

1

1 Continental-scale hyperspectral tree species

2 classification in the United States National

3 Ecological Observatory Network

4

5 Sergio Marconi¹, Ben. G. Weinstein¹, Sheng Zou³, Stephanie A. Bohlman², Alina Zare³, Aditya

6 Singh⁴, Dylan Stewart³, Ira Harmon⁵, Ashley Steinkraus¹, Ethan P. White¹

7 ¹Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida,

8 USA

9 ²School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida,

10 USA

11 ³Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida,

12 USA

13 ⁴Department of Agricultural & Biological Engineering, University of Florida, Gainesville, FL, USA

14 ⁵Department of Computer and Information Sciences and Engineering, University of Florida,

15 Gainesville, FL, USA

16

17

2

3

1

18 Abstract

19

20 Advances in remote sensing imagery and machine learning applications unlock the potential for
21 developing algorithms for species classification at the level of individual tree crowns at
22 unprecedented scales. However, most approaches to date focus on site-specific applications
23 and a small number of taxonomic groups. Little is known about how well these approaches
24 generalize across broader geographic areas and ecosystems. Leveraging field surveys and
25 hyperspectral remote sensing data from the National Ecological Observatory Network (NEON),
26 we developed a continental-extent model for tree species classification that can be applied to
27 the network, including a wide range of US terrestrial ecosystems. We compared the
28 performance of a model trained with data from 27 NEON sites to models trained with data from
29 each individual site, evaluating advantages and challenges posed by training species classifiers
30 at the US scale. We evaluated the effect of geographic location, topography, and ecological
31 conditions on the accuracy and precision of species predictions (72 out of 77 species).

32 On average, the general model resulted in good overall classification accuracy (micro-F1 score),
33 with better accuracy than site-specific classifiers (average individual tree level accuracy of 0.77
34 for the general model and 0.70 for site-specific models). Aggregating species to the genus-level
35 increased accuracy to 0.83. Regions with more species exhibited lower classification accuracy.
36 Predicted species were more likely to be confused with congeneric and co-occurring species
37 and confusion was highest for trees with structural damage and in complex closed-canopy
38 forests. The model produced accurate estimates of uncertainty, correctly identifying trees where
39 confusion was likely. Using only data from NEON, this single integrated classifier can make
40 predictions for 20% of all tree species found in forest ecosystems across the entire US, which
41 make up to roughly 90% of the upper canopy of the studied ecosystems. This suggests the

7

42 potential for integrating information from multiple datasets and locations to develop broad scale

43 general models for species classification from hyperspectral imaging.

44

8

3

9

45

1. Introduction

46 Forest ecosystems play a central role in essential services like providing wood and other
47 forest products, carbon sequestration, and biodiversity conservation (Wiens, 2016; Pecl et al.,
48 2017), but understanding patterns and processes driving forest properties and species
49 distributions across scales can be challenging. A common strategy to monitor biodiversity and
50 biomass of forests at national scales is to use field surveys of plots (USDA Forest Service,
51 2001, Lawrence et al. 2010). Data collection within survey plots requires extensive effort,
52 limiting even the most extensive national forest inventories to several thousand permanent plots
53 sampled every few years (White et al., 2016), which can be too sparse for investigating the
54 effects of management, soil properties, topography and local environmental conditions on large
55 scale forest structure, distribution and diversity (Tomppo et al., 2008). Remote sensing can help
56 bridge this gap between local and regional scales by providing individual tree level data at
57 scales beyond what is feasible for traditional plot-level inventories (Anderson, 2018). Models
58 linking remotely sensed imagery to field surveys can identify the location and species identity of
59 individual trees (Henrys & Jarvis, 2019), alleviating the challenge of inferring local patterns from
60 sparsely sampled data (Ayrey et al., 2019, Bastin et al., 2019, Kandare et al., 2017) for
61 understanding tree species distributions and abundances.

62 Numerous approaches have been developed for pixel- or canopy-scale species-level
63 classification using hyperspectral remote sensing based on exploiting spectral differences
64 between tree species which are caused by differences in foliar properties and canopy structure
65 (Shi et al., 2018, Mayra et al, 2021, Belgiu & Dragut, 2016, Ballanti et al., 2016, Ab Majid et al.,
66 2016). Recent efforts in species classification use either deep learning methods (Nezami et al.,
67 2020, Zhang et al., 2020, Martins et al., 2021) or ensemble of machine learning (Knauer et al.,
68 2021, Grabska et al., 2020), showing promising improvements over more traditional approaches

69 such as random forest, support vector machines or multi-layer perceptron classifiers. In general,
70 most approaches are conducted with datasets covering small site- and/or ecosystem-specific
71 extents (Fassnacht et al., 2016) rarely focus on classification of individual trees (but see urban
72 tree mapping e.g. Martins et al., 2021), and often focus only on less than 10 species
73 (Michałowska et al. 2021). For example, because of limitations related to coarse pixel size,
74 many studies using satellite data either predict the dominant species within plot-sized pixels
75 (Grabska et al., 2020, Wang et al., 2022) or classify the relative distribution of broad vegetation
76 types within pixels (Bogan et al., 2019). These approaches are valuable for addressing
77 processes for which information about dominant species in the community or ecosystem type is
78 needed (e.g. monitoring forest aboveground biomass, Laurin et al. 2020), but are currently
79 limited in their ability to provide precise taxonomic information at the individual level. Precise
80 fine-grained species information is important for assessing forest biodiversity, tree-level growth
81 and species interactions (Anderson, 2018). Other recent works have leveraged high resolution
82 airborne missions to generate tree surveys covering hundreds of km² and encompassing
83 multiple management regimes and forest types (Modzelewska et al., 2020, Modzelewska et al.,
84 2021). Yet these works target single biomes, and so even though they provide valuable surveys
85 for key species across different stand ages, communities structures and topographic positions,
86 their use is still limited to individual biomes and relatively small regions.

87 Developing remote sensing models specifically for individual regions, sites and/or
88 ecosystems, as is typically done with remote sensing from airplanes and UAVs, limits the use
89 of the models beyond the region and training data, making it difficult to: 1) conduct research at
90 regional to continental scales due to the lack of general models that can be applied across
91 ecosystems; 2) identify rare or uncommon species due to limited data for training models, which
92 often results in studies focusing on a limited subset of common species; and 3) accurately apply
93 the model beyond the region or conditions of the associated field data. Furthermore, training

94 data from single site studies often lack the full range of variation in spectral characteristics that
95 can occur for each species due to intraspecific variation. Developing generalizable species
96 classification models based on data across different forest types and large spatial extents
97 unlocks the potential for overcoming these limitations and increases the utility of remote sensing
98 for building reliable broad scale tree species surveys.

99 Developing individual tree level species classification models that span geographic
100 areas, forest types and species pools poses a novel set of challenges. First, it requires building
101 a library of co-registered field and remote sensing data that includes data from multiple sites
102 and ecoregions for training and testing algorithms. Second, increasing the geographic extent of
103 species classification risks confusing species that have similar spectral properties but do not
104 overlap in their geographic distributions. Third, combining data from multiple sites may introduce
105 variation in spectral reflectance due to differences in phenology (which affect leaf greenness)
106 and environmentally driven intraspecific variation, which affect leaf biochemistry, crown shape
107 and leaf biophysical traits (Sims & Gamon, 2002). Finally, aggregating remote sensing data
108 from multiple flights, sensors, and sites may increase variation in spectral signatures due to
109 complex sources of spatial and temporal variation that are linked, but not limited to, acquisition
110 dates, solar angles, ecosystem types and variation in sensor calibrations (Pax-Lenney et al.,
111 2001). Therefore, while there are many potential benefits to models for species classification
112 across large spatial extents, it is unclear how they will perform compared to local models
113 developed for specific ecosystems.

114 Here, we leverage newly available data from the National Ecological Observatory
115 Network (NEON) to develop a continental level model for tree species classification that can be
116 applied to the entire network and compare its performance to the traditional approach of building
117 individual models for each site. We used NEON remote sensing and field data on individual
118 trees at 27 terrestrial sites from Puerto Rico to Alaska, covering a wide range of ecoregions and

119 biomes across the United States (US). Several studies have developed species classification
120 models for NEON data, but all these studies focused on individual NEON sites (Scholl et al.,
121 2020, Fricker et al., 2019, Marrs & Ni-Meister, 2019, Marconi et al., 2020), or 2-3 sites in the
122 same region (Graves et al. 2021). We build on these single site models to develop a general
123 model that can be applied across the entire NEON network by connecting field-identified tree
124 stems to hyperspectral images. We used an ensemble of species classification models to allow
125 for leveraging the strengths of different machine learning classifiers and provide effective ways
126 to estimate the uncertainty of predictions (Engler et al., 2013, Saini & Ghosh, 2017, Sagi &
127 Rokach, 2018). Using this model, we (1) assess whether a general model approach improves
128 performance compared to separate models for each site, (2) determine the importance of
129 reflectance, geography, environmental and ecological conditions on the accuracy and precision
130 of species predictions; (3) evaluate the uncertainty in predictions; and (4) discuss the potential
131 for this general model to be used for ecological applications.

132 2. Methods

133 2.1. Field Data

134 Vegetation structure field data
135 (<https://data.neonscience.org/data-products/DP1.10098.001>) were collected by the NEON
136 terrestrial observatory system (TOS) between 2015 and 2019 (Table S.1). This dataset,
137 sampled from 400 m² plots distributed across the landscape of each NEON site, includes
138 information about individual trees' geolocation and properties such as species identity, health
139 status, canopy position, crown diameter, and tree height. Vegetation structure plot locations are
140 located randomly across the sites stratified by vegetation type within each site with the aim of
141 capturing landscape level biological and structural diversity at each site. Each subplot (200m² in

142 size) is assigned to an ecosystem type extracted from the National Land Cover Dataset. For this
143 study we used data from 27 of the 41 NEON sites with partial to complete forest cover,
144 encompassing 17 out of 18 ecoclimatic domains in the US (Figure S.1). We used a total of 1701
145 subplots from 714 plots. Data from the other NEON sites could not be used because either field
146 data about tree stem positions was missing or the remote sensing imagery contained gaps in
147 the hyperspectral or lacked information about the sensor angle at the time of data collection.
148 We only included individual stem data that met the following criteria: (a) the stem had a species
149 label assigned to it, (b) it was marked as “alive” and “tree” in the NEON field inventory, and (c) it
150 belonged to a species with more than 5 entries for the entire cross-site dataset. We also did not
151 use stems designated in the NEON vegetation structure data as fully shaded, shrubs or sapling,
152 as these stems are most likely not visible in the remote sensing imagery and would therefore be
153 erroneously paired with pixels belonging to species from neighboring overstory crowns. The
154 final dataset used for species classification consisted of 5697 individual trees of 77 species.

155 2.2. Remote sensing data

156 For this study we used the hyperspectral L3 data from the NEON Airborne Observatory
157 Platform (NEON, 2021). These data are provided in 1 km² tiles with 426 channels recording
158 reflectance in 5 nm bands from 350 to 2450 nm. Reflectance data was atmospherically
159 corrected using the ATCOR-4 approach (Krause et al., 2011). Pixel size is 1 m². We applied
160 bidirectional reflectance distribution function (BRDF) correction, topographic correction,
161 and L2 normalization to reduce the effect of peripheral light and non-Lambertian scattering with
162 the goal of minimizing variation in reflectance ascribable to flight path and airplane position
163 (Marconi et al., 2020). For all tiles (n = 4500), we used the same general parameterization to
164 define the BRDF kernel. We also dropped bands in the water absorption regions of the spectra
165 (1340 – 1430 nm and 1800 - 1955 nm) as well as the spectrometer’s peripheral bands to reduce

166 the effects of noise and artifacts. Thus, the hyperspectral data were reduced to a total of 347
167 channels. In the tree species classification models, we included terrain elevation (1 m^2 spatial
168 resolution) along with the hyperspectral data because of elevation's potential information in
169 discriminating species within landscapes (Strahler et al., 1978, Scholl et al., 2020). Elevation
170 data were derived from a LiDAR sensor mounted along with the hyperspectral sensor on the
171 aircraft, which was converted into a 1 m spatial resolution raster and appended to the
172 hyperspectral data as an additional band.

173 We assigned each individual tree from the filtered field dataset to a square clip of 16
174 pixels (4 m crown diameter), centered around the stem's GPS coordinates. This threshold was
175 selected because it is smaller than more than 95% of individual tree crowns diameter measured
176 from the NEON vegetation structure dataset. We adopted this strategy to reduce the number of
177 mislabeled pixels at the edges of the crown that belong to neighboring trees, especially in dense
178 closed canopies. To remove shaded and non-vegetation pixels from these clips, we removed all
179 pixels with $\text{NDVI} < 0.5$ and low reflectance in the NIR (reflectance at 825nm < 0.2). Since stem
180 positions often do not match precisely with the center of the tree crown in the canopy, pixels will
181 sometimes be assigned to the wrong label. To reduce this, we filtered out pixels that were much
182 shorter than the maximum height of the crown. These pixels are less likely to belong to the
183 sunlit portion of the target crown or may even measure the reflectance from neighboring shorter
184 tree crowns, or the understory within a gap in the target crown.

185 m below the top height of the tree as determined by the maximum height of the tree from the
186 LiDAR data in the 16-pixel clip. Finally, we removed stems with field GPS locations that fell
187 within 3 meters of one another where the stems belonged to different taxa to decrease the
188 chance of confusing closely neighboring, and potentially intermixed, tree crowns of different
189 species. After all these steps, the final, filtered dataset used ~50,000 out of 200,000 initial pixels
190 and 6449 out of ~21,000 crowns in the original vegetation structure dataset.

191 Due to the large number of correlated bands in hyperspectral data, it is necessary to
192 reduce the number of features used in classifiers and limit the potential for overfitting (Li et al.,
193 2011). Although PCA is the most common approach to achieve dimensionality reduction, it
194 comes with a number of limitations that could be problematic when aggregating information from
195 different image collections, since it is sensitive to outliers, assumes linear relationship across
196 features, and it is prone to discarding low rank components that may have high discriminative
197 information (Prasad & Bruce, 2008). An alternative solution to reduce these issues is to use
198 untransformed hyperspectral reflectance and group highly correlated bands based on their
199 distribution in the form of probability densities (Delicado, 2011). This is possible using a
200 hierarchical dimensionality reduction, consisting of clustering bands with similar standardized
201 distributions according to Kullback-Leibler divergence (KLD) (Zare et al., 2019). The advantage
202 of this approach is that it allows for reducing the number of features used while using
203 untransformed spectral information, thus identifying redundant bands, highlighting highly
204 correlated regions of the spectra (Yang et al., 2014), and allowing for a direct identification of
205 the most informative spectral regions. The main limitation is that it requires arbitrarily choosing
206 the number of groups into which to cluster the bands and identifying meaningful summary
207 statistics to summarize the information clustered in the groups. We chose 15 groups of bands
208 because given the limited number of individuals available per rare species, a smaller number of
209 features is necessary to minimize model overfitting on train data. The number of groups was
210 selected after exploring a range of possible values from 8 to 40. Fewer groups resulted in a loss
211 of information and generally lower accuracy, while more groups did not significantly change
212 model performance. Groups of bands were trained using pixels in the training data. Since the
213 KLD clustering resulted in grouping bands from mostly contiguous and distinct spectral regions
214 (though on the boundary of some groups of bands the bands put into each group was
215 discontinuous), we chose the maximum, minimum and average reflectance as features to

216 measure the peak of reflectance, peak of absorption and average reflectance within each
217 spectral region, which have been linked to leaf traits and vegetation properties (Artiola et al.,
218 2004). This allowed us to reduce the 347 hyperspectral bands into 45 distinct features
219 quantifying including information on the minimum, maximum and mean for each of 15 spectral
220 regions (i.e., groups of bands).

221 2.3. Site effects

222 To provide the model with information on site location, which could reduce confusion
223 across species that do not co-occur within a site but are characterized by similar spectral
224 signatures, we included the latitude and longitude of the centroid of each site in the model. This
225 approach incorporates information on the proximity of different sites and can be readily
226 generalized to use outside of NEON. To help control for potential differences resulting from
227 variation in sensor calibration of the specific flight missions, which would be specific to each
228 site, we added a “site identifier” to the remote sensing features in the model. The site identifier
229 consisted of the NEON site names (a nominal variable) transformed into real positive numbers
230 by applying Leave-One-Out regression encoding, based on the correlation between the
231 categorical variable (i.e. site name) and the species classes for each site(https://contrib.scikit-learn.org/category_encoders; Wright & König, 2019). The advantage of this approach over the
232 more commonly used one-hot-encoder (i.e., adding a binary feature for each site in the dataset)
233 is that it compresses the information into a single feature, which avoids undesired sparsity and
234 potential overfitting due to a large number of encoded classes (27 in this study) (Rodriguez et
235 al., 2018). We used data in the training set to fit the encoder and assigned its average value to
236 each site category. The final model input for the general model was hyperspectral features,
237 elevation, latitude and longitude and site. For the site-specific models, only spectral features
238 and elevation were used.

