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Abstract—Providing error detection constructions for Inter-
net of nano-Things in constrained applications is of prominent
importance. The Niederreiter cryptosystem falls into the cate-
gory of code-based public-key cryptography. It is a relatively
well-established scheme, but its key size and performance
overheads have traditionally hindered its efficiency to be
utilized for traditional computers. However, with the arrival of
quantum computers, the Niederreiter cryptosystem is believed
to be secure against attacks enabled by such computers, even
though it has been previously shown that it is still vulnerable to
fault injection and natural hardware defects. In this paper, we
present fault detection schemes for the different blocks in the
key generation of the Niederreiter cryptosystem using binary
Goppa codes. These blocks perform finite field operations
such as addition, multiplication, squaring, and inversion. The
schemes are derived for different parameter sizes in order
to have more flexibility and be able to choose according
to the overheads to be tolerated and the required level of
security. Moreover, we implement our fault detection schemes
on Xilinx field-programmable gate array (FPGA) family Kintex
UltraScale+ (device xckuSp-ffvd900-1-i) to benchmark the
overhead induced of the proposed approaches.

Index Terms—Fault detection, field-programmable gate ar-
ray (FPGA), Niederreiter cryptosystem, post-quantum cryp-
tography.

I. INTRODUCTION

Deeply-embedded hardware architectures with tight con-
straints are wide-spread in today’s Internet of nano-Things
era. Providing security and fault detection schemes for
such constrained usage models, i.e., aerospace and defense
systems, medical electronics, or scientific instruments, is of
prominent importance. With the arrival of quantum comput-
ers, traditional public key cryptosystems will be no longer
secure against attacks enabled by such computation power
[1]. In the past few years, Post-Quantum Cryptography
(PQC) has gained attention, especially after the National
Institute of Standards and Technology (NIST) began the
process to standardize quantum-resistant public-key cryp-
tographic algorithms [2].

The McEliece cryptosystem was one of the first public-
key cryptography schemes. It was published in 1978 [3].
In 1986, a related cryptosystem was proposed by Nieder-
reiter et al. [4]. While the McEliece cryptosystem used
as its primary building block the binary Goppa code, the
Niederreiter cryptosystem was initially based on the Reed-
Salomon code. However, after the Reed-Salomon variant
wace <hown in<ecuire in [51 the Niederreiter crvntosvetem
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was revised and became based on the same Goppa code as
the McEliece cryptosystem. In 2017, a submission to the
NIST standardization process, called Classic McEliece, was
developed. Classic McEliece is a slightly revised version of
the Niederreiter cryptosystem. Compared to the Niederreiter
cryptosystem, it extends the public-key encryption scheme
to a key encapsulation mechanism (KEM). However, it
retains all other major features of the Niederreiter cryptosys-
tem, including security guarantees. Thus, the Niederreiter
cryptosystem can be treated as a subset of the Classic
McEliece and use the same parameters as this NIST PQC
candidate. In Round 1, Classic McEliece had only two
parameter sets, both at the security level 5, equivalent to
the security of AES-256. In Round 2, 8 additional sets have
been added, two at security level 1 (corresponding to the
security of AES-128), two at security level 3 (corresponding
to the security of AES-192), and four at security level 5.
The sensitivity of both the original McEliece cryptosys-
tem and revised (binary Goppa-code-based) Niederreiter
cryptosystem to fault analysis was demonstrated in [6].
Shortly after, timing side-channel attacks were investigated
in [7] and [8]. Most recently, fixed-vs-random test vector
leakage assessment (TVLA), partial key exposure attacks,
and backdoors were used to recover a secret key of the
McEliece cryptosystem in [9], [10], and [11], respectively.
In this paper, we evaluate the resistance of the key gener-
ation function of the Niederreiter cryptosystem against fault
attacks. One of the primary parameters of this cryptosystem
affecting our study is m, which defines the size of the
underlying Galois field GF'(q) through the relation ¢ = 2.
In the NIST process, the Round 1 Classic McEliece used
m = 13. Starting from Round 2, values m = 12 and 13 were
employed. Additionally, there exists prominent earlier work
with different security parameters based on security neces-
sities and system constraints [12]-[14]. Therefore, our work
provides flexibility and tunable security by covering such
works as well through the choice of the range 11 < m < 14.
There has been previous work on countering fault attacks
and providing reliability for traditional cryptography and
PQC [15]-[26]. Moreover, fault detection techniques for
composite fields and finite fields are investigated in [27]-
[29]. In [27], multi-bit parity prediction is used to detect
faults in the composite fields used in the McEliece cryp-
toevetem Frror detection <cheme< baced on cvelie redun-



