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Abstract

Background Many snakes are low-energy predators that use crypsis to ambush their prey. Most of these species
feed very infrequently, are sensitive to the presence of larger vertebrates, such as humans, and spend large portions
of their lifetime hidden. This makes direct observation of feeding behaviour challenging, and previous methodologies
developed for documenting predation behaviours of free-ranging snakes have critical limitations. Animal-borne accel-
erometers have been increasingly used by ecologists to quantify activity and moment-to-moment behaviour of free
ranging animals, but their application in snakes has been limited to documenting basic behavioural states (e.g., active
vs. non-active). High-frequency accelerometry can provide new insight into the behaviour of this important group of
predators, and here we propose a new method to quantify key aspects of the feeding behaviour of three species of
viperid snakes (Crotalus spp.) and assess the transferability of classification models across those species.

Results We used open-source software to create species-specific models that classified locomotion, stillness, preda-
tory striking, and prey swallowing with high precision, accuracy, and recall. In addition, we identified a low cost,
reliable, non-invasive attachment method for accelerometry devices to be placed anteriorly on snakes, as is likely
necessary for accurately classifying distinct behaviours in these species. However, species-specific models had low
transferability in our cross-species comparison.

Conclusions Overall, our study demonstrates the strong potential for using accelerometry to document critical
feeding behaviours in snakes that are difficult to observe directly. Furthermore, we provide an‘end-to-end’template
for identifying important behaviours involved in the foraging ecology of viperids using high-frequency accelerom-
etry. We highlight a method of attachment of accelerometers, a technique to simulate feeding events in captivity,
and a model selection procedure using biologically relevant window sizes in an open-access software for analyzing
acceleration data (AcceleRater). Although we were unable to obtain a generalized model across species, if more data
are incorporated from snakes across different body sizes and different contexts (i.e., moving through natural habitat),
general models could potentially be developed that have higher transferability.
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Background

A basic understanding of the natural history and ecologi-
cal role of a species often involves monitoring and meas-
uring the behaviours of individuals and establishing an
activity budget [1, 2]. Activity budgets and behavioural
profiles are particularly critical for understanding how
individuals may respond to a changing environment,
such as human-induced rapid shifts in temperature [3,
4] and habitat quality [5, 6]. Traditionally, quantify-
ing activity budgets requires numerous hours of direct
observation of individuals through methods such as scan
sampling or focal sampling [7]. These direct observation
methods have been applied to both free-ranging and cap-
tive animals across a wide variety of taxa [e.g., 8, 9, 10, 11,
12, 13, 14, 15]. However, a number of constraints make
direct observation infeasible for many species. Examples
include species that are difficult to observe in their habi-
tat (e.g., dense forest, underground, turbid water, etc.),
are only active at night, travel long distances in a short
period of time, or are solitary predators, where simul-
taneous observation across a sample of individuals is
impractical. In addition, human presence can drastically
alter animal behaviour [16], and individuals may, there-
fore, not exhibit species-typical behaviour in the pres-
ence of human observers.

Recent innovations in animal-borne biologging tech-
nologies have provided novel approaches that help cir-
cumvent the problems associated with using direct
observation to quantify behaviour [17]. The attachment
of devices that continuously log acceleration values has
been particularly useful for quantifying metrics of move-
ment and behavioral states, as many behaviors result in
unique acceleration profiles that can be identified with
high accuracy and precision through machine learning
methods [19]. The miniaturization and affordability of
animal-borne accelerometers has made this approach a
key tool for characterizing behaviour of free-ranging ani-
mals. Ecologists initially began attaching accelerometers
to marine mammals because of the challenges of direct
observations on these organisms [18, 19]. Subsequently,
terrestrial and freshwater ecologists have adopted this
novel method and have been able to use animal-borne
accelerometers to quantify activity budgets [e.g., 20, 21],
frequencies of key behaviours [e.g., 22, 23], and energy
expenditure [e.g., 21, 24]. Accelerometers are now being
paired with other biologging devices such as acoustic
recorders [25, 26] and global positioning systems [27] to
provide even further insight into the activity budgets and
behaviour of free-ranging animals and how they may dif-
fer across environmentally relevant conditions (e.g., pho-
toperiod, moon phase, seasonality, etc.).

