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We report on the realization of a fast, scalable, and high-fidelity qubit architecture, based on 171Yb atoms
in an optical tweezer array. We demonstrate several attractive properties of this atom for its use as a building
block of a quantum information processing platform. Its nuclear spin of 1=2 serves as a long-lived and
coherent two-level system, while its rich, alkaline-earth-like electronic structure allows for low-entropy
preparation, fast qubit control, and high-fidelity readout. We present a near-deterministic loading protocol,
which allows us to fill a 10 × 10 tweezer array with 92.73(8)% efficiency and a single tweezer with
96.0(1.4)% efficiency. In the future, this loading protocol will enable efficient and uniform loading of target
arrays with high probability, an essential step in quantum simulation and information applications.
Employing a robust optical approach, we perform submicrosecond qubit rotations and characterize their
fidelity through randomized benchmarking, yielding 5.2ð5Þ × 10−3 error per Clifford gate. For quantum
memory applications, we measure the coherence of our qubits with T�

2 ¼ 3.7ð4Þ s and T2 ¼ 7.9ð4Þ s, many
orders of magnitude longer than our qubit rotation pulses. We measure spin depolarization times on the
order of tens of seconds and find that this can be increased to the 100 s scale through the application of a
several-gauss magnetic field. Finally, we use 3D Raman-sideband cooling to bring the atoms near their
motional ground state, which will be central to future implementations of two-qubit gates that benefit from
low motional entropy.
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I. INTRODUCTION

The development of well-controlled, scalable qubit
architectures is central to quantum science, and has seen
rapid advances across a number of physical platforms
[1–9]. In this direction, neutral-atom qubits stored in optical
arrays have made substantial progress in recent years
[4,5,10–13]. Combining the versatility of optical potentials
with switchable Rydberg interactions creates a compelling
platform for quantum information, simultaneously
allowing dense, noninteracting qubit registers and two-
qubit entangling operations [5,10–19]. At the state of the
art, large defect-free samples of hundreds of atomic qubits
have been produced [20,21]. Global single-qubit operations
have reached below 10−4 error per gate [4], while errors at
the 10−3 scale have been achieved in locally addressed
arrays [10,11]. Two-qubit gates have reached errors at the

several percent level [5,12,19,22], and have been employed
in reconfigurable circuits [13].
Though most neutral-atom quantum information experi-

ments have focused on alkali atoms, a nascent thrust looks
to extend optical tweezer technology beyond single-species
alkali experiments. Pursuits with dual species, alkaline-
earth atoms, and molecules [23–28] aim to translate the
microscopic control of tweezers to new applications, as
well as to harness new internal degrees of freedom for
improved quantum science [18,29–32]. In the case of
alkaline-earth atoms, marrying tweezer-based control with
the long-lived optical transitions characteristic of this
atomic group has enabled exploration of tweezer clocks
[30,33,34]. The rich internal structure of these atoms also
offers new qubit modalities, ranging from Rydberg qubits
[18,35] to optical-frequency qubits [19] and to low-energy
nuclear qubits [32].
The nuclear spin of fermionic isotopes of alkaline-

earth(-like) atoms provides a particularly attractive qubit.
It has low (first-order) magnetic field sensitivity in states
with zero electronic angular momentum, and it is expected
to be robust to dephasing and decoherence mechanisms that
arise in far-detuned optical traps due to a lack of hyperfine
coupling [4,36,37]. Moreover, it can be paired with long-
lived electronic degrees of freedom for novel readout and
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two-qubit gate schemes [18,19]. Even beyond atom-based
systems, nuclear-spin qubits have been the focus of efforts
in the solid state, due to their decreased sensitivity to
environmental perturbations [38–40]. Very recent work
with 87Sr nuclear-spin qubits in optical tweezers showed
long coherence times [T�

2 ¼ 21ð7Þ s] and single-site con-
trol; in this case, the methods needed to isolate a qubit from
a large native nuclear spin (9=2) limits single-qubit gate
times and can cause dissipation during gate operations [32].
Further, standard qubit characterization methods—such as
randomized benchmarking (RB)—have yet to be applied to
this form of nuclear-spin qubit.
A compelling alternative candidate for a nuclear-spin-

based qubit is 171Yb, which naturally is spin 1=2, the
simplest nuclear-spin structure of any fermionic alkaline-
earth(-like) atom [see Fig. 1(b)] [41–43]. Importantly, while
prior work explored bosonic isotopes of ytterbium [26], this
fermionic isotope has yet to be loaded, trapped, and
manipulated in optical tweezers. Here, we report such
methods, reveal scalability characteristics of 171Yb that are
powerful for quantum science broadly, and benchmark
techniques for controlling the nuclear qubit on submicro-
second timescales.
Employing the narrow-line transitions, we show that

171Yb exhibits favorable properties for rapidly realizing
large arrays that are both defect-free and at ultracold
temperatures. The former fulfills a common need in
quantum science to create large, uniformly filled qubit
registers, while the latter aids single- and two-qubit gate
fidelities as well as endeavors where motional-ground-state
preparation is required [5,19,44,45]. To overcome the

stochastic nature of the single-atom loading process into
tweezers, low-defect samples have been prepared either
through active rearrangement or tailored collisions for
enhanced loading [15,46–50]. Inspired by recent advances
[50], we use a narrow-line cooling transition to achieve
near-deterministic loading of a 10 × 10 array of 171Yb
atoms with single-site occupancy of 92.73(8)% and 96.0
(1.4)% for a single tweezer. At the same time, we exploit
the nuclear spin for Raman-sideband cooling to reach near
ground-state temperatures [nr ¼ 0.14ð3Þ, nz ¼ 0.13ð4Þ],
which will aid future manipulation of the clock transition
and high fidelity Rydberg-mediated two-qubit gates
[19,51–54]. These results are of central importance to
the rapid generation of large, uniformly filled arrays of
high-fidelity qubit registers, quantum simulation experi-
ments based on low-entropy spin models, and optical
atomic clocks in tweezers and lattices using alkaline-earth
atoms [5,20,21,34,54,55].
With nearly 100-atom arrays, we demonstrate universal

single-qubit control of the nuclear-spin qubit with sub-
microsecond operations. The state of the art in single-qubit
fidelities with neutral atoms has been achieved with micro-
wave-driven transitions with pulse times of several tens of
microseconds [4,10,11]. With the potential for submicro-
second two-qubit gates through Rydberg-mediated inter-
actions [5,12,18,19], reaching high-fidelity single-qubit
gates on similar timescales is important for fully realizing
the potential computational speeds of a neutral-atom
system. Enabled by the low-energy nuclear qubit, we
use a robust rotation scheme based on single-beam
Raman transitions to reach 170 ns π=2 pulses, which is

(a) (c)

(b)

(d)

(e)

FIG. 1. 171Yb optical tweezer arrays. (a) 171Yb atoms are trapped in an array of 100 optical tweezer sites. (b) The nuclear spin I ¼ 1=2
is an environmentally well-isolated two-level system. The level diagram shows the imaging, cooling, and enhanced loading transitions.
Light scattered from the 399 nm 1S0 → 1P1 transition is collected with the high-NA objective. While imaging, we apply cooling beams
red detuned byΔC=ð2πÞ ¼ −2.04ð5Þ MHz (11Γg) from the light-shifted 1S0 → 3P1 jF0 ¼ 3=2; mF0 ¼ �1=2i transition. The inset shows
driven Rabi oscillations of the nuclear spin with submicrosecond π times. (c) Histograms of collected photons over all tweezer sites for
120 ms exposures under two different loading schemes—enhanced loading (black line) and standard (zero-field, red-detuned light)
loading (gray line). The dashed red line is the threshold that we use to define detection of an atom in the enhanced loading case.
(d) Average of 500 images of the tweezer array. (e) Single-shot image with near-deterministic tweezer array loading.
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readily extendable to rapid single-qubit addressing. In a
globally illuminated array, we reach a Clifford gate error of
5.2ð5Þ × 10−3, characterized through randomized bench-
marking. We establish a straightforward path to errors of
≪ 10−4—a commonly held scale for resource efficient
error correction [56,57]—based on our characterization
of the trapped qubit coherence time [T�

2 ¼ 3.7ð4Þ s,
T2 ¼ 7.9ð4Þ s] and quantified error sources.

II. PREPARATION AND DETECTION

We generate arrays of optical tweezers with 532 nm laser
light using a pair of acousto-optic deflectors (AODs) crossed
at 90° and a 0.6NAmicroscope objective. To reach favorable
conditions for loading the tweezers, the atoms are first
captured in a 3D magneto-optical trap (MOT) operating on
the broad, Γb=ð2πÞ ¼ 29 MHz, 399 nm 1P1 transition,
loaded from a 2D MOT [58,59]. The atoms are then
transferred to a narrow MOT that uses the 556 nm 3P1

transition with linewidth Γg=ð2πÞ ¼ 183 kHz. From the
narrow green MOT, atoms are loaded into the tweezer array
andwe isolate single atoms in the tweezers with a beam blue
detuned from one of the 3P1 hyperfine states.
Figure 1 gives an overview of 171Yb trapping and imaging.

Unlike the 174Yb isotope [26,60], the 1S0 ↔ 3P1 transition of
171Yb is not near-magic at 532 nm, and a magic angle does
not exist at this trapping wavelength for any orientation of
the quantization axis [24]. For nonmagic tweezers, small
variations in trap depths can give large variations in scatter-
ing rates from the narrow 3P1 levels due to the resulting
variations in detuning from resonance. This effect leads to
low imaging fidelities when detecting fluorescence scattered
from 3P1. For this reason, we instead detect the presence of
atoms in the tweezer array by scattering light off the broader
1P1 transition while simultaneously cooling with the
narrower green MOT beams, detuned by ΔC=ð2πÞ ¼
−2.04ð5Þ MHz, or 11Γg, from the light-shifted 3P1 jF0 ¼
3=2; mF0 ¼ �1=2i resonance. For 171Yb, this method pro-
duces a narrower atom peak in the photon collection
histogram [Fig. 1(c)] and allows us to set a count threshold
for detecting the presence of an atom with higher fidelity
than when detecting scattered light from 3P1. However, the
1P1 scattering rates are limited by the 3P1 cooling rates,
requiring us to extend the imaging times in order to minimize
atom loss [26].
The scattered 399 nm light is collected by our micro-

scope objective and imaged onto a scientific CMOS
(SCMOS) camera [Figs. 1(d) and 1(e)]. We assess detection
performance using histograms of collected photons per
tweezer site [Fig. 1(c)]. From these data, we calculate the
average detection infidelity as the probability of misiden-
tifying the presence of an atom averaged over the cases
with and without an atom [24]. The imaging duration is
typically 120 ms and the resulting infidelity is around 0.3%.
The loss probability is calculated as the fraction of tweezer

sites in which an atom is identified in the first image but
not the second with a small correction accounting for the
imaging infidelity. The infidelity-corrected loss of 2.51
(1)% from the dataset shown in Fig. 1(c) is typical of the
imaging loss in all experiments. For careful calibration of
cooling parameters, we find it is possible to use imaging
durations as short as 60 ms with similar loss rates
and 0.6% imaging infidelity. In the future, using a better-
suited camera technology (electron multiplying CCD
[EMCCD]), we expect to achieve this scale of imaging
infidelity and loss ≤ 1% for an imaging time of 25 ms. (See
the Appendix B 3 for more details.)