dancy checks (CRC-5 and CRC-10) are introduced for the
finite field multipliers used by the Luov’s cryptosystem in
[28] and by cryptosystems using the NIST field G F(2163)
in [29]. This work adds two new CRC schemes, i.e., CRC-3
and CRC-4, overcoming the limitations of parity schemes,
vulnerable to intelligent fault injections and a 50% error
coverage. The CRC sizes selected in this paper are lower
than those in [28] and [29] to minimize the overheads, since
this work is intended to provide fault detection to deeply-
embedded systems. Additionally, we implement for the first
time error detection schemes for the Key Generator of the
Niederreiter cryptosystem.

II. PRELIMINARIES

McEliece proposed the first code-based public-key en-
cryption system in 1978 [3]. The McEliece cryptosystem’s
private key is a randomly selected irreducible Goppa binary
code with a generator matrix that corrects errors of up
to t. In 1986, Niederreiter presented a dual version of
the McEliece cryptosystem, using a parity check matrix H
instead of a generator matrix for encryption. For the Nieder-
reiter cryptosystem, the message is encoded as a weight-t
error vector e of length n; alternatively, the Niederreiter
cryptosystem can be used as a key-encapsulation scheme
where a random error vector is used to derive a symmetric
encryption key.

There are three main operations in the Niederreiter cryp-
tosystem: (i) the generation of a private key and a public key
(key generation), (ii) the creation of a ciphertext to prevent
unauthorized access to the message (encryption), and (iii)
the decoding of the message previously encrypted (decryp-
tion). Our work focuses on the key generation, which is the
most expensive operation in the Niederreiter cryptosystem.
In this process, a public key needed for the encryption of the
message and a private key needed to decrypt the message
are created. There are four important parameters which can
highly affect how secure the cryptosystem is: m, which
is the extension field dimension; ¢, which is the number
of correctable errors; the code length n; and finally, the
dimension k.

To create the private and public keys needed for the
encryption and decryption processes, n elements in GF(2™)
are chosen randomly, i.e., ag, a1, ...,,—1, and a random
permuted list of indices P is produced. Next, a monic irre-
ducible polynomial in the form g(z) = 2t +g; 121+ ...+
g1x+go, with degree t is created. The irreducible polynomial
(denoted as Goppa polynomial) and the permuted list of
indices P, form the private key (g(x), (o, a1, ..., p—1)).
To derive the public key K, a parity check matrix H is then
computed with the following form:

1 1 o 1
g(ao)  g(ar) g(an—1)
ag ay R
I— g(ffo) 9(('11) g(ar'zq)
ﬁ £ . ot
glao)  g(a1) g(lan—1)

Computing H is one of the most time-consuming pro-
cesses in the Niederreiter cryptosystem since it needs addi-
tion, multiplication, and inversion in GF(2™). Each element
of the matrix H 1< then renlaced with a colimn of m bite

using the permuted list of indices P, obtaining a binary
parity check matrix H’. Lastly, the key generator transforms
the modified m¢ x n H’ matrix to its systematic form
[I,n¢|K], where I,,; is the identity matrix of size mit,
returning the public key K.

In the process of encryption, the sender encodes the mes-
sage as an error vector e of length n and weight at most ¢ and
computes the ciphertext by multiplying the extended public
key [I,:|K] with the plaintext. Such operation produces
a specific syndrome which is sent to the receiver as the
ciphertext c. When the receiver obtains such ciphertext,
the original plaintext is recovered by using the private key

(g(x)7 (0[07 Qg ..., Oén_l)).
III. PROPOSED FAULT DETECTION ARCHITECTURES

In this work, we propose fault detection schemes based on
CRC-3 and CRC-4. These schemes aim to detect transient
and permanent internal faults on the Key Generator due to
natural or malicious faults, e.g., differential fault analysis.
Due to technological limitations, an adversary may not be
able to flip precisely one bit to capture sensitive information.
As a result, techniques that can identify multiple stuck-at
faults (stuck-at 0 and stuck-at 1) in addition to single faults
need to be explored [30].