Although accelerometry is becoming an integral
and important tool to further understand behaviour,
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taxonomic representation in these studies is uneven.
The majority of research has focused on larger-bodied
mammals, birds, and marine taxa [19]. Because logisti-
cal details of how to best attach and configure devices
are likely to differ greatly across groups, the widespread
adoption of animal-borne accelerometry across different
groups of organisms is facilitated by studies that docu-
ment best practices and provide details on overcoming
methodological hurdles. For example, we know compara-
tively little concerning the detailed behavioural ecology
of most snake species, despite the fact that this globally
distributed group are often abundant predators that play
vital roles in ecological communities. Some snake spe-
cies also have major impacts on both human health and
medicine (snakebite envenoming has been recognized by
the World Health Organization as a Neglected Tropical
Disease), and others have invaded native ecosystems with
devastating effects on local fauna [28—-30]. Viperid snakes
in particular represent an ideal group for investigating
animal behaviour using accelerometry. Detailed studies
of the behavioural ecology (specifically foraging ecology)
of this group are difficult, because these snakes are cryp-
tic, rarely encountered, sensitive to human presence, and
spend long periods of time hidden from view. Although
some methodological approaches have been developed
to study specific aspects of their foraging ecology (e.g.,
dietary analysis, fixed videography coupled with radio
telemetry), none of these methods [31-35] allow for the
quantification of key aspects of hunting behaviour and
outcomes of predatory encounters.

Quantifying behavioural data via attaching animal-
borne accelerometers to free-ranging individuals is the
next step in advancing our knowledge of foraging ecology
in viperids. Most species within this group are charac-
terized as ambush (i.e., sit-and-wait) predators and pro-
gress through a series of distinctive behavioural stages
when capturing prey. A typical feeding event involves:
(1) an initial search for an ambush site, (2) a prolonged
wait while remaining cryptic, (3) the targeting, striking,
and envenomation of any suitable prey that comes within
range, (4) the release of envenomated prey to avoid retali-
atory attacks, (5) strike-induced chemosensory searching
to locate the carcass of envenomated prey, and (6) swal-
lowing and digesting the prey item [reviewed 36]. Many
of the behaviours exhibited by viperids during a feeding
event are distinct, and could result in unique acceleration
signatures that would enable us to quantify the frequency
and outcome of predation events across a large sample
of free-ranging snakes. Such data would represent the
first comprehensive analysis of feeding behaviour within
an ecologically critical and globally distributed group of
predators. Previous work pioneering the use of low-fre-
quency accelerometers implanted into the body cavities
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of Western Diamond-backed Rattlesnakes (Crotalus
atrox), Burmese Pythons (Python bivittatus), and Tim-
ber Rattlesnakes (Crotalus horridus) illustrates the gen-
eral utility of this approach [37, 58, 64] and underscores
the need to develop new attachment and analysis tech-
niques to quantify detailed behavioural profiles for these
predators.

The computational burden imposed by high-resolution
accelerometer data remains one of the most significant
hurdles to effective use, particularly in validation stud-
ies on novel focal taxa [38—40]. Acceleration signatures
for unique behaviours can be impacted by multiple fac-
tors, such as body size and the duration of the behav-
iour. Thus, it may not be appropriate to use behavioural
classification models developed for one species (or even
one population) on another similar species. However, it
is plausible that a model developed on one species could
have high transferability to another similar species if
that species is comparable in body size and if they per-
form analogous behaviours. Accordingly, accelerometer
studies must provide detailed step-wise procedures and,
when possible, evaluate the potential for transferability
of specific methods across similar focal taxa to stream-
line future applications. If using a single classification
model across multiple species is possible, it should be
prioritized, as it could simplify classification and increase
the adoption of accelerometers to quantify behaviour of
the taxa involved [41, 42]. Viperids are an ideal taxon for
applying a single classification model across multiple spe-
cies, as many are similar in body size and go through the
same distinct behavioural stages to capture prey. Thus,
we hypothesized that computational models would show
high transferability across congeneric viperid species
(i.e., high recall, precision, and accuracy), and that future
studies could forgo the labor-intensive task of simulating
feeding events in captivity to develop adequate classifica-
tion models.