III. NEAR-DETERMINISTIC LOADING

Reliable assembly of large defect-free patterns of qubits
is a major pursuit for the neutral-atom tweezer array
platform. While the number of atoms loaded from the
MOT into a tweezer follows a Poisson distribution, isolat-
ing single atoms often employs light-assisted collisions
which map even and odd atom numbers into 0 and 1,
respectively. The resultant stochastic loading pattern can be
rearranged into a defect-free array with movable tweezers
that drag atoms into the desired locations [48,49,61].
However, the required time and success probability of
reaching a defect-free array scales adversely with the
number of atoms to be moved [48,49,61]. Additionally,
at ∼50% loading efficiency the required optical power to
produce uniform arrays of a given size is effectively
doubled. The development of (near-)deterministic loading
protocols can aid the process of rearrangement and alleviate
the task of scaling the system size. A prominent example,
so far demonstrated only for alkali atoms, is a protocol
based on blue-shielded collisions [46,47,50]. At the state
of the art, a combination of gray-molasses cooling and
repulsive molecular potential leads to ∼80% loading
efficiencies in 10 × 10 tweezer arrays and up to 90% for
a single tweezer [50]. An outstanding question has been
whether the narrow lines of alkaline-earth atoms could be
used for similar enhanced loading schemes [24–26]. Here,
we demonstrate the first realization of such a protocol.
We start by preparing a compressed narrow-line MOT to

increase the atom density and thus ensure that each tweezer is
filled with at least one atom on average. The atoms are loaded
into 17.1(5)-MHz-deep tweezer traps (6 mW=tweezer) and
addressed with three orthogonal pairs of circularly polarized
counterpropagating beams tunednear theF0 ¼ 3=2 hyperfine
levels of 3P1. The tweezer light induces differential light shifts
of 3.75(16) and 10.22(18) MHz on the jmF0 j ¼ 1=2 and
jmF0 j ¼ 3=2 states, respectively, as compared to 1S0. We
further split themF0 levels with amagnetic field applied along
the tweezer polarization direction. Figure 2(a) shows two
regions of enhanced loading (> 50%), observed for loading
beams blue detuned of the transitions to themF0 ¼ −1=2 and
mF0 ¼ þ1=2 states. The magnetic field and detuning chosen
for daily operations are denoted with a star. At these
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conditions, the loading beams are blue detuned from mF0 ¼
þ1=2 by δL ¼ þ2π × 2.8 MHz (15.6Γ) [Fig. 2(b)]. The
atoms are addressed with the beams of total intensity of
515Isat for 35 ms, where Isat ¼ 0.138 mW=cm2 is the
saturation intensity of the 1S0 ↔ 3P1 transition. With these
parameters, single atoms are loaded into the tweezers
with 92.73(8)% probability averaged over the 10 × 10 array
[Fig. 2(c)]. We also investigate loading efficiency as a
function of the tweezer array size. We observe consistent
loading of the array at> 90% efficiency for tweezer numbers
ranging from one to 100 traps [Fig. 2(d)]. Maximal loading
efficiency increases for smaller trap numbers, similar to
results reported for alkali atoms [50]. In particular, for a
single tweezer,weobserve loadingefficiencies as high as 96.0
(1.4)%, which suggests that a limitation in the larger arrays is
the initial loaded atom number. Hence, we hypothesize that
the single tweezer loading performance should be accessible
in larger arrays by improving the initial cloud density, for
instance, by use of a reservoir trap [27]. Additionally, we
investigate deterministic loading in shallower tweezers. For a
7 × 7 array and half the usual tweezer depth (∼8.5 MHz,

∼3 mW=trap), we reach 91.0(2)% loading efficiency,
further emphasizing the atom-scaling characteristics of
this approach.
The enhanced loading process arises from an interplay

between cooling and light-assisted collisions with con-
trolled energy transfer, which occurs for blue-detuned light
[46,47,50]. After enhanced loading, we perform release-
recapture experiments [62] and measure temperatures of
5 μK. This is to be compared with 12 μK temperatures
achieved through the cooling mechanism employed during
imaging. These observations are consistent with a gray-
molasses cooling effect observed in alkalis [50], and also
reported in 173Yb isotope [63]. In this case, by splitting mF0

sublevels by more than Γg, the magnetic field plays a dual
role: it isolates a three-level system where a gray-molasses
mechanism can take place, and ensures that as the atom
moves within the trap, it is not brought to resonance with
other sublevels through the light shifts. At these blue
detunings for which we observe optimal loading, we are
also detuned by substantially less than the trap depth. In the
usual blue-shielded loading picture [46,47], this suggests
that the energy imparted per light-assisted collision is much
less than the trap depth, so that the likelihood of both atoms
remaining in the trap after a collision is high, while a small
probability exists for one atom to leave, and an even smaller
chance for both. We hypothesize then that the enhanced
loading is the result of many collisions, where each
collision is more likely to reduce the atom number by
one atom at a time rather than in pairs. This enhances the
probability for a single atom to remain at the end of the
process. A quantitative model will be the subject of future
investigations, as we expect a complicated cooperation
between collisions, light shifts, load rates, and three-
dimensional cooling dynamics to be responsible for the
observed loading efficiencies.

IV. NUCLEAR QUBIT CONTROL

We initialize and detect the 1S0 nuclear-spin states jmF ¼
þ1=2i≡ j0i and jmF ¼ −1=2i≡ j1i using state-selective
transitions to the 3P1 levels. Driving the σþ transition from
j1i to the 3P1 jF0 ¼ 1=2; mF0 ¼ þ1=2i state pumps the
ground 1S0 state spins to the j0i state. For spin detection, we
apply the same beam, but frequency shifted to address the
transition j0i↔ jF0 ¼3=2;mF0 ¼þ3=2i. This heats atoms
in j0i out of the tweezers and atom survival in a subsequent
image indicates the spin state. In order to address both of
these transitions with the same beam, we use a fiber electro-
optic modulator to produce a sideband at the hyper-
fine splitting of 3P1. The offset frequency is chosen to set
the jF0 ¼ 1=2; mF0 ¼ �1=2i resonances far from the
jF0 ¼ 3=2; mF0 ¼ þ3=2i blow-away resonance of the car-
rier (19 MHz), but the finite separation does result in some
optical pumping of the spin state for long blow-away times.
The ideal blow-away time is set by a trade-off between

(c) (d)

(a) (b)

FIG. 2. Near-deterministic loading. (a) Loading efficiency
(Pload) dependence on applied magnetic field and loading beams
detuning (ΔL) from the free-space resonance. The star denotes the
parameters chosen for daily operation: magnetic field of 4.9 G
and ΔL=2π ¼ þ9.76 MHz. The intensity of the loading beams
changes as a function of ΔL, in the starred region corresponding
to 515Isat, where Isat ¼ 0.138 mW=cm2 is the saturation intensity
of the 1S0 ↔ 3P1 transition. The resonance frequencies of the
transitions to the mF0 states are plotted as a function of the
magnetic field. (b) Levels involved in the loading scheme for
parameter space denoted with the star in (a). Accounting for
tweezer light and magnetic shifts, the loading beams are blue
detuned from mF0 ¼ þ1=2 by δL ¼ þ2π × 2.8 MHz (15.6Γ).
(c) Probability of obtaining a given fill fraction for a single-shot
image. (d) Optimal average loading efficiency (Pload) as a
function of the tweezer array size. The error bars correspond
to standard deviations of the binomial distributions given by the
measured probabilities.
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unwanted pumping from j1i to j0i at long times and partial
blow-away of the j0i state at short times. We minimize the
combined detection infidelity resulting from this blow-away
pulse, defined as the probability that an atom in j1i is
pumped to j0i plus the probability that an atom in the j0i
state survives blow-away. The minimum combined detec-
tion infidelity is typically around 6 × 10−3, and occurs for
blow-away times around 5 ms. We measure the atom
survival after optical pumping and blow-away detection,
and taking into account the blow-away and imaging infi-
delities, estimate the preparation fidelity of the j0i state to
be 0.996(1).
Nuclear-spin rotations are performed in two different

regimes of driving strength. Figure 3(a) shows a level diagram
relevant to the “low-Rabi regime,”with a Rabi frequencyΩX

smaller than the nuclear-spin splitting ΔN . Two copropagat-
ing beams, one with π polarization and the other with
polarization normal to the quantization axis (σþ=σ−), are
used to drive qubit Rabi oscillations. Two separated Raman
resonances are observed as the frequency of one of the beams
is varied [Fig. 3(b)]. The applied field here is 18G. In the low-
Rabi regime, theRabi oscillations are dominated by the single
resonant pathway and the Rabi frequency does not depend on
the relative phase of the σ and π polarization components. In
this case, the speed of operations is limited by the splitting of
the nuclear-spin states, typically small for achievable fields,
γn;171=ð2πÞ ¼ 751 Hz=G [64].
To circumvent this limitation on speed, we explore

whether it is also possible to perform high-fidelity oper-
ations in the opposite regime of ΩX ≫ ΔN . Unlike when

(a)

(d)

(g)(f)

(c)

(b)

(e)

