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Abstract—Providing error detection constructions for Inter-
net of nano-Things in constrained applications is of prominent
importance. The Niederreiter cryptosystem falls into the cate-
gory of code-based public-key cryptography. It is a relatively
well-established scheme, but its key size and performance
overheads have traditionally hindered its efficiency to be
utilized for traditional computers. However, with the arrival of
quantum computers, the Niederreiter cryptosystem is believed
to be secure against attacks enabled by such computers, even
though it has been previously shown that it is still vulnerable to
fault injection and natural hardware defects. In this paper, we
present fault detection schemes for the different blocks in the
key generation of the Niederreiter cryptosystem using binary
Goppa codes. These blocks perform finite field operations
such as addition, multiplication, squaring, and inversion. The
schemes are derived for different parameter sizes in order
to have more flexibility and be able to choose according
to the overheads to be tolerated and the required level of
security. Moreover, we implement our fault detection schemes
on Xilinx field-programmable gate array (FPGA) family Kintex
UltraScale+ (device xcku5p-ffvd900-1-i) to benchmark the
overhead induced of the proposed approaches.

Index Terms—Fault detection, field-programmable gate ar-
ray (FPGA), Niederreiter cryptosystem, post-quantum cryp-
tography.

I. INTRODUCTION

Deeply-embedded hardware architectures with tight con-

straints are wide-spread in today’s Internet of nano-Things

era. Providing security and fault detection schemes for

such constrained usage models, i.e., aerospace and defense

systems, medical electronics, or scientific instruments, is of

prominent importance. With the arrival of quantum comput-

ers, traditional public key cryptosystems will be no longer

secure against attacks enabled by such computation power

[1]. In the past few years, Post-Quantum Cryptography

(PQC) has gained attention, especially after the National

Institute of Standards and Technology (NIST) began the

process to standardize quantum-resistant public-key cryp-

tographic algorithms [2].

The McEliece cryptosystem was one of the first public-

key cryptography schemes. It was published in 1978 [3].

In 1986, a related cryptosystem was proposed by Nieder-

reiter et al. [4]. While the McEliece cryptosystem used

as its primary building block the binary Goppa code, the

Niederreiter cryptosystem was initially based on the Reed-

Salomon code. However, after the Reed-Salomon variant

was shown insecure in [5], the Niederreiter cryptosystem

was revised and became based on the same Goppa code as

the McEliece cryptosystem. In 2017, a submission to the

NIST standardization process, called Classic McEliece, was

developed. Classic McEliece is a slightly revised version of

the Niederreiter cryptosystem. Compared to the Niederreiter

cryptosystem, it extends the public-key encryption scheme

to a key encapsulation mechanism (KEM). However, it

retains all other major features of the Niederreiter cryptosys-

tem, including security guarantees. Thus, the Niederreiter

cryptosystem can be treated as a subset of the Classic

McEliece and use the same parameters as this NIST PQC

candidate. In Round 1, Classic McEliece had only two

parameter sets, both at the security level 5, equivalent to

the security of AES-256. In Round 2, 8 additional sets have

been added, two at security level 1 (corresponding to the

security of AES-128), two at security level 3 (corresponding

to the security of AES-192), and four at security level 5.
The sensitivity of both the original McEliece cryptosys-

tem and revised (binary Goppa-code-based) Niederreiter

cryptosystem to fault analysis was demonstrated in [6].

Shortly after, timing side-channel attacks were investigated

in [7] and [8]. Most recently, fixed-vs-random test vector

leakage assessment (TVLA), partial key exposure attacks,

and backdoors were used to recover a secret key of the

McEliece cryptosystem in [9], [10], and [11], respectively.
In this paper, we evaluate the resistance of the key gener-

ation function of the Niederreiter cryptosystem against fault

attacks. One of the primary parameters of this cryptosystem

affecting our study is m, which defines the size of the

underlying Galois field GF (q) through the relation q = 2m.

In the NIST process, the Round 1 Classic McEliece used

m = 13. Starting from Round 2, values m = 12 and 13 were

employed. Additionally, there exists prominent earlier work

with different security parameters based on security neces-

sities and system constraints [12]-[14]. Therefore, our work

provides flexibility and tunable security by covering such

works as well through the choice of the range 11 ≤ m ≤ 14.
There has been previous work on countering fault attacks

and providing reliability for traditional cryptography and

PQC [15]-[26]. Moreover, fault detection techniques for

composite fields and finite fields are investigated in [27]-

[29]. In [27], multi-bit parity prediction is used to detect

faults in the composite fields used in the McEliece cryp-

tosystem. Error detection schemes based on cyclic redun-



dancy checks (CRC-5 and CRC-10) are introduced for the

finite field multipliers used by the Luov’s cryptosystem in

[28] and by cryptosystems using the NIST field GF (2163)
in [29]. This work adds two new CRC schemes, i.e., CRC-3

and CRC-4, overcoming the limitations of parity schemes,

vulnerable to intelligent fault injections and a 50% error

coverage. The CRC sizes selected in this paper are lower

than those in [28] and [29] to minimize the overheads, since

this work is intended to provide fault detection to deeply-

embedded systems. Additionally, we implement for the first

time error detection schemes for the Key Generator of the

Niederreiter cryptosystem.