In this study, we used animal-borne accelerometry to
develop behavioural classification models for key feeding
behaviours of three species of viperids (Timber Rattle-
snakes (Crotalus horridus), Western Rattlesnakes (C. ore-
ganus), and Prairie Rattlesnakes (C. viridis) and assessed
the transferability of these models across different spe-
cies. First, we developed a simple and cost-effective
methodology to attach accelerometry devices anteriorly
to a venomous snake. Our next objective was to develop
and validate machine learning models that would allow
us to accurately classify key feeding behaviours in all
three species. Finally, we assessed the transferability of
species-specific classification models via a cross-species
comparison to evaluate the feasibility of building general
classification models that would apply across a range of
closely related species with similar behavioural profiles.
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Methods

Captive validation

All rattlesnake species were collected from the wild using
visual encounter surveys at different locations (C. hor-
ridus (n=17) from Georgia; C. oreganus (n=14) from
Southern California; and C. viridis (n="7) from Western
Texas and Southwestern New Mexico) and transported
to either Georgia College and State University (C. horri-
dus) or San Diego State University (C. oreganus and C.
viridis).

For each trial, an accelerometer (AXY-5, Technosmart
Europe Srl., Rome, Italy) recording tri-axial acceleration
values at 25 Hz was attached to the dorsum of individ-
ual rattlesnakes (C. horridus, C. oreganus, or C. viridis).
Accelerometers were placed anteriorly on each individual
at a distance of 25% of the snout vent length of the snake,
so that the relative body placement was consistent across
individuals. This allowed the three acceleration channels
of the device to be placed so they represented the ani-
mal’s dorso-ventral axis (heave), the anterior—posterior
axis (surge), and the lateral axis (sway). The devices were
adhered to the snake via a transparent bandage material
(3 M™ Tegaderm™; see Fig. 1) that covered the accel-
erometry device, but only adhered to a few of the scale
rows lateral to the dorsal vertebrae. This was important
to ensure that sufficient dermal elasticity was retained
as prey items were ingested [59]. To stage a feeding
trial, each study animal was placed into a custom arena
(2x2 m) made of corrugated plastic or glass and video
recorded with a stationary camera (PatrolMaster 1296P
UHD Body Camera; Amcrest UltraHD Video Security
System) recording at 60 frames per second placed above
the arena. Immediately after a rattlesnake was placed into
an arena, a defensive assay was performed, where person-
nel agitated the individual with a plush toy attached to
a long pole to prompt defensive strike behaviours. After
the defensive assay, snakes were allowed to acclimate to
the arena for approximately 12 h before a feeding assay
was conducted. For the feeding assay, rattlesnakes were
video recorded as they were fed a mouse that was allowed
to move freely into the arena (Mus musculus, their typi-
cal food in captivity). It was necessary to use live mice to
replicate the feeding behaviors of free-ranging snakes as
closely as possible, as past studies have shown that rat-
tlesnakes respond differently to live vs. euthanized prey
items [65].

Following exploratory analyses of videos, we chose to
group behaviours into four classes that appeared to result
in distinct acceleration signatures and corresponded
to critical phases of the feeding cycle: still, locomo-
tion, strike, and swallow (Table 1; Fig. 2). Behavioural
scores were time-matched to accelerometer readings (to
within 1 s) to generate annotated acceleration data sets
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Fig. 1 Alateral (A) and dorsal (B) view of an accelerometer placed
posteriorly from the snout at a distance of 25% of the snout-vent
length of the snake and adhered via a transparent bandage material
(3 M™ Tegaderm™)

by recording a video of the exact time (using the Exact
Time" application by °Neurovat, 2023) as the acceler-
ometry device began logging data (Technosmart devices
emit a visible signal when powering on). We then also
recorded the Exact Time" (°Neurovat, 2023) at the
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outset of all videos recording animals wearing accelerom-
etry devices.