FIG. 3. Nuclear-spin control. (a) The Raman level diagram corresponding to the weak-drive regime. Two copropagating beams drive
Raman transitions between the nuclear-spin states. The two beams have variable relative frequency, one with π polarization and the other
with polarization normal to the atom plane (both σþ and σ− polarizations). The rotations are performed through two excited states
jF0 ¼ 3=2; mF0 ¼ �1=2i but in the weak-driving regime one of these Raman transitions (dashed lines) is far off resonance compared to
ΩX and effectively does not contribute. The detuning from the F0 ¼ 1=2 states is much larger than ΔX and these states do not
significantly affect the dynamics. (b) As we sweep the detuning between the Raman beams, the resonances corresponding to the two
Raman pathways become visible. (c) Fixing the frequency to the left resonance, we drive Rabi oscillations at the kilohertz scale. The
plotted probabilities of detecting the j1i state are normalized by the measured atom survival probability for the experiments in the
absence of blow-away, which is 96.5(2)% for both (b) and (c); see Appendix C. (d) In the strong-driving regime, a single X beam with
linear polarization ϵx tilted out of the atom plane drives two Raman transitions between the spin states. A second beam, Z, splits the
nuclear-spin states and drives oscillations around the Z axis. A small magnetic field B splits the nuclear-spin states by 1.25 kHz.
(e) Level diagram for X and Z beams. The beam detunings are ΔX=ð2πÞ ≃ −180 MHz and ΔZ=ð2πÞ ¼ −164 MHz, while the excited
state splittings are much smaller, Δe=ð2πÞ ≃ 2 MHz. (f) The top panel shows X Rabi oscillations at 1.77 MHz. In the bottom panel, we
measure Z oscillations at 0.77 MHz with a Ramsey-type sequence, where the Z beam is turned on for variable time between two Xðπ=2Þ
pulses. The survival probability for these experiments without blow-away is 96.3(1)%. The accompanying Bloch spheres show example
trajectories for the two types of experiments. (g) Clifford randomized benchmarking using Clifford gates compiled of Xðπ=2Þ and
Zðπ=2Þ. The target output state is randomized between j0i and j1i. The black circles show the measured probabilities of obtaining the
target state at a given Clifford gate depth. At each depth, we run 40 different sets of randomized experiments. The error bars are given by
the standard deviation over the 40 sets of experiments. The extracted average gate infidelity per Clifford gate is 5.2ð5Þ × 10−3. The red
circles show the simulated success probabilities using the estimated scattering error rates of the X and Z beams and shot-to-shot
fractional intensity noise of 1%, with 3% fractional intensity noise from experiment to experiment (Appendix D).
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addressing one of the Raman resonances with a weak drive,
in the high-Rabi case the Rabi frequency depends on the
relative phase of the σ and π components. For an inter-
mediate state detuning (ΔX) much greater than splittings of
the excited state levels ΔX ≫ Δe, and relative phase ϕ
between the π and σ polarization components, the Raman
Rabi frequency is given by ΩX ≃ΩπΩσ cosðϕÞ=ΔX, where
the ratio of the coupling strengths Ωπ and Ωσ is set by the
angle of the polarization ϵx (Appendix D). The two
components Ω�σ ≡Ωσ are equal for our beam geometry.
In this regime, we use a single beam with a polarization
tilted out the atom array plane [Fig. 3(d)] to drive Raman
transitions simultaneously through the two separate path-
ways shown in Fig. 3(e), albeit with a small detuning given
by the qubit splitting. Using a single beam has the
advantageous feature that the phase between different
polarization components is fixed.
Figure 3(f) (top) shows qubit Rabi oscillations at

1.77 MHz using the described approach. The applied field
is 1.66 G, defining the quantization axis and splitting the
nuclear-spin states by ΔN=ð2πÞ≡ f0 − f1 ¼ −1.25 kHz in
the absence of the X beam. When the X beam is turned on,
light shifts from the excited states cause a splitting in the
opposite direction. For the Rabi frequency ΩX=ð2πÞ ¼
1.47 MHz, used for Xðπ=2Þ pulses below, the total splitting
is estimated to be ΔN=ð2πÞ ¼ þ54.2 kHz. To perform
arbitrary rotations of the spins, we need the ability to rotate
about an axis different than that defined by our X beam. This
would normally be accomplished by varying the relative
phase of two Raman beams, but in the high-Rabi case the
coupling strength is phase dependent, becoming very small
for a relative phase of π=2. This is the reason for including a
second Z beam that splits, but does not couple, the two
nuclear-spin states [Fig. 3(d)]. Figure 3(f) (bottom) shows
oscillations at 0.77 MHz about the Z axis, measured using a
Ramsey-type sequence: after aXðπ=2Þ rotation, theZ beam is
turned on for variable time, before a final Xðπ=2Þ pulse is
applied. This oscillation frequency corresponds to the split-
ting of the j0i and j1i states induced by differential light
shift of the Z beam, and is much larger than the 1.25 kHz
Zeeman field splitting observed in a Ramsey measurement
without the Z beam. Our typical Zðπ=2Þ pulses last 350 ns,
corresponding to oscillations at 0.71 MHz.
We characterize the fidelity of nuclear qubit rotations

using Clifford randomized benchmarking [11,65,66]. We
select Xðπ=2Þ and Zðπ=2Þ rotations for characterization
since we can compose the entire Clifford gate set from these
two gates. With the software package pyGSTio [67], we
compile our π=2 gates into a set of Clifford RB experi-
ments. The target output states are randomized between j0i
and j1i and the probability of successfully measuring the
target state is obtained over many repetitions of the
experiment. Randomizing the target output gives a decay
of fidelity that approaches 0.5 in the single-qubit case.
Measurement infidelities and atom loss would give a

different asymptote when using only one target state for
every experiment, resulting in systematic bias in a fixed
asymptote fit to the decay curve. The black circles in
Fig. 3(g) show the result of the randomized benchmarking
up to a depth of 130 Clifford gates. We fit the success
probability with a fixed-asymptote decay function PsðlÞ ¼
0.5þ b × pl, where l is the gate depth, p is the decay
constant, and b is a free parameter that accounts for a
nonunity success probability at depth zero. From this fit, we
extract the mean average gate infidelity r ¼ ð1 − pÞ=2 ¼
5.2ð5Þ × 10−3. A free-asymptote fit similarly gives r ¼
5ð2Þ × 10−3. On average, there are 3.5 of the Xðπ=2Þ and
Zðπ=2Þ gates per single Clifford gate in these experiments.
This means that the error per single X or Z gate is smaller
than the error given for a single Clifford gate, although
directly dividing the Clifford error by the average gate
number likely underestimates the base Xðπ=2Þ and Zðπ=2Þ
gate errors.
To understand the source of these gate errors, we

measure and calculate the error rates due to intensity
noise, scattering (both Raman and Rayleigh) of the qubit
beams, and the detuning of the X drive. We estimate the
decoherence probability of an equal spin superposition due
to the X beam of 1.0 × 10−3 in the time of a single Xðπ=2Þ
pulse [68]. For the Z beam, we find an equal superposition
decoherence probability of 9 × 10−4 in the time of a single
Zðπ=2Þ pulse. For intensity noise and detuning errors we
expect error rates to be in the range 1 × 10−3 to 2 × 10−3

during a single π=2 gate (Appendix D). Using the (state-
dependent) scattering error rates of the two beams, the
measured fractional intensity noise (1% pulse to pulse and
3% experiment to experiment), and the estimated detuning
ΔN , we simulate the success probabilities for the exact
sequence of X and Z gates applied in the measurements.
The red circles in Fig. 3(g) give the simulation results with
the survival probability in the simulation scaled to match
the measured value at a Clifford gate depth of zero.
The good agreement between the measured decay and

the decay due to the simulated errors indicates that these are
likely the dominant sources of gate errors. The identified
errors can be improved substantially (Appendix D), but
scattering of the Raman beams and available laser power
sets an important limit to the X gate fidelity. For example,
fixing the Rabi rate above, using 1 W of optical power in a
1 × 0.02 mm beam, and the ideal X beam polarization
angle, the scattering-limited error rate in a single π=2 pulse
is 3 × 10−6 at þ13 GHz detuning from F0 ¼ 3=2. In the
future, the single-beam Raman rotations on 1S0 ↔ 3P1

could be paired with the individual atom addressing
through the high-NA objective, for rapid local single-qubit
gates with similar or even lower Clifford gate errors
requiring significantly lower power. Moreover, for experi-
ments with Rydberg interactions generated between atoms
in the 3P0 level, it could be advantageous to perform similar
nuclear-spin rotations on atoms in the 3P0 level directly.
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In that case, it would be possible to use the analogous
transitions 3P0 ↔ 3D1 or 3P0 ↔ 3S1.

V. COHERENCE CHARACTERIZATION

The coherence time of the nuclear qubit states sets one
limit on the depth of operations that may be performed for
algorithms or sensing measurements that utilize the nuclear-
spin qubits. In this work, the number of coherent operations
we can perform is limited almost entirely by other sources
such as scattering and intensity noise. However, for future
experiments, if slower processes are involved (e.g., clock-
state spectroscopy or atom moves [13]) the nuclear-spin
states can act as a quantum memory with long coherence
times; further, if computational time is less of a priority,
radio-frequency driving of the nuclear qubit can mitigate the
dominant error sources observed with the Raman approach.
In this section, we present coherence characterization of our
qubit through Ramsey-type measurements.
The experiment is performed at magnetic fields of

1.34 G, in 2.3-MHz-deep tweezers. These conditions allow
us to initialize the qubit in the j0i ground state without the
need for large magnetic field changes, by pumping on
j1i ↔ jF0 ¼ 3=2; mF0 ¼ þ1=2i transition; however, due to
longer pumping times and worse state preparation fidelity,

this initialization scheme is not suitable for fast qubit
manipulation presented in Sec. IV. Following the pumping
stage, an Xðπ=2Þ pulse brings the qubits into the super-
position of the two ground spin states. After variable
Ramsey dark time (T), a second Xðπ=2Þ pulse is applied,
and finally the qubit is projected onto one of the spin states
through a blow-away measurement as described in Sec. IV.
Since Xðπ=2Þ pulses are detuned from resonance by
the nuclear-state splitting, the measured j1i population
oscillates at the corresponding frequency of 1 kHz
[Fig. 4(a)].
If no decoherence was present, the oscillations would

decay with 1=e time bounded by the lifetime of atoms in
tweezers 6.42(3) s (limited by parametric heating). We find
that this lifetime is well described by an empirical decay
model for the probability of atom survival PsurvivalðTÞ ∝
exp½−ðaT þ bT2Þ�, with the parameters a and b fixed by a
separate lifetime measurement [Fig. 4(a)]. In the presence
of noise, e.g., magnetic field instability and nonuniformity
across the array, the qubits dephase, causing the contrast of
the oscillations to decay faster than the tweezer lifetime
bound. In Fig. 4(a), we fit the Ramsey fringes with a cosine
of a single frequency and phase, decaying with a Gaussian
envelope multiplied by the lifetime decay function. The
resultant contrast of the oscillations decays with 1=e time of

(b)(a)

(c)

FIG. 4. Qubit coherence. (a) Ramsey experiment. Population of state j1i oscillates at the frequency given by the splitting of two
ground states. The fit (teal) is a cosine of a single frequency and phase, with an envelope given by the lifetime and Gaussian dephasing.
The teal region in the lower plot corresponds to the envelope of the fit shown in the callouts. The T�

2 extracted from the fit to the
oscillations is 3.7(4) s. The measurement of atom lifetime in tweezers is also plotted (gray), with 1=e time of 6.42(3) s. The error bars
correspond to standard deviations of the binomial distributions given by the measured probabilities. (b) Spin-echo experiment. Inset:
population of state j1i oscillates with the duration of ZðtÞ gate applied before the final Xðπ=2Þ pulse. The contrast of the recorded fringe
(orange) decreases with dark time T due to the finite lifetime in tweezers (gray), of 7.13ðþ6

−5 Þ s, and decoherence described by a Gaussian
decay. The T2 inferred from the fit is 7.9(4) s. The orange error bars are given by the square root of the covariance matrix diagonal entry
corresponding to the fit contrast parameter. (c) Depolarization time. T1 dependence on applied magnetic field (purple) and tweezer depth
(green). T1 is extended approximately exponentially with increasing bias field, and is invariant with changing tweezer depth. The error
bars in (c) are similarly given by the square root of the covariance matrix diagonal entry corresponding to the spin depolarization time
parameter of the fits.

