
1. Introduction

Global mean annual temperatures have shown an accelerated warming trend in the last few decades in response to 

increasing anthropogenic forcing (Stocker et al., 2013), particularly in the Arctic (Pithan & Mauritsen, 2014). In 

cold seasons (winter and spring), however, land temperatures for large areas of northern mid-latitudes have expe-

rienced almost no warming or cooling trends during the same period (especially 1990–2013; J. Cohen et al., 2020) 

with frequent cold extremes, which is in sharp contrast to amplified Arctic warming (e.g., J. Cohen  et al., 2020; 

J. L.Cohen et al., 2012; McCusker et al., 2016; Mori et al., 2019). This divergence of cold-season temperatures 

is known as the “warm Arctic–cold continents” pattern (Overland et al., 2011), but the underlying mechanisms 

remain incompletely understood. Cold-season temperature reconstructions of the mid-latitudes on timescales 

extending to the pre-industrial era can provide a critical natural context and long-term perspective for recent 

climate excursions, which are of crucial importance for understanding these climate dynamics.

Unfortunately, the vast majority of existing temperature proxies from various geological archives (e.g., lake 

and marine sediments, speleothems, tree rings, and ice cores) are strongly biased toward warm season or mean 

annual temperatures (e.g., PAGES 2k Consortium, 2017). Oxygen isotopic records from Arctic ice wedges 
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(Holland et al., 2020; Meyer et al., 2015), stalagmites of the southern Ural Mountains (Baker et al., 2017), 

and peat α-cellulose of the southern Altai Mountains (Rao et  al.,  2020) have recently been interpreted as 

cold-season temperature signals for Holocene temperature reconstructions. However, these reconstructions 

are restricted to certain high-latitude regions (Baker et al., 2017; Holland et al., 2020; Meyer et al., 2015) 

or unique areas with snow/ice meltwater as a dominant water source (Rao et  al.,  2020). The distinctive 

long-chain alkenones (LCAs) produced by phylogenetically classified Group 1 Isochrysidales in freshwater 

lakes are powerful new tools for cold-season temperature reconstructions (Longo et al., 2018, 2020; Richter 

et al., 2021; Yao et al., 2019). The widespread occurrence of Group 1 LCAs in oligotrophic freshwater lakes 

throughout the northern mid- and high-latitudes (Longo et  al.,  2018; Yao et  al.,  2019) provides a valua-

ble opportunity to address the knowledge gap regarding cold-season temperature variability in mid-latitude 

regions.

Here we present a ∼300  years long, high-resolution record of cold-season temperature from volcanic Lake 

Luming in northeastern China (∼40–54°N; Figure 1) based on the unsaturation index (UK

37
 ) of Group 1 LCAs. 

Our study lake has high sediment accumulation rates with an average of ∼0.27 cm/yr (Figure 2a), allowing for 

direct comparison with modern instrumental temperature data to verify proxy reliability. We compare our record 

with a series of potential forcing factors, including the Arctic Oscillation (AO), the North Atlantic Oscillation 

(NAO), greenhouse gas, solar irradiance, and volcanic aerosol forcings. Our data and analyses provide new 

insights into the underlying forcing mechanisms of cold-season temperature variability during the last ∼300 years 

in northeastern China.

Figure 1. Map of study site. (a) Topographic map includes northeastern China and the location of the study site. (b) Contour 

map shows the location of the sediment core (red star) collected from Lake Luming and the lake's hydrological context.
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2. Materials and Methods

2.1. Study Site

Lake Luming (47°24′–47°25′N, 120°29′–120°31′E; 1,179  m a.s.l; 

Figure 1b), located in the Arxan-Chaihe volcanic field of the Greater Khin-

gan Mountains in northeastern China, is a freshwater volcanically dammed 

lake (salinity measured on July 2016 CE was ∼0.02‰; Yao et al., 2019). The 

lake formed due to the lava flows from Yanshan occurring in the Late Holo-

cene (Wang et al., 2014), which blocks the Haraha River. The Haraha River 

flows through the lake from the southwest to the southeast. Lake Luming 

has a surface area of ∼1.59 km 2 and the maximum water depth is ∼5 m (Yao 

et al., 2019). The regional mean annual air temperature is −2.55°C, and the 

mean annual precipitation is ∼441  mm (1953–2021; from nearby Arxan 

weather station), with maximum and minimum precipitation in summer and 

winter, respectively.