Behavioural classification algorithms

We used the open-access software AcceleRater to train
classification algorithms based on our captive training
data sets [38]. Because of the extreme differences in the
durations of the strike and swallow behaviors (e.g., a typi-
cal strike is less than 1 s, while a swallowing event can
last over 5 m) leading to complications with window size
selection, we analyzed the data separately to identify
striking and swallowing behaviors. Thus, we attempted
to independently obtain the best model for (1) ‘strike’-
focused models, with strike, still, and locomotion as
behavior classes; and (2) ‘swallow’-focused models, with
swallow, still, and locomotion as behavior classes. In
addition, because class imbalance can lead to inference
issues when using machine-learning methods [60], all
data sets were manually balanced, so that each behav-
ioural class had an equal number of samples relative to
the behaviour that had the fewest samples from our
captive trials (in all cases, this was either the behaviour
swallow or strike). We then ran a linear support vector
machine (SVM) [61], a decision tree [62], and a random
forest [63] algorithm that either included all summary
statistics available in AcceleRater (mean, standard devia-
tion, skewness, kurtosis, maximum, minimum, vector
norm, covariance, Pearson correlation, dynamic body
acceleration, overall dynamic body acceleration (ODBA),
mean-diff, std-diff, wave amplitude, line crossings, 25
percentile, 50 percentile, 75 percentile) or just the sum-
mary statistics of mean, standard deviation, and ODBA
at window sizes of 3, 6, 12, 24, and 40 s for ‘swallow’ mod-
els, and window sizes of 0.4, 0.8, 1.2, and 1.6 s for ‘strike’
models. For each unique model and window size, we
trained the model via a (50/50) train-test split, where a
random 50% of the data were used to train each model
and the remaining 50% of the data set was used to test the
model.

We used the same methods as Clermont et al. [43] to
identify which algorithm optimally classified behav-
iours. For each algorithm, a confusion matrix was built in
AcceleRater that counted true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN).

Table 1 Description and function of four rattlesnake behaviours used for accelerometry classification

Behaviour Description Function

Still Not moving while coiled or stretched out Either in ambush or resting
Locomotion Any type of body locomotion other than strike or swallow Movement

Strike Fast extension of the anterior third of the body toward a target Envenomate a prey item or defense
Swallow Prey item passes through gullet underneath accelerometer Consumption
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Fig. 2 Acceleration signatures of the sway (dark blue), heave (gray), and surge (light blue) axes for the behaviours still, locomotion, and strike at a
2 s time burst, and for the behaviours still, locomotion, and swallow over a period of 5 min

Accuracy, precision, and recall for each behavioural class
were calculated using these counts and are defined as fol-
lows (redrawn from Clermont et al. [43]). Accuracy is the
proportion of correct classifications either into or out of
a given behaviour category:

TP + TN
TP + TN + FP + EN

Accuracy =

Precision is the proportion of classifications into a
given behaviour category that were correct:

TP

Precision = ———
TP + FP

Recall is the proportion of instances of a behaviour
classification into the correct category:

TP

Recall= ——
A= IP I EN

Higher precision denotes fewer false positives and
higher recall denotes fewer false negatives.

Cross-species comparison: statistical analyses

To assess the transferability of algorithms trained on one
rattlesnake species when tested on a different rattlesnake
species exhibiting the same behaviour, we used the top per-
forming models from each species to annotate and label
already known behaviours. If there was more than one

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Hanscom et al. Animal Biotelemetry (2023) 11:20

top model, we used the model that most consistently per-
formed well across each species. Thus, we were able to test
how well the best performing ‘strike’ and ‘swallow’ mod-
els were able to correctly classify the same behaviours of
other species using a factorial experimental design, where
we tested (1) C. horridus on C. oreganus and C. viridis; (2)
C. oreganus on C. horridus and C. viridis; and (3) C. viridis
on C. horridus and C. oreganus. Subsequently, for each test,
we calculated overall accuracy (or percent correctness) and
the precision, recall, and F1-score of each behavioural class.
The F1-score was calculated as follows:

2 x Precision x Recall
F1score =

Precision + recall
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Results

Behavioural classification using accelerometry data

The window sizes and classification algorithms that pre-
dicted the top model(s) for both ‘strike’ and ‘swallow’
models varied across species (Tables 2, 3; Additional
file 1). For C. horridus the top performing algorithm
for ‘swallow’ models was a random forest that included
all summary statistics at a window size of 3 s (all three
behaviours with accuracies >81%) and there were multi-
ple top performing algorithms for ‘strike’ models, where
all three behaviours had an accuracy, precision, and recall
of 100% (Tables 2, 3). For C. oreganus, the top performing
algorithm for ‘swallow” models was a random forest that
included all summary statistics at a window size of 6 s
(all three behaviours with accuracies >90%) and the top
performing algorithm for ‘strike’ model was a random
forest that included all summary statistics at a window
size of 0.4 s (all three behaviours with accuracies >98%;