YTTERBIUM NUCLEAR-SPIN QUBITS IN AN OPTICAL … PHYS. REV. X 12, 021027 (2022)

021027-7



3.0(2) s, including both dephasing and the tweezer lifetime,
while the extracted T�

2 time characterizing the dephasing
alone is equal to 3.7(4) s. This is most likely limited by
submilligauss magnetic field fluctuations.
To further study the coherence properties, we also

perform a spin-echo measurement, where an XðπÞ pulse
is inserted in the middle of the Ramsey dark time
[Fig. 4(b)]. Applying a Z gate for variable time t just
before the last Xðπ=2Þ pulse allows us to scan over the
coherent oscillation of the atomic ensemble [Fig. 4(b),
inset]. The extracted contrast of the fringe as a function of
dark time T is plotted in Fig. 4(b). For certain noise
sources such as shot-to-shot magnetic field variation or
inhomogeneities across the array, the phases acquired by
the atoms during the two dark times cancel each other,
suppressing contrast loss. However, mechanisms that
cause variation in the qubit frequency on the timescale
of the echo arm, such as drifts of the global magnetic
field, impose an envelope empirically described by a
Gaussian, here with 1=e time equal to T2 ¼ 7.9ð4Þ s. The
total contrast loss is given by a product of the Gaussian
and the measured lifetime functions, and decays with 1=e
time of 4.84ðþ5

−3Þ s. The observation of seconds-scale
coherence times in megahertz-scale deep traps empha-
sizes the robustness of this qubit to light-shift-induced
dephasing effects.
Another source of decoherence arises due to mechanisms

that pump atoms from one qubit state into the other. To
experimentally investigate this effect, we prepared the
atoms in j0i, waited for a variable duration, and then blew
away this nuclear-spin state (Appendix E). Any survival is
evidence for nuclear-spin depolarization. We examined
this effect for a range of trap depths and magnetic fields
[Fig. 4(c)], finding that T1 is invariant as trapping laser
intensity changes by a factor of 5 but increases approx-
imately exponentially with increasing magnetic field, and
hence with increasing qubit splitting. We note that fluctua-
tions of the transverse magnetic field at kilohertz-scale
frequencies could account for our observations. Under all
conditions investigated, we found T1 > 10 s, and that T1

can be extended to the 100 s scale by applying a moderate
magnetic field of several gauss. For larger magnetic fields,
T1 was found to be too large to measure, given the 5.8ð6Þ s
1=e trap loss timescale. The independence of T1 from trap
depth suggests that Raman scattering is not a significant
contributor. This is consistent with calculations, which give
a negligible Raman scattering rate of < 10−6 s−1 for
tweezers with a wavelength of 532 nm. For the nuclear
qubit, destructive interference in the scattering ampli-
tudes arises in the sum over the hyperfine manifolds of a
certain fine structure level. When the detuning from
the intermediate states is large in comparison to the
hyperfine splitting, the Raman scattering rate is sup-
pressed by many orders of magnitude due to this
destructive interference [37].

VI. 3D GROUND-STATE COOLING

The X qubit rotations described in the previous sections
were performed with copropagating Raman beams. The
advantage of this approach is the insensitivity of the qubit
operation to the atom’s motional state, since the net k vector
transferred during the rotation is 0. However, for future
applications, such as the promotion of the qubit to the clock
state and a Rydberg excitation, where a single beam is
employed, motional-state coupling or Doppler shifts will
result in reduced pulse fidelity (Appendix F). As such,
motional-ground-state cooling is desirable for high-fidelity
population manipulation within those states. For this reason,
we employ Raman-sideband cooling of 171Yb atoms to near
the three-dimensional ground state [51–53]. In the experi-
ments below, we operate with trap frequencies fωi=2π;
ωj=2π;ωk=2πg¼f139.8ð8ÞkHz;137ð1ÞkHz;27.4ð2ÞkHzg
along the i, j, and k axes [Fig. 5(c)] and 17.1(5) MHz
tweezer depth (6 mW=trap), in a 10 × 10 array.
The atoms are first precooled using the same beams and

parameters as employed to load atoms into the tweezers.
The subsequent sideband cooling is performed through
Raman rotations on the 1S0↔ 3P1 jF0 ¼ 3=2; mF0 ¼ þ1=2i
transition, with a σþ-polarized RB1 beam and one of the
three π-polarized RB2-4 beams. The level structure and the
beam geometry involved are presented in Figs. 5(a)–5(c).
Pairing RB1 with RB2 or RB3 addresses one of the two
radial directions (i and j), while pairing RB1 with RB4
is used to address the axial direction (k). The relative
frequency of the two selected Raman beams is tuned to
drive jmF ¼ þ1=2; ni ↔ jmF ¼ −1=2; n − 1i, while the
energy is dissipated by optical pumping on jF ¼ 1=2;
mF ¼ −1=2i ↔ jF0 ¼ 1=2; mF0 ¼ þ1=2i transition. The
Lamb-Dicke parameters for the radial and axial directions
are ηi;j ¼ 0.23 and ηk ¼ 0.53, respectively. Importantly, we
find that for the hotter atoms the optical pumping can heat
up and eject them from the trap, likely due to differential
light shifts. In the nonmagic trapping potentials, the optical
pumping beam appears blue detuned for the hotter atoms
and can induce sideband heating. If this heating rate
exceeds the Raman sideband cooling rate, the atom escapes
from the trap. To eliminate this effect, we operate with red-
detuned pumping light. This suppresses both the loss and
systematic underestimation of the temperature due to the
ejection of hot atoms.
The sideband cooling proceeds in two stages, continuous

and pulsed, which are illustrated in Figs. 5(d) and 5(e). The
total cooling time is 78 ms. The carrier Raman Rabi
frequencies for transitions performed with RB1 and one
of RB2-4 are 2π×47ð2Þ, 2π×48ð2Þ, and 2π×13.1ð6Þ kHz,
respectively. To evaluate performance of the cooling
sequence, we carry out sideband spectroscopy with pulses
of RB1 and one of RB2-4. Scanning the relative frequency
of the two Raman beams, we probe the red (RSB) and blue
(BSB) sidebands and extract the mean phonon occupation
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numbers (n̄) from their height (ARSB and ABSB), according
to n̄ ¼ ½ðARSB=ABSBÞ=ð1 − ARSB=ABSBÞ� [51]. Before side-
band cooling, the n̄ for each of the axes are fn̄i; n̄j; n̄kg ¼
f1.6ð6Þ; 1.0ð4Þ; 4ð3Þg. With the cooling optimized simulta-
neously in all three dimensions, we achieve fn̄i; n̄j; n̄kg ¼
f0.11ð5Þ; 0.15ð3Þ; 0.13ð4Þg [Fig. 5(f)]. Additionally, we
can further improve radial temperature by sacrificing
ground-state fraction in the axial direction and vice versa.
In the first case, we cool the atoms to fn̄i; n̄jg ¼
f0.08ð3Þ; 0.10ð3Þg in the radial directions, and in the
second case, we cool the axial direction to n̄k ¼ 0.08ð3Þ.
In this work, the lowest temperatures obtained with the

3D sideband cooling are influenced by a number of effects.
The tweezers exhibit parametric heating, which are mea-
sured to be 10ð3Þ quanta=s in the radial direction. The final
temperature can be improved by increasing the cooling rate
as well as reducing the tweezer heating rate, the latter of
which is largely the result of intensity noise on our trap
light source. By increasing the confinement of the weakest
(axial) direction of the trap through the addition of a
lattice [34], the three-dimensional cooling rate could be
increased substantially. Other factors limiting the cooling

rates include increased motional excitation during optical
pumping due to the nonmagic trapping and finite lifetime
of the excited state, as well as a spread in trapping
frequencies due to imperfect AOD tweezer balancing
(see Appendix B 2). In the future, we will overcome these
limitations by performing the Raman sideband cooling in
759 nm spatial-light-modulator-based tweezers. We expect
a near-magic angle condition for 1S0 → 3P1 in 171Yb to exist
at this trapping wavelength [24], while the spatial light
modulator will permit improved array homogeneity. As
another direction to explore, resolved sideband cooling on
the 1S0 → 3P0 transition in the 759 nm lattice has proven
successful [69] and is a viable option for 3D motional-
ground-state preparation in 759 nm tweezers.