2.2. Sampling and Chronology

We collected an 85-cm sediment core (47°24.4′N, 120°29.4′E; LMH17) 

from Lake Luming from a water depth of ∼3 m in July 2017 CE (Figure 1b). 

The core was subsampled at 1 cm intervals, and all samples were frozen at 

−20°C in the laboratory prior to analysis.

The chronology of the core has been well established by  137Cs- 210Pb dating 

and a  14C model (Lu et al., 2021). The  137Cs activity peak was detected at 

10 cm depth, which corresponds to 1964 CE (Appleby, 2002). The age model 

of our high-resolution sediment core above 25 cm depth (since 1894 CE) was 

constructed using a constant-rate-of-supply (CRS) model (Sanchez-Cabeza 

& Ruiz-Fernández, 2012) based on  210Pb and using the  137Cs peak as a fixed 

1964 CE time marker (Figure 2a; the top 1 cm of core was assumed to date to 

2016 CE). From 1700 CE (85 cm) to 1894 CE (25 cm), the chronology was 

established by linear interpolation to a  14C age (1713 ± 5 CE) of terrestrial 

plant fragments at 81 cm depth (Figure 2a).

2.3. Alkenone Analysis

All sediment samples were freeze-dried and extracted by sonication (3×) with 

dichloromethane (DCM)/methanol (MeOH) (9:1, v/v). Total lipid extracts 

were purified by column chromatography with silica gel using the following sequence of eluents: n-hexane, DCM, 

and MeOH. The DCM fractions containing LCAs were further purified using column chromatography with silver 

nitrate-impregnated silica gel (∼10 weight %, +230 mesh from ALDRICH) with DCM and ethyl acetate (Novak 

et al., 2022). Following the method reported by Zheng et al. (2017), LCAs in the ethyl acetate fractions were 

analyzed using an Agilent 8890 gas chromatography (GC) system equipped with a flame ionization detector 

(FID) and a Restek Rtx-200 GC column (105 m × 250 μm × 0.25 μm) at Xi'an Jiaotong University, China. The 

following GC oven program was used: initial temperature of 50°C (hold 2 min), ramp 20°C/min–255°C, ramp 

3°C/min–312°C (hold 35 min). Helium was used as the carrier gas and was held at a constant flow rate of 1.3 mL/

min. The well-defined LCA profile from our previously reported Lake Wudalianchi samples (Yao et al., 2019) 

was used as a standard for the comparison of LCA peaks.

The alkenone unsaturation index UK

37
 (Brassell et  al.,  1986), UK

′

37
 (Prahl & Wakeham,  1987), and alkenone 

isomer-based RIK37 (Longo et al., 2016) were calculated as follows:

U
K

37
=

C37∶2 − C37∶4

C37∶2 + C37∶3 + C37∶4

 (1)

U
K′

37
=

C37∶2

C37∶2 + C37∶3

 (2)

Figure 2. (a) Age model for the Lake Luming sediment core and downcore 

variations in (b) RIK37 and (c) UK

37
 values. Red shaded area in (b) represents 

the RIK37 range of 0.5–0.65, indicating dominant Group 1 Isochrysidales.
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RIK37 =
C37∶3𝑎𝑎

C37∶3𝑎𝑎 + C37∶3𝑏𝑏

 (3)

where the “a” and “b” subscripts refer to the Δ 7,14,21 and Δ 14,21,28 tri-unsaturated LCAs, respectively.