34

240

241 2.4. Species classification

242 To assess whether a general model approach improves performance we built two sets of
243 models: (1) a general model using data from all 27 NEON sites and (2) 27 separate models,
244 each one using only the data from a single NEON site and covering a region of few hundred km²
245 (hereafter referred to as site-specific models). For both the general and site-specific models, we
246 performed species classification at the pixel level using an ensemble of five classifiers (Figure
247 S.2): (1) a random forest classifier (Belgiu & Dragut, 2016), (2) a k-nearest neighbors classifier
248 (Laaksonen & Oja, 1996), (3) a histogram gradient boosting classifier (Guryanov, 2019), (4) a
249 fully connected multilayer perceptron (Pacifico et al., 2018), and (5) a bagging classifier with
250 support vector machine as base estimators, using tools from the scikit-learn python package
251 (Pedrosa et al., 2011). Details for each classifier can be found in supplementary materials
252 (Supplement 1: classifiers). Ensemble-based approaches generally provide better performance
253 and limit overfitting compared to using one classifier alone (Knauer et al., 2019). We chose the
254 individual classifiers which form the ensemble because they have been shown to perform well
255 for species classification on NEON data (Marconi et al., 2019). All predictors were normalized
256 for model fitting by subtracting the mean and dividing by the standard deviation (i.e., setting the
257 mean to zero and the standard deviation to 1). Parameters for all models and the ensemble
258 were extracted by performing parameter tuning using cross validation.

259 We used entropy loss to measure the quality of tree-splits for random forests, categorical
260 cross-entropy as the loss function for the histogram-gradient boosting, a radial basis function
261 kernel to allow for a non-linear decision surface for the support vector classifiers, and the
262 Manhattan distance for calculating the distance between k-nearest neighbors in the KNN
263 classifier. We stacked these five pixel-based models by using the probability vectors produced

35

12

36

264 by each classifier as features for a meta-ensemble elastic-net logistic model (Tang et al., 2015,
265 Hui & Hastie, 2005). We chose this approach because logistic classifiers are easily interpretable
266 and use maximum likelihood to obtain estimates of the coefficients, returning as a result
267 confidence scores that match the probability of a label-match and not just the single best
268 predicted classification (Maddala, 1986), which is fundamental for assigning a reliable
269 uncertainty score to each prediction. Pairing predictions to robust estimates of uncertainty is
270 fundamental to increase the utility of remote sensing tree surveys for ecological analysis
271 because it allows for (1) selecting trees and areas that meet or exceed minimum confidence in
272 the derived measures for being used for scientific analyses, and (2) allows for cascading the
273 uncertainty in predictions onto the results of analyses downstream (Dietze, 2017). Training the
274 logistic meta-ensemble on calibrated scores from sub-classifiers offers an advantage over other
275 modern algorithms, whose estimates of uncertainty do not match true probabilities and are not
276 well calibrated to the output of interest (Guo et al., 2017, Mukhati et al. 2020).

277 One of the main challenges of species classification algorithms is the imbalance
278 between number of individual samples for rare and common species, which can cause models
279 to overfit to highly abundant classes. In our data set, the number of pixels per species ranged
280 from 44-28000 and the number of individual trees per species ranged from 5-1000. We used
281 SMOTETomek technique (Batista et al., 2003) to reduce the effects of species class
282 imbalances in the training set. SMOTETomek consists of a combination of under and
283 oversampling which resulted in roughly 1000 spectral signatures (pixels) per species. First, we
284 undersampled pixels from the most abundant species using Tomek links, which removes noisy
285 and borderline pixels (Tomek, 1976). Then, we used a SMOTE oversampling approach (Chawla
286 et al., 2002) to create non-identical synthetic pixels for any species with fewer pixels than the
287 majority class, thus balancing each class to roughly 1000 pixels each. No over-undersampling
288 was applied to the test data. Because of the stratified design of the train-test split, most species

289 and sites had a number of test trees proportional to their frequency in the original dataset. We
290 also used the same train-test split to repeat the entire analysis once for each NEON site by
291 building and testing site-specific models built using only data from each particular site. Finally, to
292 estimate which spectral regions are most important for separating conifers from broadleaf
293 species, we repeated the entire analysis by substituting species with broader taxonomy classes
294 (i.e., angiosperms vs gymnosperms).

295 2.5. Evaluation

296 We evaluated the performance of the models by training the model on 80% of the data
297 and evaluating its performance on the remaining 20%. Since spatial autocorrelation across train
298 and test data can lead to optimistic bias in classification (Millard & Richardson 2015), we placed
299 all individuals within a plot together into either the training or testing data sets. A series of
300 randomizations of the plots were performed to create an 80:20 split of individuals that optimized
301 the number of species in the train and test data sets. For each randomization, we calculated the
302 total number of species in the test set and repeated this random operation until we found the
303 split which maintained the highest number of species from the original data in both train and test
304 set. For the general model, the training data set contained 4210 individuals of 77 species and
305 the test data set 1487 individuals of 72 species. Data for the 5 species missing from the test-set
306 were collected only within plots selected for training, therefore no individual tree was suited for
307 held out testing of high risk of geographic autocorrelation. The resulting data represents 56% of
308 the total tree species in the original unfiltered vegetation structure dataset and these species
309 account for an average of 89% of individuals per site (Figure S.3).

310 Predictions for the species class of each individual in the test set were made using a 4×4
311 clip centered on the location of the test stem. Model performance was then evaluated using
312 overall accuracy, individual tree level (micro) and average species-level (macro) F1 scores

313 (hereafter referred to as individual-level and species-level accuracy respectively). The F1 score
314 combines precision and recall to provide a general measure of the overall accuracy of the
315 species classification, allowing for direct comparison between models using a single metric
316 (Chinchor, 1992). For each site, F1 scores for the general model were compared to those
317 produced by equivalent single site models to determine how the general model performed
318 relative to the traditional single site approach. Scores and confusion matrices were calculated
319 using the Caret package (Kuhn, 2008).

320 To understand the performance of the general model in different ecological contexts, we
321 evaluated how performance varied across the United States, how performance correlated with
322 the number of species being predicted at the NEON site, and which components of the model
323 (site effect, elevation, geographic location, and hyperspectral reflectance) were most important
324 for prediction. We used bootstrap features importance to quantify the relative importance of the
325 different types of features, e.g., site identifier, site geolocation, hyperspectral reflectance and
326 terrain elevation (Breiman, 2001). This approach is based on evaluating how the overall
327 accuracy is affected by each individual feature. At every iteration, one feature is selected and
328 the values are randomly shuffled among the samples, effectively removing the information held
329 in it. The accuracy is recorded with the shuffled feature to determine the loss of performance
330 compared to the unshuffled data. We used the same approach to quantify the relative
331 importance of the 15 spectral regions in which we grouped the hyperspectral data.

332 We also evaluated the characteristics of trees and forests associated with the most
333 confusion between species (i.e., misclassification) based on forest type (using the National Land
334 Cover Database; Homer et al., 2001) and information from the NEON field data on canopy
335 position, tree status, and growth form from the NEON field data. We also assessed spatial
336 structure in confusion by determining, for every misclassified tree, whether the species to which
337 it was incorrectly classified to also occurred in the same NEON field plot. Finally, since

338 confusion commonly occurred within genera we also evaluated model performance for
339 predicting genus instead of species.

340 2.6. Prediction

341 We generated predictions for individual trees at the landscape scale (~350 km²) by
342 integrating our approach with individual tree detections from previous work (Weinstein et al.,
343 2021). The Weinstein et al. (2021) dataset consists of 100 million individual tree crowns from 37
344 NEON sites identified using a retinanet neural network object detector and represented by
345 quadrangular polygons (i.e., bounding boxes) roughly representing the surface of the sunlit
346 portion of the crown. For consistency between the approach used for training and testing the
347 model (16-pixel clips), we extracted the pixels from the centroid of each estimated bounding
348 box. First, we extracted a 4x4 square window of pixels around the centroid of each detection.
349 For bounding boxes smaller than 16m², we dropped the pixels falling outside the bounding
350 boxes. Second, we filtered vegetation pixels from the background using the same procedure as
351 applied to the training/test data set. We finally selected all pixels with uncertainty scores > 0.5 to
352 be used to make predictions at the level of individual trees. We assigned each tree to a species
353 class by averaging the probability vectors (i.e., probability that the pixel is assigned to any of the
354 77 classes) of each pixel in the crown and selecting the species with the highest average
355 probability. We assigned each individual-tree prediction an uncertainty score consisting of the
356 average pixel probability, which ranged from 0-1.

357 3. Results

358 The general (cross-site) model yielded more accurate species classifications (larger F1
359 scores) than site-level models for 13 (species-level F1) and 18 (individual-level F1) of the 27
360 sites and identical accuracies for 5 (species-level F1) and 6 (individual-level F1) additional sites.

361 There were only three sites that showed better site-level species-level and individual-level F1
362 scores: Blandy Experimental Farm, Washington (BLAN) and Talladega National Forest,
363 Alabama (TALL), and Jones Ecological Research Center, Georgia (JERC) (Figure 1, Figure S.
364 4, Figure S. 5). On average, the general model resulted in higher accuracy of individual tree
365 level classification (increases in individual-level F1) from 0.70 to 0.77 and species-average
366 accuracy (increases in species-level F1) from 0.46 to 0.54. Accuracy of the ensemble was
367 higher than its sub-models trained singularly whose average site-level accuracy ranged
368 between 0.09 and 1 species-level F1 and between 0.31 and 1 individual-level F1 (Figure S.7
369 and Supplement 2 for detailed species level accuracies, site-level and general model confusion
370 matrixes in Supplement 3, raw outputs available at <https://doi.org/10.5281/zenodo.5796142>),
371 which is consistent with the general observation that ensemble-based approaches produce
372 more accurate predictions (Healey et al., 2018). Since the general ensemble model proved to
373 be the best performing approach in this study, we focus primarily on it from this point forward.

374 Our results show a link between classification accuracy and ecological properties such
375 as ecosystem type, tree health, and growth form (Figure 2, Figure S.6). Damaged trees,
376 including broken boles and other types of damage (but not diseased trees), exhibited higher
377 rates of misclassification than healthy crowns (Figure 2), with broken boles exhibiting a 44%
378 misclassification rate. The general model performed best in evergreen forests (~12%
379 misclassification rate) and worst in wetlands (~38% misclassification rate), with deciduous
380 forests falling in between (~30% misclassification rate). Average classification accuracy was
381 higher in eastern forests compared to western forests (Figure 3a), and was significantly
382 correlated with the number of species within the site (Figure 3b,d). The algorithm generally
383 underperformed in the Prairie Peninsula and Central and Southern Plains ecoregions which are
384 characterized by patches of closed forest at the edges of prairies or farmland (Figure 3a, Figure
385 S.6). These results align with previous work in showing that classification from remote sensing

386 is more challenging for more complex canopies, overlapping crowns, and coexisting species
387 with similar life history and spectral properties (Heinzel & Koch 2016, Bioucas-Dias, 2013).

388 Roughly 80% of the information used by the algorithm for classifying species was from
389 the hyperspectral reflectance (Figure 4). Important information was present across the entire
390 spectrum, but our results show that some groups of bands in some spectral regions were more
391 informative than others. Specifically, the most important spectral regions are the blue and green
392 (0.450 to 0.550 nm) in the visible region, the red-edge in the near infrared (0.62 to 0.85), 1.15 to
393 1.27 nm in SWIR1 and 1.62 to 1.68 nm in SWIR2. Spectral regions in the SWIR1, SWIR2, and
394 red-edge were the most important also in classifying angiosperms vs gymnosperms. The site's
395 coordinates, which represent the geographic locations of sites, explained 11% of total variation
396 and were the second most important variable (Figure 4). Elevation, a proxy of potential local
397 changes in the environment within each site, accounted for another 4%. The site effect, a proxy
398 of other site level ancillary information (e.g., sensor calibration, flight and atmospheric
399 conditions), only accounted for 3% of the total explained variance.

400 Comparing misclassification among species shows there is greater confusion for rare
401 species, congeners, and species that co-occur within NEON field plots, and that model-
402 estimated uncertainty accurately reflects confidence in the model prediction. All species
403 performing poorly ($F_1 < 0.5$) belonged to taxa with low sample sizes (less than 50 trees for
404 training) (Figure S6, Figure S7). In general, most of the confusion was among species co-
405 occurring within plot (74%) and site (93%). A large amount of confusion also occurred among
406 congeneric species (~27% of total misclassifications), mostly within pines, poplars, oaks and
407 maples, which make up 57% of the test dataset (Figure S.9). Oaks, pines and poplars in
408 particular accounted for ~87% of the total within-genus confusion, and most misclassifications
409 had confidence scores >0.8 . Aggregating predictions at the genus level improved the overall
410 accuracy by 6% (individual-level F_1 accuracy of 83%), confirming that part of the confusion is

411 embedded in physiological similarities across taxonomically related trees. Likewise, reducing
412 tree classification into 2 plant functional types dramatically increased accuracy ($F1 \sim 0.95$). The
413 model showed a fair ability in predicting 5 of 9 species tested in sites where no data was used
414 for that particular species in the training set. For these trees, the average individual-level $F1$ of
415 ~ 0.69 and average species accuracy of 0.47, but accuracy varied largely across taxa, with
416 better results for needleleaf species (individual-level $F1 \sim 0.825$, species-level $F1 \sim 0.71$)
417 compared to broadleaf species (individual-level $F1 \sim 0.44$, species-level $F1 \sim 0.27$). The model
418 produced reliable estimates of uncertainty for all species regardless of the accuracy. Uncertainty
419 scores matched closely with the probability of correct classification ($R^2 = 0.89$, Figure 5).
420 Leveraging crown-data predictions, the model was tested to produce fair species predictions for
421 millions of trees per NEON site (Figure 6).

422 **4. Discussion**

423 Using a single general model that integrated data from plots across a continental scale
424 resulted in more accurate classification of tree species identity from remote sensing data than
425 building separate models for individual sites. The more accurate classification occurred despite
426 the continental data set containing samples from many different forest types, structures, and
427 species compositions across 27 sites. This suggests that the benefits of increasing the number
428 of samples for less common species and more fully characterizing within-species variance
429 outweighs the costs associated with including species that do not overlap geographically and
430 including components of within-species variance not observed at individual sites (Figure 1). To
431 our knowledge this is the first study which developed a generalized model for species
432 classification of individual tree crowns across multiple biomes. The success of the general
433 model here suggests that developing generalized algorithms offers a potential step forward in
434 species classification from remote sensing more broadly. Our model resulted in better cross-site

435 classification compared to other approaches in literature (e.g., Castro-Esau et al. 2006) possibly
436 because of the wider spectral range available from NEON hyperspectral images (445 - 2500 vs
437 445 - 950 nm), as suggested by the strong contribution of reflectance from 950 to 2500 nm to
438 our generalized model (Figure 4). Also, better cross-site transferability of species classification
439 may be related to the models used in the ensemble. Our model included methods like the
440 gradient boosting classifier, which proved to be among the most robust for cross-site
441 transferability of species classification (Graves et al., 2021). Our generalized approach
442 leveraged the information from multiple locations, biomes, and survey efforts, increasing the
443 number of individuals from rarely sampled or highly variable classes and allowing models to
444 learn more broadly about how to distinguish species in the taxonomic group of interest. In
445 addition to yielding improved predictions, generalized cross-site approaches can potentially
446 generate predictions for a wide range of ecosystems, including those with limited or no training
447 data, allowing other studies to leverage the same shared model and thereby facilitating large-
448 scale ecological research (Weinstein et al. 2021).

