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Abstract

Advances in remote sensing imagery and machine learning applications unlock the potential for
developing algorithms for species classification at the level of individual tree crowns at
unprecedented scales. However, most approaches to date focus on site-specific applications
and a small number of taxonomic groups. Little is known about how well these approaches
generalize across broader geographic areas and ecosystems. Leveraging field surveys and
hyperspectral remote sensing data from the National Ecological Observatory Network (NEON),
we developed a continental-extent model for tree species classification that can be applied to
the network, including a wide range of US terrestrial ecosystems. We compared the
performance of a model trained with data from 27 NEON sites to models trained with data from
each individual site, evaluating advantages and challenges posed by training species classifiers
at the US scale. We evaluated the effect of geographic location, topography, and ecological
conditions on the accuracy and precision of species predictions (72 out of 77 species).

On average, the general model resulted in good overall classification accuracy (micro-F1 score),
with better accuracy than site-specific classifiers (average individual tree level accuracy of 0.77
for the general model and 0.70 for site-specific models). Aggregating species to the genus-level
increased accuracy to 0.83. Regions with more species exhibited lower classification accuracy.
Predicted species were more likely to be confused with congeneric and co-occurring species
and confusion was highest for trees with structural damage and in complex closed-canopy
forests. The model produced accurate estimates of uncertainty, correctly identifying trees where
confusion was likely. Using only data from NEON, this single integrated classifier can make
predictions for 20% of all tree species found in forest ecosystems across the entire US, which

make up to roughly 90% of the upper canopy of the studied ecosystems. This suggests the
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potential for integrating information from multiple datasets and locations to develop broad scale

general models for species classification from hyperspectral imaging.
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1. Introduction

Forest ecosystems play a central role in essential services like providing wood and other
forest products, carbon sequestration, and biodiversity conservation (Wiens, 2016; Pecl et al.,
2017), but understanding patterns and processes driving forest properties and species
distributions across scales can be challenging. A common strategy to monitor biodiversity and
biomass of forests at national scales is to use field surveys of plots (USDA Forest Setrvice,
2001, Lawrence et al. 2010). Data collection within survey plots requires extensive effort,
limiting even the most extensive national forest inventories to several thousand permanent plots
sampled every few years (White et al., 2016), which can be too sparse for investigating the
effects of management, soil properties, topography and local environmental conditions on large
scale forest structure, distribution and diversity (Tomppo et al., 2008). Remote sensing can help
bridge this gap between local and regional scales by providing individual tree level data at
scales beyond what is feasible for traditional plot-level inventories (Anderson, 2018). Models
linking remotely sensed imagery to field surveys can identify the location and species identity of
individual trees (Henrys & Jarvis, 2019), alleviating the challenge of inferring local patterns from
sparsely sampled data (Ayrey et al., 2019, Bastin et al., 2019, Kandare et al., 2017) for
understanding tree species distributions and abundances.

Numerous approaches have been developed for pixel- or canopy-scale species-level
classification using hyperspectral remote sensing based on exploiting spectral differences
between tree species which are caused by differences in foliar properties and canopy structure
(Shi et al., 2018, Mayra et al, 2021, Belgiu & Dragut, 2016, Ballanti et al., 2016, Ab Majid et al.,
2016). Recent efforts in species classification use either deep learning methods (Nezami et al,,
2020, Zhang et al., 2020, Martins et al., 2021) or ensemble of machine learning (Knauer et al.,

2021, Grabska et al., 2020), showing promising improvements over more traditional approaches

4
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such as random forest, support vector machines or multi-layer perceptron classifiers. In general,
most approaches are conducted with datasets covering small site- and/or ecosystem-specific
extents (Fassnacht et al., 2016) rarely focus on classification of individual trees (but see urban
tree mapping e.g. Martins et al., 2021), and often focus only on less than 10 species
(Michatowska et al. 2021). For example, because of limitations related to coarse pixel size,
many studies using satellite data either predict the dominant species within plot-sized pixels
(Grabska et al., 2020, Wang et al., 2022) or classify the relative distribution of broad vegetation
types within pixels (Bogan et al., 2019). These approaches are valuable for addressing
processes for which information about dominant species in the community or ecosystem type is
needed (e.g. monitoring forest aboveground biomass, Laurin et al. 2020), but are currently
limited in their ability to provide precise taxonomic information at the individual level. Precise
fine-grained species information is important for assessing forest biodiversity, tree-level growth
and species interactions (Anderson, 2018). Other recent works have leveraged high resolution
airborne missions to generate tree surveys covering hundreds of km? and encompassing
multiple management regimes and forest types (Modzelewska et al., 2020, Modzelewska et al.,
2021). Yet these works target single biomes, and so even though they provide valuable surveys
for key species across different stand ages, communities structures and topographic positions,
their use is still limited to individual biomes and relatively small regions.

Developing remote sensing models specifically for individual regions, sites and/or
ecosystems, as is typically done with remote sensing from airplanes and UAVs, limits the use
of the models beyond the region and training data, making it difficult to: 1) conduct research at
regional to continental scales due to the lack of general models that can be applied across
ecosystems; 2) identify rare or uncommon species due to limited data for training models, which
often results in studies focusing on a limited subset of common species; and 3) accurately apply

the model beyond the region or conditions of the associated field data. Furthermore, training
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data from single site studies often lack the full range of variation in spectral characteristics that
can occur for each species due to intraspecific variation. Developing generalizable species
classification models based on data across different forest types and large spatial extents
unlocks the potential for overcoming these limitations and increases the utility of remote sensing
for building reliable broad scale tree species surveys.

Developing individual tree level species classification models that span geographic
areas, forest types and species pools poses a novel set of challenges. First, it requires building
a library of co-registered field and remote sensing data that includes data from multiple sites
and ecoregions for training and testing algorithms. Second, increasing the geographic extent of
species classification risks confusing species that have similar spectral properties but do not
overlap in their geographic distributions. Third, combining data from multiple sites may introduce
variation in spectral reflectance due to differences in phenology (which affect leaf greenness)
and environmentally driven intraspecific variation, which affect leaf biochemistry, crown shape
and leaf biophysical traits (Sims & Gamon, 2002). Finally, aggregating remote sensing data
from multiple flights, sensors, and sites may increase variation in spectral signatures due to
complex sources of spatial and temporal variation that are linked, but not limited to, acquisition
dates, solar angles, ecosystem types and variation in sensor calibrations (Pax-Lenney et al.,
2001). Therefore, while there are many potential benefits to models for species classification
across large spatial extents, it is unclear how they will perform compared to local models
developed for specific ecosystems.