Table 2 Accuracy, precision, and recall for the top algorithm, window size, and summary statistics for Crotalus horridus, C. oreganus,
and C. viridis. Behaviours included in these models were swallow, locomotion, and still

Species Window size (s) Summary Algorithm Classification Swallow Still Locomotion Weighted
statistics performance average

C. horridus 3 All RF Accuracy 90.83 83.11 81.54 85.16
Precision 87.12 81.61 66.57 7843
Recall 85.38 6741 81.23 78.00

C. oreganus 6 All RF Accuracy 93.62 99.57 94.04 95.74
Precision 90.06 98.69 9231 93.69
Recall 91.19 100.00 90.00 93.73

C. viridis 3 All RF Accuracy 88.2 97.35 89.79 91.78
Precision 8832 943 81.12 87.91
Recall 74.2 97.95 90.79 87.65

The weighted average across each behaviour is also denoted
RF random forest

Table 3 Accuracy, precision, and recall for the top algorithm, window size, and summary statistics for Crotalus horridus, C. oreganus,

and C. viridis
Species Window size (s) Summary Algorithm Classification Strike Still Locomotion Weighted average
statistics performance

C. horridus 0.4 All RF Accuracy 100.00 100.00 100.00 100.00
Precision 100.00 100.00 100.00 100.00
Recall 100.00 100.00 100.00 100.00

C. oreganus 04 All RF Accuracy 99.45 100.00 99.45 99.64
Precision 100.00 100.00 98.25 99.42
Recall 98.39 100.00 100.00 99.46

C. viridis 04 All RF Accuracy 97.87 100.00 97.87 98.58
Precision 100.00 100.00 94.12 98.04
Recall 93.33 100.00 100.00 97.78

Behaviours included in these models were strike, locomotion, and still. The weighted average across each behaviour is also denoted

RF random forest
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Tables 2, 3). For C. viridis, the top performing algorithm
for ‘swallow’ models was a random forest that included
all summary statistics at a window size of 3 s (all three
behaviours with accuracies>88%) and there were two
top performing algorithms for ‘strike’ models, where all
three behaviours had an accuracy, precision, and recall of
100% (Tables 2, 3). Thus, for each species we were able to
develop models that performed well and correctly classi-
fied our behaviours of interest.

Cross-species validation

The overall accuracy, and the precision, recall, and F1-
scores of each behavioural class varied across species
tests for ‘swallow’ and ‘strike’ models (Tables 4, 5). The
top cross-species ‘swallow’ model (random forest model
developed using C. viridis data and tested on C. ore-
ganus) had an overall accuracy of only 58%. Across all
‘swallow’ models, locomotion behaviour was classified
correctly most frequently, but was still often confused
with swallow (Table 4; Additional file 2) The top cross-
species ‘strike’ model (random forest model created using
C. viridis data and tested on C. oreganus) had an overall
accuracy of 73%. In general, cross-species ‘strike’ mod-
els were able to classify strikes correctly, but performed
poorly at discerning still and locomotion from strike
(Table 5; Additional file 2).
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Discussion

Our results indicate that high-frequency acceleration
data logged from an anteriorly adhered device has defi-
nite potential for quantifying key feeding behaviours
in taxa of predators that have proven difficult to study
using direct behavioural observation. Using acceler-
ometry data to characterize species-typical hunting
behaviours in viperid snakes, we were able to create
species-specific models that classified the behaviours
strike, swallow, locomotion, and remaining still with
high precision, accuracy, and recall. The high success
rates of our preliminary models show that using this
technique could have strong ecological relevance in
future studies and open up new opportunities for quan-
tifying behaviour across viperids and other snakes. In
addition, we identified a low cost, reliable, non-invasive
attachment method for accelerometry devices to be
placed anteriorly on snakes, as is likely necessary for
accurately classifying distinct behaviours in these spe-
cies. However, species-specific models had low trans-
ferability in our cross-species comparison. Thus, it
may be necessary to develop and validate classification
models within the same species to avoid any species-
specific differences in behaviour or body size variance
that could affect acceleration data. Our study also took
place in a captive environment, and additional field

Table 4 Overall accuracy (i.e, percent correctness) of each test and precision, recall, and F1-scores for each behavioural classification
when applying top swallow algorithm for each species of Crotalus to the two other species