2.4. Statistical Analyses

We used wavelet coherence analysis (Torrence & Compo, 1998) to explore the potential impacts of total solar 

irradiance (TSI) and volcanic aerosol forcings on our UK

37
 record on different timescales. The data used in the 

analyses were interpolated at 5 years time steps using the interp. data set function and a spline method in R. The 

statistical analyses were performed using the R biwavelet package (Grinsted et al., 2004).

3. Results and Discussion

3.1. Group 1 Alkenones in the Lake Luming Sediment Core

In lacustrine environments, alkenone-producing Isochrysidales are composed of two phylogenetically distinct 

groups: Group 1 and Group 2 (Theroux et al., 2010), with Group 1 occurring in freshwater/oligohaline lakes 

and Group 2 in brackish/saline lakes (Longo et al., 2016, 2018; Yao et al., 2019, 2022). Group 1 LCAs feature a 

highly specific profile with the presence of C38Me (“Me” refers to methyl ketone) and two tri-unsaturated isomers 

C37:3b and C38:3bEt (“Et” refers to ethyl ketone) with Δ 14,21,28 double bond positions (Longo et al., 2013, 2016; Yao 

et al., 2019). In particular, two tri-unsaturated isomeric C37 alkenones (C37:3a and C37:3b) in LCA profiles produced 

by Group 1 Isochrysidales have similar abundances. Thus, the RIK37 index based on the ratio of C37:3a and C37:3b 

isomers (Equation 3) can be used to evaluate the relative contributions of alkenones produced by Group 1 Isoch-

rysidales in lake sediments (Longo et al., 2016, 2018; Yao et al., 2020). RIK37 values of ∼0.48–0.63 indicate that 

alkenones are produced primarily by Group 1 Isochrysidales (Longo et al., 2016, 2018; Yao et al., 2019).

We have previously confirmed that surface sediments from Lake Luming contain only Group 1 LCAs using a 

combination of organic geochemical and genomic analyses (Yao et al., 2019). In our sediment core from Lake 

Luming, LCA distributions display the typical characteristics of Group 1-type alkenones, with the presence of 

C37:3b, C38:3bEt, and C38Me (Figure S1 in Supporting Information S1). The RIK37 values vary between 0.57 and 

0.64 (Figure 2b), indicating that the LCAs are derived primarily from Group 1 Isochrysidales production through-

out our sediment core. Therefore, our UK

37
 paleotemperature record mainly reflects the temperature signal from the 

Group 1 growth season (Figure 2c).

3.2. Cold-Season Temperature Reconstruction Based on Group 1 Alkenones

The seasonal bloom timing of Group 1 Isochrysidales (Groups 1a and 1b subclades included; Richter et al., 2019; 

Wang et al., 2022) mainly occurs during the spring transitional season. This timing has been shown by seasonal 

Isochrysidales DNA and alkenone production fluxes in freshwater lakes, including Lake Braya Sø in western 

Greenland (D’Andrea et al., 2011), Lake Vikvatnet in Norway (D’Andrea et al., 2016), and four lakes (Toolik 

Lake, Lake E1, E5, and Fog2) in northern Alaska (Longo et al., 2018; Richter et al., 2019). A thermodynamic 

lake model has demonstrated that the temperatures of surface lake waters at that time in the relatively cold 

regions respond strongly to winter-spring (or cold-season) air temperature changes (Longo et al., 2020; Richter 

et al., 2021). Such response is mainly dependent on lake ice thickness in the water and early spring, as well as 

the timing and duration of spring ice melt (Longo et  al.,  2020). Colder winter-spring air temperatures could 

result in thicker lake ice, later ice break-up, and longer duration of spring ice melt, which has a lasting effect 

on spring lake water temperatures. Throughout the northern mid- and high-latitudes, the UK

37
 values of Group 

1 LCAs from surface sediments in freshwater lakes display strong correlation with cold-season temperatures 

(Longo et al., 2018), showing the potential wide applicability of this proxy in recording this temperature signal. 