II. PRELIMINARIES

McEliece proposed the first code-based public-key en-

cryption system in 1978 [3]. The McEliece cryptosystem’s

private key is a randomly selected irreducible Goppa binary

code with a generator matrix that corrects errors of up

to t. In 1986, Niederreiter presented a dual version of

the McEliece cryptosystem, using a parity check matrix H
instead of a generator matrix for encryption. For the Nieder-

reiter cryptosystem, the message is encoded as a weight-t
error vector e of length n; alternatively, the Niederreiter

cryptosystem can be used as a key-encapsulation scheme

where a random error vector is used to derive a symmetric

encryption key.

There are three main operations in the Niederreiter cryp-

tosystem: (i) the generation of a private key and a public key

(key generation), (ii) the creation of a ciphertext to prevent

unauthorized access to the message (encryption), and (iii)

the decoding of the message previously encrypted (decryp-

tion). Our work focuses on the key generation, which is the

most expensive operation in the Niederreiter cryptosystem.

In this process, a public key needed for the encryption of the

message and a private key needed to decrypt the message

are created. There are four important parameters which can

highly affect how secure the cryptosystem is: m, which

is the extension field dimension; t, which is the number

of correctable errors; the code length n; and finally, the

dimension k.

To create the private and public keys needed for the

encryption and decryption processes, n elements in GF (2m)

are chosen randomly, i.e., α0, α1, ..., αn−1, and a random

permuted list of indices P is produced. Next, a monic irre-

ducible polynomial in the form g(x) = xt+gt−1x
t−1+...+

g1x+g0, with degree t is created. The irreducible polynomial

(denoted as Goppa polynomial) and the permuted list of

indices P, form the private key (g(x), (α0, α1, ..., αn−1)).

To derive the public key K, a parity check matrix H is then

computed with the following form:

H =

⎡
⎢⎢⎢⎢⎣

1
g(α0)

1
g(α1)

· · · 1
g(αn−1)

α0

g(α0)
α1

g(α1)
· · · αn−1

g(αn−1)
...

...
. . .

...
αt−1
0

g(α0)

αt−1
1

g(α1)
· · · αt−1

n−1

g(αn−1)

⎤
⎥⎥⎥⎥⎦
.

Computing H is one of the most time-consuming pro-

cesses in the Niederreiter cryptosystem since it needs addi-

tion, multiplication, and inversion in GF (2m). Each element

of the matrix H is then replaced with a column of m bits

using the permuted list of indices P, obtaining a binary

parity check matrix H’. Lastly, the key generator transforms

the modified mt × n H’ matrix to its systematic form

[Imt|K], where Imt is the identity matrix of size mt,
returning the public key K.

In the process of encryption, the sender encodes the mes-

sage as an error vector e of length n and weight at most t and

computes the ciphertext by multiplying the extended public

key [Imt|K] with the plaintext. Such operation produces

a specific syndrome which is sent to the receiver as the

ciphertext c. When the receiver obtains such ciphertext,

the original plaintext is recovered by using the private key

(g(x), (α0, α1, ..., αn−1)).

III. PROPOSED FAULT DETECTION ARCHITECTURES

In this work, we propose fault detection schemes based on

CRC-3 and CRC-4. These schemes aim to detect transient

and permanent internal faults on the Key Generator due to

natural or malicious faults, e.g., differential fault analysis.

Due to technological limitations, an adversary may not be

able to flip precisely one bit to capture sensitive information.

As a result, techniques that can identify multiple stuck-at

faults (stuck-at 0 and stuck-at 1) in addition to single faults

need to be explored [30].

CRC was first proposed in 1961 and it is based on

the theory of cyclic error-correcting codes. To implement

CRC, a generator polynomial gp(β) is selected and a fixed

number of check bits are appended to the data, which are

inspected when the output is received to detect any errors.

In our proposed error schemes, we obtain formulations for

predicted CRC checksums and they are compared via XOR

gates with the actual CRC. The security parameters used are

shown in Table I, where it can be seen how m varies from

11 to 14 bits [31]. Moreover, the set for m = 13 corresponds

to the Classic McEliece NIST submission; although in the

last submission, m = 12 with t = 64 and n = 3488 is also

proposed [32].

