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Abstract

We measure a sign interlacing phenomenon for Bessel sequences (uk ) in L2 spaces in terms of the
antorovich–Rubinstein mass moving norm ∥uk∥K R . Our main observation shows that, quantitatively,

he rate at which ∥uk∥K R → 0 heavily depends on Bernstein–Kolmogorov widths of a compact set of
ipschitz functions. In particular, it depends on the dimension of the measure space. We also establish a

ower bound for the rate of convergence of the norms ∥uk∥X → 0 of a basis/frame of L2 in any larger
unction space X ⊃ L2.
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1. Introduction and a summary

Let (Ω , ρ) be a metric space, and m a finite continuous (with no point masses) Borel measure
on Ω . It is known [18] that for every frame (uk)k≥1 in L2

= L2
R(Ω ,m), the “l2-masses” of the
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ositive and negative values u±

k (x) are infinite:∑
k

u+

k (x)2
=

∑
k

u−

k (x)2
= ∞ a.e. on Ω ,

where as usual u±

k (x) = max(0,±uk(x)), x ∈ Ω . Moreover,

∀ f ∈ L2
R(Ω ), f ≥ 0, f ̸= 0 ⇒

∑
k

⟨ f, u±

k ⟩
2
L2 = ∞.

So, at almost every point x ∈ Ω , there are many positive and many negative values in the
sequence (uk(x))k≥1. Below, we show that for a fixed k, positive and negative values are heavily
intermixed.

These statements can be considered in line with more general “positivity studies” for rep-
resenting systems u =

∑
k≥1 fk(u)uk , u ∈ L2, with various possible meaning of convergence.

In particular, it is known [20] that the unconditional convergence is not compatible with the
non-negativity uk(x) ≥ 0 a.e. (it also follows from our results quoted above). On the other
hand, there exists a Schauder basis (uk)k≥1 for L2 consisting of non-negative functions, [6] by
Freeman, D., Powell, A., and Taylor, M. A., Schauder basis for L2 consisting of non-negative
functions., Math. Ann., 381, 1-2, 2021, 181-208 (which solves a long standing problem). The
issue was also treated for L p and for some more general spaces, see [10,18,20], and the
references quoted therein.

The point is that this is precisely the unconditional character of a representing system (uk)
(a frame/Riesz basis in our setting) which forces the functions uk oscillate more and more. In
this paper, we show that the measures u±

k dm should be closely interlaced, in the sense that the
Kantorovich–Rubinstein (KR) mass moving distances

uk


K R =
u+

k − u−

k


K R (see below)

must be small enough. It is easy to see that if the supports supp(u±

k ) are distance separated from
ach other then

uk


K R ≈
uk


L1(m), whereas in reality, as we will see, the norms

uk


K R
re much smaller, and so, the sets {x : uk(x) > 0} and {x : uk(x) < 0} should be increasingly
ixed. For example, it follows from our results that for every frame (uk)k≥1 in L2(0, 1), we

ave ∑ uk
2

K R < ∞, but
∑ uk

2
L1(0,1) = ∞.

Historically, one of the first results on the sign intermixing phenomenon is that of O. Kellogg
14], showing that on the unit interval Ω = I =: (0, 1), the consecutive supports supp(u±

k )
re interlacing under quite general assumptions on an orthonormal sequence (uk). Later on,
he sign interlacing properties were intensively studied for orthogonal polynomials (starting
rom P. Chebyshev, and earlier, see any book on orthogonal polynomials). In particular, quite
recent survey of the field [5] counts about 780 pages and hundreds of references; many new

uantitative results are also presented.
Our results are most complete for the classical case Ω = I d (d ≥ 1) in Rd , where

I = (0, 1), m = md is the Lebesgue measure and ρ is the Euclidean distance on the cube.
hey also suggest that in general, the magnitudes of

uk


K R are defined by certain (unknown)
nterrelations between m and ρ, and by a kind of the dimension of Ω (there are many in the
etric geometry). This is partially confirmed by the results of a forthcoming paper [17]. In

act, all depends on and is expressed in terms of a compact subset Lip1 of Lipschitz functions
n L2(Ω ,m).

We now briefly summarize the contents of the resting sections of the paper.
2. Definitions and comments.
2
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3. Statements on the generic behavior of
uk


K R . For every Bessel sequence (uk) in L2(I d ),

e have for d = 1:
∑

k

uk
2

K R < ∞, and for d > 1:
∑

k

uk
d+ϵ

K R <∞, ∀ϵ > 0.

These claims are sharp, even in a much more general setting: for every compact triple
Ω , ρ,m) and for every sequence (ϵk)k≥1, ϵk ≥ 0, such that

∑
k ϵ

2
k<∞, there exists an

rthonormal sequence (uk)k≥1 in L2
R(Ω ,m) such that

uk


K R ≥ cϵk , k = 1, 2, . . . (c > 0) (in
articular, always there exists an orthonormal sequence (uk) with

∑
k

uk
2−ϵ

K R = ∞, ∀ϵ > 0).

lso, as it is shown already in [18] (and recalled above),
∑

k

uk
2

L1(µ) = ∞ for every frame
n L2(Ω , µ).

For the unit cube case, there exists in L2(I d ) an orthonormal sequence (uk) such that

k

uk
d

K R = ∞.

For a generic compact triple (Ω , ρ,m), we can only claim limk
uk


K R = 0 for every

essel sequence in L2
R(Ω ,m). The property is sharp in the following sense: for every sequence

ϵk)k≥1, ϵk> 0, with limk ϵk= 0, there exists a compact triple (Ω , ρ,m) (with usual properties)
nd an orthonormal sequence (uk)k≥1 in L2

R(Ω ,m) such that
uk


K R = cϵk , k = 1, 2, . . .

1
2
√

2
≤ c ≤

2
√

2
π ).

4. Proofs of the statements of Section 3.
5. Further examples and comments. Here we show some 1-dimensional manifolds, where the

esults of Section 3 still hold. Also, we give several examples to rather technical interpolation
heorem 3.2, as well as a few other comments (a direct comparisons

uk


K R with Bernstein
idths bk(Lip1); an explicit expression for

u


K R).
6. The fastest rates of convergence

uk


K R → 0 for frames/bases on L2(I d ). It is shown that
1) there exists an orthonormal basis (uk) in L2(I d ), d = 1, 2, . . . (namely, the Haar functions
asis), such that

∑
k

uk
α+ϵ

K R < ∞, ∀ϵ > 0, where α =
2d

d+2 , but (2)
∑

k

uk
α

K R = ∞, for

very frame (uk) in L2(I d ) (in particular, for every Riesz basis).
7. Here we state without proof a partial analog of Section 6 results for the limit rate of

onvergence
uk


X in a larger function space X ⊃ L2.

The main results of the paper are Theorems 3.1, 3.2, 6.1 and 7.1.