This could fill the important gap in paleoclimate studies as the majority of existing proxies mostly reflect warm 

season or annual mean temperature signals. Recently, this proxy has been successfully used to reconstruct past 

winter-spring air temperature changes in Arctic Alaska and Iceland (Longo et al., 2020; Richter et al., 2021).

To further verify the seasonality of Group 1 LCA production in our sediment record, we compare the UK

37
 time 

series with the instrumental winter-spring and summer temperatures from nearby Arxan weather station (1953–
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2020 CE; Figure 3). The UK

37
 values are generally consistent with winter-spring 

temperature (December–May) fluctuations (r = 0.48; p < 0.01; Figure 3a), 

but are poorly correlated with summer temperature (June–August) changes 

(r = 0.07; p < 0.01; Figure 3b). This analysis reinforces our interpretation 

that Group 1 LCAs mostly reflect a winter-spring air temperature signal. 

It is noteworthy that the correlation between UK

37
 values and winter-spring 

temperatures is not very strong (r = 0.48; p < 0.01; Figure 3a). This may be 

attributed to sediment core dating uncertainties and slightly variable seasonal 

timing of the highest Group 1 LCA production. Due to the lack of a local 

specific temperature calibration, we opt not to reconstruct UK

37
 -inferred abso-

lute temperature variability using our sediment core.

In our entire sediment core, UK

37
 values range from −0.29 to −0.09 (Figure 4a). 

Before ∼1830 CE, the UK

37
 values continuously increase, followed by a rela-

tively abrupt decrease until ∼1880 CE. Afterward, the overall trend of UK

37
 

remains almost constant until the present, with relatively low values occur-

ring around 1900, 1964, and 2013 CE. Overall, our record displays relatively 

high UK

37
 values during the pre-industrial interval (1750–1850 CE; Figure 4a), 

indicating cold-season warmth at that time, which is also supported by the 

relatively high UK
′

37
 values (Figure S2b in Supporting Information S1). The 

warm interval coincides with higher index of extreme warm winter (IEW) 

values in northeastern China (Chu et  al.,  2011; Figure  4b). The IEW we 

compare here is based on descriptions of extreme warm winter events in 

historical documents (the Annals of the Choson Dynasty; 1392–1910 CE) 

from the Korean Peninsula (Figure 1a), with higher IEW values indicating 

warmer winters (Chu et  al., 2011). The consistency of our UK

37
 record and 

the historical data further verifies the reliability of Group 1 LCAs in record-

ing cold-season temperature changes. It is noteworthy that RIK37 values are 

slightly higher at the interval of 1750–1850 CE, but still generally fall within 

the range of Group 1 RIK37 values (Figure  2b). This may be due to potential effect of other environmental 

factors on the RIK37 of Group 1 alkenones at the relatively warm condition, such as lake trophic status (Longo 

et al., 2016).

3.3. Driving Mechanisms of Cold-Season Temperature Variability in Northeastern China

The AO and NAO are two prominent modes of large-scale atmospheric circulation variability over the middle 

and high latitudes of the Northern Hemisphere, especially during the cold season (e.g., Hurrell, 1995; Thompson 

& Wallace,  1998; Walker,  1928). Numerous observational and modeling studies have demonstrated that the 

AO and/or NAO significantly affect Eurasian climate at interannual to interdecadal timescales (e.g., reviewed 

by Bader et  al.,  2011; He et  al.,  2017). We compare regional winter-spring temperatures from Arxan station 

(1953–2020 CE) with annual mean and winter-spring AO and NAO indices (Figure S3 in Supporting Informa-

tion S1). The winter-spring temperatures are more strongly correlated to the AO index (r = 0.511 for annual mean 

AO; r = 0.614 for winter-spring AO) relative to the NAO index (r = 0.257 for annual mean NAO; r = 0.399 for 

winter-spring NAO), especially the winter-spring AO. Therefore, we interpret the AO to be a significant driver of 

winter-spring temperature variability in our study region.