A. Functional Units of the Key Generator

As mentioned earlier, the main operations within the

Key Generator are GF (2m) addition, multiplication, and

inversion. Fig. 1 shows the overall architecture of the Key

Generator (adopted from [33]). In Fig. 1, the circles are

memory blocks, while the squares are functional units.

As it is shown, the Key Generator uses PRNGs to allow

deterministic testing, which would have to be replaced with

a cryptographically secure random number generator for real

scenarios. The private key is formed by G_out and P_out,
which are provided by the R Generator and the P Generator,

respectively. Such generators provide a generator matrix G
and a permutation matrix P needed to obtain the private

key. Next, the g(x) Evaluation block is used to perform high

degree polynomial multiplications efficiently and lastly, the

H Generator computes a parity check matrix H needed to

obtain the public key. Gaussian Systemizers are also used

in this design for matrix systematization over GF (2m) and

GF (2), needed to generate both public and private keys.

The scope of this paper is to propose error detection

schemes capable of detecting natural and malicious faults in

different finite field arithmetic of the Key Generator within

the Niederreiter cryptosystem. Since every unit besides the

P Generator performs finite field arithmetic, our schemes



Table I
SECURITY PARAMETERS USED TO DERIVE THE DIFFERENT FAULT

DETECTION SCHEMES

m t n Security Level
11 27 2,048 81
12 64 3,488 146
13 119 6,960 263
14 15 16,384 90

PRNG

PRNG

P 
Generator

R 
Generator

GF(2m) 
Gauss  
Syst. 

g(x) 
Evaluation

H 
Generator

GF(2)
Gauss
Syst.

G_out  

P_out  H_out  

P

R

H

Figure 1. Overall architecture of the Key Generator.

provide error detection to the entire Key Generator besides

the P Generator, which mainly swaps elements and can

be done be rewiring. Next, we present an overview of all

the different blocks used in the Key Generator. Readers

interested in knowing more about the other blocks of the

Niederreiter cryptosystem can refer to [33].

1) R Generator: As shown in Fig. 1, a PRNG is em-

ployed initially, generating t random m-bit vectors for the

coefficients of r(x) =
∑t−1

i=0 rix
i. The coefficient matrix R

is then computed by calculating the powers of 1, r, ..., rt,
using a polynomial multiplier that performs the classical

schoolbook multiplication utilizing GF (2m) multipliers. Af-

ter each multiplication, the results are stored in the GF (2m)
Gaussian Systemizer until the entire coefficient matrix R has

been initialized.

2) Gaussian Systemizer: Two different Gaussian System-
izer units are used in the Key Generator for matrix sys-

temization, i.e., GF (2) Gaussian Systemizer and GF (2m)
Gaussian Systemizer. The first one is needed to calculate the

public key K while the latter one is utilized to generate the

Goppa polynomial g(x). To perform matrix systemization

over GF (2), once the matrix H’ is completely stored in

the GF (2) Gaussian Systemizer unit, R is divided into two

sub-matrices. Through Gaussian elimination and backward

substitution, its left part is then reduced into an mt × mt
identity matrix and its right part becomes the public key

matrix K of size mt × k. In the matrix systemization over

GF (2m), a binary field inverter and binary field multipli-

ers are added to support arbitrary binary fields. Once the

coefficient matrix R is completely stored in the memory of

the GF (2m) Gaussian Systemizer, the Gaussian elimination

process starts. This process transforms R into its reduced

echelon form, containing all of the unknown coefficients of

the minimum polynomial g(x) in the right portion of such

matrix.

3) P Generator: The P Generator produces a permuted

list of indices P needed for the calculation of both public key

(precisely to generate the permuted binary check matrix H’)
and private key (formed by an irreducible Goppa polynomial

g(x) and P). The Fisher-Yates shuffle is used to perform the

permutation. To do so, a dual-port memory block of depth

2m formed by m vectors is initialized. The port A address

decrements from 2m − 1 to 0 and as long as the output

is greater than address A, a PRNG produces new random

numbers for each address A. This output is utilized as the

address for port B whenever the PRNG output is smaller

than address A. The contents of the A and B addresses are

then swapped to finally obtain a shuffled array A.

4) G(x) Evaluation: The G(x) Evaluation unit uses the

Gao-Mateer Additive FFT scheme. Gao-Mateer Additive

FFT is a recursive algorithm that reduces the amount of

finite field multiplications ever further by transforming the

polynomial g(x) into the form g(x) = g(0)(x2 + x) +
xg(1)(x2 + x), where g(0)(x) and g(1)(x) are half-degree

polynomials, using radix conversion [34].

5) H Generator: After the G(x) Evaluation unit is done

and the permuted list of indices P is set, the indices P
become the new indices of the α elements from the H matrix

to calculated the permuted binary parity check matrix H’,
e.g., α0 becomes αp0

(where pi’s when 0 ≤ i ≤ n − 1
are the permuted indices P). Each entry is calculated by

using a finite field inverter and they get stored in the GF (2)
Gaussian Systemizer which will reduced H’ to obtain the

public key matrix K.