. Definitions and comments

In order to simplify the statements, we always assume that our sequences (uk)k≥1 (frames,
ases, etc.) lie in the codimension one subspace

L2
0(Ω ,m) = { f ∈ L2

R(Ω ,m) :
∫
Ω

f dm = 0}.

However, most of the results below are still true for all Bessel sequences u = (uk)k≥1 in
L2

0, i.e. the sequences with∑
k

⏐⏐⟨ f, uk⟩
⏐⏐2

≤ B(u)2
 f

2
2, ∀ f ∈ L2

0,

here B(u) > 0 stands for the best possible constant in such inequality. Recall also that a
rame (in L2

0) is a sequence having

b
 f

2
2 ≤

∑ ⏐⏐⟨ f, uk⟩
⏐⏐2

≤ B
 f

2
2, ∀ f ∈ L2

0,
k

3
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ith some constants 0 < b, B < ∞, and a Riesz basis is (by definition) an isomorphic image
f an orthonormal basis.

We always assume that the space (Ω , ρ) is compact (unless the contrary explicitly follows
rom the context) and the measure m is finite and continuous (has no point masses) .

Below,
u


K R stands for the Kantorovich–Rubinstein (also called Wasserstein) norm (KR)

of a zero mean signed measure udm (
∫

udm = 0); this norm evaluates the work needed
to transport the positive mass u+dm into the negative one u−dm. In fact, the KR distance
d(u+

k dx, u−

k dx) between measures u±

k dx (first invented by L.Kantorovich as early as 1942,
[11]) is a particular case of a more general setting. Namely, given nonnegative measures µ, ν
on Ω of an equal total mass, µ(Ω ) = ν(Ω ), the K R-distance d(µ, ν) is defined as the optimal
“transfer plan” of the mass distribution µ to the mass distribution ν:

d(µ, ν) = inf
{∫

Ω×Ω

ρ(x, y)dψ(x, y) : ψ ∈ Ψ (µ, ν)
}
,

where the family Ψ (µ, ν) consists of all “admissible transfer plans” ψ , i.e. non-negative
measures on Ω×Ω satisfying the balance (marginal) conditions ψ(Ω×σ )− ψ(σ×Ω ) = (µ−
ν)(σ ) for every σ ⊂ Ω . The value ψ(σ × σ ′) has the meaning of how many mass is supposed
to be transferred from σ to σ ′. The K R-norm of a real (signed) measure µ = µ+ − µ−,
µ(Ω ) = 0, is defined asµ

K R = d(µ+, µ−).

It is shown in Kantorovich–Rubinstein theory [13](also see, for example [12, Ch.VIII, Section
4], or [22]) that the K R-norm of a real (signed) measure µ, µ(Ω ) = 0, is the dual norm of
the Lipschitz space

Lip := Lip(Ω ) = { f : Ω −→ R :
⏐⏐ f (x) − f (y)

⏐⏐ ≤ cρ(x, y)}

modulo the constants, where the least possible constant c defines the norm Lip( f ). Namely,µ
K R = d(µ+, µ−) = sup

{∫
Ω

f dµ : Lip( f ) ≤ 1
}

where, in fact, it suffices to test only functions f ∈ lip, lip := { f ∈ Lip :
⏐⏐ f (x) − f (y)

⏐⏐ =
o(ρ(x, y)) as ρ(x, y) → 0}. Of course, one can extend the above definition to an arbitrary
real valued measure µ setting

µ =
µ − µ(Ω )


K R +

⏐⏐µ(Ω )
⏐⏐. This makes it possible to

apply our results to L2
R spaces instead of L2

R,0; using the last remark in the case of Bessel
sequences, we can use that the sequence

∫
Ω ukdm = ⟨1, uk⟩ is in l2. The K R-norm and its

variations (with various cost function h(x, y) instead of the distance ρ(x, y)) are largely used
in the Monge/Kantorovich transportation problems, in ergodic theory, etc. We refer to [12] for
a basic exposition and references, and to [1,2,22] for extensive and very useful surveys of the
actual state of the fields.

It is clear from the above definitions that, for measuring the sign intermixing of ukdm for
a Bessel sequence (uk) ⊂ L2

0, one can employ certain size characteristics of the following
compact subset of L2(Ω ,m),

Lip1 =

{
f : Ω −→ R :

⏐⏐ f (x) − f (y)
⏐⏐ ≤ ρ(x, y), f (x0) = 0

}
,

where x0 ∈ Ω stands for a fixed point of Ω ; it will be easily seen that the choice of x0 does
not matter. Below, we estimate

uk


K R making use of the known Bernstein width numbers
b (Lip ) (n ̸= k, in general). In the case when there exists a linear Hilbert space operator T
n 1

4
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or which Lip1 is (or, is included into) the range of the unit ball, bn(Lip1) can be replaced by
he singular numbers sn(T ).

Recall that the S. Bernstein n-widths bn(A, X ) of a compact, convex, centrally symmetric
ubset A ⊂ X of a Banach space X are defined as follows (see [19]):

bn(A, X ) = sup
Xn+1

sup
{
λ : λB(Xn+1) ⊂ A, λ ≥ 0

}
here Xn+1 runs over all linear subspaces in X of dim Xn+1 = n + 1, and B(Xn+1) stands for

he closed unit ball of Xn+1. A subspace Xn+1(A) where supXn+1
is attained, is called optimal; it

oes not need to be unique (in general). In the case of a Hilbert space H (as everywhere below),
f A is the image of the unit ball with respect to a linear (compact) operator T , A = T B(H ),
e have bn(A, H ) = sn(T ), where sn(T ) ↘ 0 (n = 0, 1, . . .) stands for the n-th singular
umber of T . In this case, optimal subspaces Hn+1(T ) are simply the linear hulls of y0, . . . , yn
rom the Schmidt decomposition of T ,

T =

∑
k≥0

sk(T )⟨·, xk⟩yk,

xk) and (yk) being orthonormal sequences in H .

. Statements

Recall that (Ω , ρ) stands for a compact metric space, and m is a finite Borel measure on Ω
aving no point masses (for convenience normalized to 1).