In our sediment core, the UK

37
 -inferred cold-season warmth between 1750 and 1850 CE generally corresponds to 

the period of higher cold-season AO index states, as indicated by more positive January–February coral δ 18O 

values from the northern Red Sea (Felis et al., 2000; Rimbu et al., 2001; Figure 4c). It is noteworthy that AO 

index in May inferred from oxygen isotope chronologies of larch tree-ring cellulose on the eastern Taimyr Penin-

sula (Churakova Sidorova et al., 2021) and warm-season AO index inferred from tree-ring width chronologies in 

Arctic and North Atlantic regions (D’Arrigo et al., 2003) do not display more positive phases between 1750 and 

1850 CE (Figure S4 in Supporting Information S1). The disparity of the reconstructed AO could be due to seasonal 

differentiation of AO variability. Moreover, the NAO did not persistently remain in its positive phase at that time 

(Trouet et al., 2009; Ortega et al., 2015; Figure 4d). This might be due to the decoupling of the AO and NAO in 

Figure 3. Comparison of the Lake Luming sediment core UK

37
 time series 

with the instrumental (a) winter-spring and (b) summer temperatures from 

the nearby Arxan weather station for the period of 1950–2020 CE. Thick blue 

lines show 5-point running mean.
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Figure 4.
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the cold-season warm climate associated with a different connection to the stratospheric polar vortex anomalies 

(Hamouda et al., 2021). Thus, the cold-season AO may have played a critical role in driving the cold-season warm 

climate around 1750–1850 CE. The physical mechanisms may be associated with the strength, frequency, and 

tracks of cold air and cold surges/cold waves. When the AO is in its positive phase, there is lower-than-normal 

atmospheric pressure over the polar region and higher-than-normal pressure at the mid-latitudes of the North 

Pacific and North Atlantic (and vice versa). A stronger westerly jet stream wind stays farther north, reducing cold 

air outbreaks across the mid-latitudes (e.g., Thompson & Wallace, 1998, 2000). Conversely, the jet stream shifts 

southward and becomes weaker in the negative AO phase, allowing more frequent penetration of polar cold air 

outbreaks into the mid-latitudes (e.g., Thompson & Wallace, 1998, 2000). The AO-induced cold anomalies can 

extend to northeastern China, possibly via the strengthening and southward expansion of the Siberian high that 

serves as a bridge (He et al., 2017; Jeong & Ho, 2005; Park & Ho, 2011; Woo et al., 2012).

On decadal to multidecadal timescales, solar irradiance and volcanic eruptions are two external forcings affecting 

temperature variability for the pre-industrial period of the past millennia (e.g., Crowley, 2000; Bauer et al., 2003; 

PAGES 2k Consortium, 2019). We perform two wavelet coherence analysis to assess the role of TSI and volcanic 

aerosol forcings on our cold-season temperature record on different timescales (Figure S5 in Supporting Infor-

mation S1). For the periodicities of ∼45–50 years, the UK

37
 values show the relatively positive correlation with 

TSI variability during the period of ∼1750–1850 CE (Figure S5a in Supporting Information S1), but have no 

correlation with volcanic aerosol forcing (Figure S5b in Supporting Information S1). Higher TSI may have led to 

warmer temperature for the periodicities of ∼45–50 years between ∼1750 and 1850 CE. At that time, the positive 

phase of  the AO has led to less frequent cold air outbreaks over northeastern China (Figure 4c), so TSI forcing 

has had additional influence on superimposed multidecadal signals in the cold-season temperature variability. 