B. Error Detection Schemes

1) GF (2m) Addition and GF (2m) Multiplication: To

perform GF (2m) addition, we use one of the modules used

to perform GF (2m) multiplication as described in [35], the

sum module. GF (2m) multiplication is done using three

different modules: sum, α, and pass-thru modules. The sum
module adds two elements in GF (2m) using m two-input

XOR gates; the pass-thru module multiplies a GF (2m)
element by a GF (2) element; and the α module multiplies

an element of GF (2m) by α and it reduces the result modulo

f(α). The multiplication of any element in GF (2m) by α
gives

A(α) · α = am−1α
m + am−2α

m−1 + ...+ a0α, (1)

where αm = fm−1α
m−1+fm−2α

m−2+ ...+f0 mod f(α).
In multiplication using polynomial basis, the inputs A

and B are elements of GF (2m) in the form of A =∑m−1
i=0 aiα

i, ai ε {0, 1} and B =
∑m−1

i=0 biα
i, bi ε {0, 1},

where ai and bi are the coordinates of each input. The

multiplication of these two elements can be represented as:

A ·B = A ·
m−1∑
i=0

biα
i =

m−1∑
i=0

bi(Aαi).

This, in turn, obtains the output C as follows:

C = A ·B mod f(α) =
m−1∑
i=0

biX
(i),

where X(i) = α ·X(i−1) mod f(α) for 1 ≤ i ≤ m− 1, and

X(0) = A.
For the α module, gp1

(β) = β3 + β + 1 is used as the

generator polynomial with CRC-3, and gp2(β) = β4+β+1
is used as the generator polynomial with CRC-4. To find

the different checksums for each m, these fixed polynomials

are used as follows, where we denote them as gp1
(β) and

gp2
(β), respectively:



Table II
OUR DERIVED CRC CHECKSUMS FOR m = 11, m = 12, m = 13, AND m = 14 IN THE α MODULE OF THE PRESENTED SCHEME

m f(α) CRC Predicted CRC Checksum Actual CRC Checksum

11 α11 + α2 + 1

3
(a10 + a8 + a5 + a4 + a3 + a1)α2 + (a9+
a7 + a4 + a3 + a2 + a0)α+ (a10 + a9+

a6 + a5 + a4 + a2)

(γ9 + γ6 + γ5 + γ4 + γ2)α2 + (γ10 + γ8+
+γ5 + γ4 + γ3 + γ1)α+ (γ10 + γ7 + γ6

+γ5 + γ3 + γ0)

4
(a8 + a6 + a5 + a2)α3 + (a10 + a9 + a7+
a5 + a4 + a1)α2 + (a9 + a8 + a6 + a4+
a3 + a0)α+ (a10 + a9 + a7 + a6 + a3)

(γ9 + γ7 + γ6 + γ3)α3 + (γ10 + γ8 + γ6+
γ5 + γ2)α2 + (γ10 + γ9 + γ7 + γ5 + γ4+

γ1)α+ (γ10 + γ8 + γ7 + γ4 + γ0)

12
α12 + α6 + α4

+α+ 1

3
(a10 + a8 + a5 + a4 + a3 + a1)α2 + (a10+
a9 + a7 + a4 + a3 + a2 + a0)α+ (a9+

a6 + a5 + a4 + a2)

(γ11 + γ9 + γ6 + γ5 + γ4 + γ2)α2 + (γ11+
γ10 + γ8 + γ5 + γ4 + γ3 + γ1)α+ (γ10

+γ7 + γ6 + γ5 + γ3 + γ0)

4

(a11 + a10 + a8 + a6 + a5 + a2)α3 + (a11
+a10 + a9 + a7 + a5 + a4 + a1)α2 + (a10
+a9 + a8 + a6 + a4 + a3 + a0)α+ (a9+

a7 + a6 + a3)

(γ11 + γ9 + γ7 + γ6 + γ3)α3 + (γ11 + γ8
+γ6 + γ5 + γ2)α2 + (γ11 + γ10 + γ9 + γ7
+γ5 + γ4 + γ1)α+ (γ10 + γ8 + γ7 + γ4

+γ0)

13
α13 + α4 + α3

+α+ 1

3

(a12 + a11 + a10 + a8 + a5 + a4 + a3+
a1)α2 + (a12 + a11 + a10 + a9 + a7 + a4
+a3 + a2 + a0)α+ (a11 + a9 + a6 + a5+

a4 + a2)

(γ12 + γ11 + γ9 + γ6 + γ5 + γ4 + γ2)α2+
(γ12 + γ11 + γ10 + γ8 + γ5 + γ4 + γ3 + γ1)
·α+ (γ12 + γ10 + γ7 + γ6 + γ5 + γ3 + γ0)