Here, we leverage newly available data from the National Ecological Observatory
Network (NEON) to develop a continental level model for tree species classification that can be
applied to the entire network and compare its performance to the traditional approach of building
individual models for each site. We used NEON remote sensing and field data on individual

trees at 27 terrestrial sites from Puerto Rico to Alaska, covering a wide range of ecoregions and
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biomes across the United States (US). Several studies have developed species classification
models for NEON data, but all these studies focused on individual NEON sites (Scholl et al.,
2020, Fricker et al., 2019, Marrs & Ni-Meister, 2019, Marconi et al., 2020), or 2-3 sites in the
same region (Graves et al. 2021). We build on these single site models to develop a general
model that can be applied across the entire NEON network by connecting field-identified tree
stems to hyperspectral images. We used an ensemble of species classification models to allow
for leveraging the strengths of different machine learning classifiers and provide effective ways
to estimate the uncertainty of predictions (Engler et al., 2013, Saini & Ghosh, 2017, Sagi &
Rokach, 2018). Using this model, we (1) assess whether a general model approach improves
performance compared to separate models for each site, (2) determine the importance of
reflectance, geography, environmental and ecological conditions on the accuracy and precision
of species predictions; (3) evaluate the uncertainty in predictions; and (4) discuss the potential

for this general model to be used for ecological applications.

2. Methods

2.1. Field Data

Vegetation structure field data
(https://data.neonscience.org/data-products/DP1.10098.001) were collected by the NEON
terrestrial observatory system (TOS) between 2015 and 2019 (Table S.1). This dataset,
sampled from 400 m? plots distributed across the landscape of each NEON site, includes
information about individual trees' geolocation and properties such as species identity, health
status, canopy position, crown diameter, and tree height. Vegetation structure plot locations are
located randomly across the sites stratified by vegetation type within each site with the aim of

capturing landscape level biological and structural diversity at each site. Each subplot (200m? in

7
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size) is assigned to an ecosystem type extracted from the National Land Cover Dataset. For this
study we used data from 27 of the 41 NEON sites with partial to complete forest cover,
encompassing 17 out of 18 ecoclimatic domains in the US (Figure S.1). We used a total of 1701
subplots from 714 plots. Data from the other NEON sites could not be used because either field
data about tree stem positions was missing or the remote sensing imagery contained gaps in
the hyperspectral or lacked information about the sensor angle at the time of data collection.
We only included individual stem data that met the following criteria: (a) the stem had a species
label assigned to it, (b) it was marked as “alive” and “tree” in the NEON field inventory, and (c) it
belonged to a species with more than 5 entries for the entire cross-site dataset. We also did not
use stems designated in the NEON vegetation structure data as fully shaded, shrubs or sapling,
as these stems are most likely not visible in the remote sensing imagery and would therefore be
erroneously paired with pixels belonging to species from neighboring overstory crowns. The

final dataset used for species classification consisted of 5697 individual trees of 77 species.

2.2. Remote sensing data

For this study we used the hyperspectral L3 data from the NEON Airborne Observatory
Platform (NEON, 2021). These data are provided in 1 km? tiles with 426 channels recording

reflectance in 5 nm bands from 350 to 2450 nm. Reflectance data was atmospherically
corrected using the ATCOR-4 approach (Krause et al., 2011). Pixel size is 1 m?. We applied

bidirectional reflectance distribution function (BRDF) correction, topographic correction,
and L2 normalization to reduce the effect of peripheral light and non-Lambertian scattering with
the goal of minimizing variation in reflectance ascribable to flight path and airplane position
(Marconi et al., 2020). For all tiles (n = 4500), we used the same general parameterization to
define the BRDF kernel. We also dropped bands in the water absorption regions of the spectra

(1340 — 1430 nm and 1800 - 1955 nm) as well as the spectrometer’s peripheral bands to reduce
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the effects of noise and artifacts. Thus, the hyperspectral data were reduced to a total of 347
channels. In the tree species classification models, we included terrain elevation (1 m? spatial
resolution) along with the hyperspectral data because of elevation’s potential information in
discriminating species within landscapes (Strahler et al., 1978, Scholl et al., 2020). Elevation
data were derived from a LIDAR sensor mounted along with the hyperspectral sensor on the
aircraft, which was converted into a 1 m spatial resolution raster and appended to the
hyperspectral data as an additional band.

We assigned each individual tree from the filtered field dataset to a square clip of 16
pixels (4 m crown diameter), centered around the stem's GPS coordinates. This threshold was
selected because it is smaller than more than 95% of individual tree crowns diameter measured
from the NEON vegetation structure dataset. We adopted this strategy to reduce the number of
mislabeled pixels at the edges of the crown that belong to neighboring trees, especially in dense
closed canopies. To remove shaded and non-vegetation pixels from these clips, we removed all
pixels with NDVI < 0.5 and low reflectance in the NIR (reflectance at 825nm < 0.2). Since stem
positions often do not match precisely with the center of the tree crown in the canopy, pixels will
sometimes be assigned to the wrong label. To reduce this, we filtered out pixels that were much
shorter than the maximum height of the crown. These pixels are less likely to belong to the
sunlit portion of the target crown or may even measure the reflectance from neighboring shorter
tree crowns, or the understory within a gap in the target crown.

m below the top height of the tree as determined by the maximum height of the tree from the
LiDAR data in the 16-pixel clip. Finally, we removed stems with field GPS locations that fell
within 3 meters of one another where the stems belonged to different taxa to decrease the
chance of confusing closely neighboring, and potentially intermixed, tree crowns of different
species. After all these steps, the final, filtered dataset used ~50,000 out of 200,000 initial pixels

and 6449 out of ~21,000 crowns in the original vegetation structure dataset.
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Due to the large number of correlated bands in hyperspectral data, it is necessary to
reduce the number of features used in classifiers and limit the potential for overfitting (Li et al.,
2011). Although PCA is the most common approach to achieve dimensionality reduction, it
comes with a number of limitations that could be problematic when aggregating information from
different image collections, since it is sensitive to outliers, assumes linear relationship across
features, and it is prone to discarding low rank components that may have high discriminative
information (Prasad & Bruce, 2008). An alternative solution to reduce these issues is to use
untransformed hyperspectral reflectance and group highly correlated bands based on their
distribution in the form of probability densities (Delicado, 2011). This is possible using a
hierarchical dimensionality reduction, consisting of clustering bands with similar standardized
distributions according to Kullback-Leibler divergence (KLD) (Zare et al., 2019). The advantage
of this approach is that it allows for reducing the number of features used while using
untransformed spectral information, thus identifying redundant bands, highlighting highly
correlated regions of the spectra (Yang et al., 2014), and allowing for a direct identification of
the most informative spectral regions. The main limitation is that it requires arbitrarily choosing
the number of groups into which to cluster the bands and identifying meaningful summary
statistics to summarize the information clustered in the groups. We chose 15 groups of bands
because given the limited number of individuals available per rare species, a smaller number of
features is necessary to minimize model overfitting on train data. The number of groups was
selected after exploring a range of possible values from 8 to 40. Fewer groups resulted in a loss
of information and generally lower accuracy, while more groups did not significantly change
model performance. Groups of bands were trained using pixels in the training data. Since the
KLD clustering resulted in grouping bands from mostly contiguous and distinct spectral regions
(though on the boundary of some groups of bands the bands put into each group was

discontinuous), we chose the maximum, minimum and average reflectance as features to
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measure the peak of reflectance, peak of absorption and average reflectance within each
spectral region, which have been linked to leaf traits and vegetation properties (Artiola et al.,
2004). This allowed us to reduce the 347 hyperspectral bands into 45 distinct features
quantifying including information on the minimum, maximum and mean for each of 15 spectral

regions (i.e., groups of bands).