However, when AO was in its negative phase, there were more frequent cold air outbreaks over northeastern 

China. The influence of TSI on the cold-season temperature variability at the multidecadal timescales may have 

been counterbalanced or overwhelmed by increased frequency and/or strength of cold air outbreaks induced by 

the negative AO.

3.4. Implications for Future Cold-Season Temperature Variability

Anthropogenic greenhouse-gas forcing has long been considered the main driver of the accelerated increase of global 

mean annual temperatures in recent decades (e.g., Stott et al., 2000; Tett et al., 2002). However, this driver clearly does 

not explain the weak trend or even cooling of cold seasons observed in northern mid-latitude continents at the same 

timescale (e.g., J. Cohen et al., 2020; J. L.Cohen et al., 2012; McCusker et al., 2016; Mori et al., 2019). In our sediment 

core, we extend the cold-season temperature record of northeastern China beyond the industrial revolution, providing 

a longer-term perspective for recent climatic anomalies. Our record shows an overall colder cold-season climate since 

the industrial revolution (1850 CE) relative to the pre-industrial period of 1700–1850 CE (Figure 4a), which does 

not directly correspond to the strong increases of anthropogenic greenhouse-gas radiative forcing (Figure 4e). Rather, 

our analyses have suggested that this temperature variability is a direct response to internal cold-season AO forcing. 

However, it is possible that rising greenhouse gases have indirectly impacted the AO variability.

AO variability in the future could help predict the frequency of extreme cold events over northeastern China and other 

AO-affected mid-latitude regions. Some model and observational studies have shown a possible linkage between 

the Arctic sea-ice loss and negative AO phase in recent decades (e.g., Honda et al., 2009; Kim et al., 2014; Liu 

et al., 2012; Mori et al., 2019; Wu & Zhang, 2010). If this is true, more frequent cold extremes would be expected 

to occur in AO-affected mid-latitude regions in response to future reductions of Arctic sea ice with global warming.

4. Conclusions

In this study, we take advantage of high sediment accumulation rates in Lake Luming in northeastern China to 

verify the reliable application of the Group 1 alkenone UK

37
 proxy for past cold-season temperature reconstruction 

Figure 4. Group 1 UK

37
 -inferred cold-season temperature variations and climate forcings for the period of 1700–2020 CE. (a) The UK

37
 values in the Lake Luming 

sediment core (this study). (b) Index of extreme warm winter events in northeastern China based on descriptions in historical documents (the Annals of the Choson 

Dynasty; 1392–1910 CE) on the Korean Peninsula (Chu et al., 2011; 3-point running mean). (c) January–February Ras Umm Sidd coral δ 18O values from the northern 

Red Sea (Felis et al., 2000; Rimbu et al., 2001; blue thick line shows 10-point running mean) and Arctic Oscillation data between 1899 and 2002 (research.jisao.

washington.edu/data_sets/aots/; the time series has not been standardized; red thick line shows 5-point running mean). (d) North Atlantic Oscillation index (Ortega 

et al., 2015; Trouet et al., 2009). (e) Radiative forcing due to atmospheric greenhouse gases including CO2, CH4, and NO2 (Köhler et al., 2017). (f) Total solar irradiance 

(Lean, 2000). (g) Global volcanic aerosol forcing (Sigl et al., 2015). Blue shading notes the period of the 1750–1850 CE.
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by comparing with instrumental and historical records in the region. Our unique alkenone record spans past 

300 years and indicates warmer cold-season conditions during the pre-industrial era (1750–1850 CE) relative 

to the anthropogenic industrial period (since 1850 CE). This warmth can be largely attributed to more positive 

cold-season AO states, which may reduce cold air outbreaks over northeastern China. In the future, a more caus-

ative understanding of the linkages between AO and Arctic climate (such as sea ice loss) would help uncover the 

predictability of cold-season temperature variability in mid-latitude regions.

Data Availability Statement

The research data used in this study are submitted to the datasets of 4TU. Research Date, which is available at 

https://doi.org/10.4121/21789452.v2.
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