4

(a12 + a11 + a10 + a8 + a6 + a5 + a2)α3

+(a11 + a10 + a9 + a7 + a5 + a4 + a1)α2

+(a11 + a10 + a9 + a8 + a6 + a4 + a3+
a0)α+ (a11 + a9 + a7 + a6 + a3)

(γ12 + γ11 + γ9 + γ7 + γ6 + γ3)α3 + (γ12
+γ11 + γ10 + γ8 + γ6 + γ5 + γ2)α2 + (γ12
+γ11 + γ10 + γ9 + γ7 + γ5 + γ4 + γ1)α+

(γ12 + γ10 + γ8 + γ7 + γ4 + γ0)

14
α14 + α8 + α6

+α+ 1

3

(a13 + a12 + a11 + a10 + a8 + a5 + a4 + a3
+a1)α2 + (a11 + a10 + a9 + a7 + a4 + a3
+a2 + a0)α+ (a12 + a11 + a9 + a6 + a5

+a4 + a2)

(γ13 + γ12 + γ11 + γ9 + γ6 + γ5 + γ4 + γ2)
·α2 + (γ12 + γ11 + γ10 + γ8 + γ5 + γ4 + γ3
+γ1)α+ (γ13 + γ12 + γ10 + γ7 + γ6 + γ5

+γ3 + γ0)

4

(a13 + a12 + a11 + a10 + a8 + a6 + a5
+a2)α3 + (a12 + a11 + a10 + a9 + a7
+a5 + a4 + a1)α2 + (a13 + a11 + a10
+a9 + a8 + a6 + a4 + a3 + a0)α+ (a12

+a11 + a9 + a7 + a6 + a3)

(γ13 + γ12 + γ11 + γ9 + γ7 + γ6 + γ3)α3

+(γ13 + γ12 + γ11 + γ10 + γ8 + γ6 + γ5
+γ2)α2 + (γ12 + γ11 + γ10 + γ9 + γ7 + γ5
+γ4 + γ1)α+ (γ13 + γ12 + γ10 + γ8 + γ7

+γ4 + γ0)

According to gp1
(β):

β3 ≡ β + 1 mod gp1(β)
β4 ≡ β2 + β mod gp1(β)

...

β13 ≡ β3 + β2 + β ≡ β2 + 1 mod gp1
(β).

According to gp2(β):

β4 ≡ β + 1 mod gp2
(β)

β5 ≡ β2 + β mod gp2
(β)

...

β13 ≡ β4 + β3 + β2 + β ≡ β3 + β2 + 1 mod gp2
(β).

Applying these generator polynomials into (1), we obtain

the CRC-3 and CRC-4 checksums for the different m’s as

shown in Table II. The case for m = 11 is explained below,

and the derivations for other cases can be derived following

the same approach.

If m = 11, from (1) we have

A(α) · α = a10α
11 + a9α

10 + ...+ a1α
2 + a0α.

Then, applying the irreducible polynomial f(α) = α11 +
α2 + 1, one obtains

A(α) · α ≡ a10α
2 + a10 + a9α

10 + a8α
9

+a7α
8 + a6α

7 + a5α
6 + a4α

5 + a3α
4

+a2α
3 + a1α

2 + a0α mod f(α).
(2)

To calculate the predicted CRC-3 checksum for m = 11
in the α module (PCRC311), the generator polynomial is

applied to obtain

PCRC311 = (a10 + a8 + a5 + a4 + a3
+a1)α

2 + (a9 + a7 + a4 + a3 + a2 + a0)
·α+ (a10 + a9 + a6 + a5 + a4 + a2)

(3)

Lastly, to calculate the actual CRC-3 checksum for m =
11 in the α module (ACRC311), we rename the coefficients

of (2): a9 as γ10, . . . , a0 as γ1, and a10 as γ0, to obtain

A(α) · α = γ10α
10 + γ9α

9 + γ8α
8 + γ7α

7 + γ6α
6

+γ5α
5 + γ4α

4 + γ3α
3 + γ2α

2 + γ1α
1 + γ0,

(4)

and the generator polynomial is applied to obtain

ACRC311 = (γ9 + γ6 + γ5 + γ4 + γ2)α
2

+(γ10 + γ8 + γ5 + γ4 + γ3 + γ1)α
+(γ10 + γ7 + γ6 + γ5 + γ3 + γ0).

(5)

For the sum module, which adds elements A(x) and B(x)
over GF (2m), both CRC checksums are similar as the actual

CRC checksums from Table II, but since B(x) is added, its

coefficients would be added as well. Lastly, for the pass-
thru module, which adds element A(x) over GF (2m) with

a GF (2) element b, both CRC checksums are also similar

as those from Table II, but since b is multiplied, the CRC

checksums from Table II are multiplied as well with b.