2.3. Site effects

To provide the model with information on site location, which could reduce confusion
across species that do not co-occur within a site but are characterized by similar spectral
signatures, we included the latitude and longitude of the centroid of each site in the model. This
approach incorporates information on the proximity of different sites and can be readily
generalized to use outside of NEON. To help control for potential differences resulting from
variation in sensor calibration of the specific flight missions, which would be specific to each
site, we added a “site identifier” to the remote sensing features in the model. The site identifier
consisted of the NEON site names (a nhominal variable) transformed into real positive numbers
by applying Leave-One-Out regression encoding, based on the correlation between the

categorical variable (i.e. site name) and the species classes for each site(https://contrib.scikit-

learn.org/category_encoders; Wright & Konig, 2019). The advantage of this approach over the
more commonly used one-hot-encoder (i.e., adding a binary feature for each site in the dataset)
is that it compresses the information into a single feature, which avoids undesired sparsity and
potential overfitting due to a large number of encoded classes (27 in this study) (Rodriguez et
al., 2018). We used data in the training set to fit the encoder and assigned its average value to
each site category. The final model input for the general model was hyperspectral features,
elevation, latitude and longitude and site. For the site-specific models, only spectral features

and elevation were used.
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2.4. Species classification

To assess whether a general model approach improves performance we built two sets of
models: (1) a general model using data from all 27 NEON sites and (2) 27 separate models,
each one using only the data from a single NEON site and covering a region of few hundred km?
(hereafter referred to as site-specific models). For both the general and site-specific models, we
performed species classification at the pixel level using an ensemble of five classifiers (Figure
S.2): (1) arandom forest classifier (Belgiu & Dragut, 2016), (2) a k-nearest neighbors classifier
(Laaksonen & Oja, 1996), (3) a histogram gradient boosting classifier (Guryanov, 2019), (4) a
fully connected multilayer perceptron (Pacifico et al., 2018), and (5) a bagging classifier with
support vector machine as base estimators, using tools from the scikit-learn python package
(Pedrosa et al., 2011). Details for each classifier can be found in supplementary materials
(Supplement 1: classifiers). Ensemble-based approaches generally provide better performance
and limit overfitting compared to using one classifier alone (Knauer et al., 2019). We chose the
individual classifiers which form the ensemble because they have been shown to perform well
for species classification on NEON data (Marconi et al., 2019). All predictors were normalized
for model fitting by subtracting the mean and dividing by the standard deviation (i.e., setting the
mean to zero and the standard deviation to 1). Parameters for all models and the ensemble
were extracted by performing parameter tuning using cross validation.

We used entropy loss to measure the quality of tree-splits for random forests, categorical
cross-entropy as the loss function for the histogram-gradient boosting, a radial basis function
kernel to allow for a non-linear decision surface for the support vector classifiers, and the
Manhattan distance for calculating the distance between k-nearest neighbors in the KNN

classifier. We stacked these five pixel-based models by using the probability vectors produced
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by each classifier as features for a meta-ensemble elastic-net logistic model (Tang et al., 2015,
Hui & Hastie, 2005). We chose this approach because logistic classifiers are easily interpretable
and use maximum likelihood to obtain estimates of the coefficients, returning as a result

confidence scores that match the probability of a label-match and not just the single best

predicted classification (Maddala, 1986), which is fundamental for assigning a reliable
uncertainty score to each prediction. Pairing predictions to robust estimates of uncertainty is
fundamental to increase the utility of remote sensing tree surveys for ecological analysis
because it allows for (1) selecting trees and areas that meet or exceed minimum confidence in
the derived measures for being used for scientific analyses, and (2) allows for cascading the
uncertainty in predictions onto the results of analyses downstream (Dietze, 2017). Training the
logistic meta-ensemble on calibrated scores from sub-classifiers offers an advantage over other
modern algorithms, whose estimates of uncertainty do not match true probabilities and are not
well calibrated to the output of interest (Guo et al., 2017, Mukhati et al. 2020).

One of the main challenges of species classification algorithms is the imbalance
between number of individual samples for rare and common species, which can cause models
to overfit to highly abundant classes. In our data set, the number of pixels per species ranged
from 44-28000 and the number of individual trees per species ranged from 5-1000. We used
SMOTETomek technique (Batista et al., 2003) to reduce the effects of species class
imbalances in the training set. SMOTETomek consists of a combination of under and
oversampling which resulted in roughly 1000 spectral signatures (pixels) per species. First, we
undersampled pixels from the most abundant species using Tomek links, which removes noisy
and borderline pixels (Tomek, 1976). Then, we used a SMOTE oversampling approach (Chawla
et al., 2002) to create non-identical synthetic pixels for any species with fewer pixels than the
majority class, thus balancing each class to roughly 1000 pixels each. No over-undersampling

was applied to the test data. Because of the stratified design of the train-test split, most species
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and sites had a number of test trees proportional to their frequency in the original dataset. We
also used the same train-test split to repeat the entire analysis once for each NEON site by
building and testing site-specific models built using only data from each particular site. Finally, to
estimate which spectral regions are most important for separating conifers from broadleaf
species, we repeated the entire analysis by substituting species with broader taxonomy classes

(i.e., angiosperms vs gymnosperms).

2.5. Evaluation

We evaluated the performance of the models by training the model on 80% of the data
and evaluating its performance on the remaining 20%. Since spatial autocorrelation across train
and test data can lead to optimistic bias in classification (Millard & Richardson 2015), we placed
all individuals within a plot together into either the training or testing data sets. A series of
randomizations of the plots were performed to create an 80:20 split of individuals that optimized
the number of species in the train and test data sets. For each randomization, we calculated the
total number of species in the test set and repeated this random operation until we found the
split which maintained the highest number of species from the original data in both train and test
set. For the general model, the training data set contained 4210 individuals of 77 species and
the test data set 1487 individuals of 72 species. Data for the 5 species missing from the test-set
were collected only within plots selected for training, therefore no individual tree was suited for
held out testing of high risk of geographic autocorrelation. The resulting data represents 56% of
the total tree species in the original unfiltered vegetation structure dataset and these species
account for an average of 89% of individuals per site (Figure S.3).