Lemma 1 shows what kind of the intermixing of signs we have for free, for every Bessel
equence (uk). Lemma 2 shows that for no triples (Ω , ρ,m), one can have an intermixing for
eneric sequences (uk) better than l2 smallness of

uk


K R . All intermediate cases can occur,
ollowing the widths properties of the compact Lip1 ⊂ L2(Ω ,m), see Theorems 3.1, 3.2 and
he comments below.

emma 1. For every Bessel sequence (uk)k≥1 in L2
R(Ω ,m), we have

lim
k

uk


K R = 0.

emma 2. For every compact measure triple (Ω , ρ,m) (with the above conditions) and every
equence (ϵk)k≥1, ϵk ≥ 0, such that

∑
k ϵ

2
k < ∞, there exists an orthonormal sequence (uk)k≥1

n L2
R(Ω ,m) satisfyinguk


K R ≥ cϵk, k = 1, 2, . . . c > 0.

n particular, there exists an orthonormal sequence (uk)k≥1 in L2
R(Ω ,m) such that∑

k

uk
2−ϵ

K R = ∞, ∀ϵ > 0.

emma 3. For every sequence (ϵk)k≥1, ϵk > 0, with limk ϵk = 0, there exists a compact
easure triple (Ω , ρ,m) (with the above conditions) and an orthonormal sequence (uk)k≥1 in

L2
R(Ω ,m) such thatuk


K R = cϵk, k = 1, 2, . . . .

nd ( 1
√ ≤ c ≤

2
√

2 ).

2 2 π

5



N. Nikolski and A. Volberg Journal of Approximation Theory 281–282 (2022) 105798

s

T

w

R
p
(

T

(

i
b
s
e

p
e
t
1

t
o
S

T
n
i

Theorems 3.1 and 3.2 describe the behavior of
uk


K R for generic (“worst”) Bessel

equences/frames/bases in L2
R(I d ) in their dependence on the dimension d .

heorem 3.1. (1) Given a Bessel sequence (uk)k≥1 in L2
R(I, dx), I = (0, 1), we have∑

k

uk
2

K R < ∞.

(2) Given a Bessel sequence (uk)k≥1 in L2
R(I d , dx), d = 2, 3, . . ., we have∑

k

uk
d+ϵ

K R < ∞ ∀ϵ > 0.

(3) For the Sin orthonormal sequence (un)n∈2Nd in L2
R(I d , dx),

un(x) = 2d/2 sin(πn1x1) sin(πn2x2)... sin(πnd xd ), n = (n1, . . . , nd ) ∈ (2N)d

e have∑
n

un
d

K R = ∞.

emark. For a generic Bessel sequence (or, an orthonormal sequence), the l2-convergence
roperty (1) is a best possible result (see Lemma 2). However, for certain specific sequences,
1) can be much improved . For example, let u ∈ L2

R,0(T) and

un(ζ ) = u(ζ n) n = 1, 2, . . .

hen, as it easy to see,un


K R ≤
1
n

u


K R

in fact, there is an equality), and so
∑

n

un
1+ϵ

K R <∞ (∀ϵ > 0). Such a dilated sequence (un)n

s Bessel if and only if the Bohr transform of u, Bu(ζ ) =
∑

n û(n)ζ α(n), ζ α(n)
= ζ

α1
1 ζ

α2
2 ..., is

ounded on the multitorus ζ = (ζ1, ζ2, . . .) ∈ T∞; here α(n) = (α1, α2, . . .) and n = 2α13α2 ...
tands for the Euclid prime representation of an integer n ∈ N. For this claim, see [16], for
xample.

In fact, Theorem 3.1 is an immediate corollary of the next Theorem 3.2. We extend the
roperty (

uk


K R) ∈ l2 to any “one dimensional smooth manifold”, see Proposition 5.1 for the
xact statement. Lemma 2 shows that this condition describe the fastest convergence to zero of
he K R-norms for a generic Bessel sequence. On spaces (Ω , ρ) of the dimension higher than
, it need not be true that (

uk


K R) ∈ l2 for every Bessel (or even an orthonormal) sequence.
In Theorem 3.2, we develop the approach mentioned at the end of Section 2: we compare

he compact set Lip1 with the T -range T (B(L2)) of the unit ball for an appropriate compact
perator T . For a direct comparison between

un


K R and the Bernstein numbers bn(Lip1) see
ection 5.

heorem 3.2. Let T : L2
R(Ω ,m) → L2

R(Ω ,m) be compact linear operator, sk(T ) its singular
umbers, and ϕ : [0,∞) → [0,∞) be a continuous increasing function on [0,∞) whose
nverse ϕ−1 satisfies

−1 1/2 −1/2
ϕ (x) = x r (1/x ) ∀x > 0

6
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w
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∑
R

C

O∑
(

e

4

0

t
[
i
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T

ith a function x → r (x) concave on (0,∞) (or is equivalent to a concave function r0:
r0 ≤ r ≤ Cr0).

(1) If Lip1 ⊂ T (B(L2
R(Ω ,m))) and

∑
k ϕ(sk(T )) < ∞, then, for every Bessel sequence

(uk) ⊂ L2
R(Ω ,m),∑

k≥1

ϕ(a
uk


K R) < ∞ for a suitable a > 0.

(2) If Lip1 ⊃ T (B(L2
R(Ω ,m))), then there exists an orthonormal sequence (uk)k≥0 in

L2
R(Ω ,m), such thatuk


K R ≥ sk(T ) k = 0, 1, . . .

In particular (in order to compare with (1)),
∑

k h(
uk


K R) = ∞ for every h for which

k h(sk(T )) = ∞.

emark. See Section 5.III below for a version of Theorem 3.2, point (2), employing the
Bernstein widths bn(Lip1) instead of sn(T ) (T does not need to exist for the compact set Lip1).

orollary 3.1. Let Lip1 = T (B(L2
R(Ω ,m))) and

p(T ) := inf{α :

∑
k

sk(T )α <∞}.

(1) If p(T ) < 2, then
∑

k

uk
2

K R < ∞, for every Bessel sequence (uk) ⊂ L2
R(Ω ,m).

n the other hand, there exists T with p(T ) = 1 and an orthonormal sequence such that

k

uk
2−ϵ

K R = ∞ (∀ϵ > 0) (see Lemma 2).
(2) If

∑
k sk(T )p < ∞, p ≥ 2, then

∑
k

uk
p

K R < ∞ for every Bessel sequence
uk) ⊂ L2

R(Ω ,m).

As we will see, Theorem 3.1, in fact, is a consequence of the last Corollary. Some concrete
xamples to Theorem 3.2 are presented below, in Section 5.

. Proofs

I. Proof of Lemma 1 Since (uk)k≥1 is a Bessel sequence, it tends weakly to zero: (uk, f ) →
as k → ∞, for every f ∈ L2

R(Ω ,m). On a (pre)compact set f ∈ Lip1, the limit is uniform:

lim
k

uk


K R = lim
k

sup
{∫

Ω

uk f dµ : f ∈ Lip1

}
= 0 . □

II. Proof of Lemma 2. The Borel measure m being continuous satisfies the Menger property:
he values m E , E ⊂ Ω fill in interval [0,m(Ω )]; if m is normalized, they fill in the interval
0, 1]. See [9], Section 41 for the history (with many retrospective references, the oldest one
s to K. Menger, 1928), and [4], Prop. A1, p.645 for a complete and short proof. Below, we
se that property many times.