CRC was first proposed in 1961 and it is based on
the theory of cyclic error-correcting codes. To implement
CRC, a generator polynomial g, (/3) is selected and a fixed
number of check bits are appended to the data, which are
inspected when the output is received to detect any errors.
In our proposed error schemes, we obtain formulations for
predicted CRC checksums and they are compared via XOR
gates with the actual CRC. The security parameters used are
shown in Table I, where it can be seen how m varies from
11 to 14 bits [31]. Moreover, the set for m = 13 corresponds
to the Classic McEliece NIST submission; although in the
last submission, m = 12 with ¢ = 64 and n = 3488 is also
proposed [32].

A. Functional Units of the Key Generator

As mentioned earlier, the main operations within the
Key Generator are GF(2™) addition, multiplication, and
inversion. Fig. 1 shows the overall architecture of the Key
Generator (adopted from [33]). In Fig. 1, the circles are
memory blocks, while the squares are functional units.
As it is shown, the Key Generator uses PRNGs to allow
deterministic testing, which would have to be replaced with
a cryptographically secure random number generator for real
scenarios. The private key is formed by G_out and P_out,
which are provided by the R Generator and the P Generator,
respectively. Such generators provide a generator matrix G
and a permutation matrix P needed to obtain the private
key. Next, the g(x) Evaluation block is used to perform high
degree polynomial multiplications efficiently and lastly, the
H Generator computes a parity check matrix H needed to
obtain the public key. Gaussian Systemizers are also used
in this design for matrix systematization over GF'(2™) and
GF(2), needed to generate both public and private keys.

The scope of this paper is to propose error detection
schemes capable of detecting natural and malicious faults in
different finite field arithmetic of the Key Generator within
the Niederreiter cryptosystem. Since every unit besides the
P Generator nerforme finite field arithmetic onr <chemes



Table 1
SECURITY PARAMETERS USED TO DERIVE THE DIFFERENT FAULT
DETECTION SCHEMES

m t n Security Level

11 27 2,048 81

12 | 64 3,488 146

13 | 119 6,960 263

14 15 16,384 90
G_out

H
Generator

GF(2™)
Gauss
Syst.

R
Generator

P
Generator

P_out H_out

Figure 1. Overall architecture of the Key Generator.

provide error detection to the entire Key Generator besides
the P Generator, which mainly swaps elements and can
be done be rewiring. Next, we present an overview of all
the different blocks used in the Key Generator. Readers
interested in knowing more about the other blocks of the
Niederreiter cryptosystem can refer to [33].

1) R Generator: As shown in Fig. 1, a PRNG is em-
ployed initially, generating ¢ random m-bit vectors for the
coefficients of r(x) = Zf;é r;x'. The coefficient matrix R
is then computed by calculating the powers of 1,7, ...,7%,
using a polynomial multiplier that performs the classical
schoolbook multiplication utilizing GF'(2™) multipliers. Af-
ter each multiplication, the results are stored in the GF'(2™)
Gaussian Systemizer until the entire coefficient matrix R has
been initialized.

2) Gaussian Systemizer: Two different Gaussian System-
izer units are used in the Key Generator for matrix sys-
temization, i.e., GF(2) Gaussian Systemizer and GF(2"™)
Gaussian Systemizer. The first one is needed to calculate the
public key K while the latter one is utilized to generate the
Goppa polynomial g(z). To perform matrix systemization
over GF'(2), once the matrix H’ is completely stored in
the GF(2) Gaussian Systemizer unit, R is divided into two
sub-matrices. Through Gaussian elimination and backward
substitution, its left part is then reduced into an mt x mt
identity matrix and its right part becomes the public key
matrix K of size mt¢ x k. In the matrix systemization over
GF(2™), a binary field inverter and binary field multipli-
ers are added to support arbitrary binary fields. Once the
coefficient matrix R is completely stored in the memory of
the GF(2™) Gaussian Systemizer, the Gaussian elimination
process starts. This process transforms R into its reduced
echelon form, containing all of the unknown coefficients of
the minimum polynomial g(z) in the right portion of such
matrix.

3) P Generator: The P Generator produces a permuted
list of indices P needed for the calculation of both public key
(precisely to generate the permuted binary check matrix H’)
and nrivate kev (formed bv an irreducible Gonna nolvnomial

g(x) and P). The Fisher-Yates shuffle is used to perform the
permutation. To do so, a dual-port memory block of depth
2™ formed by m vectors is initialized. The port A address
decrements from 2™ — 1 to 0 and as long as the output
is greater than address A, a PRNG produces new random
numbers for each address A. This output is utilized as the
address for port B whenever the PRNG output is smaller
than address A. The contents of the A and B addresses are
then swapped to finally obtain a shuffled array A.