2) GF (2m) Inversion : The multiplicative inverse of

an element A �= 0 in the field GF (2m) is defined as

the process of finding the unique element A−1 εGF (2m)
such that A · A−1 = 1. The inversion can be derived with

squarings and multiplications by employing the Itoh-Tsujii

multiplicative inverse algorithm (ITA) [36], which reduces

the complexity of the polynomial variant of Fermat’s Little

Theorem (FLT) to obtain a better performance. To perform

GF (2m) inversion, we based our schemes on FLT and ITA.

FLT specifies that the inverse of an element A can be derived

as A2m−2 ≡ A−1 mod f(α), requiring m−2 multiplications

and m− 1 squarings.

Following FLT basics, Itoh and Tsujii introduced the

method ITA to reduce the complexity of such theorem. ITA

yields dramatic reductions in the number of multiplications



Table III
STEPS NEEDED TO PERFORM THE INVERSE OF A ε GF (211) USING

ADDITION CHAIN

Step βVi
(α) βVj+Uk

(α) Exponentiation

1 β1(α) A

2 β2(α) β1+1(α) (β1)2
1
β1 = A22−1

3 β4(α) β2+2(α) (β2)2
2
β2 = A24−1

4 β5(α) β4+1(α) (β4)2
1
β1 = A25−1

5 β10(α) β5+5(α) (β5)2
5
β5 = A210−1

α/α2

Predicted 
CRC 

Module

α/α2 module

Actual 
CRC 

Module
A(α)

EF1

EF4

EF3

EF2

Figure 2. The proposed error detection of the α and α2 modules using
CRC.

needed in the exponentiation by an efficient use of addition

chains [37]-[39]. The inverse can be rewritten as A−1 =
[βm−1(A)]2, where βk(A) = A2k−1 ε GF (2m) and k ε N.

In [39], a recursive sequence is used with an addition chain

for m − 1 to compute βm−1(A). To calculate an addition

chain C = {c1, c2, . . . , ct} with a field polynomial f(α) of

m degree, we have c1 = 1 and ct = m − 1. If ci is even,

ci−1 = ci/2 and if ci is odd, ci−1 = ci − 1.
The addition chain C obtained for GF (211), GF (212),

GF (213), and GF (214) are C11 = {1, 2, 4, 5, 10}, C12 =
{1, 2, 4, 5, 10, 11}, C13 = {1, 2, 3, 6, 12}, and C14 =
{1, 2, 3, 6, 12, 13}, respectively. The computational steps

to calculate the inverse of A εGF (211) using such addition

chains is illustrated in Table III, where Vi are the integers

in the addition chain, Vj = Vi−1, and Uk = Vi − Vj .

Fault detection schemes for GF (2m) squaring are pre-

sented below. GF (2m) squaring uses the sum module and an

α2 module instead of the α module presented previously. In

the α2 module, an element A is multiplied by α2 to achieve:

A(α) · α2 = am−1α
m+1 + am−2α

m + ...+ a0α
2, (6)

where αm+1 = fm−1α
m+fm−2α

m−1+...+f0α mod f(α)
and αm = fm−1α

m−1 + fm−2α
m−2 + ...+ f0 mod f(α).

a) Cyclic Redundancy Check: The element A is mul-

tiplied by α2; therefore, the actual and predicted CRC

checksums for the different values of m differ. In Table

IV, the predicted CRC checksums for the α2 module are

presented (the actual CRC checksums of the α2 module are

the same as the ones from the α module, presented in Table

II). To clarify this process, m = 14 is used as an example

to show how the predicted CRC-4 and actual CRC-4 are

calculated. We have

A(α) · α2 = a13α
15 + a12α

14 + ...+ a1α
3 + a0α

2

Then, applying the irreducible polynomial f(α) = α14 +
α8 + α6 + α+ 1, one obtains

A(α) · α2 = a13α
9 + a13α

7 + a13α
2 + a13α

+a12α
8a12α

6 + a12α+ a12 + a11α
13 + a10α

12

+a9α
11 + a8α

10 + a7α
9 + a6α

8 + a5α
7 + a4α

6

+a3α
5 + a2α

4 + a1α
3 + a0α

2 mod f(α)

(7)

To calculate the predicted CRC-4 checksum for m = 14
in the α2 module (PCRC4142 ), the generator polynomial

is applied to obtain

PCRC414 = (a12 + a11 + a10 + a9 + a7
+a5 + a4 + a1)α

3 + (a13 + a11 + a10 + a9 + a8
+a6 + a4 + a3 + a0)α

2 + (a13 + a12 + a10 + a9
+a8 + a7 + a5 + a3 + a2)α+ (a13 + a11 + a10

+a8 + a6 + a5 + a2).