Let Ei ⊂ Ω be disjoint Borel sets, E1
⋂

E2 = ∅, m Ei = 1/2, and further, Ki ⊂ Ei be
ompacts such that mKi = 1/3 (i = 1, 2). Denote δ = dist(K1, K2) > 0, and set

f (x) = (1 −
2
δ

dist(x, K1))+ − (1 −
2
δ

dist(x, K2))+, x ∈ Ω .

hen, f ∈ Lip(Ω , ρ), Lip( f ) ≤ 2/δ and f (x) = 1 for x ∈ K , f (x) = −1 for x ∈ K .
1 2

7
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m

g

d

w

(

a

a

Now, using the Menger property, one can find two sequences (∆1
k), (∆2

k), k = 1, 2, . . .,
of pairwise disjoint sets such that ∆i

k ⊂ Ki , ∆i
k
⋂

∆i
j = ∅ (i = 1, 2, k ̸= j), and

∆1
k = m∆2

k = a2ϵ2
k , where a > 0 is chosen in such a way that a2 ∑

k≥1 ϵ
2
k ≤ 1/3. Setting

uk = ck(χ∆1
k
− χ∆2

k
), k = 1, 2, . . .

with
uk

2
2 = 2c2

k m∆1
k = 1, we obtain an orthonormal sequence (uk) ⊂ L2(Ω ,m) such thatuk


K R ≥

∫
Ω

uk(
δ

2
f )dm =

δ

2
2ckm∆1

k =
δ
√

2

√
m∆1

k =
δa
√

2
ϵk .

□

III. Proof of Lemma 3 Let Ω = T∞, the infinite topological product of compact abelian
roups T × T × · · · , endowed with its normalized Haar measure m∞ = m × m × · · · . The

product topology on Ω is metrizable by a variety of metrics. We choose ρ = ρϵ , ϵ = (ϵk)k≥1
efined by

ρϵ(ζ, ζ ′) = max
k≥1

ϵk
⏐⏐ζk − ζ

′

k

⏐⏐, ζ ′, ζ = (ζk)k≥1 ∈ T∞.

Setting

uk(ζ ) =
√

2Re(ζk), ζ ∈ T∞,

e define an orthonormal sequence in L2(T∞,m∞) with
⏐⏐uk(ζ ) − uk(ζ ′)

⏐⏐ ≤ √
2
ϵk
ρ(ζ, ζ ′), and

so Lip(uk) ≤
√

2/ϵk .
Further, we need the following notation: let f ∈ Lip1(T∞), f (ζ ) = f (ζk, ζ ) where

ζ = (ζk, ζ ) ∈ T∞
= T× T∞, ζ consists of variables different from ζk , and

uk(ζk) =
√

2Re(ζk), ζk ∈ T

in fact, this is one and the same function eiθ
↦−→

√
2 cos(θ) for every k). Finally, we set

f (ζk) :=
∫
T∞

f (ζk, ζ )dm∞(ζ ) and observe that Lip( f ) ≤ ϵk :

⏐⏐ f (ζk) − f (ζ ′k)
⏐⏐ ≤ ∫

T∞

⏐⏐ f (ζk, ζ ) − f (ζ ′k, ζ )
⏐⏐dm∞(ζ ) ≤

≤

∫
T∞

ϵk
⏐⏐ζk − ζ

′

k

⏐⏐dm∞(ζ ) = ϵk
⏐⏐ζk − ζ

′

k

⏐⏐.
Now,∫

T∞

uk(ζ ) f (ζk, ζ )dm∞(ζ ) =
∫
T

uk(ζk)
∫
T∞

f (ζk, ζ )dm∞(ζ )dm(ζk) =

=

∫
T

uk(ζk) f (ζk)dm(ζk) ≤ ϵk
uk


K R(T),

nd hence
uk


K R(T∞) ≤ ϵk

uk


K R(T).

Conversely, if h ∈ Lip1(T) and h(ζ ) := h(ζk) for ζ ∈ T∞, then
⏐⏐h(ζk)−h(ζ ′k)

⏐⏐ ≤ 1
ϵk
ρ(ζ, ζ ′),

nd so∫
T

ukhdm(ζk) =
∫
T∞

dm∞(ζ )
∫
T

uk(ζk)h(ζk)dm(ζk) =
∫
T∞

uk(ζ )h(ζ )dm∞(ζ ) ≤

≤
1 uk


∞ ,
ϵk
K R(T )

8
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w
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f

w

M

i

C

p

hich entails
uk


K R(T) ≤

1
ϵk

uk


K R(T∞). Finally,
uk


K R(T∞) = ϵk

uk


K R(T). Moreover,
ince Lip(uk) ≤

√
2,

1

2
√

2
=

∫
T

uk(uk/
√

2)dm(ζk) ≤

uk


K R(T) ≤
uk


L1(T) =

2
√

2
π

. □

emark. For the same space L2(T∞,m∞), but with a non-compact (bounded) metric
(ζ, ζ ′) = supk≥1

⏐⏐ζk − ζ
′

k

⏐⏐, we have
uk


KR ≥ 1 for uk(ζ ) = sinπxk , ζ= (ei x1 , ei x2 , . . . , ei xk ,

. .) ∈ T∞, so that (
uk


KR)k≥1 does not tend to zero.

IV. Proof of Theorem 3.1. (1) Since uk ∈ L2
R,0(I, dx),

∫
I ukdx = 0. Taking a smooth

unction f with Lip( f ) ≤ 1 (which are dense in the unit ball of Lip) and

vk(x) = Juk(x) :=
∫ x

0
ukdx,

e get vk(0) = vk(1) = 0, and hence∫
I

f ukdx = ( f vk)1
0 −

∫
I
vk f ′dx = −

∫
I
vk f ′dx .

aking sup over all f with
⏐⏐ f ′(x)

⏐⏐ ≤ 1, we obtain
uk


K R =

vk


L1 . But the mapping

J : L2(I ) −→ L2(I )

s a Hilbert–Schmidt operator, and hence
∑

k

Juk
2

L2 < ∞, and so
∑

k

vk
2

L1 =
∑

k

uk
2

K R
< ∞.

The penultimate inequality is obvious if (uk) is an orthonormal (or only Riesz) sequence,
but it is still true for every Bessel sequence (uk)k≥1. Indeed, taking an auxiliary orthonormal
basis (e j ) j≥1 in L2

R(I, dx), we can write∑
k

Juk
2

L2 =

∑
k

∑
j

⏐⏐⟨Juk, e j ⟩
⏐⏐2

=

∑
j

∑
k

⏐⏐(uk, J ∗e j )
⏐⏐2

≤

∑
j

const ·
J ∗e j

2
< ∞,

since the adjoint J ∗ is a Hilbert–Schmidt operator. □
(2) This is a d-dimensional version of the previous reasoning. Anew, we use the dual formula

for the KR norm,uk


K R = sup{
∫

I d
f ukdx : f ∈ C∞, Lip( f ) ≤ 1,

∫
f dx = 0},

the last requirement does not matter since Lip( f ) = Lip( f + const). Notice that for f ∈

∞(I d ), Lip( f ) ≤ 1 ⇔
⏐⏐∇ f (x)

⏐⏐
Rd ≤ 1 (x ∈ I d ), where ∇ f stands for the gradient vector

∇ f = ( ∂ f
∂x j

)1≤ j≤d . Now, define a linear mapping on the set P0 of vector valued trigonometric
olynomials of the form

∑
c ∇e2π i(n,·)

∈ L2(I d ,Cd ) with the zero mean (c = 0) by the
n∈Zd n 0

9
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A(∇e2π i(n,x)) =
⏐⏐n⏐⏐

Rd e2π i(n,x), n ∈ Zd
\{0}.