4) G(zx) Evaluation: The G(x) Evaluation unit uses the
Gao-Mateer Additive FFT scheme. Gao-Mateer Additive
FFT is a recursive algorithm that reduces the amount of
finite field multiplications ever further by transforming the
polynomial g(x) into the form g(z) = ¢ (2? + z) +
xgW (22 + z), where g(©(z) and ¢(!)(x) are half-degree
polynomials, using radix conversion [34].

5) H Generator: After the G(z) Evaluation unit is done
and the permuted list of indices P is set, the indices P
become the new indices of the o elements from the H matrix
to calculated the permuted binary parity check matrix H’,
e.g., ap becomes ay, (where p;’s when 0 < ¢ < n —1
are the permuted indices P). Each entry is calculated by
using a finite field inverter and they get stored in the GF'(2)
Gaussian Systemizer which will reduced H’ to obtain the
public key matrix K.

B. Error Detection Schemes

1) GF(2™) Addition and GF(2™) Multiplication: To
perform GF'(2™) addition, we use one of the modules used
to perform GF(2™) multiplication as described in [35], the
sum module. GF(2™) multiplication is done using three
different modules: sum, «, and pass-thru modules. The sum
module adds two elements in GF(2™) using m two-input
XOR gates; the pass-thru module multiplies a GF(2™)
element by a GF(2) element; and the o module multiplies
an element of GF'(2") by « and it reduces the result modulo
f(a). The multiplication of any element in GF(2™) by «
gives

Ala) - a=am 10+ apm o™+ Faga, (1)

where o™ = f,,_1a™ L+ fr 0™ 24+ fo mod f().

In multiplication using polynomial basis, the inputs A
and B are elements of GF(2™) in the form of A =
St aal, a; e {0, 1} and B = S bial, by e {0, 13,
where a' and b0* are the coordinates of each input. The
multiplication of these two elements can be represented as:

m—1 m—1
A-B=A-Y b= b(Ad).
i=0 i=0
This, in turn, obtains the output C as follows:
m—1
C=A-Bmod f(a)= > bXD,
i=0

where X () = o - X(~1 mod f(a) for 1 <i < m — 1, and
X0 =4,

For the o module, g,,(3) = 3% + 8+ 1 is used as the
generator polynomial with CRC-3, and g, (8) = *+3+1
is used as the generator polynomial with CRC-4. To find
the different checksums for each m, these fixed polynomials
are used as follows, where we denote them as gy, (5) and
a. (R reenectivelv:



Table II

OUR DERIVED CRC CHECKSUMS FOR m = 11, m = 12, m = 13, AND m = 14 IN THE @ MODULE OF THE PRESENTED SCHEME

m fla) CRC Predicted CRC Checksum Actual CRC Checksum
(a10 +as + as + a4 +az + a1)a? + (ag+ (vo +76 + 75 + 74 +72)2% + (10 + 3+
3 a7 + aq + a3 + a2 + ag)a+ (a10 + ag+ +v5 +va + 73 + 7))+ (y10 + 7 + 6
1 all b a1 ag + as + aq + az) +v5 + 73 +Y0)
(as + ag + a5 + a2)a® + (a10 + a9 + ar+ (vo +77 + 76 +73)a” + (y10 + 78 + Y6+
4 as + as + a1)a® + (ag + as + a + as+ 5 +y2)e® + (vio +vo + v7 4+ v5 + vat
as + ao)a + (a10 + ag + a7 + as + as) Y1)+ (y10 + 78 + 77 + 71 + 0)
(ato +as + as + as + a3 + a1)a? + (aro+ (v1 +70 + 76 + 75 + 72 +32)0 + (11 +
3 ag + a7 + a4 + a3 + a2 + ap)a + (ag+ Y10 +98 + 5 + 74 + 3 +v1)a+ (710
12 1 61 4 ag + as + a4 + az) +v7 + 96 + 795 + 3 +70)
12 attalto (a11 + a0 + ag + as + as + az)a’® + (a11 (vit +v9+ 77+ 76 +v3)a® + (11 + 8
fa+l 4 +aio +ag + a7 + as + a4 + a1)a? + (a10 +96 + 5 +y2)a? + (y11 + Y10 + 79 + ¥7
+ag + ag + ag + as + a3z + ap)a + (ag+ +v5 + 74 +71)a+ (vio+ - + 7 + 74
a7 + ag + as) +70)
(a122+ @11+ a10 +as a5+ ag o+ agt (viz+m1+v9+v6+75 +74 + 72)012+
a1)a® + (a12 + a1 + a0 + ag + a7 + aq
3 ta (2 +711 +v10 +98 + 5 + 74 + 3 + 1)
3+ a2 + ag)o + (ar1 + ag + ap + as+
B4 s «a+ (vi2+v10+77+7 + 75 +73+ )
a'? +a* +«a a4 + az)
13 Fa+1 (a12 + a11 + a0 + as + ag + a5 + a2)a’ (v12 + 711 + 79 + 77 + 76 +13)2° + (712
4 +(a11 + a10 + ag + a7 + as + asg + a1)a? +y11 + 710 + 78 + ¥6 + 5 + v2)a? + (112
+(a11 + a0 + a9 + as + ap + as + az+ +711 710 + 79 + 97 +v5 +y4 + 1)t
ap)a+ (a11 + ag + ar + ag + a3) (y12 +v10 +v8 +v7 + 74 +Y0)
(a13 +ai12 +a11 +aio+ag +as +as + a3 (vi3 + 712 + 711 +79 + Y6 + 5 + Y4 +72)
3 +a1)a? + (a11 + a10 + ag + a7 + as + ag @+ (yi2+ 711 + 710 + Y8 +¥5 + Y4 + 73
+az2 + ao)a + (a12 + a11 + ag + ag + as +y1)a+ (v13 +y12 +y10 + 97 76 + 5
14 s 6 +aq + az) +73 4+ 70)
14 a”tatt+a (a13 +a12 +ai1 +aio +as +ap +as (y13 + 912 + 711 + 79 +97 + 96 +73)”
fo+l +az)a® + (a12 + ai1 + a0 + ag + ar +(y13 + 712 + 711 + 710 + 98 + 6 + 75
4 +as + a4 + a1)o? 4 (a13 + a11 + aio +v2)a? + (y12 + 711 + 710 + Y0 + 97 + 5
+ag + ag + ag + a4 + ag + ao)a + (a12 +74 + 7)o+ (713 + 712 + 710 + 98 + 97
+ai1 +ag + a7 + ag + a3) +74 +70)

According to gy, (8):

B2 = B+ 1mod g, ()
p* = %+ fmod g, (B)

BY3 =4 524 B =B+ Lmod gy, (5).

According to gy, (5):

Lastly, to calculate the actual CRC-3 checksum for m =
11 in the o module (AC RC31;), we rename the coefficients
of (2): ag as g, .- -

, ap as 1, and ajg as 7o, to obtain

A(a) - a =7100' + y90” + 150® + yra’ + 50
+750° + 0t +730° +y00” +y1at 470,

and the generator polynomial is applied to obtain

ACRC311 = (Yo + 6 + 75 + 74 + 72)a?

3% =B+ 1mod g,, (B)

+(yi0+18+ 5+ + 3+ )

8% = % + B mod gy, (B)

B =B+ 5%+ 82+ B = 5° + B2 + 1 mod g, ().

Applying these generator polynomials into (1), we obtain
the CRC-3 and CRC-4 checksums for the different m’s as
shown in Table II. The case for m = 11 is explained below,
and the derivations for other cases can be derived following
the same approach.

If m = 11, from (1) we have

Ala) - a = ajpatt + agat® + ... + a10® + apo.

Then, applying the irreducible polynomial f(a) = alt +
o? + 1, one obtains

Ala) - a = ajpa® + arg + agal® + aga?

+azad + aga” + asal + asa® + azat )
+aza® + aja® + apa mod f(a).

To calculate the predicted CRC-3 checksum for m = 11
in the o module (PCRC3;1), the generator polynomial is
applied to obtain

PCRC3q1 = (a10 +ag + a5 + aqg + as

+a1)o? + (ag + a7 + as + a3z + az + ap) (3)
Y

R A S S S S

+(v10 + 77 + % + 75 + 73 + 7).

For the sum module, which adds elements A(z) and B(x)
over GF'(2™), both CRC checksums are similar as the actual
CRC checksums from Table II, but since B(x) is added, its
coefficients would be added as well. Lastly, for the pass-
thru module, which adds element A(x) over GF(2™) with
a GF(2) element b, both CRC checksums are also similar
as those from Table II, but since b is multiplied, the CRC
checksums from Table II are multiplied as well with b.