449 By providing classification of the most common tree species in the canopy, the results of
450 this model are potentially useful for several ecological applications, such as mapping biomass
451 and modeling carbon, energy and water flux. Our model included species making up ~80% of
452 the individual trees in the upper canopy when all sites are taken together. The fraction, however,
453 varied among sites. Furthermore, given the stratified sampling of the NEON vegetation structure
454 data used to develop the generalized model, the model is likely to capture the major vegetation
455 types and most common species at each site. Canopy trees, which are visible from optical
456 remote sensing devices, represent the majority of biomass in forests (Lutz et al., 2012).
457 Because they form the interface between the atmosphere and land surface, the canopy layer
458 also is particularly important for water and energy flux (Paul-Limoges et al., 2017). Because
459 carbon storage, water and energy flux can vary among species (Wright et al., 2006), the ability

460 to map the location and coverage of canopy species is important for assessing these important
461 ecosystem characteristics. Other ecological applications, such as assessing total forest species
462 richness, and quantifying tree regeneration, cannot be addressed using the model because our
463 model could not classify rare canopy species or understory individuals,

464 One of the main challenges in developing models that generalize well across the
465 continent is overcoming differences across sites in factors including seasonality, background,
466 and sensor calibration (Hesketh & Sanchez-Azofeifa, 2012, Clark et al., 2005, Pu, 2021). To
467 quantify the sensitivity of the algorithm to this ancillary information, we evaluated the relative
468 importance of the site-effect features compared to reflectance, geography and elevation. Our
469 results showed that the relative importance of the site-effect is marginal and accounts for less
470 than 3% of the total information captured (Figure 4). This suggests that the spectral signal from
471 NEON data is comparable across different flights and that flight-specific noise can be minimized
472 using BRDF corrections and vector normalization to limit the impact on the accuracy of
473 generalized algorithms. This is due in part to NEON data being highly standardized and using
474 the same image pre-processing protocol across the entire network (Kampe et al., 2014). NEON
475 remote sensing data is also collected at the peak of vegetation productivity for each site,
476 reducing the confounding effect of different phenological stages for species occurring at multiple
477 sites (Gartner et al., 2016). Expanding large scale surveys outside the NEON network would
478 require integrating information from less standardized sources, raising new challenges related to
479 fusion of sensors that are not cross-calibrated and images collected in different seasons (Brook
480 & Ben-Dor, 2015, Zou et al., 2018). Further investigation is therefore fundamental to evaluating
481 whether our findings apply to applications that involve integrating multiple sensors, missions, or
482 resolutions.

483 Clustering adjacent bands in the electromagnetic spectrum using KLD facilitated
484 evaluating tree attributes, such as leaf chemistry, that may allow spectral separation of different

485 species. The phylogenetic conservation of these attributes may help explain why a large part of
486 the confusion in species classification was for congeneric species (Cavender-Bares et al.,
487 2016). Our results indicating important spectral regions support patterns shown in previous
488 work, including (a) reflectance in the red edge (Curran et al., 1995), (b) 450-475 nm (Kira et al.,
489 2015), and (c) the SWIR around 1200 nm (Li et al., 2021), 1600 nm and 2000 nm (Kokaly et al.,
490 2015). The importance of the 450-475 nm region may be linked to carotenoids and chlorophyll
491 content, with chlorophyll content generally lower in needleleaf species (Croft et al., 2020) and
492 carotenoids varying across different environments (Valiente et al., 2015). Reflectance in red-
493 edge can be related to leaf age, chlorophyll, and pigment concentration (Gitelson et al., 1996)
494 that vary widely among species (Cavender-Bares et al., 2016). Reflectance in the 1200 nm was
495 previously linked to equivalent water thickness (Li et al., 2021), a key functional trait for
496 classifying species in temperate biomes (Shi et al., 2018), or distinguishing early to late
497 succession species (Feret et al., 2019, Wright et al., 2004). Reflectance in SWIR at 1600 and
498 2000 nm can be linked to leaf phenolics (Kokaly et al., 2015), tannins and secondary
499 metabolites (Couture et al., 2016), proxies of leaf toughness and structure across species. The
500 link between water thickness, toughness and structure may also explain why the regions in
501 1200 nm and 1600 nm are the two most important in distinguishing broadleaf from needleleaf
502 species.

503 The dimensionality reduction algorithm used in this study identified groups of adjacent
504 bands in relatively discrete spectral regions that overlap with spectral regions used in
505 multispectral satellites, supporting the idea that multispectral satellite sensors can access a
506 large amount of spectral information for species classification (Laurin et al., 2016).
507 Hyperspectral satellite data is still limited to few prototype datasets with relatively low spatial
508 resolution (Loizzo et al., 2018, Diaz et al., 2018, Bogan et al., 2019), compared to multispectral
509 satellites with sub-meter resolution (e.g. WorldView3). Our results show that most of the

510 information required for species classification across NEON sites overlap with WorldView3
511 satellite multispectral bands supporting that species identification at the tree and plot level with
512 satellite data is feasible (Immitzer et al., 2012, Hartling et al., 2019, Ferreira et al., 2019).

513 One of the advantages to broad scale general models is that they allow assessment of
514 how different ecological and environmental conditions influence the accuracy of the species
515 classification. Understanding variation in model performance across space, forest types, and
516 taxa is fundamental to better understanding where and when these models can be applied and
517 improvement of large-scale surveys from remote sensing. In our analysis, eastern US forests
518 showed lower accuracy compared to western ecosystems. We believe this is at least partly
519 because eastern ecosystems are characterized by a higher species diversity of canopy trees as
520 well as crown geometry that makes aligning stems to crowns more difficult compared to western
521 conifer stands (Figure 2, 3, S.6). Higher species diversity in eastern forests (mean species per
522 site ~15) compared to western forests (mean species diversity per site ~4), inherently makes
523 classification tasks more challenging due to larger numbers of classes typically resulting in
524 lower accuracy predictions (Takahashi et al., 2020). Continuous closed canopies also increase
525 the likelihood pixels selected in a window centered on the stem will be from neighboring tree
526 crowns. This is due to the difficulty of obtaining accurate GPS points of stems in closed canopy
527 (Rodriguez-Perez et al., 2007), as well as the increased likelihood of sunlit portions of the crown
528 being displaced from the stem location in continuous broadleaf forests (Strigul et al., 2008). This
529 is a common problem, since field surveys often provide only the geographic coordinates of tree
530 stems and lack information about crown position or size, making it very challenging to correctly
531 align crown borders with species labels. For example, pixel mislabeling may be one of the
532 reasons why our classifier was weaker at sites in the Great Plains region (e.g., the NEON sites
533 of Lyndon B. Johnson National Grasslands, CLBJ and University of Kansas Field Station,
534 UKFS), where patches of grasslands alternate with dense forests characterized by multiple oak

535 species forming a complex mosaic of crowns that may not be located directly above their stem
536 locations. In contrast, conifers in western US forests tend to be dominated by species
537 characterized by apical dominance (e.g., aspens and firs) with crowns centered directly above
538 the main stem, reducing pixel mislabeling and improving classification. Finally, savannas, such
539 as the San Joaquin Experimental Range (SJER), characterized by isolated trees of few species
540 (mostly broadleaved), may be less likely to suffer from confounding effects like crown
541 displacement and stem-crown misalignment, making them less prone to spectral mixing or
542 potential pixel-mislabeling (Heinzel & Koch, 2012). The most challenging ecosystem type in our
543 analysis, wetlands, combines all of these challenges. Species like *Carpinus caroliniana* and
544 *Betula papyrifera*, found often in plots from wetland ecosystems, were among the species with
545 the worst classification accuracy, partly because they are generally smaller trees that can occur
546 in the understory, grow in closed canopies in the overstory (e.g., an average dbh ~16.5 cm and
547 average height of ~10 m), and often include limited training samples because they are mostly
548 found in riparian ecosystems which make up a small fraction of the landscapes from the NEON
549 sites included in this study (less than 50 individuals per species). Because of these challenges,
550 the accuracy of the species predictions needs to be assessed depending on the site and
551 ecosystem types within sites to ensure it is sufficient for the intended ecological application.

552 Because species predictions from remote sensing are imperfect, it is important that
553 classification models produce robust estimates of uncertainty to allow this uncertainty to be
554 propagated through ecological analyses and considered during decision making. This is
555 particularly important when generating large numbers of predictions at large scales, because
556 this will result in including species located in undersampled areas and challenging ecosystems
557 as well as species that are difficult to classify due to rarity or similarity to other closely related
558 species. Our results confirmed that stacking scores from different classifiers using a logistic
559 regression produces accurate estimation of classification uncertainty (Figure 6).

560 While our generalized approach resulted in significant improvements over site-level
561 models, it is important to recognize that the accuracy of this approach is still insufficient for
562 ecological analyses contingent on rare or untrained species. For example, biodiversity patterns
563 are often driven by rare species (Leitao et al., 2016, Mouillot et al., 2013), which are the most
564 challenging taxa for species classification, especially species so rare that they cannot be
565 included in the model due to data limitations ($n < 5$ individual trees in this study). Extrapolating
566 outside of NEON sites, a goal for general models, would also result in the presence of additional
567 species missing from the field dataset, restricting the range of ecological analyses to species
568 sampled within the footprint of NEON sites. Some of these limitations may be mitigated by
569 classifying trees into higher level taxonomic levels. In this study we observed that misclassified
570 trees were generally limited to species in the same genus and species co-occurring in the same
571 plot (Figure S.9, Figure S.10, Figure S.11, Supplement 3). Oaks, pines, and poplars in particular
572 accounted for ~87% of the total within genus confusion. One possible driver of confusion among
573 oak species is their similar physiological and spectral characteristics (Figure S.12). Some co-
574 occurring oaks species like *Quercus alba* and *Quercus stellata* can also cross-breed and
575 therefore be physiologically very similar (Hardin, 1975), making them particularly hard to
576 distinguish from imagery. For these reasons, most of the cases leading to misclassification
577 resulted from within-genus confusion. This implies that uncertainty can be significantly reduced
578 by aggregating predictions to the genus level, offering a more robust solution for large scale
579 ecological applications that can be successfully addressed by accurately classifying trees at the
580 level of genus, families, or plant functional type. For example, earth system models use plant
581 functional types as the taxonomic unit for quantifying carbon dynamics at continental to global
582 scale (Lawrence et al., 2019), large scale fire risk assessment and management can be
583 achieved by using genus level surveys of the most dominant taxa (Ma et al., 2021), and patterns
584 of forest biomass largely depend on which taxa dominate the ecosystem (Cheng et al., 2018).

585 An increase in taxonomic level also reduces issues with applying general models beyond the
586 training data (e.g., outside of NEON sites) because it is much more likely that all genera or
587 families have been sampled in the training data.

588 Building generalized algorithms provides an approach to overcome the significant field
589 data limitations present in most remote sensing tasks in ecology, by allowing pooling data from
590 ever growing sources of spatially explicit field surveys and high-resolution remote sensing
591 imagery. Our results showed that by integrating field surveys from dozens of NEON sites, it is
592 possible to produce a general model that provides improvements over single-site models for
593 species classification, with good estimates of uncertainty, and the ability to increase accuracy
594 further by aggregating predictions at the genus level. This general approach also unlocks the
595 potential for making predictions outside of NEON sites. The ultimate goal is to develop general
596 models that can be used anywhere in the region of interest (in our case the United States).

597 Using only NEON data, we successfully built a single integrated classifier that includes 20% of
598 all tree species found in forest ecosystems across the US (n=77 out of 396 surveyed by the
599 United States Forest Inventory and Analysis project; appendix F; Woudenberg, et al., 2010).

600 Beyond NEON, more and more openly available field, multispectral and hyperspectral
601 datasets are being released from aerial (airborne and UAV) and satellite missions worldwide
602 (Cook et al., 2013, Vangi et al., 2021, Claverie et al., 2018). Our results show that instead of
603 training hundreds of separate models for local applications, there is the potential for integrating
604 field and remote sensing collections from multiple locations and sources to build general models
605 with improved accuracy for a broader range of landscapes and geographic locations.

606 Leveraging the broad geographic distribution of NEON sites and the overlapping information
607 held by multispectral and hyperspectral imaging, our results also suggest the potential for linking
608 different data sources to unlock the ability of scaling species classification of individual trees
609 beyond NEON. For example, future work could focus on developing approaches for bridging the

610 information held in hyperspectral data (sparsely acquired, high radiometric resolution) to the
611 ever-growing pool of high-resolution multispectral and RGB + NIR data (e.g. National
612 Agriculture Imagery Program data) available for a broad geographic continuum across the US.
613 Further integration with more field and remote sensing datasets could potentially provide remote
614 sensing-based surveys of hundreds of millions of trees, making it possible to investigate the
615 properties of ecosystems from local to continental scales.

616 5. Conclusions

617 Remote sensing is facing a revolution in the quality of data and accuracy of methods,
618 making it a good candidate for developing applications to survey species and forest properties
619 at large spatial extents. Leveraging data collected from NEON across the US, we demonstrated
620 that building continental scale algorithms for generalized species classification offers several
621 advantages over the more traditional site level applications. Despite being very high for
622 dominant taxa, accuracy in predictions for less represented species can be hampered by
623 limitations in field-to-image misalignment, the number of species and individuals from rarely
624 sampled taxa, making surveys from remote sensing unsuited to date for analyzing patterns in
625 species alpha diversity at scale. Yet, building generalized algorithms is a fundamental
626 cornerstone to overcome these limitations, because it allows for pooling from ever growing
627 sources of geo-explicit field surveys and high-resolution remote sensing imagery. Our results
628 showed that by integrating field surveys with NEON airborne data, it is possible already to
629 generate highly accurate predictions at the genus level and overall good estimates of
630 uncertainty for individual trees. This allows for generating surveys of hundreds of millions of
631 individual crowns across the continent, unlocking the potential for investigating large scale
632 ecological applications focusing on the sun-exposed part of the canopy, dominant species,
633 genera or functional types.

634

Acknowledgements

635 This work was supported by the Gordon and Betty Moore Foundation's Data-Driven
636 Discovery Initiative through grant GBMF4563 to E. P. White and by the National Science
637 Foundation through grant 1926542 to E. P. White, S. A. Bohlman, A. Zare, D. Z. Wang, and A.
638 Singh; by the NSF Dimension of Biodiversity program grant (DEB-1442280) and USDA/NIFA
639 McIntire-Stennis program (FLA-FOR-005470) to S. A. Bohlman; by the University of Florida
640 Biodiversity Institute (UFBI) and Informatics Institute (UFI) Graduate Fellowship to Sergio
641 Marconi. There was no additional external funding received for this study.

642 All confusion matrixes can be found in the supplementary material. All data can be found
643 in the following Zenodo archive: <https://doi.org/10.5281/zenodo.5796143>. All code for data
644 preprocessing, model training and testing and analyses can be found in the following GitHub
645 repo: [https://github.com/MarconiS/Continental-scale-Hyperspectral-tree-species-classification-
646 in-the-National-Ecological-Observatory-N](https://github.com/MarconiS/Continental-scale-Hyperspectral-tree-species-classification-in-the-National-Ecological-Observatory-N)

647

References

648 Ab Majid, Ibtisam, Zulkiflee Abd Latif, and Nor Aizam Adnan. "Tree species classification using
649 worldview-3 data." 2016 7th IEEE Control and System Graduate Research Colloquium
650 (ICSGRC). IEEE, 2016.

651 Anderson-Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez-Akre, E.B., Muller-Landau, H.C.,
652 Joseph Wright, S., Abu Salim, K., Almeyda Zambrano, A.M., Alonso, A., Baltzer, J.L.
653 and Basset, Y., 2015. CTFS-ForestGEO: a worldwide network monitoring forests in an
654 era of global change. *Global change biology*, 21(2), pp.528-549.

655 Anderson, C.B. "Biodiversity monitoring, earth observations and the ecology of scale." *Ecology*
656 *letters* 21.10 (2018): 1572-1585.

657 Artiola, Janick F., Mark L. Brusseau, and Ian L. Pepper. Environmental monitoring and
658 characterization. Academic Press, 2004.

659 Ayrey, E., et al. "Synthesizing Disparate LiDAR and Satellite Datasets through Deep Learning to
660 Generate Wall-to-Wall Regional Forest Inventories." *BioRxiv* (2019): 580514.

661 Ballanti, Laurel, et al. "Tree species classification using hyperspectral imagery: A comparison of
662 two classifiers." *Remote Sensing* 8.6 (2016): 445.

663 Bastin, J.F., et al. "The global tree restoration potential." *Science* 365.6448 (2019): 76-79.

664 Belgiu, Mariana, and Lucian Drăguț. "Random forest in remote sensing: A review of applications
665 and future directions." *ISPRS journal of photogrammetry and remote sensing* 114
666 (2016): 24-31.

667 Bioucas-Dias, José M., et al. "Hyperspectral remote sensing data analysis and future
668 challenges." *IEEE Geoscience and remote sensing magazine* 1.2 (2013): 6-36.