It is clear that A extends to a unitary operator

A : closL2(I d ,Cd )(∇P0) −→ L2
0(I d ).

urther, let M : L2
0(I d ) −→ L2

0(I d ) be a (bounded) multiplier,

M(e2π i(n,x)) =
1⏐⏐n⏐⏐
Rd

e2π i(n,x), n ∈ Zd
\{0},

nd finally, T (∇ f ) = f , f ∈ C∞

0 (I d ). Then,∫
I d

f ukdx =

∫
I d

(T (∇ f ))ukdx =

∫
I d
∇ f · (T ∗uk)dx,

T ∗ being the adjoint between L2 Hilbert spaces. It followsuk


K R ≤ sup
{∫

I d
∇ f (T ∗uk)dx :

⏐⏐∇ f (x)
⏐⏐
Rd ≤ 1, x ∈ Rd

}
≤

T ∗uk


L1(I d ,Cd ) ≤

≤
T ∗uk


L2(I d ,Cd ).

Moreover, T = M A, where A is unitary up to numerical multiple (between the corre-
ponding spaces) and M in a Schatten–von Neumann class Sp for every p, p > d , since M
s diagonal and

∑
n∈Zd\{0}

1⏐⏐n⏐⏐p
Rd

< ∞ ⇔ p > d. Using the dual definition of the Bessel

sequence as
 ∑

akuk
2

≤ c(
∑

a2
k ) for every real finite sequence (ak), we can write (uk) as

he image uk = Bek of an orthonormal sequence (ek) under a linear bounded map B. This
ives uk


K R ≤

T ∗Bek


L2 .

For every p > d , this implies
∑

k

uk
p

K R ≤

∑
k

T ∗Bek
p

L2 < ∞ since T ∗B ∈ Sp and

≥ 2 (see Remark below). □

emark. For the last argument in the proof, we refer for example to [7]. Here is a brief
xplanation: given a linear bounded operator S : H −→ K between two Hilbert spaces and

an orthonormal sequence (ek) in H , define a mapping j : S −→ (Sek); then, j is bounded
as a map S2 ↦−→ l2(K ) and as a map S∞ ↦−→ c0(K ) (compact operators); by operator
interpolation, j : Sp ↦−→ l p(K ) is also bounded for 2 < p <∞. □

For 1 ≤ p ≤ 2, the things go differently: the best summability exponent α,
∑

k

Sek
α <∞,

which one can generally guarantee for S ∈ Sp, is α = 2 (look at rank one operators
S = (·, x)y). This observation explains the jump behavior of the summability exponent for
K R-norms from α = d + ϵ in the dimension d ≥ 2 to exactly α = 2 in the dimension 1 (and
not α = 1 + ϵ as one can expect).

(3) We use anew the duality formulaun


K R = sup
{∫

f undµ : Lip( f ) ≤ 1
}
.

I d

10
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T
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t

f
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t

aking f = un/Lip(un) we get
un


K R ≥ 1/Lip(un) where Lip(un) ≤ max

∇un(x)
 ≤

2d/2
⏐⏐n⏐⏐, and so∑

n

un
d

K R ≥ 2−d2/2
∑

n∈(2N)d

⏐⏐n⏐⏐−d
Rd = ∞. □

V. Proof of Theorem 3.2. Let T =
∑

k≥0 sk(T )⟨·, xk⟩yk be the Schmidt decomposition of
a compact operator T acting on a Hilbert space H , sk(T ) ↘ 0 being the singular numbers.

et further, A : H −→ H be a bounded operator, and (ek)k≥0 an arbitrary (fixed) orthonormal
basis. Given a sequence α = (α j ) j≥0 of real numbers, α ∈ l∞, define a bounded operator

Tα =

∑
k≥0

αk⟨·, xk⟩yk,

and then a mapping

j : α ↦−→ ⟨T ∗

α Aek⟩k≥0,

a H -vector valued sequence in l∞(H ).
We are using a J. Gustavsson–J. Peetre interpolation theorem [8] for Orlicz spaces. Recall

that, in the case of sequence spaces, an Orlicz space lϕ , where ϕ : R+ −→ R+ = (0,∞) is
increasing and continuous, and meets the so-called ∆2-condition ϕ(2x) ≤ Cϕ(x), x ∈ R+, is
he vector space of real sequences c = (ck) satisfying∑

k

ϕ(a
⏐⏐ck

⏐⏐) < ∞

or a suitable a > 0. Similarly, a vector valued Orlicz space consists of sequences c = (ck),
k ∈ H , having

∑
k ϕ(a

⏐⏐ck
⏐⏐) < ∞ for a suitable a > 0. We need the Hilbert space valued

paces only. The Gustavsson–Peetre interpolation theorem (Theorem 9.1 in [8]) implies that if
he mappings j : l∞ −→ l∞(H ) and j : l2

−→ l2(H ) are bounded, then

j : lϕ −→ lϕ(H )

is bounded whenever the measuring function ϕ satisfies the conditions given in Theorem 3.2.
(1) Now, in the notation and the assumptions of statement (1), the Bessel sequence (uk) is

of the form uk = Aek , where A is a bounded operator and (ek) an orthonormal sequence. It
followsuk


K R = sup

f ∈Lip1

⏐⏐⟨Aek, f ⟩
⏐⏐ ≤ sup

f ∈T (B(L2))

⏐⏐⟨Aek, f ⟩L2
⏐⏐ = T ∗Aek


L2 .

For every α ∈ l2, Tα ∈ S2 (Hilbert–Schmidt), and then T ∗
α A ∈ S2, and hence j(α) ∈ l2(H ).