VII. CONCLUSION

In this work, we have demonstrated that 171Yb tweezer
arrays have several salient features: near-deterministic
loading; fast, high-fidelity nuclear qubit control; long
nuclear coherence times; and the ability to prepare atoms

(e)

(d)(c)(a)

(f)

(b)

FIG. 5. Raman-sideband cooling to the 3D motional ground state. (a) Level diagram for the two-photon transitions employed in
cooling. An atom in the jmF ¼ þ1=2; ni state absorbs a photon from the π-polarized beam (RB2-4) and emits into the σþ-polarized
beam (RB1). With the relative frequency difference of the two beams tuned a trap frequency away from the carrier, the atom can change
its motional state to n − 1 (red sideband) or nþ 1 (blue sideband), depending on the sign of the difference. The Raman detuning from
the intermediate excited state is ΔRB=2π ¼ −183 MHz. (b) Optical pumping (OP) scheme for energy dissipation during cooling. In the
Lamb-Dicke regime, the scattering from the pumping beam is unlikely to alter the atom’s motional state but pumps into the opposite spin
state, where the cooling can begin anew. We operate with optical pumping δOP=2π ¼ −2 MHz red detuned from resonance. (c) Raman
beams (RB1-4), optical pumping, and magnetic field (B) geometry. RB1 paired with RB2-4 addresses motional states along the i, j, and
k axes, respectively. (d) Continuous sideband cooling. RB1 and OP beams are continuously illuminating the atoms, while the remaining
RB2-4 are turned on and off iteratively. (e) Pulsed sideband cooling. A pulse of RB1 and one of RB2-4 drives an approximate π rotation
on the relevant sideband, followed by a step of optical pumping. (f) Sideband thermometry along the i, j, and k axes. Spectra are
acquired before sideband cooling (gray squares), after 3D optimized cooling (black open circles), and after cooling optimized for radial
(orange points) and axial (red points) directions. Each panel shows the red sideband (left) and blue sideband (right) for the corresponding
cooling direction. Axial spectra additionally include the carrier (middle). Mean phonon occupation number (n̄) after sideband cooling is
quoted for each axis. The error bars correspond to standard deviations of the binomial distributions given by the measured probabilities.
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near the motional ground state via Raman-sideband cool-
ing. Combining scalability and low-entropy preparation
with fast, coherent qubit manipulations, this platform will
be broadly useful in quantum science applications.
For connecting the tools developed in this work to

metrological and quantum information applications, it will
be desirable to develop tweezer arrays at the 759 nm magic
wavelength of the clock transition. To maintain favorable
features of the 532 nm tweezers demonstrated here, in
future work with 759 nm, we will rely on transfer methods
already realized with strontium [19,34]. Once they are
loaded into 759 nm tweezers, interactions between 171Yb
nuclear qubits in the 1S0 state can be generated by
selectively exciting one nuclear state to 3P0 and driving
Rydberg interactions out of that level. Alternatively, rota-
tions of the nuclear spin could be produced directly in the
metastable 3P0 level, driving Raman rotations through
3P0 ↔ 3D1 or 3P0 ↔ 3S1. With this approach, two-qubit
gates could be performed between 3P0 spins with state-
selective Rydberg interactions or by mapping one spin of
the 3P0 atoms back to the ground state. Beyond quantum
information processing, deep, fast circuits implemented
in the nuclear-spin qubit could be mapped to the optical
clock transition for quantum-enhanced metrology [70,71].
Furthermore, in 759 nm tweezers, a near-magic angle may
exist for the 1S0 ↔ 3P1 transition [24]. This could allow for
improved imaging fidelity as previously demonstrated in
near-magic tweezers with 174Yb [26]. Meanwhile, site-
resolved shelving utilizing the clock transition could be
used to perform local state-preserving qubit measurements,
which are a key requirement for most quantum error
correction schemes [56,57] as well as for clock and
entangled clock protocols that fully exploit the intrinsic
linewidth of the atoms [72–74].
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APPENDIX A: EXPERIMENTAL SEQUENCE

We use an atomic dispenser as the source of 171Yb. The
initial trapping and cooling is done with 399 nm light
addressing the 1S0 → 1P1 transition. Atoms released from
the dispenser are slowed by a beam focused onto the
emission port of the dispenser and then captured in a 2D
magneto-optical trap, which reduces the atoms’ velocities
in the directions transverse to the science glass cell. The
magnetic fields for the slowing beam and 2D MOT are
generated by four stacks of permanent magnets arranged
around the 2D MOT chamber [58,76]. The atomic cloud
accumulated within the 2DMOT is pushed toward the main
science cell with a nearly resonant beam that is chopped at
1 kHz with a 40% duty cycle. After being pushed through a
differential pumping tube, the atoms are trapped in a blue
3D MOT in the main science cell.
The following experimental sequence is shown in Fig. 6.

The cycle time of the experiment is typically less than 1 s,
although the exact timing depends on the experiment
performed. Atoms in the 3D blue MOT are transferred
to a green MOT that uses the 556 nm 1S0 ↔ 3P1 narrow-
line transition [Γg=ð2πÞ ¼ 183 kHz]. Our green MOT has
three steps: broad-line, narrow-line, and compression
stages. During the first stage, the green laser is artificially
broadened by sweeping the detuning from −40Γg to −7Γg

at a rate of 50 kHz to increase the velocity capture range.
For the second, narrow-line, stage the detuning is main-
tained at −0.77Γg and the intensity is ramped down from
157Isat to 11Isat. While we find that at this point the atoms
are sufficiently cold to be loaded into 790-μK-deep tweezer
traps, to increase the average number of atoms captured in

FIG. 6. Overview of the experimental sequence in the science
cell. The unit of time is milliseconds, and duty cycle is typically
less than 1 s. The blue MOT uses 1S0 ↔ 1P1 transition, while the
green MOT utilizes 1S0 ↔ 3P1 narrow-line transition. The com-
pressed MOT (CMOT) increases the average atom number
loaded into a tweezer. With the near-deterministic loading
scheme, we are left with a single atom in the tweezer > 90%
of the time, on average. The green cooling beam is on during
blue imaging, as well as during the cooling before and after
imaging.
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the tweezers, we employ a final compression stage for the
green MOT. Here, the beam intensity is decreased to 1.5Isat
and the magnetic field gradient is increased from 6 G=cm
to 15 G=cm.

After extinguishing the MOT beams, 30 ms of dead time
is incorporated to ensure that any remaining atoms not
trapped in the tweezers fall out the tweezer region. We then
turn on a 4.9 G magnetic field parallel to the tweezer
polarization and with blue-detuned 556 nm beams propa-
gating in the MOT configuration we achieve single-atom
tweezer occupancy at efficiencies in excess of 90% (see
discussion in the main text for more details).
Single atoms trapped in the tweezers are cooled down to

12 μK in 20 ms by the same green laser beams used for
the 3D MOT. However, this intratrap cooling is realized
with no magnetic field applied. The green cooling intensity
is 10Isat and its frequency is −11Γg red detuned from the
tweezer light-shifted resonance of the 1S0 ↔ 3P1 jF0 ¼
3=2; mF0 ¼ �1=2i transition. The same cooling scheme is
employed during imaging.
The main experiment, such as qubit rotations or Raman

sideband cooling, is usually sandwiched by two imaging
steps (see Sec. B 3 for detailed discussion). The first image
discriminates the traps with loaded atoms, while the second
image identifies the tweezer sites that still contain an atom
after the experiment is completed. Where indicated in the
main text, we lower the tweezer depth during the experi-
ment to suppress differential light shifts or parametric
heating from the tweezer intensity noise. In these experi-
ments, a magnetic field is typically applied parallel to the
tweezer polarization to define the quantization axis.

APPENDIX B: EXPERIMENTAL METHODS

1. Optics layout around objective lens

Our optical layout around the objective lens is summarized
in Fig. 7. Both blue and green vertical upper MOT beams are
focused on the back focal plane of the objective lens and
reflected by a small, 5-mm-diameter mirror, to ensure
collimation inside the science cell. The mirror and its holder
are small enough compared to the aperture of the objective
lens (32mmdiameter) as not to impact the diffraction-limited
imaging and the quality of the tweezer spot.
The tweezer array is formed by the deflection of 532 nm

beam from two orthogonal AODs, AOD1 and AOD2,
placed in the Fourier plain of the objective. To make
tweezer generation more robust, the AODs are spaced with
a 4f lens system (not shown in Fig. 7). The beam is then
focused through the objective lens to create a 2D tweezer
array. The total power in the array is stabilized via an
intensity servo actuating on an acousto-optic modulator
before the photonic crystal fiber that delivers the light to the
setup of Fig. 7. The tweezer waist is measured to be 460
(7) nm by comparing the light shift of the 3P1 jF0 ¼
3=2; mF0 ¼ �1=2i state to the power in a single tweezer.

The polarizabilities of the 171Yb states required for this
measurement were calculated from the values of 174Yb
obtained at 532 nm in Ref. [60]. These tweezer waist and
light-shift measurements are also consistent with the radial
trap frequencies obtained through Raman-sideband spec-
troscopy (Sec. VI).

2. Tweezer balancing

Suppressing tweezer-dependent trap inhomogeneity is
critical for many aspects of the experiments presented here.
A spread in the tweezer trap depths results in variable
differential light shifts on the 1S0 ↔3P1 transition, which
gives rise to the nonuniform cooling performance across
the array. Moreover, the variation in the trap frequencies
can harm the Raman-sideband cooling efficiency. As
discussed in Sec. B 1, the optical tweezer arrays are
produced by two AODs addressing orthogonal directions.
We insert N1 and N2 radio-frequency tones into each AOD
(typically in this work N1 ¼ N2 ¼ 10). Those rf tones are
generated by a custom-designed field programmable gate
array-based synthesizer, with arbitrary control over the
phase and amplitude for each rf tone. Ideally, choosing
identical rf amplitudes would generate tweezers of identical
intensities. However, practically, this is not the case due to
imperfections in our rf and optical systems, leading to
intermodulation and nonlinearity. Therefore, we need a
protocol for adjusting the rf parameters experimentally. In
this section, we discuss our tweezer balancing procedure.
Related methods are described in Ref. [28].
In order to make the tweezer depth as uniform as

possible, we balance the tweezer intensity daily with a
quick optimization procedure that feeds back on the
integrated intensity of each tweezer spot as measured on
a camera, subject to occasional calibrations using the

FIG. 7. Optics around the objective lens. The 399 and 556 nm
laser beams for the MOTs are focused to the back focal plane of
the objective lens and reflected by a mirror, small enough not to
degrade the quality of either the tweezers or the image.
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atomic signal. Tweezer-site-dependent light shifts found
via spectroscopy are used to calibrate a transfer function:
from the tweezer intensity measured with the camera to
the intensity focused onto the atoms (Fig. 8). This is
necessary, since the uniform intensity of the spot array at
the camera does not guarantee uniform intensity after the
objective lens. The use of the transfer function also
ensures efficient daily rebalancing of the array through
images acquired with the camera at an intermediate image
plane, rather than having to measure and feed back based
solely on the atom signal.
For the tweezer balancing procedure, we fix the phases

of the rf tones following the theoretical values [77], which
minimize the variation in total rf power and the chance for
the coherent superposition of the multiple rf tones.
Our optimization algorithm starts by taking a picture

of the tweezer intensity distribution at an image plane
before the objective [Fig. 8(a)]. Here, the sum of the counts
around the ði; jÞth tweezer spot Cij is proportional to the
power of the corresponding tweezer. Then, we multiply by
a weighting factor Mij, determined experimentally as
discussed below, and obtain the 2D array MijCij. We
define the balancing error at each tweezer spot Eij as