Species model Tested species Window size (s) Summary Algorithm Classification Swallow Still Locomotion Weighted Overall

statistics performance average  accuracy
C. horridus C. oreganus 3 All RF Precision 0.51 042 073 0.55 047
Recall 0.50 0.76 0.16 047
F1-score 0.51 0.54 0.27 044
C. horridus C. viridis 3 All RF Precision 0.50 0.53 0.66 0.56 0.54
Recall 0.56 068 039 0.54
F1-score 0.53 06 049 0.54
C. oreganus C. horridus 6 All RF Precision 0.64 0.87 046 0.66 0.53
Recall 091 007 062 0.53
F1-score 0.61 012 063 046
C. oreganus C. viridis 6 All RF Precision 045 1.00 057 0.67 0.51
Recall 073 000 079 0.51
F1-score 0.56 001 067 0.41
C. viridis C. horridus 3 All RF Precision 037 0.50 037 049 042
Recall 0.83 018 0.25 042
F1-score 0.51 026 0.36 0.38
C. viridis C. oreganus 3 All RF Precision 047 0.71 066 061 0.58
Recall 046 061 0.68 0.58
F1-score 0.55 066 054 0.58

The top algorithm, window size, summary statistics, and weighted averages are also denoted

RF random forest
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Table 5 Overall accuracy (i.e, percent correctness) of each test and the precision, recall, and Fl1-scores for each behavioural
classification when applying top strike algorithm for each species of Crotalus to the two other species

Species model

Tested species Window size (s) Summary Algorithm Classification Strike Still

Locomotion Weighted Overall

statistics performance average  accuracy
C. horridus C. oreganus 04 All RF Precision 1.00 038 049 0.62 0.63
Recall 088 002 1.00 0.63
F1-score 0.93 0.05 065 0.54
C. horridus C. viridis 04 All RF Precision 1.00 000 045 048 0.55
Recall 073 000 091 0.55
F1-score 0.85 0.00 0.60 048
C. oreganus C. horridus 04 All RF Precision 04 0.00 0.78 0.39 046
Recall 1.00 0.00 039 0.46
F1-score 0.57 0.00 0.52 0.36
C. oreganus C. viridis 04 All RF Precision 0.34 0.00 0.89 041 0.36
Recall 0.99 0.00 0.09 0.36
F1-score 0.51 0.00 0.16 0.22
C. viridis C. horridus 04 All RF Precision 0.75 0.00 0.60 045 0.67
Recall 1.00 0.00 1.00 0.67
F1-score 0.86 0.00 0.75 0.54
C. viridis C. oreganus 04 All RF Precision 100 056 093 0.83 0.73
Recall 098 100 021 073
F1-score 0.99 0.72 035 0.68

The top algorithm, window size, summary statistics, and weighted averages are also denoted

RF random forest

validation sampling may be necessary to build models
applicable to free-ranging snakes.

Species-specific models

For all three species (C. horridus, C. oreganus, and C.
viridis), we created a model selection framework to
determine the top performing models that could clas-
sify swallow and strike behaviours, alongside both still
and locomotion. We used what we deemed as biologi-
cally relevant window sizes for each separate ‘swallow’
and ‘strike’ model to determine the top performing
model. Furthermore, we tested three different supervised
machine-learning algorithms across varying biologically
relevant window sizes, providing a general framework
within AcceleRater to find a top performing model. For
our results, the best performing algorithms were almost
all random forests, which was unsurprising, as it is typi-
cally the approach with the highest success rate in other
studies using supervised machine-learning algorithms
to classify animal behaviour [27, 43—45]. However, some
studies are beginning to explore unsupervised machine-
learning algorithms (e.g., ‘deep learning’; [39, 46—48])
which could benefit the classification of animal behavior
using acceleration data in the future. Nonetheless, our