(8)

Lastly, to calculate the actual CRC-4 checksum for

m = 14 in the α2 module (ACRC4142 ), we rename the

coefficients of (7): a12 as γ13, ...., a13+a0 as γ1, and a13 as

γ0,and again, the generator polynomial is applied to obtain

ACRC4142 = (γ12 + γ11 + γ10 + γ9 + γ7 + γ5
+γ4 + γ1)α

3 + (γ13 + γ11 + γ10 + γ9 + γ8 + γ6
+γ4 + γ3 + γ0)α

2 + (γ13 + γ12 + γ10 + γ9 + γ8
+γ7 + γ5 + γ3 + γ2)α+ (γ13 + γ11 + γ10 + γ8

+γ6 + γ5 + γ2).

(9)

In Fig. 2, the proposed architecture with CRC-3 and CRC-

4 is presented. As shown in Fig. 2, three or four error

indication flags denoted as EF are obtained to indicate if an

error has been found using CRC-3 or CRC-4, respectively.

This figure represents the α module as well as the α2

module. The XOR gates are used to compare the outputs

of the CRC modules.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

To calculate the error coverage provided by the different

proposed schemes, the total number of operations need to

be taken into account. For instance, to calculate the error

coverage computing H, a total of n finite field inversions

and (n×t)−n finite field multipliers are utilized. Depending

on the value of m, a different number of multiplications and

squarings will be needed to perform each inversion. Each

finite field multiplication requires a total of m−1 α modules,

m−1 sum modules, and m pass− thru modules and each

finite field squaring uses m−1 α2 modules and m−1 sum
modules.

Each of the modules requires three or four checksums

depending on the choice of CRC-3 or CRC-4, respectively.

For m = 11, the error coverage percentage computing

H is calculated as follows: A total of 2, 048 finite field

inversions and 79, 872 finite field multiplications are needed

to compute H; each inverse calculation can be derived by 10

squaring and 4 multiplication operations using ITA, which

is a total of 20, 480 squarings and 8, 192 multiplications;

therefore, a total of 20, 480 · (10+ 10)+ 8, 192 · (10+ 10+
11)+79, 872·(10+10+11) or close to 1.2×107 or 1.6×107

checksums are needed for CRC-3 or CRC-4, respectively.

For m = 12, close to 3.5× 107 or 4.7× 107 checksums are

needed for CRC-3 or CRC-4, respectively. For m = 13,

close to 1.3 × 108 or 1.8 × 108 checksums are needed

for CRC-3 or CRC-4, respectively. Lastly, for m = 14,

close to 6.7 × 107, or 9.0 × 107 checksums are needed

for CRC-3 or CRC-4, respectively. The lowest percentage

(representing the worst case scenario) of error coverage are

obtained applying CRC-3 with m = 11, where the error

coverage percentage is 100·(1−( 12 )
1.2×107)%. Moreover, we

add our proposed error detection schemes to the finite field

multipliers of the Niederreiter’s Key Generator. The design

from [33] is used as basis. Other most recent hardware



Table IV
OUR DERIVED CRC CHECKSUMS FOR m = 11, m = 12, m = 13, AND m = 14 IN α2 MODULE OF THE PRESENTED SCHEMES

m f(α) CRC Predicted CRC Checksum

11 α11 + α2 + 1
3

(a9 + a7 + a4 + a3 + a2 + a0)α2 + (a8 + a6 + a3 + a2 + a1)α+ (a10 + a9 + a8 + a5 + a4+
a3 + a1)

4
(a10 + a7 + a5 + a4 + a1)α3 + (a9 + a8 + a6 + a4 + a3 + a0)α2 + (a10 + a8 + a7 + a5 + a3+

a2)α+ (a9 + a8 + a6 + a5 + a2)

12
α12 + α6 + α4

+α+ 1

3 (a9 + a7 + a4 + a3 + a2 + a0)α2 + (a9 + a8 + a6 + a3 + a2 + a1)α+ (a8 + a5 + a4 + a3 + a1)

4
(a11 + a10 + a9 + a7 + a5 + a4 + a1)α3 + (a10 + a9 + a8 + a6 + a4 + a3 + a0)α2 + (a11+

a9 + a8 + a7 + a5 + a3 + a2)α+ (a11 + a8 + a6 + a5 + a2)

13
α13 + α4 + α3

+α+ 1

3
(a12 + a11 + a10 + a9 + a7 + a4 + a3 + a2 + a0)α2 + (a12 + a11 + a10 + a9 + a8 + a6 + a3+

a2 + a1)α+ (a12 + a10 + a8 + a5 + a4 + a3 + a1)

4
(a11 + a10 + a9 + a7 + a5 + a4 + a1)α3 + (a10 + a9 + a8 + a6 + a4 + a3 + a0)α2 + (a12+

a10 ++a9 + a8 + a7 + a5 + a3 + a2)α+ (a12 + a10 + a8 + a6 + a5 + a2)