Eij ¼
MijCij − hMCi

hMCi ; ðB1Þ

where hMCi ¼ ½1=ðN1N2Þ�
P

ij MijCij is the mean value
of MijCij of the entire array. We convert this 2D error to
two 1D errors, corresponding to row and column errors,
with two methods. For the row error Erow

i ,

Erow
i ¼

(
1
N2

P
j Eij ðmean methodÞ

Eirandomð1;…;N2Þ ðrandom methodÞ; ðB2Þ

where random() indicates a random integer chosen from
among the numbers in the parentheses. We include the
“random method” because the “mean method” often
converges to a local minimum where the variation of errors
within a row is significant, while the variation among the
array is small. Random methods are used for the final
optimization following the mean method. The column error
is calculated in the same manner. The new rf amplitudes for
the vertical and horizontal AODs, Avert

new; Ahor
new, are calculated

using proportional feedback,

Ahor=vert
new ¼ Ahor=vert

old − pErow=column; ðB3Þ

where p is the proportional gain, and Anew
old ; A

hor
old are arrays

containing previous amplitudes.
The weighted mask Mij is generated with a spectro-

scopy measurement of the site-dependent differential
light shifts. Initially, we take Mij ¼ 1 and balance the
tweezers with the method described above. Spectroscopy of
the 1S0 ↔ 3P1 jF0 ¼ 3=2; mF0 ¼ 1=2i transition performed
after such balancing [Fig. 8(b)] shows 1.75 MHz ð10ΓÞ
peak-to-peak inhomogeneity on top of a 3.5 MHz
differential light shift. Using the detuning from the

free-space resonance at site ði; jÞ, Rð1Þ
ij , we calculate the

mask value as

(a) (b) (c)
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FIG. 8. Procedure employed to optimize tweezer balance. (a) Each tweezer’s intensity distribution is measured with light picked off
before the objective lens and focused onto a camera. The intensity measurement is multiplied by an experimentally determined weighted
mask and used to determine the errors for each tweezer. From this 2D array of errors, row and column errors are extracted and
proportionally fed back to AOD1 and AOD2, respectively. (b) Example of the spectroscopy result for a uniform mask (Mij ¼ 1). This
information is further utilized to generate a weighted mask. The frequency variable is the red detuning from free-space resonance.
(c) Initial (gray) and final (black) distributions of the 1S0 ↔ 3P1, F0 ¼ 3=2, mF0 ¼ 1=2 resonance for the 100 individual tweezers. The
red line shows the median of the initial distribution, which is the chosen target value for the balancing.
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Mij ¼ Mð1Þ
ij ¼ Rð1Þ

ij

Rtarget
; ðB4Þ

where Rtarget is taken as the median of fRð1Þ
ij g. We find that

we can realize a more uniform array when we take the
median rather than mean as the target value.
After calibration of the mask weightings, the tweezer

balancing follows as before. We typically see a conver-
gence of the total error value to around 10% peak to peak
by several tens of repetition. This could potentially be
further improved using more elaborate feedback methods.
With the balanced tweezers we take the spectroscopy data

again, and obtain a second set of Rð2Þ
ij values. From these,

we calculate the corresponding Mð2Þ
ij following Eq. (B4),

and compose a mask according to

Mij ¼ Mð1Þ
ij ×Mð2Þ

ij : ðB5Þ

We repeat this procedure several times and finally
achieve a distribution of Rij with a standard deviation of
0.05 MHzð0.3ΓÞ, or 1.4% of the magnitude of the differ-
ential light shift, which is sufficient for the experiments
presented in this paper. The comparison of the initial and
final light-shift distribution is shown in Fig. 8(c).

3. Cooling and imaging

The tweezer array is imaged by collecting photons
scattered from a retroreflected low-power beam resonant
with the strongly allowed 1S0 → 1P1 transition at 399 nm.
The second-stage (1S0 → 3P1) MOT beams are turned on at
the same time, to prevent the atoms from being heated out
of the array. The survival probability during imaging is
optimized by operating with a detuning of −2.04 MHz
(11Γ) from the light-shifted 3P1 jF0 ¼ 3=2; mF0 ¼ �1=2i
resonance and an intensity of 10Igsat. To assess the effi-
ciency of cooling under these conditions, we compare
release-and-recapture measurements to a Monte Carlo
simulation, to extract the atomic temperature [62]. The
temperature is 12 μK when only the cooling light is applied
and ≈30 μK when the imaging beam is also present. We
note that both of these temperatures are significantly below
the Doppler limit at this detuning, 49 μK. Our observations
are in reasonable quantitative agreement with a prior
measurement, made with a MOT of 171Yb, which the
authors attributed to a sub-Doppler polarization-gradient
cooling mechanism obtainable for a transition with a
ground state F > 0, with 3D cooling [78]. Furthermore,
the atomic temperature is found to scale similarly with
increasing 556 nm intensity to the scaling measured by
Ref. [78]. We assess the survival and infidelity of the
imaging scheme at a range of trap depths, optimizing the
cooling parameters at each set point. Our imaging scheme
remains effective for trap depths as low as 9 MHz, half of

our operating trap depth, with increasing losses below that
level. For the range of trap depths explored, losses are
minimized by selecting a detuning of ≈60% of the total trap
light shift. This dependence suggests that a “Sisyphus cap”
effect arising from a repulsive Sisyphus barrier, such as
that observed in Ref. [25], may be playing a role, though
further study is needed to fully appreciate the interplay
between the sub-Doppler polarization-gradient cooling and
the Sisyphus cap mechanisms.
Imaging quality is assessed by fitting a double Gaussian

distribution to the photon count histograms [Fig. 1(c)] and
setting a threshold between the two distributions that
determines whether a given number of photons measured
on a pixel will be labeled as corresponding to a singly
occupied or to an empty tweezer. We define imaging
infidelity as the probability of improperly classifying a
single-atom image within the array, i.e., the sum of the area
above threshold for the void peak and the area below
threshold for the atom peak. The threshold is set so as to
minimize the infidelity, defined in this way. Increasing the
399 nm power allows more photons to be collected,
decreasing the infidelity of the image. However, this also
increases the probability of a given atom to be lost during
the course of imaging. Figure 9 displays the dependence of
infidelity and loss probability on imaging beam power.
For this figure, the losses are calculated by using the area
under the fitted Gaussian curves as a measure of the atom
and void numbers. We find that an imaging intensity of
1.1 × 10−3Ibsat (Ibsat ¼ 63 mW=cm2 being the saturation
intensity of 399 nm transition) represents a reasonable
operating condition, with 0.3% infidelity and a loss
probability in the range of 2%–3%. If it is desirable to

0 1 2 3
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Infidelity
Loss probability

Intensity (10-3 Isat)

FIG. 9. Infidelity and loss probability for an image of duration
120 ms, with variable power in the 399 nm imaging beam. Ibsat ¼
63 mW=cm2 is the saturation intensity of the transition at
399 nm. The red curve is an exponential fit to the infidelity
data, and the green curve is a quadratic fit to the loss data. Both
shaded regions are 1σ confidence intervals.
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shorten imaging time, then it is possible to do so by
increasing power, leading to increased losses or infidelity.
For instance, we find that it is possible to operate with an
intensity of 2.3 × 10−3Ibsat and an imaging time of 63 ms,
with similar losses and a modest increase in infidelity.
Comparisons between the measured loss rates for our

imaging system using our Andor SCMOS Marana and the
preliminary imaging fidelity measurements using an Andor
EMCCD iXon camera indicate that we may improve our
imaging performance significantly with an EMCCD. At an
EMCCD imaging infidelity of 0.03%, about an order of
magnitude lower than our operating SCMOS infidelity,
we expect that we can use 40% of our operating 399 nm
imaging intensity. Under these conditions, we extrapolate
that the atom loss probability will be about 0.7% per image.
Alternatively, targeting a higher imaging infidelity at the
0.6% level that we measure for a 60 ms image, we expect
to be able to shorten the imaging time to 25 ms with loss
rates ≤ 1% per image.

APPENDIX C: LOSS CORRECTION

The dominant source of state preparation and measure-
ment error is atom loss (2%–3.5%), with the majority of
this loss occurring during the imaging steps. Blow-away
detection and imaging infidelity errors are smaller, typically
0.5%–0.7% and 0.2%–0.3%, respectively. For subfigures
of Fig. 3 with plotted probabilities Pðj1iÞ, we associate the
detection of an atom in the second image to the j1i state,
normalizing the resulting probability of detecting j1i by the
measured atom loss probability (without correcting for
imaging infidelity). The probability of atom survival with-
out the blow-away detection pulse is measured for a given
experiment as PðsÞ and the normalized probability of
the atoms being in the j1i state ðjmF ¼ −1=2iÞ is given
by Pðj1iÞ ¼ PðaÞ=PðsÞ where PðaÞ is the probability that
an atom is imaged after the blow-away detection pulse is
applied. The probability of atoms being in the j0i state
ðmF ¼ þ1=2Þ is then 1 − Pðj1iÞ. The uncertainties in these
probabilities are propagated from the uncertainties of the
PðaÞ and PðsÞ measurements and are both

σ0;1 ¼
PðaÞ
PðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σa

PðaÞ
�

2

þ
�

σs
PðsÞ

�
2

s
:

The randomized benchmarking data are not loss corrected.
The success probabilities of the benchmarking sequences
are the raw values set by the measured atom and void
detection probabilities where an atom is associated with
target state j1i and a void is associated with target state j0i.