2) GF(2™) Inversion : The multiplicative inverse of
an element A # 0 in the field GF(2™) is defined as
the process of finding the unique element A~ e GF(2™)
such that A- A~! = 1. The inversion can be derived with
squarings and multiplications by employing the Itoh-Tsujii
multiplicative inverse algorithm (ITA) [36], which reduces
the complexity of the polynomial variant of Fermat’s Little
Theorem (FLT) to obtain a better performance. To perform
GF(2™) inversion, we based our schemes on FLT and ITA.
FLT specifies that the inverse of an element A can be derived
as A2" =2 = A= mod f(«), requiring m—2 multiplications
and m — 1 squarings.

Following FLT basics, Itoh and Tsujii introduced the
method ITA to reduce the complexity of such theorem. ITA
vielde dramatic redictione in the niimber of multinlications



Table 11T
STEPS NEEDED TO PERFORM THE INVERSE OF A ¢ GF(2!) USING
ADDITION CHAIN

Step | Bv, (@) | Bv+u, (@) Exponentiation
T | Bi(a) A
2 | Bl | Bisi(@) | ()2 B =421
3 | Bala) | Boya(e) | (B2)TBa=AT1
4 | Bsa) | Bari(e) | (BB =AT1
5 | Buola) | Bsis(@) | (85)% 85 = 4271

a/a? module

D— EF,

Actual
CRC
Module

) —

a/a

Predicted

CRC
Module

Figure 2. The proposed error detection of the o and a? modules using
CRC.

needed in the exponentiation by an efficient use of addition
chains [37]-[39]. The inverse can be rewritten as A~! =
[Bm—1(A)]2, where B,(A) = A2 ~1 ¢ GF(2™) and k € N.
In [39], a recursive sequence is used with an addition chain
for m — 1 to compute (3,,,—1(A). To calculate an addition
chain C' = {c1, ¢, ..., ¢} with a field polynomial f(«) of
m degree, we have ¢c; = 1 and ¢; = m — 1. If ¢; is even,
Ci—1 = C,’/Q and if C; is Odd, Ci—1 = C; — 1.

The addition chain C obtained for GF(2!!), GF(21?),
GF(213), and GF(2'4) are C1y = {1, 2, 4, 5, 10}, C12 =
{1, 2,4, 5,10, 11}, C13 = {1, 2, 3, 6, 12}, and C14 =
{1, 2, 3, 6, 12, 13}, respectively. The computational steps
to calculate the inverse of Ae GF(2'!) using such addition
chains is illustrated in Table III, where V; are the integers
in the addition chain, V; = V;_q, and Uj, = V; — V.

Fault detection schemes for GF'(2"™) squaring are pre-
sented below. GF'(2"™) squaring uses the sum module and an
a? module instead of the o module presented previously. In
the a® module, an element A is multiplied by «? to achieve:

m—+1

Aa) - a?=a,_ o + Up_2@™ + ...+ aga®,  (6)

where o™t = f,, 10"+ f_2a™ 4.+ foa mod f(a)
and o™ = f,_1a™ " + £ 0™ 2 4+ ..+ fo mod f(a).

a) Cyclic Redundancy Check: The element A is mul-
tiplied by «?; therefore, the actual and predicted CRC
checksums for the different values of m differ. In Table
IV, the predicted CRC checksums for the o? module are
presented (the actual CRC checksums of the o> module are
the same as the ones from the a module, presented in Table
II). To clarify this process, m = 14 is used as an example
to show how the predicted CRC-4 and actual CRC-4 are
calculated. We have

Ala) - ? = a3a™® + appa + ..+ a10® + aga?
Then, applying the irreducible polynomial f(a) = a4 +
o + b + o + 1, one obtains

Aa) - a? = a;3a® + ay3a” + a130® + ajza
tai2a8a1208 + arza + a1z + ap1at? + ajpat?

7
—|—a9a11 + agaw + a7a9 + a6a8 + a5a7 + a4a6 )
. 5 v 4, 3 2 1 £\

To calculate the predicted CRC-4 checksum for m = 14
in the o module (PCRC414,), the generator polynomial
is applied to obtain

PCRC414 = (a12 + ai =+ [e510) + ag + ar
+as + as + a1)o® + (a13 + ann + aio + ag + ag
+ag + ag + az + ag)o® + (a13 + a12 +aro +ag  (8)
“+ag + a7 + a5 + as + ag)Oé + (CL13 “+ a1 + aqo
“+ag + ag + as + (12).