By Gustavsson–Peetre, α ∈ lϕ ⇒ j(α) ∈ lϕ(H ). Applying this with α = (sk(T )), we get∑
k ϕ(a

uk


K R) ≤
∑

k ϕ(a
T ∗Aek

) < ∞ for a suitable a > 0. □
(2) In the assumptions of (2), and with the Schmidt decomposition

T =

∑
k≥0

sk(T )⟨·, xk⟩yk, k ≥ 0

st uk = yk . Then
uk


K R = sup f ∈Lip1

⏐⏐⟨yk, f ⟩
⏐⏐ ≥ sup f ∈T (B(L2))

⏐⏐⟨yk, f ⟩
⏐⏐ =

T ∗yk


2 =

s (T ). □
k

11
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5

I

. Examples and comments to Sections 3–4

. Fastest and slowest rates of convergence
uk


K R → 0. Lemma 2 shows that, the K R-

norms of a generic Bessel sequence do not have to be smaller than required by the condition∑
k

uk
2

K R < ∞. On the other hand, point (1) of Theorem 3.1 gives an example of (Ω , ρ, dx),
where every Bessel sequence meets this property.

Below, in Proposition 5.1, we extend the latter result to measure spaces over (almost)
arbitrary 1-dimensional “smooth manifolds” of finite length.

As to the fastest possible convergence
uk


K R → 0 for frames/bases, we treat the question

in Section 6 for spaces L2(I d ) over the cubes.

Proposition 5.1. Let ϕ : I −→ X be a continuous injection of I = [0, 1] in a normed space
X differentiable a.e. (with respect to Lebesgue measure dx), and the distance on I be defined
by

ρ(x, y) =
ϕ(x) − ϕ(y)


X , x, y ∈ I.

Let further, µ be a continuous (without point masses) probability measure on I , satisfying∫
I

dµ(y)
∫ 1

y

ϕ′(x)


X dx =: C2(µ, ϕ) <∞.

Then, every Bessel sequence u = (uk) in L2(µ) =: L2
0(I, µ) fulfills∑

k

uk
2

K R ≤ B2C(µ, ϕ)2 <∞,

where B(u) > 0 comes from the Bessel condition.

Proof. Following the proof of Theorem 3.1 (1) and using that for f ∈ C∞,

Lip( f ) ≤ 1 ⇔
⏐⏐ f (x) − f (y)

⏐⏐ ≤ ϕ(x) − ϕ(y)
 ⇔

⏐⏐ f ′(x)
⏐⏐ ≤ ϕ′(x)


X x ∈ I,

we obtain, for every h ∈ L2
0(µ) and Jµ(h)(x) :=

∫ x
0 hdµ,h


K R = sup

{∫
I

f hdµ : f ∈ C∞, Lip( f ) ≤ 1
}
=

sup
{∫

I
f ′ Jµ(h)dx :

⏐⏐ f ′(x)
⏐⏐ ≤ ϕ′(x)


X

}
=

∫
I

⏐⏐Jµ(h)(x)
⏐⏐ · ϕ′(x)


X dx ≤

≤
Jµ(h)


L2(I,vdx),

where v(x) =
ϕ′(x)


X . Mapping T h := Jµ(h), T h(x) =

∫
I k(x, y)h(y)dµ acting as

T : L2(µ) −→ L2(I, vdx) is in the Hilbert–Schmidt class S2 if and only ifT
2

2 =

∫ ∫
I×I

⏐⏐k(x, y)
⏐⏐2dµ(y)v(x)dx =

∫ 1

0
dµ(y)

∫ 1

y
v(x)dx =: C2(µ, ϕ) < ∞.

If u = (uk) is a Bessel sequence (with
∑

k

⏐⏐(h, uk)
⏐⏐2

≤ B(u)2
h

2, ∀h ∈ L2(µ)), and the last
condition is fulfilled, then uk = Aek where (ek) is orthonormal and

A
 ≤ B(u), and hence∑ uk

2
K R ≤

∑ (T A)ek
2

2 ≤
T A

2
2 ≤

T
2

2

A
2

≤ B2(u)C2(µ, ϕ) . □

k k
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emark. In particular, the following formula appeared in the proof:h


K R =

∫
I

⏐⏐Jµ(h)(x)
⏐⏐ · ϕ′(x)


X dx,

ee also Remark V below.

II. Examples of interpolation spaces appearing conspicuously in Theorem 3.2. Lemma 3
uggests that all decreasing rates of

uk


K R can really occur, and so all cases of conver-
ence/divergence of

∑
k ϕ(

uk


K R) are different and non empty. The following examples make
xplicit the links between some Orlicz functions ϕ and the corresponding singular numbers
k(T ).

(1) The most well-known interpolation space between l2 and l∞ is l p, 2 < p <∞, which
s included in Theorem 3.2 with

r (t) = t1− 2
p ,

it serves for the case of power-like decreasing of bn(Lip1), or sn(T ) (if Lip1 = T (B(L2))), and
consequently of

un


K R :

log
1
sn

≈ log(n), n −→ ∞.

In particular, point (2) of Theorem 3.1 (where Ω = I d , d ≥ 2) can be seen now as a partial
ase of Theorem 3.2 since, in the hypotheses of 3.1 (2), Lip1 = T B(L∞) ⊂ T B(L2) and

T ∈
⋂

p>d Sp(L2
−→ L2) (which was already observed in the proof of Theorem 3.1).

(2) The following spaces lϕ of slowly decreasing sequences (sn) can appear as s-numbers
or Bernstein n-widths) of Lip1 for the triples Ω = T∞, ρ = ρϵ , m∞, described in the proof
f Lemma 3, for convenient choices of the sequence ϵ = (ϵn)n≥1.∑

n

s
C log log 1

sn
n < ∞ corresponding to log

1
sn

≈
log(n)

log log(n)

he case is included in Theorem 3.2 with

r (t) = t · exp
{
−

1
C

·
log(t2)

log log(t2)
(1 + o(1))

}
, t −→ ∞

(follows from the known b−1(y) = y
log(y) (1 + o(1)) for b(x) = x · log(x)), which is eventually

oncave (since t ↦−→ r (t) = o(t) for t −→ ∞ and lies in the Hardy fields, see [3], L’Appendice
u Ch.V);∑

n

s
C(log 1

sn )α

n < ∞, α > 1 corresponding to log
1
sn

≈ (log(n))1/α
;

he case is included in Theorem 3.2 with

r (t) = t · exp
{
−(

1
C

· log(t2))1/α
}
,

which is eventually concave as t → ∞ (by the same argument as above);∑
e
−

C
sβn < ∞, β > 0 corresponding to log

1
s

≈ (c +
1
β

log log(n));

n n

13
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t
he case is included in Theorem 3.2 with

r (t) = Ct/(log(t2))1/β,

which is eventually concave as t → ∞ (by the same argument as above).

III. In terms of the Bernstein n-widths. It is quite easy to see that a part of Theorem 3.2,
namely point (2), is still true with a relaxed hypothesis: we replace the assumption that Lip1

is of the form Lip1 ⊃ T (B(L2)) for a compact T with a hypothesis that the optimal subspaces
for Bernstein widths bn(Lip1) are ordered by inclusion (see Section 2 for the definitions):
Hn(Lip1) ⊂ Hn+1(Lip1), n = 1, 2, . . . The latter is always true if Lip1 is of the form T (B(L2)).
Namely, the following property holds.