669 Breiman, Leo. "Random forests." *Machine learning* 45.1 (2001): 5-32.

670 Brook, Anna, and Eyal Ben-Dor. "Supervised vicarious calibration (SVC) of multi-source
671 hyperspectral remote-sensing data." *Remote Sensing* 7.5 (2015): 6196-6223.

672 Castro-Esau, K.L., Sánchez-Azofeifa, G.A., Rivard, B., Wright, S.J., Quesada, M. 2006.

673 Cavender-Bares , J. , J. E. Meireles , J. J. Couture , M. A. Kiproth , C. C. Kingdon ,et al. 2016 .
674 Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects
675 for remote detection of biodiversity. *Remote Sensing* 8 : 475-

676 Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." *Journal of
677 artificial intelligence research* 16 (2002): 321-357.

678 Cheng, Yanxia, et al. "Biomass-dominant species shape the productivity-diversity relationship in
679 two temperate forests." *Annals of Forest Science* 75.4 (2018): 1-9.

680 Chinchor, N. "MUC-4 evaluation metrics in Proc. of the Fourth Message Understanding
681 Conference 22–29." (1992).

682 Claverie, Martin, et al. "The Harmonized Landsat and Sentinel-2 surface reflectance data set." Remote Sensing of Environment 219 (2018): 145-161.

684 Cook, Bruce D., et al. "NASA Goddard's LiDAR, hyperspectral and thermal (G-LiHT) airborne imager." Remote Sensing 5.8 (2013): 4045-4066

686 Couture, J.J.; Singh, A.; Rubert-Nason, K.F.; Serbin, S.P.; Lindroth, R.L.; Townsend, P.A. Spectroscopic determination of ecologically relevant plant secondary metabolites. Methods in Ecology and Evolution 2016, 7, 1402-1412, doi:10.1111/2041-210X.12596

689 Curran, P.J.; Windham, W.R., Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiol 1995, 15, 203-206, doi:10.1093/treephys/15.3.203.

692 Delicado, Pedro. "Dimensionality reduction when data are density functions." Computational Statistics & Data Analysis 55.1 (2011): 401-420.

694 Diaz, E., Green, R., Hook, S., Johnson, B., Sullivan, P., & Mercury, M. (2018). 2018 HyspIRI Mission Concept Study: VSWIR, TIR, IPM: Separate and Contemporaneous With Current Technology.

697 Dietze, Michael C. "Prediction in ecology: A first-principles framework." Ecological Applications 27.7 (2017): 2048-2060.

699 Engler, Robin, et al. "Combining ensemble modeling and remote sensing for mapping individual tree species at high spatial resolution." Forest Ecology and Management 310 (2013): 64-73.

702 Fassnacht, Fabian Ewald, et al. "Review of studies on tree species classification from remotely sensed data." Remote Sensing of Environment 186 (2016): 64-87.

704 Ferreira, Matheus Pinheiro, et al. "Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis." ISPRS journal of photogrammetry and remote sensing 149 (2019): 119-131.

707 Fricker, G. A., Ventura, J. D., Wolf, J. A., North, M. P., Davis, F. W., & Franklin, J. (2019). A
708 convolutional neural network classifier identifies tree species in mixed-conifer forest from
709 hyperspectral imagery. *Remote Sensing*, 11(19), 2326.

710 G. Batista, B. Bazzan, M. Monard, "Balancing Training Data for Automated Annotation of
711 Keywords: a Case Study," In WOB, 10-18, 2003.

712 Gärtner, Philipp, Michael Förster, and Birgit Kleinschmit. "The benefit of synthetically generated
713 RapidEye and Landsat 8 data fusion time series for riparian forest disturbance
714 monitoring." *Remote Sensing of Environment* 177 (2016): 237-247.

715 Grabska Ewa, David Frantz, Katarzyna Ostapowicz, Evaluation of machine learning algorithms
716 for forest stand species mapping using Sentinel-2 imagery and environmental data in the
717 Polish Carpathians, *Remote Sensing of Environment*, Volume 251, 2020.

718 Guo, Chuan, et al. "On calibration of modern neural networks." International Conference on
719 Machine Learning. PMLR, 2017.

720 Guryanov, Aleksei. "Histogram-based algorithm for building gradient boosting ensembles of
721 piecewise linear decision trees." International Conference on Analysis of Images, Social
722 Networks and Texts. Springer, Cham, 2019.

723 Hardin, James W. "Hybridization and introgression in *Quercus alba*." *Journal of the Arnold*
724 *Arboretum* 56.3 (1975): 336-363.

725 Hartling, Sean, et al. "Urban tree species classification using a WorldView-2/3 and LiDAR data
726 fusion approach and deep learning." *Sensors* 19.6 (2019): 1284.

727 Healey, Sean P., et al. "Mapping forest change using stacked generalization: An ensemble
728 approach." *Remote Sensing of Environment* 204 (2018): 717-728.

729 Heinzel, Johannes, and Barbara Koch. "Investigating multiple data sources for tree species
730 classification in temperate forest and use for single tree delineation." *International*
731 *Journal of Applied Earth Observation and Geoinformation* 18 (2012): 101-110.

757 Krause, Keith S., et al. "Early algorithm development efforts for the National Ecological
758 Observatory Network Airborne Observation Platform imaging spectrometer and
759 waveform lidar instruments." *Imaging Spectrometry XVI*. Vol. 8158. International Society
760 for Optics and Photonics, 2011.

761 Kuhn, M. (2008). Building predictive models in R using the caret package. *Journal of statistical
762 software*, 28, 1-26.

763 Laaksonen, Jorma, and Erkki Oja. "Classification with learning k-nearest neighbors."
764 *Proceedings of International Conference on Neural Networks (ICNN'96)*. Vol. 3. IEEE,
765 1996.

766 Laurin, Gaia Vaglio, et al. "Discrimination of tropical forest types, dominant species, and
767 mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2
768 data." *Remote Sensing of Environment* 176 (2016): 163-176.

769 Lawrence, David M., et al. "The Community Land Model version 5: Description of new features,
770 benchmarking, and impact of forcing uncertainty." *Journal of Advances in Modeling
771 Earth Systems* 11.12 (2019): 4245-4287.

772 Lawrence, M., et al. "Comparisons of national forest inventories." *National forest inventories*.
773 Springer, Dordrecht, 2010. 19-32.

774 Leita ō RP, Zuanon J, Ville ō ger S, Williams SE, Baraloto C, Fortunel C, Mendonc ō a FP, Mouillot
775 D. 2016 Rare species contribute disproportionately to the functional structure of species
776 assemblages. *Proc. R. Soc. B* 283: 20160084. <http://dx.doi.org/10.1098/rspb.2016.0084>

777 Li, Wei, et al. "Locality-preserving dimensionality reduction and classification for hyperspectral
778 image analysis." *IEEE Transactions on Geoscience and Remote Sensing* 50.4 (2011):
779 1185-1198.

780 Loizzo, R., et al. "PRISMA: The Italian hyperspectral mission." *IGARSS 2018-2018 IEEE
781 International Geoscience and Remote Sensing Symposium*. IEEE, 2018.

782 Lutz, James A., et al. "Ecological importance of large-diameter trees in a temperate mixed-
783 conifer forest." *PLoS one* 7.5 (2012): e36131.

784 M. L. Clark, D. A. Roberts, and D. B. Clark, "Hyperspectral discrimination of tropical rain forest
785 tree species at leaf to crown scales," *Remote Sensing of Environment*, vol. 96, no. 3–4,
786 pp. 375–398, 2005.

787 Ma, Wu, et al. "Assessing climate change impacts on live fuel moisture and wildfire risk using a
788 hydrodynamic vegetation model." *Biogeosciences* (2021).

789 Maddala, Gangadharrao S. *Limited-dependent and qualitative variables in econometrics*. No. 3.
790 Cambridge university press, 1986.

791 Marconi, Sergio, et al. "Rethinking the fundamental unit of ecological remote sensing:
792 Estimating individual level plant traits at scale." *bioRxiv* (2019): 556472.

793 Martins, Gabriela Barbosa, et al. "Deep learning-based tree species mapping in a highly diverse
794 tropical urban setting." *Urban Forestry & Urban Greening* 64 (2021): 127241.

795 Mäyrä, Janne, et al. "Tree species classification from airborne hyperspectral and LiDAR data
796 using 3D convolutional neural networks." *Remote Sensing of Environment* 256 (2021):
797 112322.

798 Michałowska, Maja, and Jacek Rapiński. "A review of tree species classification based on
799 airborne LiDAR data and applied classifiers." *Remote Sensing* 13.3 (2021): 353.

800 Modzelewska, A.; Fassnacht, F. E.; Stereńczak, K. (2020). Tree species identification within an
801 extensive forest area with diverse management regimes using airborne hyperspectral
802 data. *International journal of applied earth observation and geoinformation*, 84, Art.-Nr.
803 101960.

804 Modzelewska, A.; Kamińska, A.; Fassnacht, F. E.; Stereńczak, K. (2021). Multitemporal
805 hyperspectral tree species classification in the Białowieża Forest World Heritage site.
806 *Forestry*. doi:10.1093/forestry/cpaa048

807 Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, et al. Rare Species Support Vulnerable
808 Functions in High-Diversity Ecosystems. PLoS Biology, 2013 DOI:
809 10.1371/journal.pbio.1001569

810 Mukhoti, Jishnu, et al. "Calibrating deep neural networks using focal loss." arXiv preprint
811 arXiv:2002.09437 (2020).

812 NEON (National Ecological Observatory Network). Spectrometer orthorectified surface
813 directional reflectance - mosaic, RELEASE-2021 (DP3.30006.001).
814 <https://doi.org/10.48443/qeae-3x15>. Dataset accessed from <https://data.neonscience.org>
815 on March 7, 2021

816 Nezami, Somayeh, et al. "Tree species classification of drone hyperspectral and RGB imagery
817 with deep learning convolutional neural networks." Remote Sensing 12.7 (2020): 1070.

818 Pacifico, Luciano DS, Valmir Macario, and Joao FL Oliveira. "Plant classification using artificial
819 neural networks." 2018 International Joint Conference on Neural Networks (IJCNN).
820 IEEE, 2018.

821 Paul-Limoges, Eugénie, et al. "Below-canopy contributions to ecosystem CO₂ fluxes in a
822 temperate mixed forest in Switzerland." Agricultural and Forest Meteorology 247 (2017):
823 582-596.

824 Pax-Lenney, Mary, et al. "Forest mapping with a generalized classifier and Landsat TM data."
825 Remote Sensing of Environment 77.3 (2001): 241-250.

826 Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C., Clark, T.D.,
827 Colwell, R.K., Danielsen, F., Evengård, B. and Falconi, L., 2017. Biodiversity
828 redistribution under climate change: Impacts on ecosystems and human well-being.
829 Science, 355(6332), p.eaai9214.

830 Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine
831 Learning research 12 (2011): 2825-2830.

832 Prasad and L. M. Bruce, "Limitations of Principal Components Analysis for Hyperspectral
833 Target Recognition," in IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 4, pp.
834 625-629, Oct. 2008, doi: 10.1109/LGRS.2008.2001282.

835 Pu, Ruiliang. "Mapping Tree Species Using Advanced Remote Sensing Technologies: A State-
836 of-the-Art Review and Perspective." Journal of Remote Sensing 2021 (2021).

837 Qian, M. Ye and J. Zhou, "Hyperspectral image classification based on structured sparse
838 logistic regression and three-dimensional wavelet texture features", IEEE Trans. Geosci.
839 Remote Sens., vol. 51, no. 4, pp. 2276-2291, Apr. 2013.

840 Rana, Parvez, et al. "Towards a generalized method for tree species classification using
841 multispectral airborne laser scanning in Ontario, Canada." IGARSS 2018-2018 IEEE
842 International Geoscience and Remote Sensing Symposium. IEEE, 2018.

843 Rodríguez-Pérez, José R., M. F. Álvarez, and Enoc Sanz-Ablanedo. "Assessment of low-cost
844 GPS receiver accuracy and precision in forest environments." Journal of Surveying
845 Engineering 133.4 (2007): 159-167.

846 Sagi, Omer, and Lior Rokach. "Ensemble learning: A survey." Wiley Interdisciplinary Reviews:
847 Data Mining and Knowledge Discovery 8.4 (2018): e1249.

848 Saini, Rashmi, and Sanjay Kumar Ghosh. "Ensemble classifiers in remote sensing: A review."
849 2017 International Conference on Computing, Communication and Automation (ICCCA).
850 IEEE, 2017.

851 Scholl, V. M., Cattau, M. E., Joseph, M. B., & Balch, J. K. (2020). Integrating national ecological
852 observatory network (neon) airborne remote sensing and in-situ data for optimal tree
853 species classification. Remote Sensing, 12(9), 1414.

854 Sims, Daniel A., and John A. Gamon. "Relationships between leaf pigment content and spectral
855 reflectance across a wide range of species, leaf structures and developmental stages."
856 Remote sensing of environment 81.2-3 (2002): 337-354.

857 Stacy A. Bogan, Alexander S. Antonarakis, Paul R. Moorcroft, Imaging spectrometry-derived
858 estimates of regional ecosystem composition for the Sierra Nevada, California, Remote
859 Sensing of Environment, Volume 228, 2019, Pages 14-30.

860 Strahler, A. H., Thomas L. Logan, and Nevin A. Bryant. "Improving forest cover classification
861 accuracy from Landsat by incorporating topographic information." (1978).

862 Strigul, Nikolay, et al. "Scaling from trees to forests: tractable macroscopic equations for forest
863 dynamics." Ecological Monographs 78.4 (2008): 523-545.

864 Takahashi Miyoshi, Gabriela, et al. "Evaluation of hyperspectral multitemporal information to
865 improve tree species identification in the highly diverse atlantic forest." Remote Sensing
866 12.2 (2020): 244.

867 Tang, J., S. Alelyani, and H. Liu. "Data Classification: Algorithms and Applications." Data Mining
868 and Knowledge Discovery Series, CRC Press (2015): pp. 498-500.

869 Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S., & Teodoro, A. C. (2019). Integration of
870 sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of
871 Belém, eastern Brazilian Amazon. Sensors, 19(5), 1140.

872 The similarity of the spectra within a genus has been described in detail for oaks by:

873 Tomek, Ivan. "Two modifications of CNN." (1976).

874 Tomppo, E., et al. "Combining national forest inventory field plots and remote sensing data for
875 forest databases." Remote Sensing of Environment 112.5 (2008): 1982-1999.

876 USDA Forest Service, 2001. Forest Inventory and Analysis National Core Field Guide, Volume
877 I: Field Data Collection Procedures For Phase 2 Plots, Version 1.5. US Department of
878 Agriculture, Forest Service, Washington, DC.

879 Vangi, Elia, et al. "The new hyperspectral satellite PRISMA: Imagery for forest types
880 discrimination." Sensors 21.4 (2021): 1182.

881 Variability in leaf optical properties of Mesoamerican Trees and the potential for species
882 classification. *American Journal of Botany* 93(4): 517-530.

883 Weinstein, B. G., Marconi, S., Bohlman, S. A., Zare, A., Singh, A., Graves, S. J., & White, E. P.
884 (2021). A remote sensing derived data set of 100 million individual tree crowns for the
885 National Ecological Observatory Network. *Elife*, 10, e62922.

886 White, J. C., et al. "Remote sensing technologies for enhancing forest inventories: A review."
887 *Canadian Journal of Remote Sensing* 42.5 (2016): 619-641.

888 Wiens, J.J., 2016. Climate-related local extinctions are already widespread among plant and
889 animal species. *PLoS biology*, 14(12).

890 Woudenberg, S. W., et al. "The Forest Inventory and Analysis Database: Database description
891 and users manual version 4.0 for Phase 2." *Gen. Tech. Rep. RMRS-GTR-245*. Fort
892 Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research
893 Station. 336 p. 245 (2010).

894 Wright, Ian J., et al. "Cross-species patterns in the coordination between leaf and stem traits,
895 and their implications for plant hydraulics." *Physiologia Plantarum* 127.3 (2006): 445-
896 456.

897 Wright, Marvin N., and Inke R. König. "Splitting on categorical predictors in random forests."
898 *PeerJ* 7 (2019): e6339.

899 Xi, Zhouxin, et al. "See the forest and the trees: Effective machine and deep learning algorithms
900 for wood filtering and tree species classification from terrestrial laser scanning." *ISPRS
901 Journal of Photogrammetry and Remote Sensing* 168 (2020): 1-16.