Lastly, to calculate the actual CRC-4 checksum for
m = 14 in the o module (ACRC4,4,), we rename the
coefficients of (7): a12 as 13, ...., a13+ag as 1, and a3 as
vo,and again, the generator polynomial is applied to obtain

ACRC414, = (M2 + 711 + Y10 + Y9 + 77 + 75
+y4 +71)03 + (713 + 711 + 710 + Y0 + 8 + V6
+r+ 3 +0)e? + (s e 0+t 9)
+v7 + 95 + 3 + v2)a + (y13 + 711 + Y10 + s

+%6 + 5 + 72)-

In Fig. 2, the proposed architecture with CRC-3 and CRC-
4 is presented. As shown in Fig. 2, three or four error
indication flags denoted as E'F' are obtained to indicate if an
error has been found using CRC-3 or CRC-4, respectively.
This figure represents the o module as well as the o?
module. The XOR gates are used to compare the outputs
of the CRC modules.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

To calculate the error coverage provided by the different
proposed schemes, the total number of operations need to
be taken into account. For instance, to calculate the error
coverage computing H, a total of n finite field inversions
and (n xt)—n finite field multipliers are utilized. Depending
on the value of m, a different number of multiplications and
squarings will be needed to perform each inversion. Each
finite field multiplication requires a total of m—1 « modules,
m — 1 sum modules, and m pass —thru modules and each
finite field squaring uses m — 1 o modules and m — 1 sum
modules.

Each of the modules requires three or four checksums
depending on the choice of CRC-3 or CRC-4, respectively.
For m = 11, the error coverage percentage computing
H 1is calculated as follows: A total of 2,048 finite field
inversions and 79, 872 finite field multiplications are needed
to compute H; each inverse calculation can be derived by 10
squaring and 4 multiplication operations using ITA, which
is a total of 20,480 squarings and 8,192 multiplications;
therefore, a total of 20,480 - (10+10) +8,192- (104 10+
11)479,872-(10+10+11) or close to 1.2x 107 or 1.6 x 107
checksums are needed for CRC-3 or CRC-4, respectively.
For m = 12, close to 3.5 x 107 or 4.7 x 107 checksums are
needed for CRC-3 or CRC-4, respectively. For m = 13,
close to 1.3 x 10% or 1.8 x 10® checksums are needed
for CRC-3 or CRC-4, respectively. Lastly, for m = 14,
close to 6.7 x 107, or 9.0 x 107 checksums are needed
for CRC-3 or CRC-4, respectively. The lowest percentage
(representing the worst case scenario) of error coverage are
obtained applying CRC-3 with m = 11, where the error
coverage percentage is 100~(1—(%)1'2X107)%. Moreover, we
add our proposed error detection schemes to the finite field
multipliers of the Niederreiter’s Key Generator. The design
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Table IV
OUR DERIVED CRC CHECKSUMS FOR m = 11, m = 12, m = 13, AND m = 14 IN a? MODULE OF THE PRESENTED SCHEMES

m fla) CRC Predicted CRC Checksum
3 (a9 + a7 + as + az + a2 + ap)a® + (ag + as + a3 + az + a1)a + (a10 + ag + as + as + as+
1 all 40241 az + ai) i
4 (a10 + a7 +as +as +a1)a® + (ag + ag + ag + a4 + a3 + ap)a® + (a0 + ag + a7 + as + az+
a2)a+ (ag + ag + ag + as + az)
12 6 4 3 (ag + a7 +as+as+az +ag)o® + (ag + as +ag +as +az+ai)a+ (as +as +as +as +ar)
12 et +a —1&-a 4 (a11 + a0+ a9 + a7 +as + as + a1)a® + (a10 + ag + ag + as + as + az + ap)o® + (ar11+
ta+t ag + ag + a7 + as + a3z + az)o + (a11 + ag + ag + as + az)
) 3 (a12+a11+a10+a9+a7+a4+a3+a2+ao)a2+(a12+a11+a10+a9+a8+a6+a3+
13 al3 4ot +ad a2 + a1)o+ (a12 + a0 +ag + as + as + az + a1)
+a+1 4 (a11 + a10 + a9 + a7 + a5 + as + a1)a® + (a10 + ag + ag + ag + aa + az + ag)a® + (a12+
aio + +ag + ag + a7 +as + az + a2)a + (a12 + aio + ag + ag + as + az2)
3 (a12 + a11 + a10 + ag + a7 + a4 + az + a2 + ao)a® + (a13 + a0 + ag + as + ag + az + az+
ald a8 1 b ) a1)a+ (a13 +a11 + a0 +as+as +as+az +a1)
14 tatl (a12 + a11 + a10 +ag + a7 + a5 + as + a1)o® + (a13 + a11 + a0 + ag + ag + ag + a4 + az+
4 ao)a? + (a13 + a1z + a1o + ag + as + ar + as +)as+a2)a+(a13+a11 +a10 + as + as+
as + a2