Proposition 5.2. Let (Ω , ρ,m) be a compact probability triple for which there exist Bernstein
optimal subspaces Hn(Lip1) ⊂ L2(Ω ,m) such that

Hn(Lip1) ⊂ Hn+1(Lip1), n = 1, 2, . . .

Then there exists an orthonormal sequence (uk)k≥0 ⊂ Lip(Ω ) ⊂ L2
R(Ω ,m), such thatun


K R ≥ bn(Lip1), n = 1, 2, . . .

Proof.
Let e1 ∈ H1,

e1


2 = b1, and assume that ek , k ≤ n are chosen in a way that ek ∈ Hn ,
ek ⊥ e j (k ̸= j) and

ek


2 = bk . Since bn+1 B(Hn+1) ⊂ Lip1, there exists a vector
en+1 ∈ Hn+1 ⊖ Hn ⊂ Lip(Ω ) with

en+1


2 = bn+1 (and hence, en+1 ∈ Lip1). For the
constructed sequence (en), we set

un = en/bn

and obtain an orthonormal sequence (un) ⊂ Lip(Ω ) such that Lip(un) ≤ 1/bn , and henceun


K R ≥
∫
Ω unendm = bn(Lip1). □

IV. Remark: an “uncertainty inequality” for
u


K R . The following simple inequality

implicitly appeared several times (in the proofs of points II–IV of Section 4, or just above, in
the proof of 5.2). It merits to be stated separately: for a function u ∈ Lip(Ω ) the following
“uncertainty principle” holdsu


K R Lip(u) ≥

u
2

2.

(Indeed,
u


K R ≥

∫
Ω u(u/Lip(u))dm □).

As a consequence, one can observe that for every normalized Bessel sequence (uk), its Lip
norms must be sufficiently large, so that

∑
k ϕ( 1

Lip(uk ) ) < ∞ for any monotone increasing
function ϕ ≥ 0 for which

∑
k ϕ(

uk


K R) <∞ (compare with the statements of Section 3).

V. Remark: an explicit formula for
u


K R . The definitions of the K R-norm are rather

implicit, and the question on a simpler formula was discussed, for example in [21,22]. In our
setting, there are some cases where the norm

 ·
 can be explicitly expressed in terms of
K R

14
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a
d
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P

he triple (Ω , ρ,m). In particular, if Lip1 = T (B(L∞(Ω ,m))) thenu


K R =
T ∗u


L1(Ω,m), ∀u ∈ L1(Ω ,m).

Indeed,
u


K R = sup

{∫
Ω u f dm : f ∈ Lip1

}
=

T ∗u


L1(Ω,m). □

In particular, such a formula holds for (Ω ,m) = (I d ,md ), as it was mentioned in the proof
of Theorem 3.1. The corresponding operator T (

∑
k ̸=0 cke2π i(k,x)) =

∑
k ̸=0

⏐⏐k⏐⏐−1
Rd cke2π i(k,x) is a

multiplier on L p
0 ; for d = 1, the formula is mentioned in [21]. See also Remark after the proof

of Proposition 5.1.

6. The fastest rate of convergence
uk


K R → 0 for frames/bases in L2(I d)

As before, we measure the rate mentioned in the title with the convergence/divergence ex-
ponents. The following theorem shows that the best possible sign intermixing for bases/frames
(uk) ⊂ L2(I d ) gives the much smaller convergence exponents α than for generic sequences
treated in Sections 3–4. In particular, always α < 2, and for d = 1 it is simply α = 2/3+ ϵ <
1.

Theorem 6.1. Let d = 1, 2, . . . and α =
2d

d+2 (α < 2). Then,
(1) there exists an orthonormal basis (uk) in L2(I d ) such that

∑
k

uk
α+ϵ

K R < ∞, for all
> 0, but
(2)

∑
k

uk
α

K R = ∞, for every frame (uk) in L2(I d ) (in particular, for every Riesz basis).

roof. (1) Let (un) be the Haar basis in L2
0(I d ) enumerated with the following notation:

h = χ(0,1/2) − χ(1/2,1)

tands for the Haar basic wavelet on I ⊂ R; taking a subset σ ⊂ D := {1, 2, . . . , d}, σ ̸= ∅,
nd a multiinteger k = (k1, k2, . . . , kd ) ∈ Zd

+
, where 0 ≤ ks < 2 j for every s and j ∈ Z+,

efine the Haar functions (un) := (h j,k,σ ) as

h j,k,σ (x) = 2d j/2
∏
s∈σ

h(2 j xs − ks)
∏

s∈D\σ

χ(0,1)(2 j xs − ks)

here x = (x1, x2, . . . , xd ) ∈ I d . Then (see for example, [15, Section 3.9]), (un) forms an
rthonormal basis in L2

0(I d ) ( j and k run over all mentioned above values, σ runs a finite set
f 2d

− 1 elements). Obviously,

supp(h j,k,σ ) = Q j,k := {x ∈ Rd
: 2 j x − k ∈ I d

} =

d∏
s=1

[ks2− j , (ks + 1)2− j ].

emma 4. Let u ∈ L∞(I d ), supp(u) ⊂ Q j,k and
∫

I d udx = 0. Then,u


K R ≤
d
2

u

∞

2−(d+1) j .

roof of the Lemma. Since
∫

I d udx = 0, we can restrict ourselves in the formulau


K R = sup
{∫

u f dx : Lip( f ) ≤ 1
}

I d

15
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t

S

t

p
L
(

n

a

i

α

o the functions f with f (l) = 0, Lip( f ) ≤ 1 where l = (ks2− j )d
s=1, and so

⏐⏐ f (x)
⏐⏐ ≤ ⏐⏐l − x

⏐⏐,
x ∈ Q j,k . Changing variables, we have

u


K R ≤

∫
Q j,0

u

∞

⏐⏐x⏐⏐
Rd dx ≤

∫
Q j,0

u

∞

d∑
s=1

xsdx =

=
u


∞

d
2

2−2 j 2− j(d−1)
=

u

∞

d
2

2− j(d+1). □

Applying Lemma to u = h j,k,σ ,h j,k,σ


K R ≤ 2 jd/2 d
2

2− j(d+1).

umming up (with a γ > α, α =
2d

d+2 ), we get∑
n

un
γ

K R ≤

∑
σ

∑
j≥0

∑
k

h j,k,σ
γ

K R ≤

∑
σ

∑
j≥0

2 jd
(

2 jd/2 d
2

2− j(d+1)
)γ
< ∞. □

(2) Recall that the space L1
0(I d ) endowed with the K R-norm is isometrically embedded into

he dual space (Lip0)∗ (with respect to the standard duality ⟨u, f ⟩ =
∫

I d u f dm).
The plan of the proof (suggested by E. Gluskin) is the following: consider some metric

roperties of the embedding E∗
: L2

0(I d ) −→ (Lip0)∗ and its predual embedding E :

ip0 −→ L2
0(I d ) from two different point of view. Namely, assuming that there exists a frame

uk) in L2
0(I d ) such that

∑
k

uk
α

K R < ∞, we show that

(I) embeddings E , E∗ are 2-nuclear operators (see below) and the 2-nuclear approximation
umbers a(2)

N (E∗) decrease as o(1/N 1/d ) when N → ∞;

(II) on the other hand, one can see that – at least for N = 2 jd , j = 1, 2, . . . – the numbers
(2)
N (E) (which coincide with a(2)

N (E∗)) cannot be less than cN−1/d .
The above contradiction shows property (2) of Theorem 6.1.