APPENDIX D: NUCLEAR QUBIT PREPARATION,
ROTATION, AND READOUT

Figure 10 shows diagrams of the beams and levels
used for preparation, manipulation, and readout of the

nuclear-spin state. We prepare the 1S0 spin state in
jmF ¼ þ1=2i≡ j0i by optical pumping through the 3P1

jF0 ¼ 1=2; mF0 ¼ þ1=2i state with a σþ-polarized beam.
For spin detection, we destructively read out the spin
state by blowing away atoms in the j0i state with a beam
that is resonant with the cycling transition to the 3P1

jF0 ¼ 3=2; mF0 ¼ þ3=2i state. The blow-away beam heats
j0i atoms out of the tweezers on a few hundred microsec-
ond timescale. Typically, the blow-away beam is applied
for several ms with the exact time chosen as a trade-off
between errors caused by the slow pumping from
jmF ¼ þ1=2i≡ j1i to j0i through the excited state
jF0 ¼ 3=2; mF0 ¼ þ1=2i and errors caused by the small
probability of an atom in j0i surviving the destructive
pulse. We typically obtain a combined detection error
around 6 × 10−3 when minimizing the sum of these two
error sources.
As discussed in the main text, in the strong-Rabi regime

we drive Raman transitions between the nuclear-spin states
using a single beam with polarization tilted between the
normal to the atom plane and the quantization axis. This
beam couples the spin states through two different path-
ways as shown in Fig. 10(b). For the beam geometry used
here, the strength of the two circular components is equal,
Ωσ ≡Ωσþ ¼ Ωσ−. The arms that couple the ground-state
spin to jF0 ¼ 3=2; mF0 ¼ �3=2i do not drive transitions,
but they do lead to differential light shifts of the qubit states
due to the different detunings from these excited states.
This effect changes the qubit splitting from its value due to
the magnetic bias field alone and, in the strong-drive
regime, the splitting goes from ΔN=ð2πÞ ¼ −1.25 kHz
to þ54.2 kHz during an Xðπ=2Þ pulse. To describe the
two-pathway Raman transitions, we focus on the four
�1=2 states j0i, j1i, j2i, and j3i [Fig. 10(b)], and absorb
the light shifts due to the �3=2 states into the parameters
ΔX and ΔN . In a rotating frame given by

UðtÞ ¼ eiðω0−ΔXÞtj3ih3jþiðω0−ΔXÞtj2ih2j;

with ω0 the optical frequency of the 1S0 ↔3P1 transition,
the Hamiltonian describing these four levels and single
drive beam is

H ¼

0
BBBBB@

ΔN 0 1
2
eiϕΩσ

1
2
Ωπ

0 0 1
2
Ωπ

1
2
eiϕΩσ

1
2
e−iϕΩσ

1
2
Ωπ ΔX 0

1
2
Ωπ

1
2
e−iϕΩσ 0 ΔX þ Δe

1
CCCCCA;

where ϕ is the phase between the π and σ polarization
components. Adiabatic elimination of the excited levels
leads to
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Heff ¼ −
1

4

0
B@−4ΔN þ

�
1
ΔX

Ω2
σ þ 1

ΔXþΔe
Ω2

π

� �
eiϕ
ΔX

ΩπΩσ þ e−iϕ
ΔXþΔe

ΩπΩσ

�
�
e−iϕ
ΔX

ΩπΩσ þ eiϕ
ΔXþΔe

ΩπΩσ

� �
1
ΔX

Ω2
π þ 1

ΔXþΔe
Ω2

σ

�
1
CA:

In our experiment, ΔX ≫ Δe, and neglecting the excited
state splitting gives a form of the Hamiltonian where the
importance of the phase between the polarization compo-
nents is clear,

Heff ≃ −
1

4ΔX

�
−4ΔNΔX þ Ω2

π þ Ω2
σ 2 cosðϕÞΩπΩσ

2 cosðϕÞΩπΩσ Ω2
π þ Ω2

σ

�
;

and the approximate Raman Rabi frequency is given by
ΩR ≃ cosðϕÞΩπΩσ=ΔX. The polarization angle of the X
beam 28.2° from the normal to the atom plane gives relative
coupling strengths Ωσ ¼ 0.9Ωπ . At our detunings of
177–184 MHz, we obtain Raman Rabi frequencies up to
ΩX=ð2πÞ ¼ 1.77 MHz with < 40 mW of power address-
ing the atom array.
In the strong-driving regime, control of the rotation axis

is complicated by the Raman Rabi frequency dependence
on the phase ϕ. As is clear above, at a relative phase
of ϕ ¼ π=2 the Raman Rabi becomes small. Also the

stabilization of this phase is difficult when using two
separate driving beams. To control the rotations around
the Z axis, we instead add another beam running along
the quantization axis with σþ polarization as shown in
Fig. 10(c). This beam similarly has a large detuning
compared to the 3P1 linewidth, ΔZ=ð2πÞ ¼ −164 MHz
and couples j1i to jF0 ¼ 3=2; mF0 ¼ þ1=2i and j0i to
jF0 ¼ 3=2; mF0 ¼ þ3=2i. The larger coupling matrix
element of the j0i ↔ jF0 ¼ 3=2; mF0 ¼ þ3=2i transition
gives a correspondingly larger light shift on the j0i spin
state. This beam splits the qubit states with a larger
frequency than can be achieved easily with an external
field. As shown in the main text, we obtain splittings
ΔN=ð2πÞ ¼ −0.77 MHz using a total of 11 mW to address
the entire atom array.

1. Qubit gate errors

To investigate the sources of errors in our nuclear-spin
rotations, we estimate the error rates due to Raman

(a) (b) (c)

FIG. 10. Nuclear-spin preparation, manipulation, and detection. (a) We prepare the spin state in j0i by optical pumping (OP) through
3P1 jF0 ¼ 1=2; mF0 ¼ þ1=2i and detect the state destructively by driving the cycling transition j0i ↔ jF0 ¼ 3=2; mF0 ¼ þ3=2i until
atoms in the j0i state are expelled from their tweezers. We split the jF0 ¼ 3=2; mF0 ¼ þ1=2i and jF0 ¼ 3=2; mF0 ¼ þ3=2i states by
Δb=ð2πÞ ¼ 35 MHz during blow-away detection to minimize off-resonant pumping through the jF0 ¼ 3=2; mF0 ¼ þ1=2i level by the
blow-away beam. (b) X rotations in the high-Rabi regime. The two Raman pathways couple the states j0i and j1i through two different
excited states j2i and j3i. The splitting between the nuclear-spin states is ΔN , determined by both the external magnetic field and light
shifts from the drive beam. The detuning from the excited states is ΔX=ð2πÞ ≃ −180 MHz, much larger than the Δe=ð2πÞ ¼ 2.65 MHz
splitting between the jF0 ¼ 3=2; mF0 ¼ �1=2i levels. The Rabi coupling in the different arms is set by the dipole coupling matrix
elements and the polarization angle of the drive beam. (c) Level diagram showing the σþ-polarized Z beam coupling to the
jF0 ¼ 3=2; mF0 ¼ þ1=2i and jF0 ¼ 3=2; mF0 ¼ þ3=2i states. In the case of ΔZ ≫ Δe, the larger coupling matrix element on the
stretched transition to jF0 ¼ 3=2; mF0 ¼ þ3=2i gives a larger light shift on the j0i spin level. This splits the nuclear-spin states and
allows us to perform fast rotations about the Z axis.
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scattering by our X and Z beams, measured intensity noise,
and the uncompensated precession of our X axis. Then,
we discuss prospects for minimizing these errors in future
experiments.
The Raman scattering rates of the qubit rotation beams

are estimated from a depolarization measurement as well as
calculations based on the measured X and Z oscillation
frequencies. Figure 11 shows a measurement of spin
depolarization in the presence of the Z beam. The spin
is prepared in the j1i state and the Z is turned on for
the time range shown. The decay time constant is
0.43� 0.04 ms, consistent with the calculated scattering
for this level given below.
The X beam is linearly polarized so that ϕ ≃ 0 and we

also ignore the excited state splittings and the nuclear-spin
state splitting relative to the beam detuning. Under these
assumptions, the measured Rabi frequency [ΩX=ð2πÞ ¼
1.47 MHz] of our Xðπ=2Þ pulses gives the strength of the
driving field and this field strength can then be used to
calculate the Raman scattering and Rayliegh scattering
rates (see below). Calculating the rates as in Ref. [68] for
the X beam gives a total decoherence rate of an equal spin
superposition of 5.6 × 103 s−1. Comparing to the time of
an Xðπ=2Þ pulse, this corresponds to a gate error rate
≤ 1.0 × 10−3. For the Z beam, this equal superposition
decoherence rate is estimated to be 2.3 × 103 s−1 and
corresponds to a Zðπ=2Þ gate error of 9 × 10−4 in a typical
Z gate.
Intensity noise on the X and Z pulses is another

substantial source of gate error. We measure both short-
term (shot-to-shot) and long-term (experiment-to-
experiment) fluctuations in the X pulse area on a fast
photodiode and find fractional standard deviations of 0.01
and 0.03, respectively. For our X Raman drive, the rotation

angle is proportional to pulse area and the resulting frac-
tional angle standard deviation σθ due these intensity
fluctuations on a single π=2 rotation is 1.2° and 2.8°,
respectively. Calculating the corresponding phase flip error
rates as sin2ðσθ

ffiffiffiffiffiffiffiffi
2=π

p Þ gives gate errors of 3 × 10−4 and
1.6 × 10−3.
In this work, the X gate also has a unitary error due to the

detuning of the drive in the high-Rabi case. For the single
drive beam, this detuning is equal to the splitting of the
nuclear-spin states as seen in Fig. 10(b). This splitting is
small, 2π × 1.25 kHz, at the bias field we operate at, but the
X beam also causes these states to split due to different
detunings from the excited levels. The differential light
shift on the nuclear-spin states is 2π × 55.5 kHz but of
opposite sign to the splitting coming from our bias field,
so that the total splitting and thus detuning is estimated to
be 2π × 54.2 kHz. In the time of a single π=2 pulse, this
corresponds to a precession about the Z axis of 3.3° and a
gate error of 2.1 × 10−3. Note that there is also some
precession about the Z axis in the time between gates, but
for our typical gap time of 500 ns this only contributes
1.5 × 10−5 to the total error of a single π=2 gate. Our
calibration of Zðπ=2Þ gates has this free precession
naturally built in.
Finally, we observe some variation in the driven X and Z

oscillation frequencies across the atom array. However,
these inhomogeneities contribute to the global π=2 rotation
errors at a level < 10−5.
For future experiments based on these spin control

techniques, it is useful to consider how these error rates
can be improved and up to what limits. Starting with
intensity noise, improvements in AO stability or sample
and hold techniques should help significantly. For example,
demonstrated 0.2% fractional intensity errors for similar
pulse lengths [54] would correspond to an error rate of
< 10−6. It should also be possible to suppress unitary
detuning errors significantly. One option is to make X gates
out of composite X and Z rotations that are tailored to
correct for the detuning [79]. Another is to drive these X
rotations using the F0 ¼ 1=2 manifold instead of the F0 ¼
3=2 levels used here, which gives a much smaller differ-
ential splitting of the nuclear spin as the shifts nearly
cancel for the case of equal Rabi coupling strength in all
Raman arms. However, the most straightforward method
to minimize the X detuning error may be to increase the
beam detuning from F ¼ 3=2 and increase the power.
This has the added benefit that it would also suppress
scattering errors.
Scattering errors are caused both by Raman scattering,

resulting in a spin flip, as well as elastic Rayleigh
scattering, resulting in phase shifts between the two spin
states. As shown in Ref. [68], the two types of errors have
different dependence on the scattering amplitudes, with the
error rate caused by the former given by the standard
Kramers-Heisenberg formula,