Predictions for the species class of each individual in the test set were made using a 4x4
clip centered on the location of the test stem. Model performance was then evaluated using

overall accuracy, individual tree level (micro) and average species-level (macro) F1 scores

14
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(hereafter referred to as individual-level and species-level accuracy respectively). The F1 score
combines precision and recall to provide a general measure of the overall accuracy of the
species classification, allowing for direct comparison between models using a single metric
(Chinchor, 1992). For each site, F1 scores for the general model were compared to those
produced by equivalent single site models to determine how the general model performed
relative to the traditional single site approach. Scores and confusion matrices were calculated
using the Caret package (Kuhn, 2008).

To understand the performance of the general model in different ecological contexts, we
evaluated how performance varied across the United States, how performance correlated with
the number of species being predicted at the NEON site, and which components of the model
(site effect, elevation, geographic location, and hyperspectral reflectance) were most important
for prediction. We used bootstrap features importance to quantify the relative importance of the
different types of features, e.g., site identifier, site geolocation, hyperspectral reflectance and
terrain elevation (Breiman, 2001). This approach is based on evaluating how the overall
accuracy is affected by each individual feature. At every iteration, one feature is selected and
the values are randomly shuffled among the samples, effectively removing the information held
in it. The accuracy is recorded with the shuffled feature to determine the loss of performance
compared to the unshuffled data. We used the same approach to quantify the relative
importance of the 15 spectral regions in which we grouped the hyperspectral data.

We also evaluated the characteristics of trees and forests associated with the most
confusion between species (i.e., misclassification) based on forest type (using the National Land
Cover Database; Homer et al., 2001) and information from the NEON field data on canopy
position, tree status, and growth form from the NEON field data. We also assessed spatial
structure in confusion by determining, for every misclassified tree, whether the species to which

it was incorrectly classified to also occurred in the same NEON field plot. Finally, since
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confusion commonly occurred within genera we also evaluated model performance for

predicting genus instead of species.

2.6. Prediction

We generated predictions for individual trees at the landscape scale (=350 km?) by
integrating our approach with individual tree detections from previous work (Weinstein et al.,
2021). The Weinstein et al. (2021) dataset consists of 100 million individual tree crowns from 37
NEON sites identified using a retinanet neural network object detector and represented by
quadrangular polygons (i.e., bounding boxes) roughly representing the surface of the sunlit
portion of the crown. For consistency between the approach used for training and testing the
model (16-pixel clips), we extracted the pixels from the centroid of each estimated bounding
box. First, we extracted a 4x4 square window of pixels around the centroid of each detection.
For bounding boxes smaller than 16m?, we dropped the pixels falling outside the bounding
boxes. Second, we filtered vegetation pixels from the background using the same procedure as
applied to the training/test data set. We finally selected all pixels with uncertainty scores > 0.5 to
be used to make predictions at the level of individual trees. We assigned each tree to a species
class by averaging the probability vectors (i.e., probability that the pixel is assigned to any of the
77 classes) of each pixel in the crown and selecting the species with the highest average
probability. We assigned each individual-tree prediction an uncertainty score consisting of the

average pixel probability, which ranged from 0-1.

3. Results

The general (cross-site) model yielded more accurate species classifications (larger F1
scores) than site-level models for 13 (species-level F1) and 18 (individual-level F1) of the 27

sites and identical accuracies for 5 (species-level F1) and 6 (individual-level F1) additional sites.
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There were only three sites that showed better site-level species-level and individual-level F1
scores: Blandy Experimental Farm, Washington (BLAN) and Talladega National Forest,
Alabama (TALL), and Jones Ecological Research Center, Georgia (JERC) (Figure 1, Figure S.
4, Figure S. 5). On average, the general model resulted in higher accuracy of individual tree
level classification (increases in individual-level F1) from 0.70 to 0.77 and species-average
accuracy (increases in species-level F1) from 0.46 to 0.54. Accuracy of the ensemble was
higher than its sub-models trained singularly whose average site-level accuracy ranged
between 0.09 and 1 species-level F1 and between 0.31 and 1 individual-level F1 (Figure S.7

and Supplement 2 for detailed species level accuracies, site-level and general model confusion

matrixes in Supplement 3, raw outputs available at https://doi.org/10.5281/zenodo.5796142),
which is consistent with the general observation that ensemble-based approaches produce
more accurate predictions (Healey et al., 2018). Since the general ensemble model proved to
be the best performing approach in this study, we focus primarily on it from this point forward.
Our results show a link between classification accuracy and ecological properties such
as ecosystem type, tree health, and growth form (Figure 2, Figure S.6). Damaged trees,
including broken boles and other types of damage (but not diseased trees), exhibited higher
rates of misclassification than healthy crowns (Figure 2), with broken boles exhibiting a 44%
misclassification rate. The general model performed best in evergreen forests (~12%
misclassification rate) and worst in wetlands (~38% misclassification rate), with deciduous
forests falling in between (~30% misclassification rate). Average classification accuracy was
higher in eastern forests compared to western forests (Figure 3a), and was significantly
correlated with the number of species within the site (Figure 3b,d). The algorithm generally
underperformed in the Prairie Peninsula and Central and Southern Plains ecoregions which are
characterized by patches of closed forest at the edges of prairies or farmland (Figure 3a, Figure

S.6). These results align with previous work in showing that classification from remote sensing
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is more challenging for more complex canopies, overlapping crowns, and coexisting species
with similar life history and spectral properties (Heinzel & Koch 2016, Bioucas-Dias, 2013).

Roughly 80% of the information used by the algorithm for classifying species was from
the hyperspectral reflectance (Figure 4). Important information was present across the entire
spectrum, but our results show that some groups of bands in some spectral regions were more
informative than others. Specifically, the most important spectral regions are the blue and green
(0.450 to 0.550 nm) in the visible region, the red-edge in the near infrared (0.62 to 0.85), 1.15to
1.27 nmin SWIR1 and 1.62 to 1.68 nm in SWIR2. Spectral regions in the SWIR1, SWIR2, and
red-edge were the most important also in classifying angiosperms vs gymnosperms. The site’s
coordinates, which represent the geographic locations of sites, explained 11% of total variation
and were the second most important variable (Figure 4). Elevation, a proxy of potential local
changes in the environment within each site, accounted for another 4%. The site effect, a proxy
of other site level ancillary information (e.g., sensor calibration, flight and atmospheric
conditions), only accounted for 3% of the total explained variance.