top performing ‘strike’ and ‘swallow’ models had high
accuracy, precision, and recall within all three species.
For all three species, the behaviour class strike had very
high accuracy (>97%), precision (all models=100%), and
recall (>93%). This was expected, as rattlesnake strikes
are extremely fast and have a short duration, thus it was
predictable that a machine-learning algorithm could
develop a model able to classify the behaviour strike from
still and locomotion. Furthermore, the behaviour class
swallow also had high accuracy (>88%), precision (> 87%),
and recall (>74%) across all three species. This behaviour,
which represents the movement of the body when a prey
item passes down the esophagus towards the stomach of
the animal and underneath the dorsally attached accel-
erometer, represents a key step in studying feeding ecol-
ogy in free-ranging snakes. Past studies of viperid feeding
ecology have quantified feeding behaviors in free-rang-
ing snakes using a combination of radio tracking and
fixed videography to assemble large data sets on ambush
behaviour, quantification of site residence times, prey
encounter rates, and strike success rates [31-35]. How-
ever, because viperid snakes almost always release struck
prey after envenomation, videography studies have not
been able to estimate the actual frequency of successful
feeding events, given that the swallowing of prey or fail-
ure to locate prey items almost always occurs once the
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animals have left the video frame. Our study indicates
that validated machine-learning models applied to accel-
erometry data sets from free-ranging snakes should be
able to accurately estimate the true number of prey items
ingested by snakes. We suspect that swallowing is ame-
nable to accurate classification, because it involves a pat-
tern of upward movement on the accelerometer that is
likely rare and should most often occur in temporal prox-
imity to a strike. Nevertheless, additional validation may
be necessary before applying our models to free-ranging
snakes, as we only tested individuals feeding on a nar-
row size range of prey. Although the mice we used in our
study are representative of the ‘typical’ prey size taken by
these individuals in nature, free-ranging viperids swallow
a range of carcass sizes [49-51] and a more accurate vali-
dation set might need to include an equivalent range of
prey size.

The behaviour classes locomotion and still were
included in each ‘strike’ and ‘swallow’ model. In all cases,
our top performing models classified both behavioural
classes locomotion and still with high accuracy, preci-
sion, and recall (Tables 2, 3). Thus, our accurate classi-
fication of behaviours involved in feeding events across
these three viperid species is similar to the performance
reached with other predator species [25, 27, 43, 52].

Accelerometer attachment

In addition to developing models to predict behaviours
involved with foraging ecology in viperids, we describe
a non-invasive procedure for attaching accelerometers
anteriorly to viperids and potentially other small ver-
tebrates as well (e.g., other snakes, lizards, etc.). Many
feeding behaviour movements involve only the head and
upper body, so attaching the accelerometer close to the
head is probably necessary for the success of this tech-
nique. For example, feeding strikes may involve a rapid
forward surge of the head and neck region, with the
lower body remaining more or less still [53], and prey
passing through the gullet are then held in the stomach
for a prolonged digestion period, making it unlikely that
lower regions of the body exhibit unique acceleration
patterns for either striking or swallowing behaviours.

We investigated several ways to attach accelerometers,
but found that attaching the accelerometer via a trans-
parent bandage material (3 M Tegaderm™) on the dor-
sum with the leading edge at 25% SVL was the simplest
and most effective technique. Although being close to
the head is desirable for accelerometer attachment, the
degree to which devices can be attached anteriorly is
also limited by the size of the device relative to the snake.
Snakes ingest comparatively large prey items relative to
their head and body size, and the elastic skin of their
anterior body must be able to expand during ingestion. A
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device attached to the dorsum with adhesive tape should
only adhere to the few scale rows lateral to the vertebrae,
lest it interfere with the snake’s ability to ingest large
prey. All three of our species tested were broadly similar
in body size, with adults ~600-1100 mm in SVL, and we
found that attaching devices at 25% SVL did not interfere
with normal movement or feeding behaviours. However,
we suspect this attachment methodology may need to be
modified for smaller-bodied snakes.

Although we recognize the use of an adhesive band-
age is a short-term attachment method (snakes generally
shed the device during each ecdysis cycle), high-fre-
quency accelerometry on relatively small-bodied ver-
tebrates is inherently limited in duration. Devices small
enough for external attachment (our customized AXY-5;
Technosmart Europe Srl., Rome, Italy) were configured
as flat rectangular packages (32 Lx 10 W x8 H mm) and
could collect ~ 30 days of data at a sampling frequency of
25 Hz. Preliminary field tests of our technique attaching
devices to free-ranging C. viridis have found that devices
generally remain attached for the entire 30-day battery
life of the device, although detachments are frequent
enough that we adhere a 0.5 g micro-VHF transmitter to
the accelerometer, so that we can recover any devices that
detach (RJH, JLH, and RWC, pers. observation). We also
caution that the success of this technique may be some-
what species-specific; in the current study, we qualita-
tively noted significant variation in adherence of devices
among species, with C. viridis and C. oreganus retain-
ing devices for long periods of time, whereas devices
attached to C. horridus detached much more readily
during both captive and field tests (DLD, AFT, and MLT,
pers. observation).