14
α14 + α8 + α6

+α+ 1

3
(a12 + a11 + a10 + a9 + a7 + a4 + a3 + a2 + a0)α2 + (a13 + a10 + a9 + a8 + a6 + a3 + a2+

a1)α+ (a13 + a11 + a10 + a8 + a5 + a4 + a3 + a1)

4
(a12 + a11 + a10 + a9 + a7 + a5 + a4 + a1)α3 + (a13 + a11 + a10 + a9 + a8 + a6 + a4 + a3+
a0)α2 + (a13 + a12 + a10 + a9 + a8 + a7 + a5 + a3 + a2)α+ (a13 + a11 + a10 + a8 + a6+

a5 + a2)

Table V
OVERHEADS OF THE PROPOSED ERROR DETECTION SCHEMES FOR THE ENTIRE KEY GENERATOR USING THE PARAMETERS m = 13, t = 119, AND

n = 6, 960 ON XILINX FPGA FAMILY KINTEX ULTRASCALE+ (DEVICE XCKU5P-FFVD900-1-I)

Architecture
Area

Delay (ns)
Power (mW) Throughput Efficiency

(CLBs) @50 MHz (Gbps) (Gbps/CLBs)

Key Generator 45,358 9.176 0.916 7.520 1.658×10−4

Key Generator with CRC-3 46,874 (3.34%) 9.202 (0.28%) 0.919 (0.33%) 7.498 (-0.29%) 1.600×10−4 (-3.50%)

Key Generator with CRC-4 46,634 (2.81%) 9.668 (5.36%) 0.921 (0.55%) 7.137 (-5.09%) 1.530×10−4 (-7.72%)

implementations of Classic McEliece are described in [40]-

[41].

Finite field multiplications and inversions are the most

complex and vulnerable to natural and malicious fault

attacks. However, since [33] uses a pre-computed lookup

table for the implementation of the inversion module, the

implementation does not use error detection for GF (2m)
inversions. Furthermore, the original Key Generator from

[33] uses GF (2m) multipliers to perform finite field squar-

ings, which means that GF (2m) squarings are also protected

in our implementations as well as additions since they are

followed by multiplication or squaring in the same instruc-

tion, which use our error detection schemes. The presented

implementations are performed using Xilinx Vivado with

the parameters m = 13, t = 119, and n = 6, 960 on

Xilinx FPGA Kintex Ultrascale+ device xcku5p-ffvd900-1-i.

The implementation results for the original architectures and

our presented error detection schemes are shown in Table

V in terms of area (occupied slices), delay, power (at the

frequency of 50 MHz), throughput, and efficiency. As seen

in Table V, acceptable overheads are obtained with efficiency

degradations of at most 7.72%.

There has not been any prior work done on error detection

based on CRC for the Niederreiter cryptosystem to the

best of our knowledge. For qualitative comparison to verify

that the overheads incurred are acceptable, let us go over

some case studies on error detection in GF (2m) arithmetic

hardware. In [42], error detection based on parity prediction

for normal basis multiplication is performed, obtaining a

combined worst-case area and delay overhead of 58.1%. Ad-

ditionally, normal parity provides an error detection of up to

50%, i.e., if the number of faults is even, the approach would

not be able to detect the faults. This highly predictable

countermeasure can be circumvented by intelligent fault

injection. In our work, we propose CRC-3 and CRC-4 to

overcome this problem and is intended for deeply-embedded

systems where high performance, low overhead, and low

energy are preferred. Reliable concurrent error detection

architectures for Extended Euclidean-based division over

GF (2m) are provided in [43]. The schemes utilized are

based on parity prediction and they have a combined worst-

case area and delay overhead of 25.18%. This and similar

prior works on classical cryptography are instances to show

that the proposed error detection architectures obtain similar

overheads compared to other works on fault detection,

achieving an acceptable overhead. These degradations are

generally acceptable for providing error detection to the

original architectures which lack such capability to thwart

natural or malicious faults.

V. CONCLUSION

Providing constructions and schemes to thwart error

injection and occurrence for Internet of nano-Things in

constrained applications is of prominent importance. In this

paper, we propose different fault detection schemes based

on CRC-3 and CRC-4. These schemes are used in the

different blocks of the key generator in the Niederreiter

cryptosystem, e.g., GF (2m) multiplication, squaring, inver-

sion, and addition. Our proposed error detection architec-

tures provide security flexibility providing sets of closed

formulations for different security parameters (m ranging

from 11 to 14). Moreover, we implemented our proposed

schemes on FPGA to benchmark the overhead induced in

the Key Generator. Results show an acceptable overhead

with efficiency degradations of at most 7.72% for the Key

Generator of the Niederreiter cryptosystem providing very

high error coverage.
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