Comparing misclassification among species shows there is greater confusion for rare
species, congenerics, and species that co-occur within NEON field plots, and that model-
estimated uncertainty accurately reflects confidence in the model prediction. All species
performing poorly (F1 < 0.5) belonged to taxa with low sample sizes (less than 50 trees for
training) (Figure S6, Figure S7). In general, most of the confusion was among species co-
occurring within plot (74%) and site (93%). A large amount of confusion also occurred among
congeneric species (~27% of total misclassifications), mostly within pines, poplars, oaks and
maples, which make up 57% of the test dataset (Figure S.9). Oaks, pines and poplars in
particular accounted for ~87% of the total within-genus confusion, and most misclassifications
had confidence scores >0.8. Aggregating predictions at the genus level improved the overall

accuracy by 6% (individual-level F1 accuracy of 83%), confirming that part of the confusion is
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embedded in physiological similarities across taxonomically related trees. Likewise, reducing
tree classification into 2 plant functional types dramatically increased accuracy (F1 ~0.95). The
model showed a fair ability in predicting 5 of 9 species tested in sites where no data was used
for that particular species in the training set. For these trees, the average individual-level F1 of
~0.69 and average species accuracy of 0.47, but accuracy varied largely across taxa, with
better results for needleleaf species (individual-level F1 ~0.825, species-level F1 ~ 0.71)
compared to broadleaf species (individual-level F1 ~0.44, species-level F1 ~0.27). The model
produced reliable estimates of uncertainty for all species regardless of the accuracy. Uncertainty
scores matched closely with the probability of correct classification (R? =of 0.89, Figure 5).
Leveraging crown-data predictions, the model was tested to produce fair species predictions for

millions of trees per NEON site (Figure 6).

4. Discussion

Using a single general model that integrated data from plots across a continental scale
resulted in more accurate classification of tree species identity from remote sensing data than
building separate models for individual sites. The more accurate classification occurred despite
the continental data set containing samples from many different forest types, structures, and
species compositions across 27 sites. This suggests that the benefits of increasing the number
of samples for less common species and more fully characterizing within-species variance
outweighs the costs associated with including species that do not overlap geographically and
including components of within-species variance not observed at individual sites (Figure 1). To
our knowledge this is the first study which developed a generalized model for species
classification of individual tree crowns across multiple biomes. The success of the general
model here suggests that developing generalized algorithms offers a potential step forward in
species classification from remote sensing more broadly. Our model resulted in better cross-site
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classification compared to other approaches in literature (e.g., Castro-Esau et al. 2006) possibly
because of the wider spectral range available from NEON hyperspectral images (445 - 2500 vs
445 - 950 nm), as suggested by the strong contribution of reflectance from 950 to 2500 nm to
our generalized model (Figure 4). Also, better cross-site transferability of species classification
may be related to the models used in the ensemble. Our model included methods like the
gradient boosting classifier, which proved to be among the most robust for cross-site
transferability of species classification (Graves et al., 2021). Our generalized approach
leveraged the information from multiple locations, biomes, and survey efforts, increasing the
number of individuals from rarely sampled or highly variable classes and allowing models to
learn more broadly about how to distinguish species in the taxonomic group of interest. In
addition to yielding improved predictions, generalized cross-site approaches can potentially
generate predictions for a wide range of ecosystems, including those with limited or no training
data, allowing other studies to leverage the same shared model and thereby facilitating large-
scale ecological research (Weinstein et al. 2021).

By providing classification of the most common tree species in the canopy, the results of
this model are potentially useful for several ecological applications, such as mapping biomass
and modeling carbon, energy and water flux. Our model included species making up ~80% of
the individual trees in the upper canopy when all sites are taken together. The fraction, however,
varied among sites. Furthermore, given the stratified sampling of the NEON vegetation structure
data used to develop the generalized model, the model is likely to capture the major vegetation
types and most common species at each site. Canopy trees, which are visible from optical
remote sensing devices, represent the majority of biomass in forests (Lutz et al., 2012).
Because they form the interface between the atmosphere and land surface, the canopy layer
also is particularly important for water and energy flux (Paul-Limogens et al., 2017). Because

carbon storage, water and energy flux can vary among species (Wright et al., 2006), the ability
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to map the location and coverage of canopy species is important for assessing these important
ecosystem characteristics. Other ecological applications, such as assessing total forest species
richness, and quantifying tree regeneration, cannot be addressed using the model because our
model could not classify rare canopy species or understory individuals,

One of the main challenges in developing models that generalize well across the
continent is overcoming differences across sites in factors including seasonality, background,
and sensor calibration (Hesketh & Sanchez-Azofeifa, 2012, Clark et al., 2005, Pu, 2021). To
quantify the sensitivity of the algorithm to this ancillary information, we evaluated the relative
importance of the site-effect features compared to reflectance, geography and elevation. Our
results showed that the relative importance of the site-effect is marginal and accounts for less
than 3% of the total information captured (Figure 4). This suggests that the spectral signal from
NEON data is comparable across different flights and that flight-specific noise can be minimized
using BRDF corrections and vector normalization to limit the impact on the accuracy of
generalized algorithms. This is due in part to NEON data being highly standardized and using
the same image pre-processing protocol across the entire network (Kampe et al., 2014). NEON
remote sensing data is also collected at the peak of vegetation productivity for each site,
reducing the confounding effect of different phenological stages for species occurring at multiple
sites (Gartner et al., 2016). Expanding large scale surveys outside the NEON network would
require integrating information from less standardized sources, raising new challenges related to
fusion of sensors that are not cross-calibrated and images collected in different seasons (Brook
& Ben-Dor, 2015, Zou et al., 2018). Further investigation is therefore fundamental to evaluating
whether our findings apply to applications that involve integrating multiple sensors, missions, or
resolutions.

Clustering adjacent bands in the electromagnetic spectrum using KLD facilitated

evaluating tree attributes, such as leaf chemistry, that may allow spectral separation of different
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species. The phylogenetic conservation of these attributes may help explain why a large part of
the confusion in species classification was for congeneric species (Cavender-Bares et al.,
2016). Our results indicating important spectral regions support patterns shown in previous
work, including (a) reflectance in the red edge (Curran et la., 1995), (b) 450-475 nm (Kira et al.,
2015), and (c) the SWIR around 1200 nm (Li et al., 2021), 1600 nm and 2000 nm (Kokaly et al.,
2015). The importance of the 450-475 nm region may be linked to carotenoids and chlorophyll
content, with chlorophyll content generally lower in needleleaf species (Croft et al., 2020) and
carotenoids varying across different environments (Valiente et. al, 2015). Reflectance in red-
edge can be related to leaf age, chlorophyll, and pigment concentration (Gitelson et al., 1996)
that vary widely among species (Cavender-Bares et al., 2016). Reflectance in the 1200 nm was
previously linked to equivalent water thickness (Li et al., 2021), a key functional trait for
classifying species in temperate biomes (Shi et al., 2018), or distinguishing early to late
succession species (Feret et al., 2019, Wright et al., 2004). Reflectance in SWIR at 1600 and
2000 nm can be linked to leaf phenolics (Kokaly et al., 2015), tannins and secondary
metabolites (Couture et al., 2016), proxies of leaf toughness and structure across species. The
link between water thickness, toughness and structure may also explain why the regions in
1200 nm and 1600 nm are the two most important in distinguishing broadleaf from needleleaf
species.