902 Yang, Ce, Won Suk Lee, and Paul Gader. "Hyperspectral band selection for detecting different
903 blueberry fruit maturity stages." *Computers and Electronics in Agriculture* 109 (2014):
904 23-31.

905 Yifang Shi, Andrew K. Skidmore, Tiejun Wang, Stefanie Holzwarth, Uta Heiden, Nicole Pinnel,
906 Xi Zhu, Marco Heurich, Tree species classification using plant functional traits from
907 LiDAR and hyperspectral data, International Journal of Applied Earth Observation and
908 Geoinformation, Volume 73, 2018, Pages 207-219

909 Zare Alina, Susan Meerdink, Yutai Zhou, Caleb Robey, Ron Fick, John Henning, & Paul Gader.
910 (2019, April 12). GatorSense/hsi_toolkit_py: Initial Release (Version v1.0). Zenodo.
911 <http://doi.org/10.5281/zenodo.2638117>

912 Zhang, Chen, et al. "Tree species classification using deep learning and RGB optical images
913 obtained by an unmanned aerial vehicle." Journal of Forestry Research 32.5 (2021):
914 1879-1888.

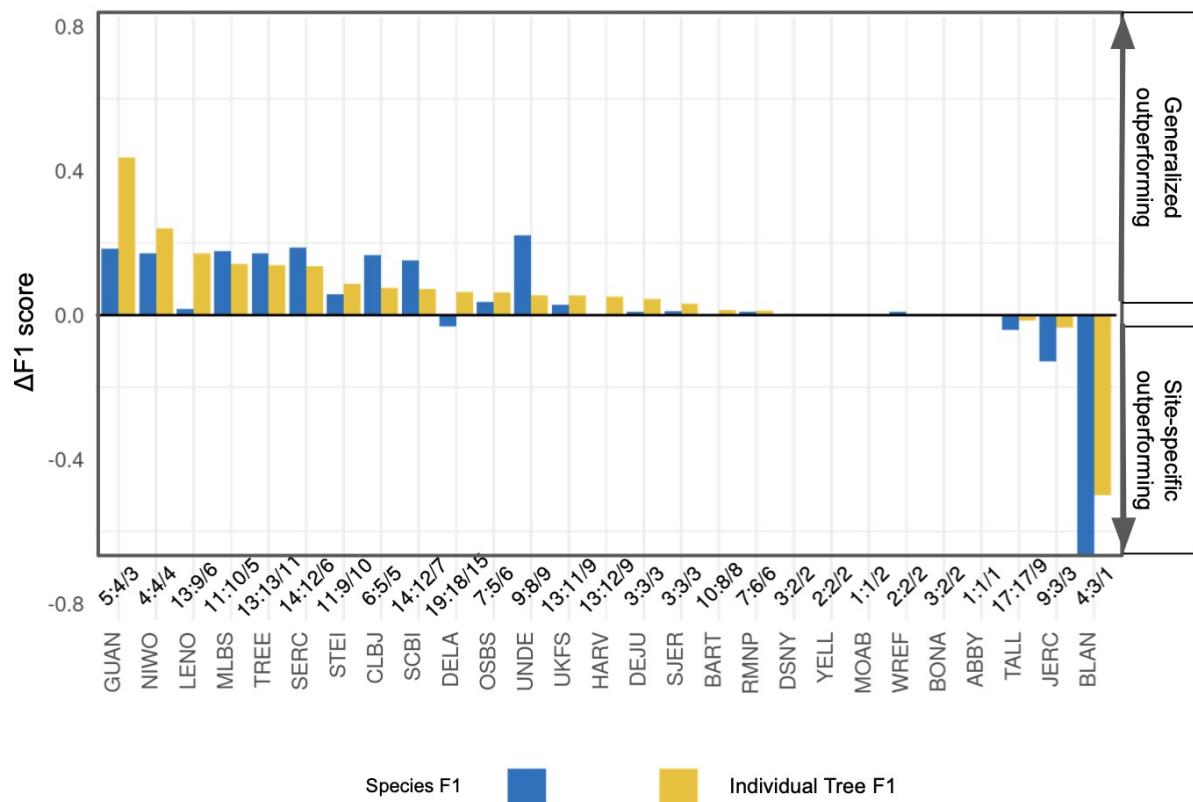
915 Zou, Hui, and Trevor Hastie. "Regularization and variable selection via the elastic net." Journal
916 of the royal statistical society: series B (statistical methodology) 67.2 (2005): 301-320.

917

918

919

920



923 Figure 1. Performance of generalized vs site-specific classification models for each NEON site.

924 Positive values are sites for which the generalized model performed better than site-level.

925 Negative values are sites for which the generalized model performed worse compared to site-

926 level. Blue bars represent species-level F1 score, yellow bars individual-level F1. Numbers

927 separated by (:) on top of each site name represent the total number of species in the training

928 for each site (general model: site-only model).

121

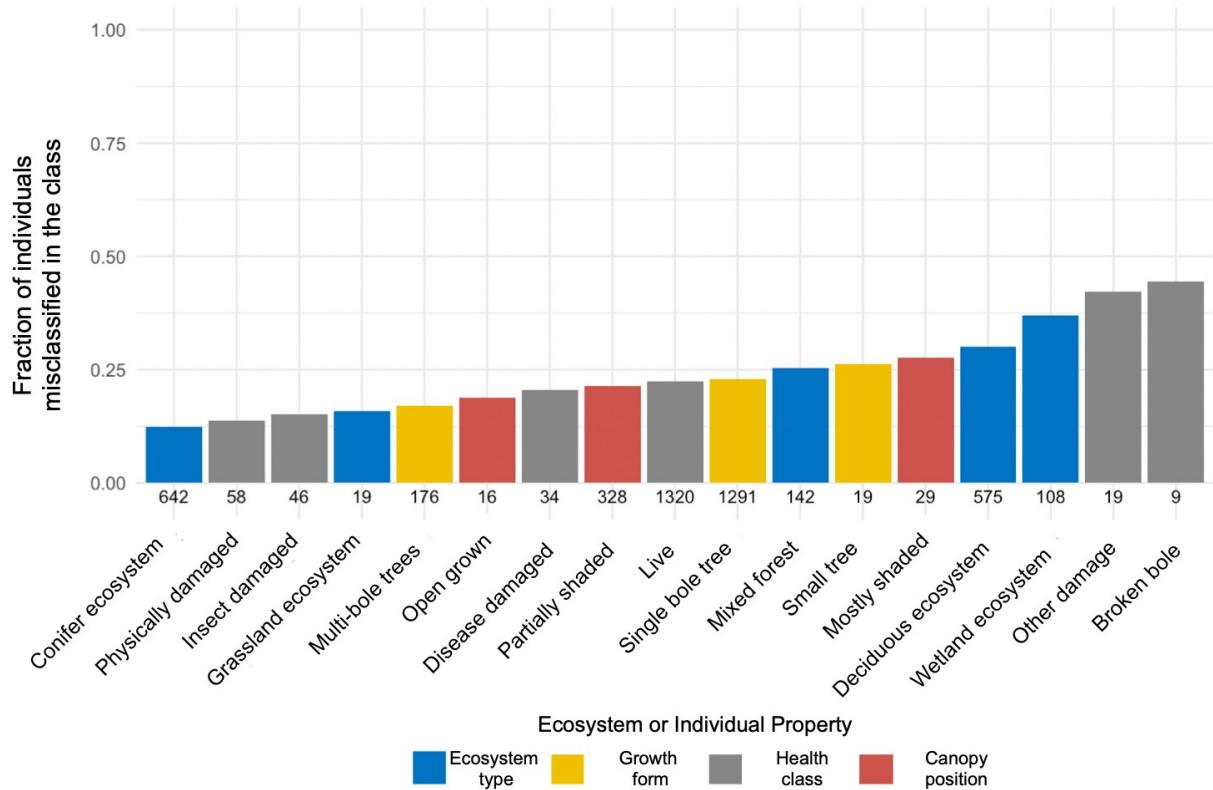
934

935

936

937

938



939

940 Figure 2. Fraction of misclassified trees across ecosystem types (blue), growth form (yellow),
 941 canopy position (red) and health status (gray). Numbers above the x-axis labels are the number
 942 of trees in each category.

943

944

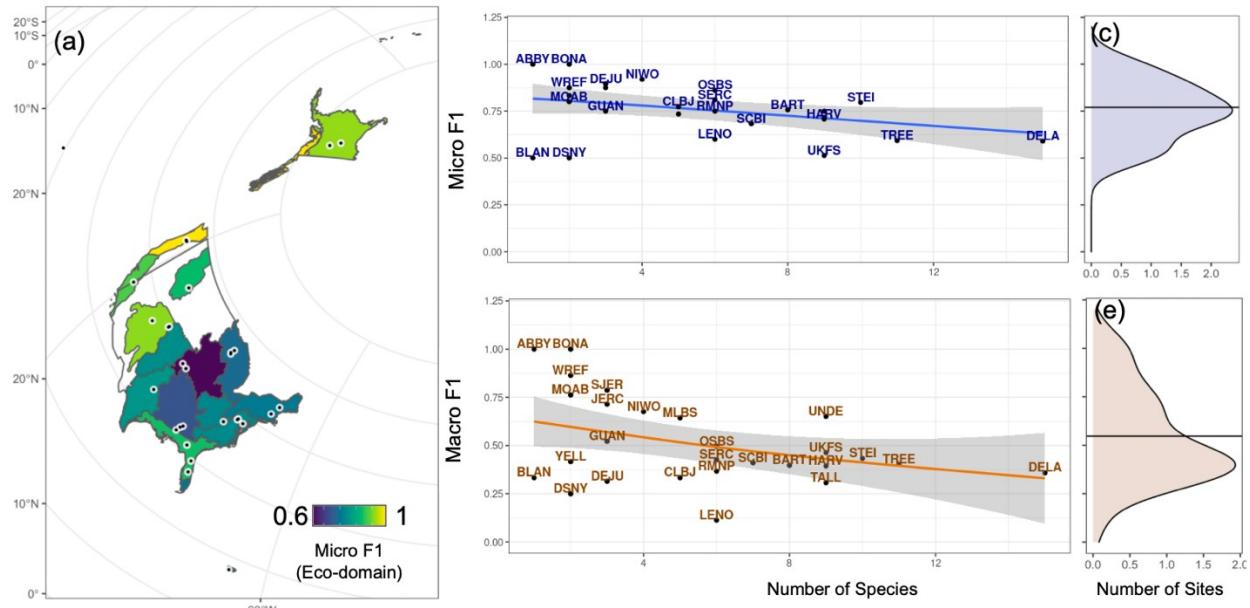
945

946

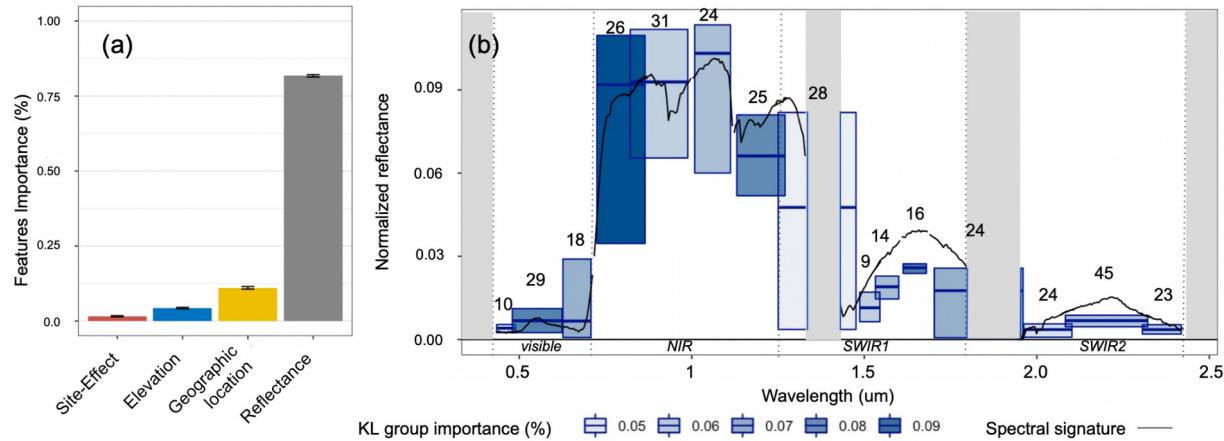
122

41

123



948 Figure 3. Variation in accuracy of the generalized algorithm across the US. (a) map of average
 949 individual-level accuracy (Micro F1) for each ecological domain. Dots represent the location of
 950 each NEON site. Blue polygons represent the Prairie Peninsula and Central-Southern Plains.
 951 (b) Relationship between individual-level accuracy (Micro F1) and number of species in the
 952 training dataset for each site (Number of Species). The blue line is the loess smoother
 953 relationship over the 27 sites. (c) Kernel density estimate of the distribution of individual-level F1
 954 scores (averages per site). (d) Relationship between species-level accuracy (Macro F1) and
 955 number of trained species found in site (Number of Species); orange line is the loess smoother
 956 relationship over the 27 sites. (e) Kernel density estimate of the distribution of species-level
 957 accuracy scores (averages per site). Horizontal black lines in (d) and (e) represent the average
 958 accuracy across sites.



959

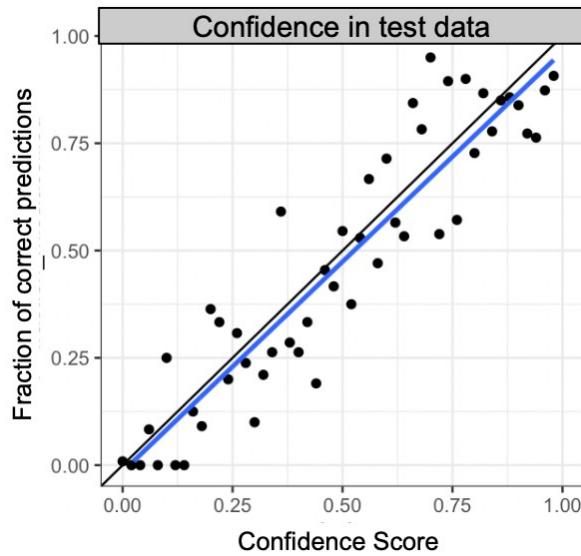
960 Figure 4: Features importance calculated from the permutation feature importance procedures
 961 described in Breiman, 2001, on the meta-ensemble model. (a) Relative contribution of different
 962 feature types: reflectance, as the sum of the 45 features (gray), site coordinates (yellow),
 963 elevation (blue) and site effect (red).(b) Relative importance of each Kullback-Leibler group of
 964 features used for dimensionality reduction of reflectance. Blue bars represent the reflectance for
 965 the average minimum, mean and maximum band in the specific KL group. Numbers on top of
 966 each bar represent the number of bands in each group. Bar width represents the range of bands
 967 covered by the specific KL group. Some bars overlap due to discontinuity of band assignments
 968 to different groups/bars at the group boundaries. Gray bars represent areas with water
 969 absorption bands dropped from the original hyperspectral images. Color intensity represents the
 970 relative importance of the specific KL group for the classifier (from light blue being of little
 971 importance, to dark blue being highly important). Black lines represent the reflectance of a
 972 randomly selected pixel to illustrate a typical vegetation reflectance pattern. Reflectance was
 973 normalized using L2 normalization. Numbers on top of each blue bar represent the total number
 974 of bands in the group.

