponents Zk ||uk H; < oo for a Riesz basis (u;) in L? embedded in a
larger Banach function space X O L2. The following theorem has a similar proof to that of
Theorem 6.1, point (2).

Theorem 7.1. Let X be a normed space of measurable functions on ({2, ) in which the
space L* = L?({2, 1) is continuously embedded as a dense subset, E : L*(f2, n) — X, and
let y,8 > 0, y +8 > 1/2. Assume that, for every N € N, the identity map idy : RY — RN
can be factored through the embedding E* : X* — L? so that

UyE*Vy = idy, Vy :RY — X*, Uy : L> — R",
and

[vv] = o,

|Uv| = 0(N°) N — oo

1
Then, for every Riesz basis (uy) in L? Z ”uk ” ;*5 = oo.
k
The details will be given elsewhere. Theorem 6.1 follows from Theorem 7.1 with X =
(LY gp)7v = 2+ 5.8 =10 For X = L' and y = 1/2,8 = 0, we get (only)
Z ”uk ”il = 0o (which fact we know already, [18], see the beginning of Section 1).
k
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