FIG. 11. Estimating the scattering rate of the Z beam. The spins
are prepared in the j1i state and the Z beam is turned on for the
time shown. Scattering causes the spin to relax to a population set
by the branching ratios from the two excited levels that the Z
beam scatters from: jF0 ¼ 3=2; mF0 ¼ þ1=2i and jF0 ¼ 3=2;
mF0 ¼ þ3=2i. The decay timescale is 0.43(4) ms, consistent
with the scattering rate estimated from the observed differential
light shift produced by this beam. The error bars correspond to
standard deviations of the binomial distributions given by the
measured probabilities.
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Γij ¼ Ω2
RΓ0

X
q

�X
F0;m0

F

Ai;j
F0;m0

F;q

�
2

;

and the error rate caused by the latter given by a sum over
scattering amplitudes of the two spin states,

Γel ¼ Ω2
RΓ0

X
q

�X
F0;m0

F

Aþ1=2;þ1=2
F0;m0

F;q
− A−1=2;−1=2

F0;m0
F;q

�
2

;

where ΩR ¼ μE0=2ℏ and μ ¼ ðΓ03πϵ0ℏc3=ω3
0Þ1=2 with

transition frequency ω0, electric field Ē ¼ E0

P
q bqϵ̂q,

natural linewidth Γ0, and scattering amplitudes from spin
state i to spin state j given by

Ai;j
F0;m0

F;q
¼

bqhjjd̄ · ϵ̂�qþði−jÞjF0; m0
FihF0; m0

Fjd̄ · ϵ̂qjii
ΔF0;m0

F
μ2

for detuning ΔF0;m0
F
from the intermediate state jF0; m0

Fi.
In that work, the effect of the two errors is quantified
by the combined rate at which they cause decoherence
of an equal superposition of spin states, Γd ¼ ðΓ−1=2;þ1=2 þ
Γþ1=2;−1=2 þ ΓelÞ=2. For an optimized X beam polarization,
the ratio of this decoherence rate to Rabi rate Ωr is

Γd

Ωr
≃

Γ0ffiffiffi
6

p
Δ0

���� Δhf

Δ0 − Δhf

����;
where Δhf is the hyperfine splitting of 3P1 and Δ0 is the
detuning from the F0 ¼ 3=2 hyperfine states, assumed to be
much larger than the splitting of different m0

F states. From
this expression it can be seen that the error rate for a given
rotation angle is limited by the available laser power and
desired Rabi rate.
In future work, it may be preferable to use a qubit defined

by nuclear-spin states of the 3P0 level, and drive Rydberg
interactions directly between the atoms in this long-lived
clock state. In that case, similar Raman rotations of the
spins could be driven using the 1388 nm 3P0 ↔ 3D1

transition. This transition is in a telecom band, addressable
with commercially available high-power lasers, and is of
relevance for architectures combining tweezers with silicon
waveguides [80]. Alternatively, it would be possible to
drive Raman rotations using 649 nm 3P0 ↔ 3S1 transition.
For us, this transition has the advantage of being readily
available to utilize for local qubit addressing, when paired
with high-NA objective, diffraction limited at 649 nm, and
single-beam Raman rotation approach.

APPENDIX E: T1 MEASUREMENTS

To examine the depolarization of the atomic sample,
atoms were prepared in j0i through optical pumping.
After a variable delay, the atoms still in j0i were blown
away, and then the remaining population of atoms in j1i

were detected. A physical shutter is used to fully extinguish
the qubit beams during the delay, preventing leak-through
scattering from coupling the spin states. For the results
reported in the main text, the qubit population as a function
of time was modeled with the following differential
equations, subject to the initial condition, nj1iðt ¼ 0Þ ¼ p:

_nj0ð1ÞiðtÞ ¼
nj1ð0ÞiðtÞ − nj0ð1ÞiðtÞ

T1

− ðaþ 2btÞnj0ð1ÞiðtÞ:

Here, T1 is the depolarization time constant, and a and b
are parameters characterizing loss from the trap. Note that
solving the differential equation for the total atom number,
PsurvivalðtÞ ¼ nj0iðtÞ þ nj1iðtÞ yields the heuristic loss equa-
tion from the main text, PsurvivalðtÞ ∝ exp½−ðatþ bt2Þ�. In
these fits, the values of a and b are fixed through an
independent measurement of the decrease of total atom
number as a function of delay time, PsurvivalðtÞ, and the
statistical uncertainty of the measured values of a and b did
not limit the uncertainty of T1. Since parametric heating
varies with trap depth, a and b were measured separately
at each trap depth investigated. The fits employ T1 and the
initial spin polarization purity p as free parameters.
Figure 12 shows three curves with representative data, with
T1 ¼ 17.0ð1.5Þ, 26.7(4.8), and 119(29) s. The relatively
high error bars for these measurements are attributable to the
fact that the 1=e trap loss timescale, 5.8(6) s for these
measurements, is substantially shorter than T1 and tends to
reduce the magnitude of the signal. Furthermore, we found
that T1 varied significantly, by approximately a factor of 4,

FIG. 12. By first preparing the atoms in j0i, waiting a variable
delay, and then blowing away that spin state, the depolarization
time constant T1 can be measured. The survival probability is
plotted as a function of delay time for three different magnetic
field conditions: B ≈ 0 G (blue), 0.7 G (green), and 2 G (red). The
lines represent the fit applied to the data. The fits yield values for
T1 of 17.0(1.5) s for the blue points, 26.7(4.8) s for the green
points, and 119(29) s for the red points. Error bars represent 1σ
uncertainty of the binomial distributions given by the measured
probabilities.
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from day to day with otherwise identical conditions,
suggesting that depolarization arises from time-varying
environmental noise. To check the consistency of the model,
a further sequence of measurements was made, in which a π
pulse before the blow-away allowed the detection of atoms
remaining in j0i. This series of measurements was taken
over the same range of magnetic fields as the measurements
reported in Fig. 4(c), and reasonable statistical agreement
was found between the two methods of measuring T1.
The differential equations listed above make the

assumption that the rate of pumping from j0i to j1i is
the same as the rate from j1i to j0i. To test this assumption,
a further measurement was performed in which a π pulse
was used prior to the delay, to test the rate of depolarization
for the j1i → j0i channel. The value of T1 measured
through this method was found to agree at the < 1σ level
with that measured through atoms instantiated in j0i,
though it is only possible to statistically verify that these
rates are equal at the ≈20% level.

APPENDIX F: CLOCK PULSE
MOTIONAL DEPHASING

The clock transition 1S0 ↔ 3P0 will play a central role in
future work on Yb tweezer arrays, both in metrological
applications and also as a metastable level from which we
will produce Rydberg interactions between atoms. This
means that it will be important to perform high-fidelity π
pulses that map atoms to and from the clock state. One
limitation to this fidelity is the dephasing of a Rabi drive
that results from motional-state dependence of coupling
terms between the ground and clock state. This motivates
Raman-sideband cooling to the motional ground state in
any experiments involving clock manipulations. Here we
consider the effect of temperature on clock pulse fidelity
and estimate the motional dephasing limits to clock π-pulse
fidelities. In a rotating frame defined by a beam with
detuning δ from the excited state, and Rabi frequency Ωc,
we use a 1D Hamiltonian describing the atom-field
interaction and motional energies of a harmonically trapped
atom along the axis of beam propagation,

Hc ¼ ð−δjeihejÞ ⊗ 1M

þ Ωc

2
ðσ ⊗ e−iηðaþa†Þ þ σ† ⊗ eiηðaþa†ÞÞ

þ 1S ⊗ ω
XN0

n¼0

�
nþ 1

2

�
jnihnj;

where jgi and jei are the ground and clock states, 1M and 1S
are identities on the motional and spin spaces, respectively,
η is the Lamb-Dicke parameter, a and a† are the motional
annihilation and creation operators, ω is the trap frequency,
and we cut off the sum over motional states atN0. For atoms
in magic wavelength tweezers at 759 nm, the trap

frequencies are the same in the ground and clock states,
ωe ¼ ωg ¼ ω. We assume this magic condition and a Rabi
frequency of Ωc=ð2πÞ ¼ 200 kHz, and calculate the maxi-
mum population transferred to the clock state with a
resonant π pulse at a range of temperatures given by the
mean occupation number n̄ and over a range of trap
frequencies; see Fig. 13. The calculation selects the π-
pulse time that maximizes the population transfer at each
temperature and trap frequency, and uses motional levels up
to N0 ¼ 7 and detuning δ ¼ 0.
Figure 13 highlights the importance of sideband cooling

to future applications involving the clock state. The
temperature dependence is twofold, since cooling to lower
n̄ will allow for operation at lower trap frequencies without
loss, at the same time as reducing motional dephasing
directly. The motional dephasing effects shown here can
likely be improved using composite pulses or adiabatic
rapid passage, but we still expect the temperature to play
some role in determining the final fidelity of population
transfer.
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[49] D. Barredo, S. De Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, An Atom-by-Atom Assembler of Defect-Free
Arbitrary Two-Dimensional Atomic Arrays, Science 354,
1021 (2016).

[50] M. O. Brown, T. Thiele, C. Kiehl, T.-W. Hsu, and
C. A. Regal, Gray-Molasses Optical-Tweezer Loading:

Controlling Collisions for Scaling Atom-Array Assembly,
Phys. Rev. X 9, 011057 (2019).

[51] C. Monroe, D.M. Meekhof, B. E. King, S. R. Jefferts, W.M.
Itano, D. J. Wineland, and P. Gould, Resolved-Sideband
Raman Cooling of a Bound Atom to the 3D Zero-Point
Energy, Phys. Rev. Lett. 75, 4011 (1995).

[52] A. M. Kaufman, B. J. Lester, and C. A. Regal, Cooling a
Single Atom in an Optical Tweezer to Its Quantum Ground
State, Phys. Rev. X 2, 041014 (2012).

[53] J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletić, and
M. D. Lukin, Coherence and Raman Sideband Cooling of a
Single Atom in an Optical Tweezer, Phys. Rev. Lett. 110,
133001 (2013).
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