975

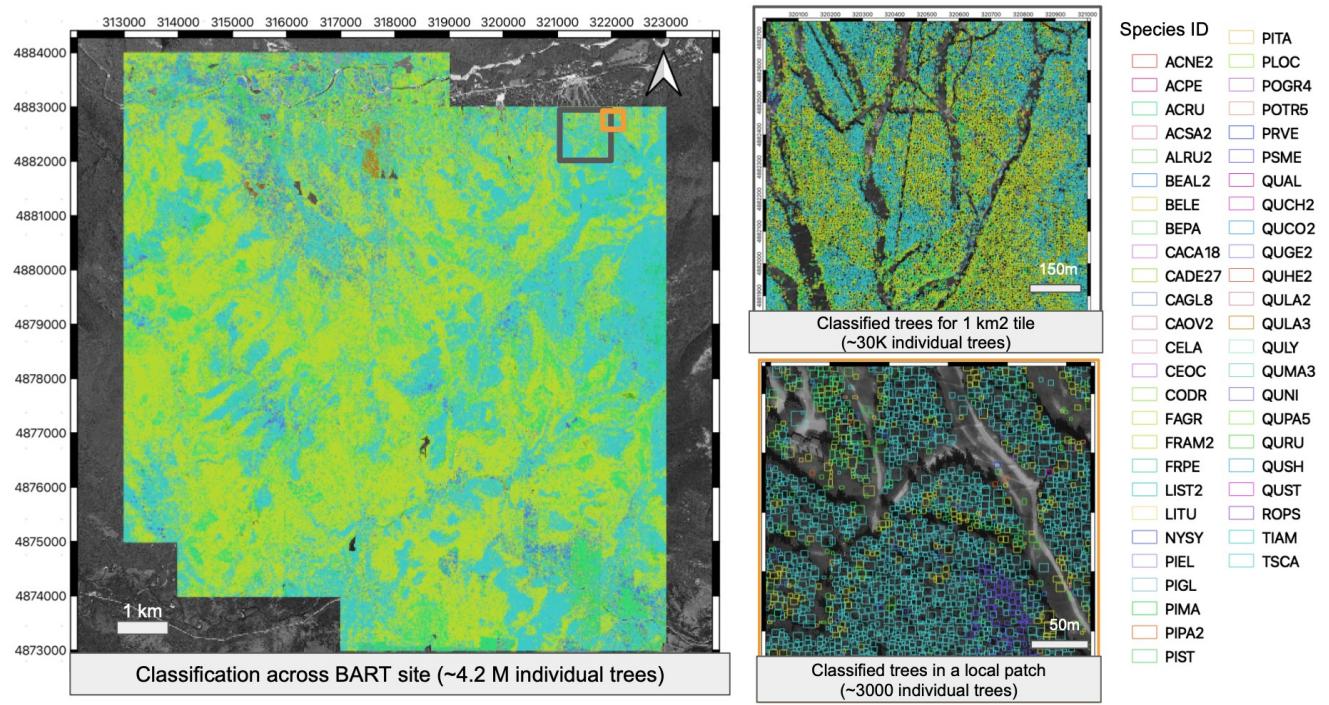
976

128

129



978 Figure 5. Evaluation of model confidence score (the probability of assigning the correct label to
 979 a prediction) as a measure of uncertainty. Confidence score was binned into 34 equal-width
 980 bins (each bin representing an interval of 0.03). Bin centers were plotted against the fraction of
 981 trees in that confidence score bin that were correctly classified. The blue line shows the fitted
 982 linear relationship between the confidence score and the proportion of correctly classified trees.
 983 The black line is the 1:1 line.



985

986 Figure 6. Example of species classification maps for all individual trees at the Bartlett
 987 Experimental Forest (BART) NEON site in New Hampshire. Species in legend include six of the
 988 most abundant taxa predicted at the site. Individual crown boundaries were estimated using
 989 predictions from Weinstein et al., 2021. The background is gray scale imagery of the site, so the
 990 gray areas on the left panel are regions for which NEON airborne data was not available; the
 991 gray areas on the right hand panels are areas without any trees including roads and other open
 992 areas.

993

994

995

996

997

998

999

134

135

1000 Supplement 1: parameterization of classifiers and meta ensemble

1001

1002 KNN classifier was trained using 20 neighboring points, with distance weighted by the
1003 inverse of their Manhattan distance. The Random Forest classifier was trained using 300 trees
1004 with up to 7 features (square root of the total predictors) considered for better split, validated

1005 using cross-entropy loss function on out-of-bag samples. The gradient boosting classifier

1006 was trained using 1000 maximum iterations, a learning rate of 0.01, max depth of 25 and 0.5 L2
1007 regularization. Loss was calculated using categorical cross-entropy on out-of-bag samples.

1008 Multi-layer Perceptron classifier was trained for 1200 max iterations, using

1009 relu activation, 1 hidden layer, weight optimization through adam booster
1010 with exponential decay rate of 0.9. The Bagging Classifier was trained using

1011 10 support vector machine classifiers as base estimators. We used loose

1012 regularization ($C = 1000$), RBF kernel, and 5-fold cross validation to calibrate
1013 probability estimates. The meta ensemble was trained using probability vectors

1014 produced by each weak classifier. We used a regularized logistic regression (elasticnet), with

1015 0.5 L1 to L2 penalty ratio. We used a saga solver to optimize the loss function.

1016

1017

1018

1019

1020

1021

1022

1023

1024

137

138

139

1025 Supplement 2: Species level accuracy and scientific names

1026

1027 Species names for all species used for this manuscript along with their precision, recall and
1028 accuracy can be found in the supplementary file titled “overview_precision_recall_names.csv”.

1029 Recall is defined as the amount of true positives divided by the sum of true positives plus and
1030 false negatives; it represents the fraction of relevant instances predicted by the model. F1
1031 represents the model accuracy for each species.

1032

1033

1034

1035

140

47

141

142

1036

1037 Supplement 3: Confusion matrix

1038

1039 Confusion matrices were produced using the Caret R package (Kuhn, 2008). For species with
1040 both precision and recall equaling 0, F1 score was calculated as 0. Tabular version of the
1041 confusion matrices for predictions on the test (total n = 1487) set for (1) all trees in the test set,
1042 (2) trees in the test set for each ecodomain, (3) trees in the test set for each site from the
1043 generalized approach, (4) trees in the test set for each site from site-specific approach, (5) for
1044 predictions at the genus level can be found in the supplementary file “confusion_matrices.zip”
1045 and are organized in separate folders. For each confusion matrix, rows represent observations,
1046 columns represent predictions. In cases where columns are entirely filled with zeros, we
1047 removed all species that were not found in either the training or held-out test datasets at each
1048 individual site. For site level confusion matrices, we only included species for which at least one
1049 tree was either observed or predicted. Therefore, species with no observations in the test set
1050 will be assigned to empty columns; species never predicted in the test set will be assigned to
1051 empty rows.

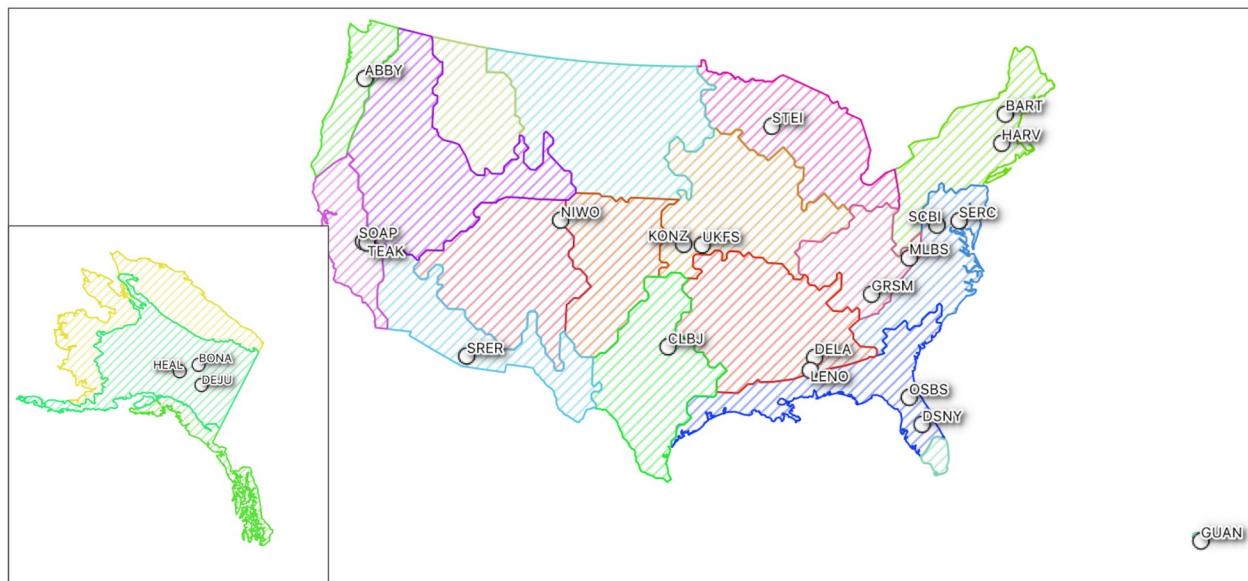
1052

1053

143

48

144

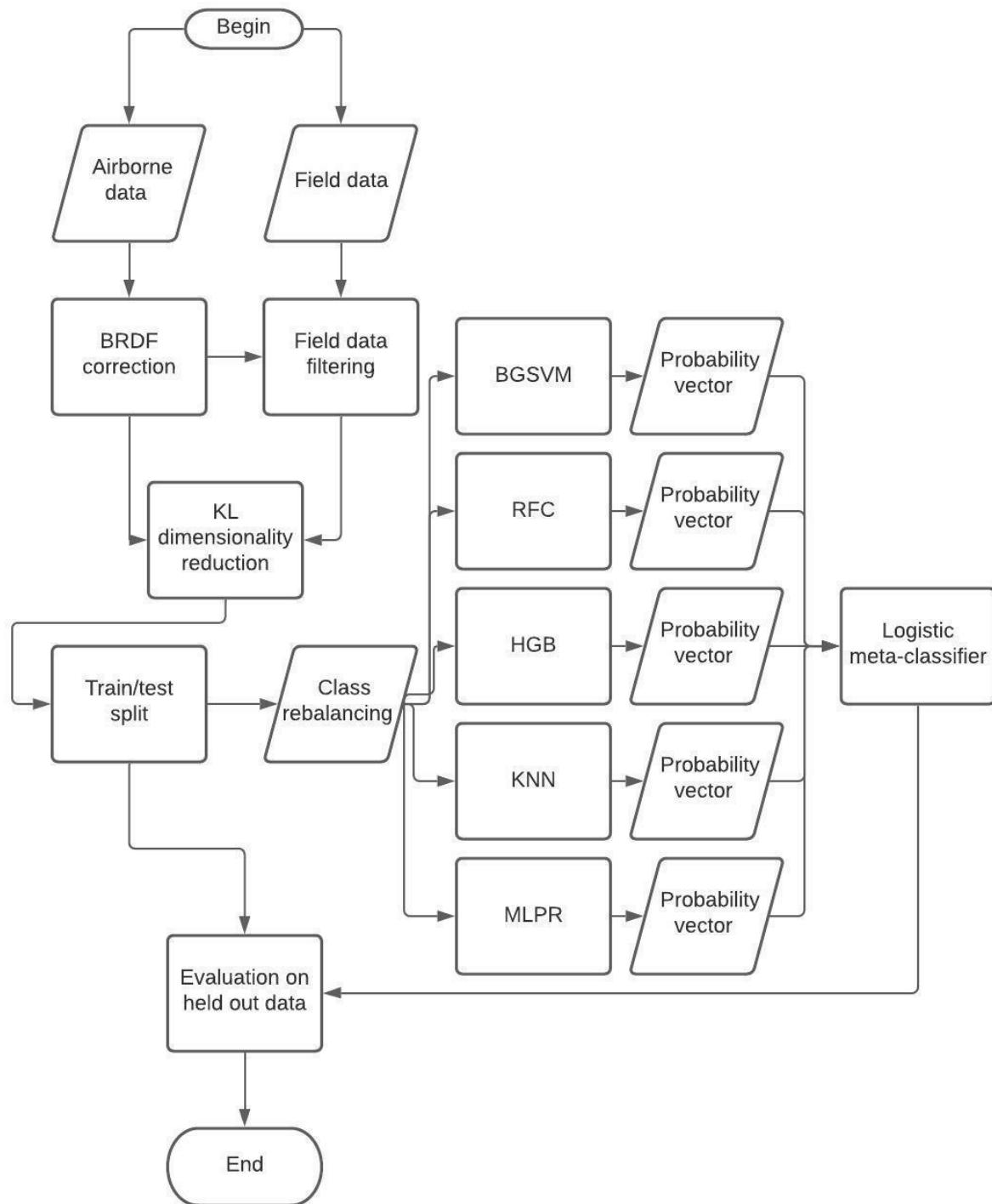
1054 **Supplementary Figures**

1055

1056 Figure S1 Geographic distribution of NEON sites included for this study. Colored regions
1057 represent ecological regions defined by NEON (<https://www.neonscience.org/field-sites/about-field-sites>). A description of each site and their ecological domain can be found in the
1058 Supplementary Table 1.

1059

1060



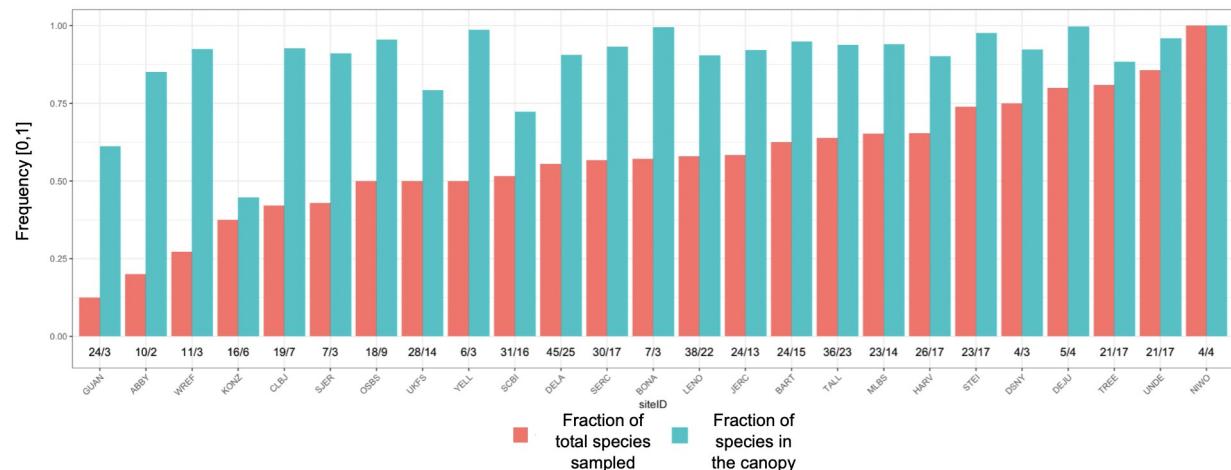
1061

1062

1063 Figure S. 2: Flowchart of the species classification pipeline developed for this study

151

1064



1065

1066 Figure S.3 For each site, the fraction of species included in the test/train dataset compared to
1067 the total amount of tree species in the raw NEON vegetation structure dataset (red); the fraction
1068 of trees that the species from the test/train dataset comprise out of all canopy trees (blue) in the
1069 NEON vegetation structure dataset. The numbers separated by “/” above each site name
1070 represent the total number of species in the original dataset and in the filtered data respectively,
1071 specific for each site. Trees in the canopy (blue bars) were determined by canopy position data
1072 in the vegetation structure data where trees in the canopy were designated as "Full sun",
1073 "Mostly shaded", "Partially shaded", "Open growth", or non-classified ("NA").