The dimensionality reduction algorithm used in this study identified groups of adjacent
bands in relatively discrete spectral regions that overlap with spectral regions used in
multispectral satellites, supporting the idea that multispectral satellite sensors can access a
large amount of spectral information for species classification (Laurin et al., 2016).
Hyperspectral satellite data is still limited to few prototype datasets with relatively low spatial
resolution (Loizzo et al., 2018, Diaz et al., 2018, Bogan et al., 2019), compared to multispectral

satellites with sub-meter resolution (e.g. WorldView3). Our results show that most of the
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information required for species classification across NEON sites overlap with WorldView3
satellite multispectral bands supporting that species identification at the tree and plot level with
satellite data is feasible (Immitzer et al., 2012, Hartling et al., 2019, Ferreira et al., 2019).

One of the advantages to broad scale general models is that they allow assessment of
how different ecological and environmental conditions influence the accuracy of the species
classification. Understanding variation in model performance across space, forest types, and
taxa is fundamental to better understanding where and when these models can be applied and
improvement of large-scale surveys from remote sensing. In our analysis, eastern US forests
showed lower accuracy compared to western ecosystems. We believe this is at least partly
because eastern ecosystems are characterized by a higher species diversity of canopy trees as
well as crown geometry that makes aligning stems to crowns more difficult compared to western
conifer stands (Figure 2, 3, S.6). Higher species diversity in eastern forests (mean species per
site ~15) compared to western forests (mean species diversity per site ~4), inherently makes
classification tasks more challenging due to larger numbers of classes typically resulting in
lower accuracy predictions (Takahashi et al., 2020). Continuous closed canopies also increase
the likelihood pixels selected in a window centered on the stem will be from neighboring tree
crowns. This is due to the difficulty of obtaining accurate GPS points of stems in closed canopy
(Rodriguez-Perez et al., 2007), as well as the increased likelihood of sunlit portions of the crown
being displaced from the stem location in continuous broadleaf forests (Strigul et al., 2008). This
is a common problem, since field surveys often provide only the geographic coordinates of tree
stems and lack information about crown position or size, making it very challenging to correctly
align crown borders with species labels. For example, pixel mislabeling may be one of the
reasons why our classifier was weaker at sites in the Great Plains region (e.g., the NEON sites
of Lyndon B. Johnson National Grasslands, CLBJ and University of Kansas Field Station,

UKFS), where patches of grasslands alternate with dense forests characterized by multiple oak
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species forming a complex mosaic of crowns that may not be located directly above their stem
locations. In contrast, conifers in western US forests tend to be dominated by species
characterized by apical dominance (e.g., aspens and firs) with crowns centered directly above
the main stem, reducing pixel mislabeling and improving classification. Finally, savannas, such
as the San Joaquin Experimental Range (SJER), characterized by isolated trees of few species
(mostly broadleaved), may be less likely to suffer from confounding effects like crown
displacement and stem-crown misalignment, making them less prone to spectral mixing or
potential pixel-mislabeling (Heinzel & Koch, 2012). The most challenging ecosystem type in our
analysis, wetlands, combines all of these challenges. Species like Carpinus caroliniana and
Betula papyrifera, found often in plots from wetland ecosystems, were among the species with
the worst classification accuracy, partly because they are generally smaller trees that can occur
in the understory, grow in closed canopies in the overstory (e.g., an average dbh ~16.5 cm and
average height of ~10 m), and often include limited training samples because they are mostly
found in riparian ecosystems which make up a small fraction of the landscapes from the NEON
sites included in this study (less than 50 individuals per species). Because of these challenges,
the accuracy of the species predictions needs to be assessed depending on the site and
ecosystem types within sites to ensure it is sufficient for the intended ecological application.
Because species predictions from remote sensing are imperfect, it is important that
classification models produce robust estimates of uncertainty to allow this uncertainty to be
propagated through ecological analyses and considered during decision making. This is
particularly important when generating large numbers of predictions at large scales, because
this will result in including species located in undersampled areas and challenging ecosystems
as well as species that are difficult to classify due to rarity or similarity to other closely related
species. Our results confirmed that stacking scores from different classifiers using a logistic

regression produces accurate estimation of classification uncertainty (Figure 6).
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While our generalized approach resulted in significant improvements over site-level
models, it is important to recognize that the accuracy of this approach is still insufficient for
ecological analyses contingent on rare or untrained species. For example, biodiversity patterns
are often driven by rare species (Leitao et al., 2016, Mouilllot et al., 2013), which are the most
challenging taxa for species classification, especially species so rare that they cannot be
included in the model due to data limitations (n < 5 individual trees in this study). Extrapolating
outside of NEON sites, a goal for general models, would also result in the presence of additional
species missing from the field dataset, restricting the range of ecological analyses to species
sampled within the footprint of NEON sites. Some of these limitations may be mitigated by
classifying trees into higher level taxonomic levels. In this study we observed that misclassified
trees were generally limited to species in the same genus and species co-occurring in the same
plot (Figure S.9, Figure S.10, Figure S.11, Supplement 3). Oaks, pines, and poplars in particular
accounted for ~87% of the total within genus confusion. One possible driver of confusion among
oak species is their similar physiological and spectral characteristics (Figure S.12). Some co-
occurring oaks species like Quercus alba and Quercus stellata can also cross-breed and
therefore be physiologically very similar (Hardin, 1975), making them particularly hard to
distinguish from imagery. For these reasons, most of the cases leading to misclassification
resulted from within-genus confusion. This implies that uncertainty can be significantly reduced
by aggregating predictions to the genus level, offering a more robust solution for large scale
ecological applications that can be successfully addressed by accurately classifying trees at the
level of genus, families, or plant functional type. For example, earth system models use plant
functional types as the taxonomic unit for quantifying carbon dynamics at continental to global
scale (Lawrence et al., 2019), large scale fire risk assessment and management can be
achieved by using genus level surveys of the most dominant taxa (Ma et al., 2021), and patterns

of forest biomass largely depend on which taxa dominate the ecosystem (Cheng et al., 2018).
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585 An increase in taxonomic level also reduces issues with applying general models beyond the
586 training data (e.g., outside of NEON sites) because it is much more likely that all genera or
587 families have been sampled in the training data.