Proof of point (I). A linear operator T : X −→ Y between Banach spaces X and Y is said
p-nuclear if T x =

∑
k Tk x , x ∈ X (norm convergence), rank(Tk) ≤ 1 and

∑
k

Tk
p
< ∞;

inf
{(∑

k

Tk
p

)1/p
: over all such representations

}
=:

T


N (p)

s called its p-norm. N-th p-nuclear approximation number of T (N = 1, 2, . . .) is

a(p)
N (T ) := inf

{T − A


N (p) : A : X −→ Y, rank(A) < N
}
.

Assume now that there exists a frame (uk) in L2
0(I d ) such that

∑
k

uk
α

K R < ∞ where

=
2d

d+2 . Let S f =
∑

k⟨ f, uk⟩uk be the frame operator on L2
0(I d ); S is an isomorphism

S : L2
0(I d ) −→ L2

0(I d ), and E∗S : L2
0(I d ) −→ (Lip0)∗ is a 2-nuclear operator,

E∗S f =

∑
⟨ f, uk⟩E∗uk,
k≥1

16
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s
w

a

e
L

w

w

(
w
p
N

w

w
ince
E∗uk

 =
uk


K R and α < 2. Moreover, letting (uk) in the decreasing order of

uk


K R ,
e get

uk
α

K R = o(1/k) (as k → ∞), and hence

a(2)
N (E∗S)2

≤

∑
k≥N

uk
2

K R ≤
uN

2−α
K R

∑
k≥N

uk
α

K R = o(
1

N 2/α−1 ),

nd a(2)
N (E∗S) = o( 1

N 1/α−1/2 ) = o( 1
N 1/d ), as N → ∞. Since S is invertible, and

U T V


N (p) ≤
U

 ·
T


N (p) ·

V
 for every T,U, V , we have

a(2)
N (E∗) = o(

1
N 1/d ), N −→ ∞ . □

Proof of point (II). We need to show that there exists a constant c > 0 such that for
very operator AN : Lip0 −→ L2

0(I d ), rank(AN ) < N = 2 jd ( j = 1, 2, . . .), one has
E − AN


N (2) ≥ cN−1/d . To this end, we construct two linear mappings V = VN : RN

−→

ip0 and U = UN : L2
0(I d ) −→ RN such that

U EV = idRN ,
V : RN

−→ Lip0

 ≤ C N
1
2+

1
d ,

U : L2
0(I d ) −→ RN

 = 1,

here C > 0 does not depend on N .
Having these mappings at hand, we get U2N (E−AN )V2N = idR2N − BN , where rank(BN ) <

N and so,U2N (E − AN )V2N


N (2) =
idR2N − BN


N (2) ≥ N 1/2,

and on the other hand,U2N (E − AN )V2N


N (2) ≤
U2N

 ·
E − AN


N (2)

V2N
 ≤

≤ C(2N )
1
2+

1
d
E − AN


N (2),

hich gives
E − AN


N (2) ≥ cN−1/d .

Construction of the mappings V = VN : RN
−→ Lip0 and U = UN : L2

0(I d ) −→ RN ,
N = 2 jd , j = 1, 2, . . .. We use the similar scaling procedure as in the above proof of part
1) of Theorem 6.1: let ψ be a smooth function on Rd such that supp(ψ) ⊂ Q0 = I d ,
ψ


L2(I d ) = 1,

∫
I d ψdm = 0, and, for every j ∈ Z+,

ψk = ψ j,k(x) := 2 jd/2ψ(2 j x − k), k ∈ K j ,

here K j = {k = (k1, . . . , kd ) ∈ Zd
+

: 0 ≤ ks < 2 j (1 ≤ s ≤ d)}. Then, ψk (k ∈ K j ) have
airwise disjoint supports and form an orthonormal family in L2

0(I d ), card(K j ) = 2 jd
:= N .

ow, setting

V a =

∑
k∈K j

akψk, a ∈ RN ,

e obtainV a


Lip ≤ c · sup
x∈I d

⏐⏐∇(V a)(x)
⏐⏐
Rd = c · max

k∈K j
sup
x∈I d

⏐⏐ak∇ψk(x)
⏐⏐
Rd ≤ C2 jd/22 j

⏐⏐a⏐⏐
RN ,

here c > 0, C > 0 depend only on d (and the choice of ψ), which gives the needed
V : RN

−→ Lip0

 ≤ C N
1
2+

1
d .

For U = UN : L2
0(I d ) −→ RN , we let U f = (⟨ f, ψk⟩)k∈K j , and obviously get U EV = idRN

and
U : L2(I d ) −→ RN

 = 1. □
0
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. Limiting the rate of convergence of
uk


X in a function space X ⊃ L2

Here, we briefly explain an application of the techniques of Section 6 to a lower estimate
or the convergence exponents

∑
k

uk
α

X < ∞ for a Riesz basis (uk) in L2 embedded in a
arger Banach function space X ⊃ L2. The following theorem has a similar proof to that of
heorem 6.1, point (2).

heorem 7.1. Let X be a normed space of measurable functions on (Ω , µ) in which the
pace L2

= L2(Ω , µ) is continuously embedded as a dense subset, E : L2(Ω , µ) −→ X, and
et γ, δ ≥ 0, γ + δ > 1/2. Assume that, for every N ∈ N, the identity map idN : RN

−→ RN

an be factored through the embedding E∗
: X∗

−→ L2 so that

UN E∗VN = idN , VN : RN
−→ X∗, UN : L2

−→ RN ,

nd VN
 = O(N γ ),

UN
 = O(N δ) N −→ ∞.

hen, for every Riesz basis (uk) in L2,
∑

k

uk
 1
γ+δ

X = ∞.

The details will be given elsewhere. Theorem 6.1 follows from Theorem 7.1 with X =

L1,
 ·


K R), γ =

1
2 +

1
d , δ = 0. For X = L1 and γ = 1/2, δ = 0, we get (only)

k

uk
2

L1 = ∞ (which fact we know already, [18], see the beginning of Section 1).
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