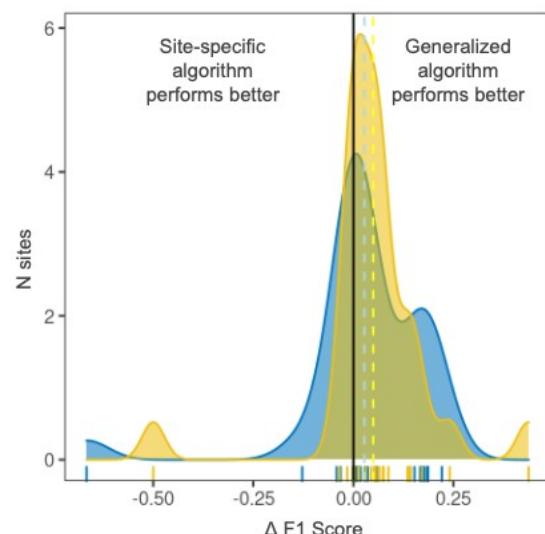
1074

1075

152

51

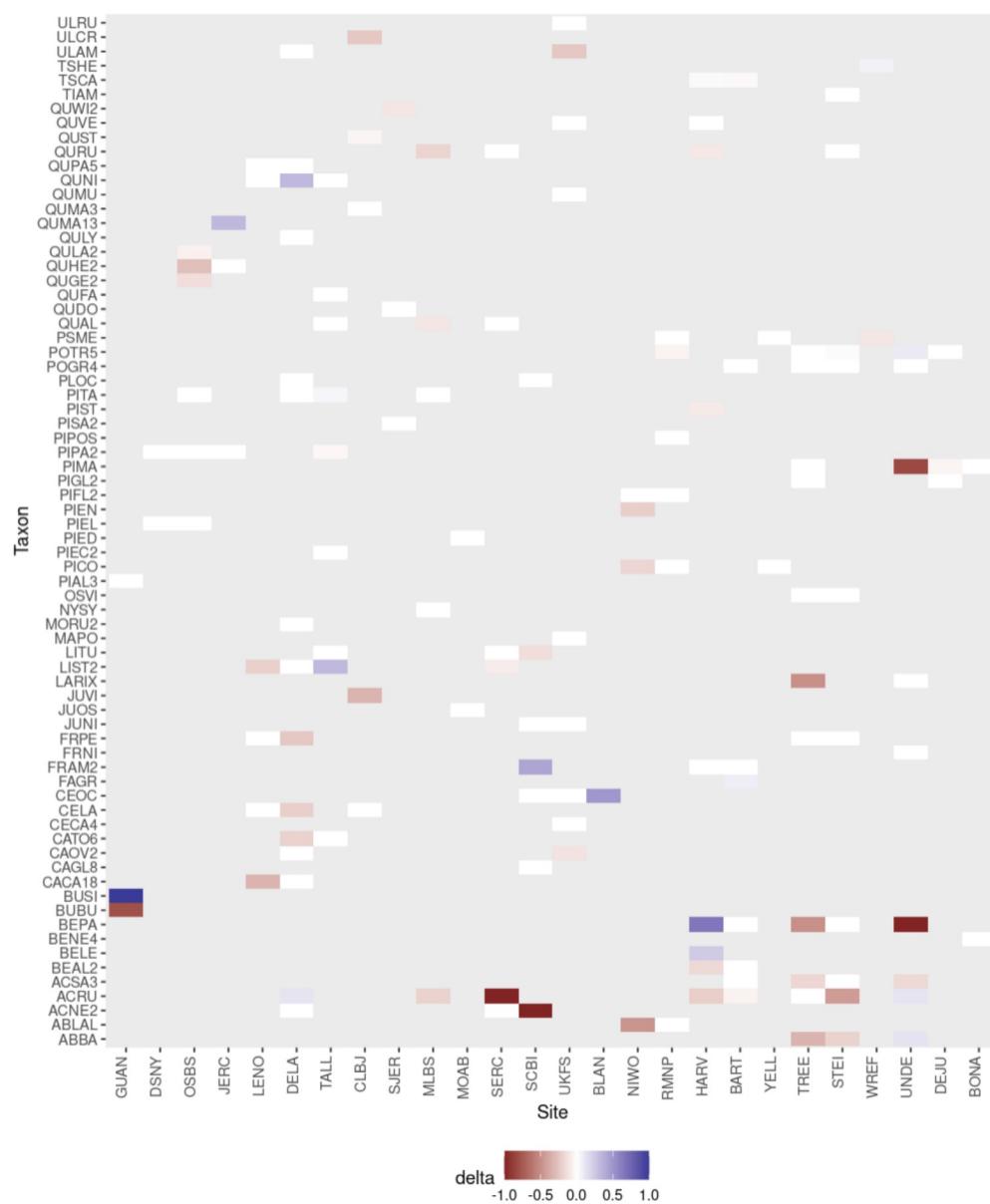
153



1076

1077 Figure S.4 Density functions of the difference in $\Delta F1$ scores between the generalized and each
 1078 single-site algorithm for species-level F1 (yellow) and individual-level F1 (blue). Positive $\Delta F1$
 1079 values (17 out of 27 sites) represent sites where the generalized algorithm outperformed its site-
 1080 specific counterpart. Dashed vertical lines represent the average $\Delta F1$ across sites (species-
 1081 level F1 = 0.09, individual-level F1 = 0.05).

1082

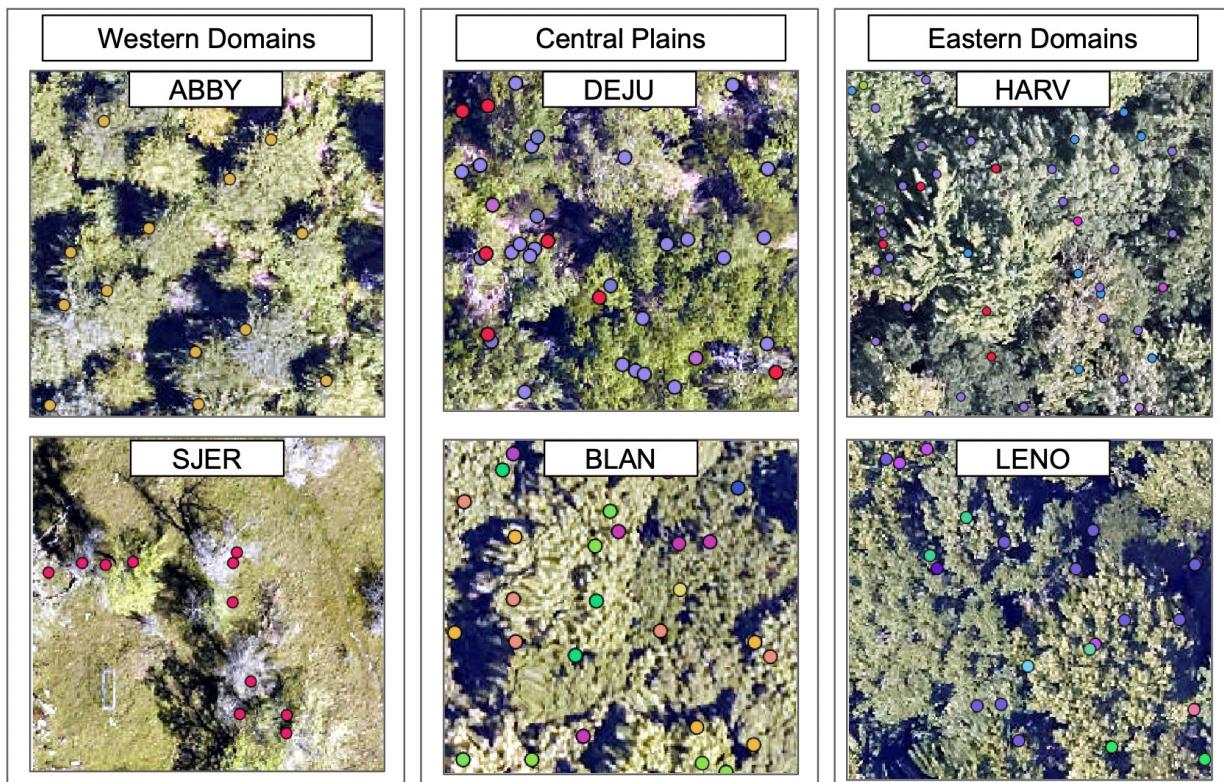


1083

1084 Supplement S.5. Difference in accuracy between the general and site-specific approaches for
 1085 each species-site combination. Negative values (red) represent taxa whose accuracy is higher
 1086 in the general approach. Blue values represent taxa whose accuracy is higher in the site-
 1087 specific approach. White values where accuracy was similar for the general and site-specific
 1088 approaches. Grey are species that do not occur at the site. Sites are sorted by geographic
 1089 similarity. Species names for each taxon acronym can be found in Supplement 2. Site names
 1090 can be found in table S1.

160

1091



1092

1093

1094 Figure S.6 Example of 400 m² plots for 6 sites from western (left panel), central (center panel)
1095 and eastern US (right panel). Dots represent field stem data collected from NEON vegetation
1096 structure. Different dot colors represent different species. Only stems that have been filtered to
1097 include only stems that are likely to be in the canopy. From top left to bottom right sites
1098 acronyms are Abby Road (ABBY), Delta Junction (DEJU), Harvard Forest (HARV), San Joaquin
1099 Experimental Range (SJER), Blandy Experimental Farm (BLAN), Lenoir Landing (LENO),

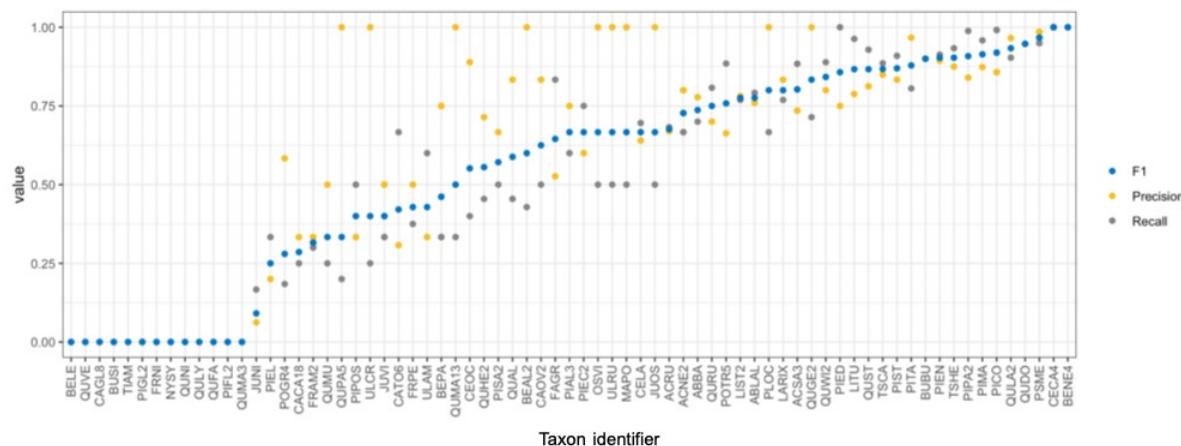
1100

1101

161

54

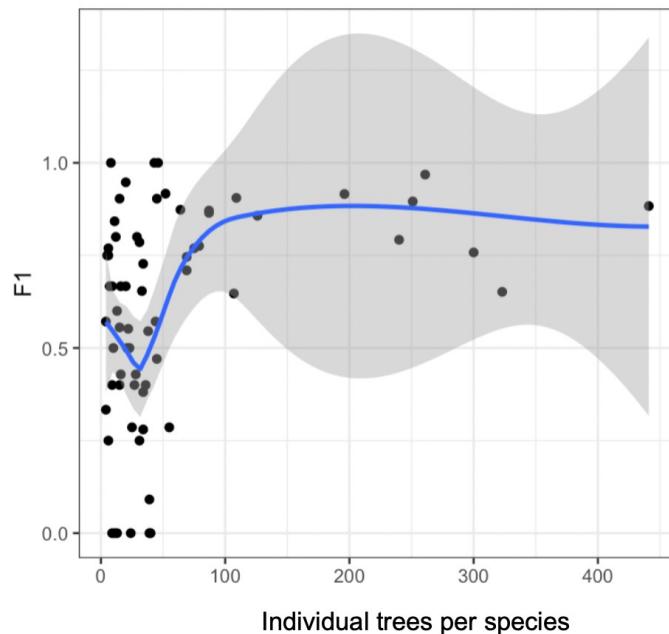
162



1105 Figure S.7. Precision (blue), Recall (yellow) and F1 (gray) for each individual species included in
 1106 the dataset. Precision is defined by the ratio between the number of true positives and the
 1107 number of true positives plus the number of false positives; it represents the ability of a
 1108 classification model to identify only the relevant data points. Recall is defined as the amount of
 1109 true positives divided by the sum of true positives plus and false negatives; it represents the
 1110 fraction of relevant instances predicted by the model. F1 represents the model accuracy for
 1111 each species. These results, along with the list of species scientific names assigned to each
 1112 code can be found in Supplement S2. Confusion matrices can be found in separate
 1113 supplementary file as described by Supplement 3.

166

1116



1117

1118 Figure S.8. The relationship between individual species F1 scores and number of individual
1119 trees available for training for that species. The blue line shows a fitted relationship using local
1120 polynomial regression fitting (loess) and the grey region shows the 95% confidence interval
1121 around that relationship.

1122

1123

1124

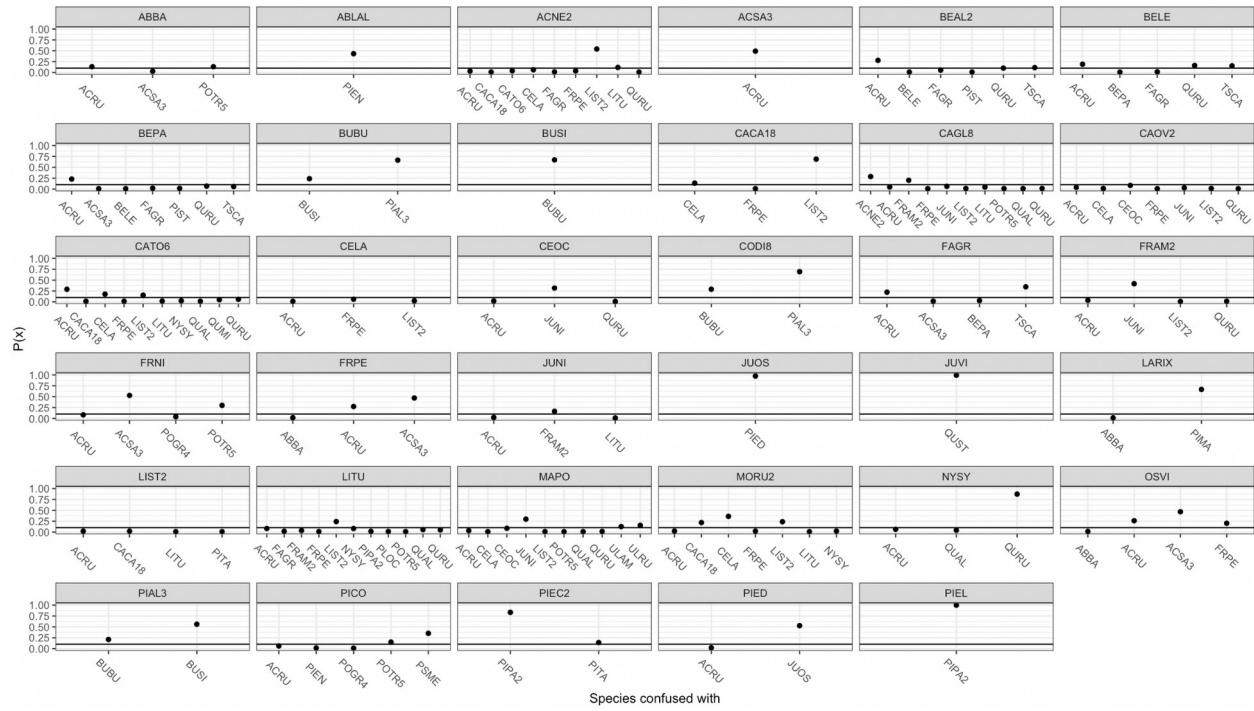
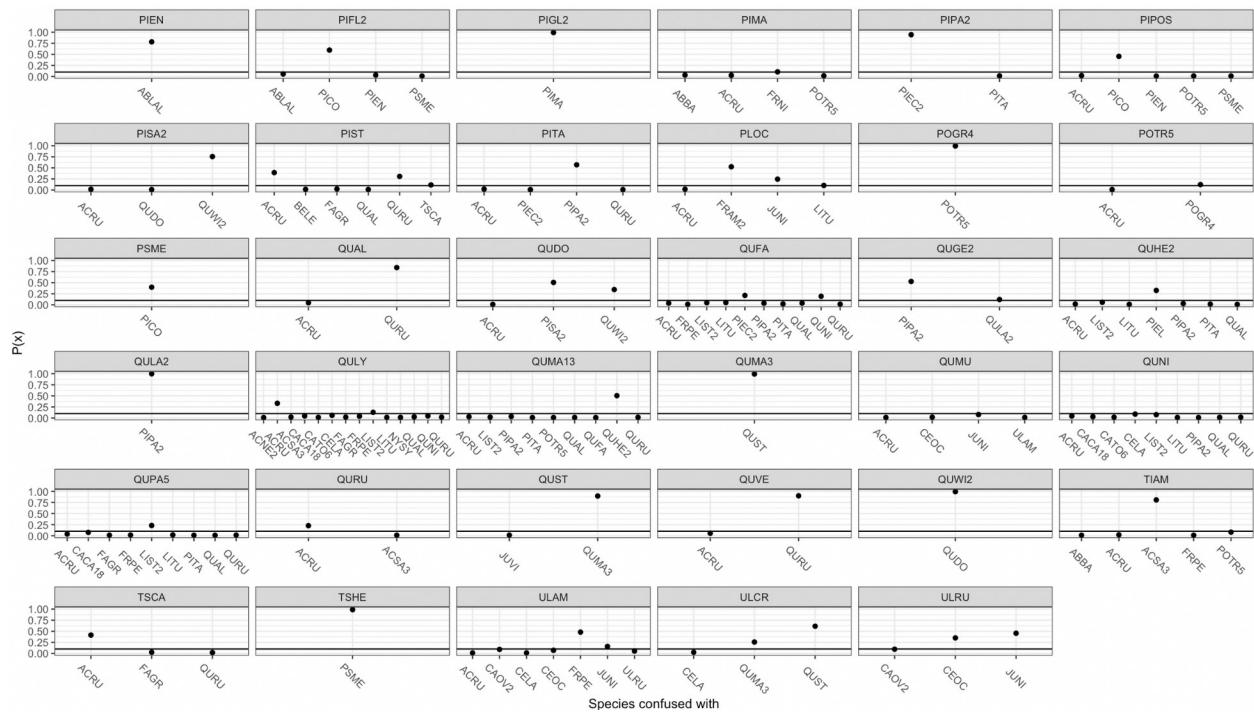
1125