588 Building generalized algorithms provides an approach to overcome the significant field
589 data limitations present in most remote sensing tasks in ecology, by allowing pooling data from
590 ever growing sources of spatially explicit field surveys and high-resolution remote sensing

591 imagery. Our results showed that by integrating field surveys from dozens of NEON sites, it is
592 possible to produce a general model that provides improvements over single-site models for
593 species classification, with good estimates of uncertainty, and the ability to increase accuracy
594 further by aggregating predictions at the genus level. This general approach also unlocks the
595 potential for making predictions outside of NEON sites. The ultimate goal is to develop general
596 models that can be used anywhere in the region of interest (in our case the United States).
597 Using only NEON data, we successfully built a single integrated classifier that includes 20% of
598 all tree species found in forest ecosystems across the US (n=77 out of 396 surveyed by the
599 United States Forest Inventory and Analysis project; appendix F; Woudenberg, et al., 2010).
600 Beyond NEON, more and more openly available field, multispectral and hyperspectral
601 datasets are being released from aerial (airborne and UAV) and satellite missions worldwide
602 (Cook et al.,, 2013, Vangi et al., 2021, Claverie et al., 2018). Our results show that instead of
603 training hundreds of separate models for local applications, there is the potential for integrating
604 field and remote sensing collections from multiple locations and sources to build general models
605 with improved accuracy for a broader range of landscapes and geographic locations.

606 Leveraging the broad geographic distribution of NEON sites and the overlapping information
607 held by multispectral and hyperspectral imaging, our results also suggest the potential for linking
608 different data sources to unlock the ability of scaling species classification of individual trees

609 beyond NEON. For example, future work could focus on developing approaches for bridging the
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610 information held in hyperspectral data (sparsely acquired, high radiometric resolution) to the
611 ever-growing pool of high-resolution multispectral and RGB + NIR data (e.g. National

612 Agriculture Imagery Program data) available for a broad geographic continuum across the US.
613 Further integration with more field and remote sensing datasets could potentially provide remote
614 sensing-based surveys of hundreds of millions of trees, making it possible to investigate the

615 properties of ecosystems from local to continental scales.

616 5. Conclusions

617 Remote sensing is facing a revolution in the quality of data and accuracy of methods,
618 making it a good candidate for developing applications to survey species and forest properties
619 atlarge spatial extents. Leveraging data collected from NEON across the US, we demonstrated
620 that building continental scale algorithms for generalized species classification offers several
621 advantages over the more traditional site level applications. Despite being very high for

622 dominant taxa, accuracy in predictions for less represented species can be taunted by

623 limitations in field-to-image misalignment, the number of species and individuals from rarely
624 sampled taxa, making surveys from remote sensing unsuited to date for analyzing patterns in
625 species alpha diversity at scale. Yet, building generalized algorithms is a fundamental

626 cornerstone to overcome these limitations, because it allows for pooling from ever growing
627 sources of geo-explicit field surveys and high-resolution remote sensing imagery. Our results
628 showed that by integrating field surveys with NEON airborne data, it is possible already to

629 generate highly accurate predictions at the genus level and overall good estimates of

630 uncertainty for individual trees. This allows for generating surveys of hundreds of millions of
631 individual crowns across the continent, unlocking the potential for investigating large scale
632 ecological applications focusing on the sun-exposed part of the canopy, dominant species,
633 genuses or functional types.
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relationship over the 27 sites. (c) Kernel density estimate of the distribution of individual-level F1
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Supplement 1: parameterization of classifiers and meta ensemble

KNN classifier was trained using 20 neighboring points, with distance weighted by the
inverse of their Manhattan distance. The Random Forest classifier was trained using 300 trees
with up to 7 features (square root of the total predictors) considered for better split, validated
using cross-entropy loss function on out-of-bag samples. The gradient boosting classifier
was trained using 1000 maximum iterations, a learning rate of 0.01, max depth of 25 and 0.5 L2

regularization. Loss was calculated using categorical cross-entropy on out-of-bag samples.
Multi-layer Perceptron classifier was trained for 1200 max iterations, using
relu activation, 1 hidden layer, weight optimization through adam booster
with exponential decay rate of 0.9. The Bagging Classifier was trained using
10 support vector machine classifiers as base estimators. We used loose
regularization (C = 1000), RBF kernel, and 5-fold cross validation to calibrate

probability estimates. The meta ensemble was trained using probability vectors
produced by each weak classifier. We used a regularized logistic regression (elasticnet), with

0.5 L1 to L2 penalty ratio. We used a saga solver to optimize the loss function.
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Supplement 2: Species level accuracy and scientific names

Species names for all species used for this manuscript along with their precision, recall and

accuracy can be found in the supplementary file titled “overview_precision_recall_names.csv”.

Recall is defined as the amount of true positives divided by the sum of true positives plus and
false negatives; it represents the fraction of relevant instances predicted by the model. F1

represents the model accuracy for each species.
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Supplement 3: Confusion matrix

Confusion matrices were produced using the Caret R package (Kuhn, 2008). For species with
both precision and recall equaling 0, F1 score was calculated as 0. Tabular version of the
confusion matrices for predictions on the test (total n = 1487) set for (1) all trees in the test set,
(2) trees in the test set for each ecodomain, (3) trees in the test set for each site from the
generalized approach, (4) trees in the test set for each site from site-specific approach, (5) for
predictions at the genus level can be found in the supplementary file “confusion_matrices.zip”
and are organized in separate folders. For each confusion matrix, rows represent observations,
columns represent predictions. In cases where columns are entirely filled with zeros, we
removed all species that were not found in either the training or held-out test datasets at each
individual site. For site level confusion matrices, we only included species for which at least one
tree was either observed or predicted. Therefore, species with no observations in the test set
will be assigned to empty columns; species never predicted in the test set will be assigned to

empty rows.
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Supplementary Table 1.
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Figure S. 2: Flowchart of the species classification pipeline developed for this study

50



151

1064

1065
1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

152
153

Frequency [0,1]

075
“5 J ' i
0.00

4/3 102 113 16/6 19/7 713 18/9 28114 6/3 31116 4525 30/17 73 38/22 2413 24/15 36/23 2314 26117 2317 a3 5/4 2117 2117 4/4

Pe
0 »
S & ¢ & TS ¢ e ¢ o° C R A O G G A

telD
Fraction of Fraction of
total species species in
sampled the canopy

Figure S.3 For each site, the fraction of species included in the test/train dataset compared to
the total amount of tree species in the raw NEON vegetation structure dataset (red); the fraction
of trees that the species from the test/train dataset comprise out of all canopy trees (blue) in the
NEON vegetation structure dataset. The numbers separated by “/” above each site name
represent the total number of species in the original dataset and in the filtered data respectively,
specific for each site. Trees in the canopy (blue bars) were determined by canopy position data
in the vegetation structure data where trees in the canopy were designated as "Full sun”,

"Mostly shaded", "Partially shaded", “Open growth”, or non-classified (“NA”).
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values (17 out of 27 sites) represent sites where the generalized algorithm outperformed its site-

specific counterpart. Dashed vertical lines represent the average AF1 across sites (species-

level F1 = 0.09, individual-level F1 = 0.05).
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Supplement S.5. Difference in accuracy between the general and site-specific approaches for
each species-site combination. Negative values (red) represent taxa whose accuracy is higher
in the general approach. Blue values represent taxa whose accuracy is higher in the site-
specific approach. White values where accuracy was similar for the general and site-specific
approaches. Grey are species that do not occur at the site. Sites are sorted by geographic
similarity. Species names for each taxon acronym can be found in Supplement 2. Site names
can be found in table S1.