Cross-species comparison

Although accelerometry models are typically developed
and tested within a species, several other research groups
have also noted the potential utility of cross-species mod-
eling [42, 54—57]. Previous studies have shown both high
and low transferability of models across similar species,
but when more complicated behaviours are included,
the models typically have low transferability. For exam-
ple, Dickinson et al. [57] examined model transferability
of a captive phylogenetically similar species and captive
conspecifics (surrogate species) in Caprids for calibrat-
ing behavioural classification of 11 different behaviours
and found low model transferability (<55%). However,
the possibility of cross-species models is still important
to assess, because the use of a previously developed and
validated model could save researchers extensive time
and effort in creating a unique validation data set when
a suitable one already exists. For instance, Auge et al.
[42] found high model transferability across two species
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of freshwater turtles, where accelerometry was coupled
with water sensing technology to classify activity states.
Therefore, a general model could be useful in many dif-
ferent scenarios, including instances when behavioural
categories are broad (e.g., moving vs. still), free-ranging
animals are difficult to record, or the target species is
especially cryptic and difficult to find.

Despite highly accurate species-specific models, we
found low transferability of all of our top performing
models across species. Overall accuracy ranged from
42-58% to 36-73% for ‘swallow’ and ‘strike’ models,
respectively. Across all ‘swallow’ models, we found that
locomotion was classified correctly most frequently, but
still was often confused with swallow (Table 4; Additional
file 2). This may be because the behavioural class swal-
low is similar to still, where the accelerometer remains
motionless until the prey item passes down the esopha-
gus and underneath the accelerometer, presumably forc-
ing the accelerometer upwards. Broadly, cross-species
‘strike’ models were able to classify strikes correctly, but
performed poorly at discerning still and locomotion from
strikes (Table 5; Additional file 2). Although it is unclear
why the transferability of ‘strike’ models was low, it is
possible that there was too much variation in body size
across the three species, or that snake strikes are more
variable in duration and acceleration than is apparent
from direct observation. However, it is important to note
that the C. viridis ‘strike’ model had a reasonably accurate
transferability of 67% and 73% overall accuracy on C. hor-
ridus and C. oreganus, respectively. Consequently, a data
set that includes a larger sample of individuals across
more variable body sizes may increase overall transfera-
bility among species. Although we are still uncertain why
models were not generalizable across species, we think it
is unlikely that different rattlesnake species differ funda-
mentally from one another in the kinematics of their vari-
ous feeding behaviors, and that generalizable models may
be achieved by building larger validation data sets that
incorporate a broader range of snake sizes and move-
ment contexts (i.e., including movements of free-ranging
individuals through natural habitats, rather than relying
solely upon captive individuals). Such data sets should be
able to train models that can recognize the broader range
of variation present in behavioral classifications. We also
suggest that future approaches should experiment with
machine-learning algorithms that use more complex
and involved training methods (such as over-sampling,
under-sampling, moving/sliding window sizes, etc.).

Conclusions

Overall, our study demonstrates the strong potential for
using accelerometry to document critical feeding behav-
iours in snakes that are difficult to observe directly. Many
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snakes are extreme low-energy specialists, and may only
feed once every few months—a pattern that has generally
stymied attempts to fully document predation behaviours
for most species. Furthermore, we provide an ‘end-
to-end’ template for identifying important behaviours
involved in the foraging ecology of viperids using tri-axial
accelerometry. We highlight a method of attachment of
accelerometers, a technique to simulate feeding events in
captivity, and a model selection procedure using biologi-
cally relevant window sizes in an open-access software
for analyzing acceleration data. Although we were unable
to obtain a generalized model across congeneric species,
we believe this goal is still feasible if more data are incor-
porated from a broader range of movement and feeding
contexts, including snakes with more varied body sizes
moving in more naturalistic settings. This goal is impor-
tant for driving more widespread adoption of acceler-
ometry tools within particular taxonomic groups, as
researchers starting with a general viperid feeding model
could spend much less effort in validation, and more
effort in characterizing movement and behavior under
varied ecological contexts that would lead to rich com-
parative data sets.
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