1126

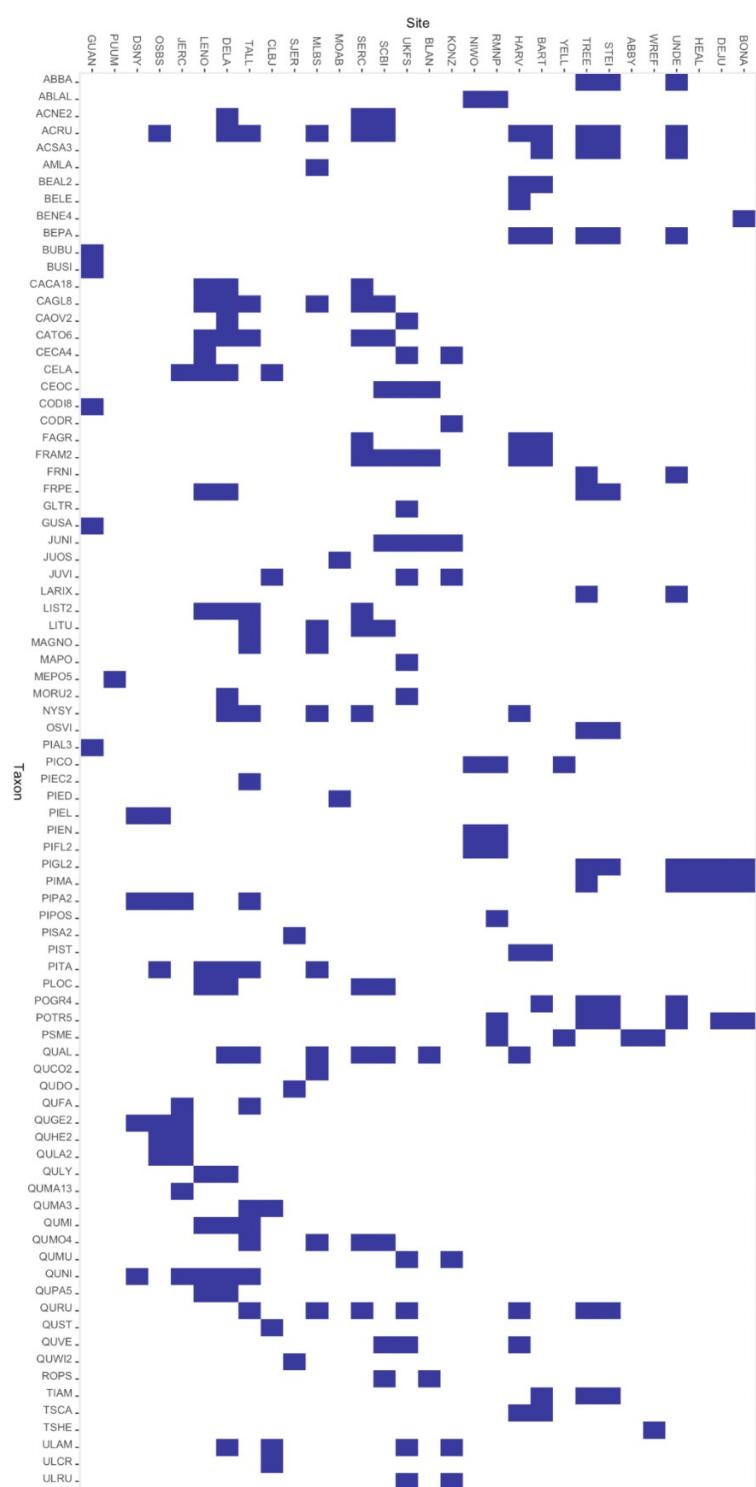
167

168

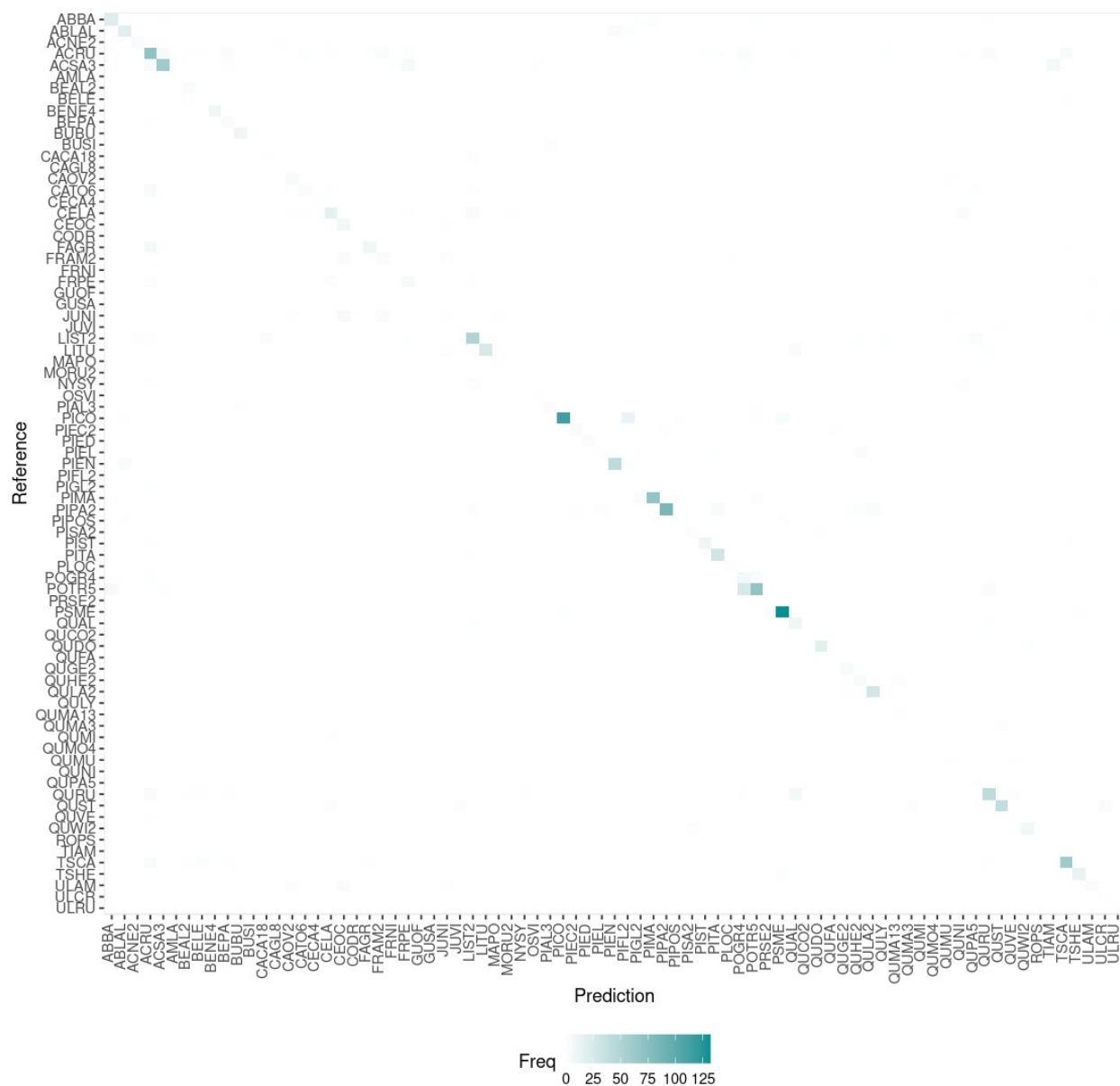
56



1129 Figure S.9. Confidence score $P(x)$ for those taxa each species was most confused with. Taxa
 1130 with a $P(x)$ lower than 0.02 were not included. Species names for each taxon acronym can be
 1131 found in supplement 2.



1134 Figure S.10. Distribution of species across sites. Species names for each taxon acronym can be
 1135 found in supplement 2. Site names can be found in table S1.



1136

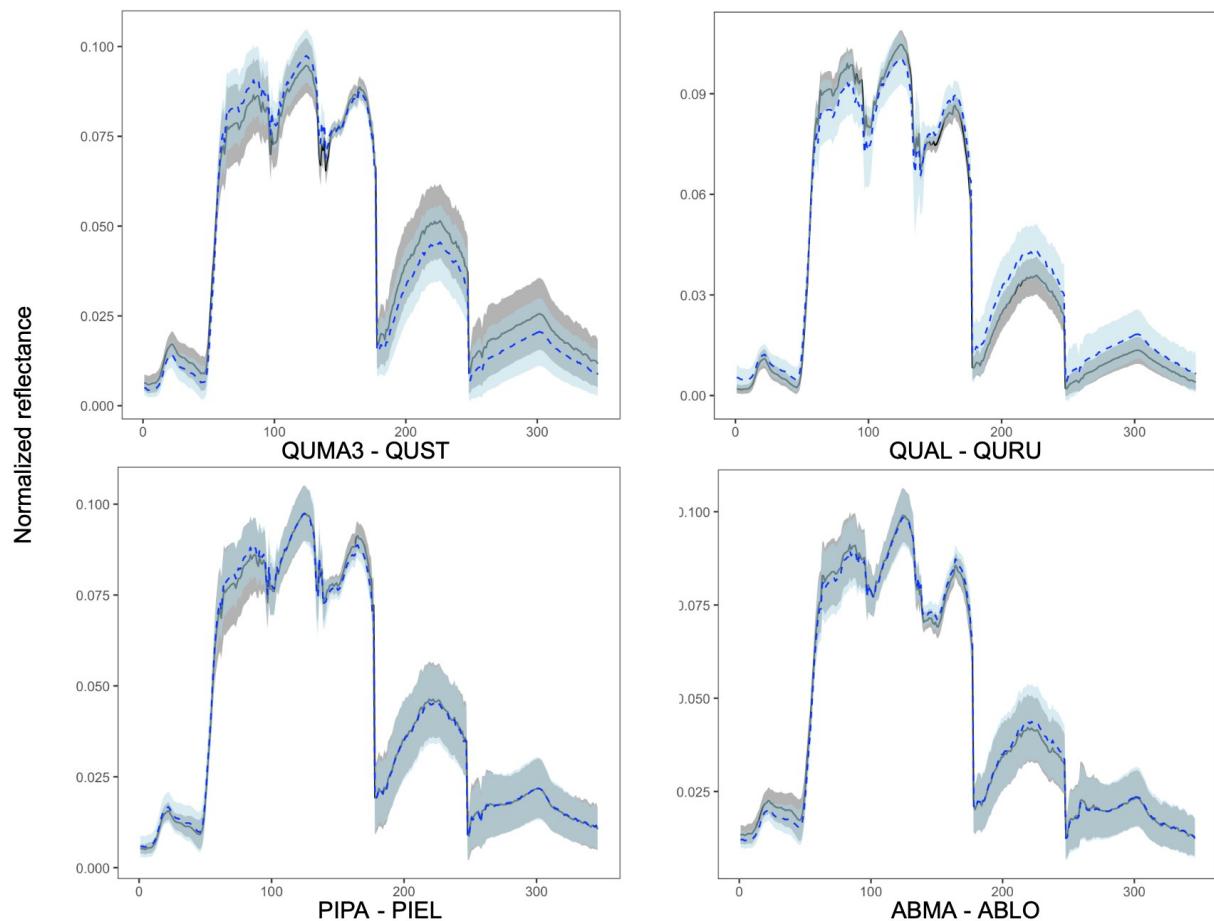
1137 Figure S.11. Overall confusion matrix for all data in the test set. Tabular versions, including the
 1138 confusion for each site, ecodomain and the confusion matrix for predictions at the genus level
 1139 can be found in the supplementary files. Species names for each taxon acronym can be found
 1140 in supplement 2.

178

1141

1142

1143



1144

1145 Figure S.12 Example of spectral signature overlap between often confused congeneric species.
1146 Lines represent the average spectra, shaded areas represent the standard deviation for all
1147 pixels extracted for that particular species. The first species in legend is in blue, the second in
1148 grey. The X-axis is the band number from brdf corrected hyperspectral image. Couples of
1149 species are: (a) *Quercus marilandica* and *Quercus stellata*, (b) *Quercus alba* and *Quercus*
1150 *rubra*, (c) *Pinus palustris* and *Pinus elliottii*, (d) *Abies magnifica* and *Abies lowiana*.

1151

179

60

180

Site Name	Ecological Domain	Domain Name	State	Geolocation (Lat-Lon)
Abby Road NEON (ABBY)	D16	Pacific Northwest	Washington	45.76
				-122.33
Bartlett Experimental Forest NEON (BART)	D01	Northeast	New Hampshire	44.06
				-71.29
Blandy Experimental Farm NEON (BLAN)	D02	Mid Atlantic	Virginia	39.03
				-78.04
Caribou-Poker Creeks Research Watershed NEON (BONA)	D19	Taiga	Alaska	65.15
				-147.5
Dead Lake NEON (DELA)	D08	Ozarks Complex	Alabama	32.54
				-87.8
Delta Junction NEON (DEJU)	D19	Taiga	Alaska	63.88
				-145.75
Disney Wilderness Preserve NEON (DSNY)	D03	Southeast	Florida	28.13
				-81.44
Guanica Forest NEON (GUAN)	D04	Atlantic Neotropica I	Puerto Rico	17.97
				-66.87
Harvard Forest & Quabbin Watershed NEON (HARV)	D01	Northeast	Massachusetts	42.54
				-72.17

KU Field Station NEON (UKFS)	D06	Prairie Peninsula	Kansas	39.04
				-95.19
Konza Prairie Biological Station NEON (KONZ)	D06	Prairie Peninsula	Kansas	39.1
				-96.56
Lenoir Landing NEON (LENO)	D08	Ozarks Complex	Alabama	31.85
				-88.16
Lyndon B. Johnson National Grassland NEON (CLBJ)	D11	Southern Plains	Texas	33.4
				-97.57
Moab NEON (MOAB)	D13	Southern Rockies / Colorado Plateau	Utah	38.25
				-109.39
Mountain Lake Biological Station NEON (MLBS)	D07	Appalachia ns / Cumberland Plateau	Virginia	37.38
				-80.52
Niwot Ridge NEON (NIWO)	D13	Southern Rockies / Colorado Plateau	Colorado	40.05
				-105.58
Ordway-Swisher Biological Station NEON (OSBS)	D03	Southeast	Florida	29.69
				-81.99

Rocky Mountains NEON (RMNP)	D10	Central Plains	Colorado	40.28
				-105.55
San Joaquin Experimental Range NEON (SJER)	D17	Pacific Southwest	California	37.11
				-119.73
Smithsonian Conservation Biology Institute NEON (SCBI)	D02	Mid Atlantic	Virginia	38.89
				-78.14
Smithsonian Environmental Research Center NEON (SERC)	D02	Mid Atlantic	Maryland	38.89
				-76.56
Steigerwaldt-Chequamegon NEON (STEI)	D05	Great Lakes	Wisconsin	45.51
				-89.59
Talladega National Forest NEON (TALL)	D08	Ozarks Complex	Alabama	32.95
				-87.39
The Jones Center At Ichauway NEON (JERC)	D03	Southeast	Georgia	31.19
				-84.47
Treehaven NEON (TREE)	D05	Great Lakes	Wisconsin	45.49
				-89.59
University of Notre Dame Environmental Research Center NEON (UNDE)	D05	Great Lakes	Michigan	46.23
				-89.54
Wind River Experimental Forest NEON (WREF)	D16	Pacific Northwest	Washington	45.82
				-121.95
Yellowstone National Park NEON	D12	Northern	Wyoming	44.95

190

(YELL)		Rockies		-110.54
--------	--	---------	--	---------

1153 Table S.1 Description of NEON sites and ecological domains used in this study.

1154

1155

1156

1157 Supplementary References

1158 Kuhn, M. (2008). Building predictive models in R using the caret package. *Journal of statistical*
1159 *software*, 28, 1-26.

1160

191

64

192