53



160

1091

1092
1093

1094

1095

1096

1097

1098

1099

1100

1101

161
162

| Western Domains | | Central Plains ‘ | Eastern Domains ‘

Figure S.6 Example of 400 m? plots for 6 sites from western (left panel), central (center panel)
and eastern US (right panel). Dots represent field stem data collected from NEON vegetation
structure. Different dot colors represent different species. Only stems that have been filtered to
include only stems that are likely to be in the canopy. From top left to bottom right sites
acronyms are Abby Road (ABBY), Delta Junction (DEJU), Harvard Forest (HARV), San Joaquin

Experimental Range (SJER), Blandy Experimental Farm (BLAN), Lenoir Landing (LENO),
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Figure S.7. Precision (blue), Recall (yellow) and F1 (gray) for each individual species included in
the dataset. Precision is defined by the ratio between the number of true positives and the
number of true positives plus the number of false positives; it represents the ability of a
classification model to identify only the relevant data points. Recall is defined as the amount of
true positives divided by the sum of true positives plus and false negatives; it represents the
fraction of relevant instances predicted by the model. F1 represents the model accuracy for
each species. These results, along with the list of species scientific names assigned to each
code can be found in Supplement S2. Confusion matrices can be found in separate

supplementary file as described by Supplement 3.
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trees available for training for that species. The blue line shows a fitted relationship using local

polynomial regression fitting (loess) and the grey region shows the 95% confidence interval

around that relationship.
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1129 Figure S.9. Confidence score P(x) for those taxa each species was most confused with. Taxa
1130 with a P(x) lower than 0.02 were not included. Species names for each taxon acronym can be

1131 found in supplement 2.
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1137 Figure S.11. Overall confusion matrix for all data in the test set. Tabular versions, including the
1138 confusion for each site, ecodomain and the confusion matrix for predictions at the genus level

1139 can be found in the supplementary files. Species names for each taxon acronym can be found

1140 in supplement 2.
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Figure S.12 Example of spectral signature overlap between often confused congeneric species.
Lines represent the average spectra, shaded areas represent the standard deviation for all
pixels extracted for that particular species. The first species in legend is in blue, the second in
grey. The X-axis is the band number from brdf corrected hyperspectral image. Couples of
species are: (a) Quercus marilandica and Quercus stellata, (b) Quercus alba and Quercus

rubra, (c) Pinus palustris and Pinus elliottii, (d) Abies magnifica and Abies lowiana.
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181

1152

182
183

Ecological Geolocation
Site Name Domain Name State
Domain (Lat-Lon)
Pacific 45.76
Abby Road NEON (ABBY) D16 Washington
Northwest -122.33
Bartlett Experimental Forest New 44.06
D01 Northeast
NEON (BART) Hampshire -71.29
Blandy Experimental Farm NEON Mid 39.03
D02 Virginia
(BLAN) Atlantic -78.04
Caribou-Poker Creeks Research 65.15
D19 Taiga Alaska
Watershed NEON (BONA) -147.5
Ozarks 32.54
Dead Lake NEON (DELA) D08 Alabama
Complex -87.8
63.88
Delta Junction NEON (DEJU) D19 Taiga Alaska
-145.75
Disney Wilderness Preserve 28.13
D03 Southeast Florida
NEON (DSNY) -81.44
Atlantic 17.97
Guanica Forest NEON (GUAN) D04 Neotropica| Puerto Rico
-66.87
I
Harvard Forest & Quabbin 42.54
D01 Northeast |Massachusetts
Watershed NEON (HARV) 7217
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184

185
186

Prairie 39.04
KU Field Station NEON (UKFS) D06 Kansas
Peninsula -95.19
Konza Prairie Biological Station Prairie 39.1
D06 Kansas
NEON (KONZ) Peninsula -96.56
Ozarks 31.85
Lenoir Landing NEON (LENO) D08 Alabama
Complex -88.16
Lyndon B. Johnson National Southern 33.4
D11 Texas
Grassland NEON (CLBJ) Plains -97.57
Southern 38.25
Rockies /
Moab NEON (MOAB) D13 Utah
Colorado -109.39
Plateau
Appalachia 37.38
Mountain Lake Biological Station ns/
DO7 Virginia
NEON (MLBS) Cumberlan -80.52
d Plateau
Southern 40.05
Rockies /
Niwot Ridge NEON (NIWO) D13 Colorado
Colorado -105.58
Plateau
Ordway-Swisher Biological 29.69
D03 Southeast Florida
Station NEON (OSBS) -81.99
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188
189

Central 40.28
Rocky Mountains NEON (RMNP) D10 Colorado
Plains -105.55
San Joaquin Experimental Range Pacific 37.11
D17 California
NEON (SJER) Southwest -119.73
Smithsonian Conservation Biology Mid 38.89
D02 Virginia
Institute NEON (SCBI) Atlantic -78.14
Smithsonian Environmental Mid 38.89
D02 Maryland
Research Center NEON (SERC) Atlantic -76.56
Steigerwaldt-Chequamegon Great 45.51
D05 Wisconsin
NEON (STEI) Lakes -89.59
Talladega National Forest NEON Ozarks 32.95
D08 Alabama
(TALL) Complex -87.39
The Jones Center At Ichauway 31.19
D03 Southeast Georgia
NEON (JERC) -84.47
Great 45.49
Treehaven NEON (TREE) D05 Wisconsin
Lakes -89.59
University of Notre Dame 46.23
Great
Environmental Research Center D05 Michigan
Lakes -89.54
NEON (UNDE)
Wind River Experimental Forest Pacific 45.82
D16 Washington
NEON (WREF) Northwest -121.95
Yellowstone National Park NEON D12 Northern Wyoming 44.95
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1153

1154

1155

1156

1157

1158
1159
1160

191
192

(YELL)

Rockies

-110.54

Table S.1 Description of NEON sites and ecological domains used in this study.
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