Table V
OVERHEADS OF THE PROPOSED ERROR DETECTION SCHEMES FOR THE ENTIRE KEY GENERATOR USING THE PARAMETERS m = 13, ¢ = 119, AND
n = 6,960 ON XILINX FPGA FAMILY KINTEX ULTRASCALE+ (DEVICE XCKUSP-FFVD900-1-1)

. Area Power (mW) Throughput Efficiency
Architecture (CLBs) Delay (ns) @50 MHz (Gbps) (Gbps/CLBs)
Key Generator 45,358 9.176 0.916 7.520 1.658x 10~ %

Key Generator with CRC-3 | 46,874 (3.34%) | 9.202 (0.28%)

0.919 (0.33%) | 7.498 (-0.29%) | 1.600x10~% (-3.50%)

Key Generator with CRC-4 | 46,634 (2.81%) | 9.668 (5.36%)

0.921 (0.55%) | 7.137 (-5.09%) | 1.530x10~% (-7.72%)

implementations of Classic McEliece are described in [40]-
[41].

Finite field multiplications and inversions are the most
complex and vulnerable to natural and malicious fault
attacks. However, since [33] uses a pre-computed lookup
table for the implementation of the inversion module, the
implementation does not use error detection for GF(2™)
inversions. Furthermore, the original Key Generator from
[33] uses GF(2™) multipliers to perform finite field squar-
ings, which means that G F'(2™) squarings are also protected
in our implementations as well as additions since they are
followed by multiplication or squaring in the same instruc-
tion, which use our error detection schemes. The presented
implementations are performed using Xilinx Vivado with
the parameters m = 13, ¢ = 119, and n = 6,960 on
Xilinx FPGA Kintex Ultrascale+ device xcku5p-ffvd900-1-i.
The implementation results for the original architectures and
our presented error detection schemes are shown in Table
V in terms of area (occupied slices), delay, power (at the
frequency of 50 MHz), throughput, and efficiency. As seen
in Table V, acceptable overheads are obtained with efficiency
degradations of at most 7.72%.

There has not been any prior work done on error detection
based on CRC for the Niederreiter cryptosystem to the
best of our knowledge. For qualitative comparison to verify
that the overheads incurred are acceptable, let us go over
some case studies on error detection in GF'(2™) arithmetic
hardware. In [42], error detection based on parity prediction
for normal basis multiplication is performed, obtaining a
combined worst-case area and delay overhead of 58.1%. Ad-
ditionally, normal parity provides an error detection of up to
50%, i.e., if the number of faults is even, the approach would
not be able to detect the faults. This highly predictable
countermeasure can be circumvented by intelligent fault
injection. In our work, we propose CRC-3 and CRC-4 to
overcome thic nroblem and i< intended for deenlv-embedded

systems where high performance, low overhead, and low
energy are preferred. Reliable concurrent error detection
architectures for Extended Euclidean-based division over
GF(2™) are provided in [43]. The schemes utilized are
based on parity prediction and they have a combined worst-
case area and delay overhead of 25.18%. This and similar
prior works on classical cryptography are instances to show
that the proposed error detection architectures obtain similar
overheads compared to other works on fault detection,
achieving an acceptable overhead. These degradations are
generally acceptable for providing error detection to the
original architectures which lack such capability to thwart
natural or malicious faults.

V. CONCLUSION

Providing constructions and schemes to thwart error
injection and occurrence for Internet of nano-Things in
constrained applications is of prominent importance. In this
paper, we propose different fault detection schemes based
on CRC-3 and CRC-4. These schemes are used in the
different blocks of the key generator in the Niederreiter
cryptosystem, e.g., GF'(2™) multiplication, squaring, inver-
sion, and addition. Our proposed error detection architec-
tures provide security flexibility providing sets of closed
formulations for different security parameters (m ranging
from 11 to 14). Moreover, we implemented our proposed
schemes on FPGA to benchmark the overhead induced in
the Key Generator. Results show an acceptable overhead
with efficiency degradations of at most 7.72% for the Key
Generator of the Niederreiter cryptosystem providing very
high error coverage.
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