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Abstract

Advances in remote sensing imagery and machine learning applications unlock the potential for 

developing algorithms for species classification at the level of individual tree crowns at 

unprecedented scales. However, most approaches to date focus on site-specific applications 

and a small number of taxonomic groups. Little is known about how well these approaches 

generalize across broader geographic areas and ecosystems. Leveraging field surveys and 

hyperspectral remote sensing data from the National Ecological Observatory Network (NEON), 

we developed a continental-extent model for tree species classification that can be applied to 

the network, including a wide range of US terrestrial ecosystems. We compared the 

performance of a model trained with data from 27 NEON sites to models trained with data from 

each individual site, evaluating advantages and challenges posed by training species classifiers 

at the US scale. We evaluated the effect of geographic location, topography, and ecological 

conditions on the accuracy and precision of species predictions (72 out of 77 species).

On average, the general model resulted in good overall classification accuracy (micro-F1 score), 

with better accuracy than site-specific classifiers (average individual tree level accuracy of 0.77 

for the general model and 0.70 for site-specific models). Aggregating species to the genus-level 

increased accuracy to 0.83. Regions with more species exhibited lower classification accuracy. 

Predicted species were more likely to be confused with congeneric and co-occurring species 

and confusion was highest for trees with structural damage and in complex closed-canopy 

forests. The model produced accurate estimates of uncertainty, correctly identifying trees where 

confusion was likely. Using only data from NEON, this single integrated classifier can make 

predictions for 20% of all tree species found in forest ecosystems across the entire US, which 

make up to roughly 90% of the upper canopy of the studied ecosystems. This suggests the 
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potential for integrating information from multiple datasets and locations to develop broad scale 

general models for species classification from hyperspectral imaging.
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1. Introduction

Forest ecosystems play a central role in essential services like providing wood and other 

forest products, carbon sequestration, and biodiversity conservation (Wiens, 2016; Pecl et al., 

2017), but understanding patterns and processes driving forest properties and species 

distributions across scales can be challenging.  A common strategy to monitor biodiversity and 

biomass of forests at national scales is to use field surveys of plots (USDA Forest Service, 

2001, Lawrence et al. 2010). Data collection within survey plots requires extensive effort, 

limiting even the most extensive national forest inventories to several thousand permanent plots 

sampled every few years (White et al., 2016), which can be too sparse for investigating the 

effects of management, soil properties, topography and local environmental conditions on large 

scale forest structure, distribution and diversity (Tomppo et al., 2008). Remote sensing can help 

bridge this gap between local and regional scales by providing individual tree level data at 

scales beyond what is feasible for traditional plot-level inventories (Anderson, 2018). Models 

linking remotely sensed imagery to field surveys can identify the location and species identity of 

individual trees (Henrys & Jarvis, 2019), alleviating the challenge of inferring local patterns from 

sparsely sampled data (Ayrey et al., 2019, Bastin et al., 2019, Kandare et al., 2017) for 

understanding tree species distributions and abundances.

Numerous approaches have been developed for pixel- or canopy-scale species-level 

classification using hyperspectral remote sensing based on exploiting spectral differences 

between tree species which are caused by differences in foliar properties and canopy structure 

(Shi et al., 2018, Mayra et al, 2021, Belgiu & Dragut, 2016, Ballanti et al., 2016, Ab Majid et al., 

2016). Recent efforts in species classification use either deep learning methods (Nezami et al,, 

2020, Zhang et al., 2020, Martins et al., 2021) or ensemble of machine learning (Knauer et al., 

2021, Grabska et al., 2020), showing promising improvements over more traditional approaches 
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such as random forest, support vector machines or multi-layer perceptron classifiers. In general, 

most approaches are conducted with datasets covering small site- and/or ecosystem-specific 

extents (Fassnacht et al., 2016) rarely focus on classification of individual trees (but see urban 

tree mapping e.g. Martins et al., 2021), and often focus only on less than 10 species 

(Michałowska et al. 2021). For example, because of limitations related to coarse pixel size, 

many studies using satellite data either predict the dominant species within plot-sized pixels 

(Grabska et al., 2020, Wang et al., 2022) or classify the relative distribution of broad vegetation 

types within pixels (Bogan et al., 2019). These approaches are valuable for addressing 

processes for which information about dominant species in the community or ecosystem type is 

needed (e.g. monitoring forest aboveground biomass, Laurin et al. 2020), but are currently 

limited in their ability to provide precise taxonomic information at the individual level. Precise 

fine-grained species information is important for assessing forest biodiversity, tree-level growth 

and species interactions (Anderson, 2018). Other recent works have leveraged high resolution 

airborne missions to generate tree surveys covering hundreds of km2 and encompassing 

multiple management regimes and forest types (Modzelewska et al., 2020, Modzelewska et al., 

2021). Yet these works target single biomes, and so even though they provide valuable surveys 

for key species across different stand ages, communities structures and topographic positions, 

their use is still limited to individual biomes and relatively small regions.

Developing remote sensing models specifically for individual regions, sites and/or 

ecosystems, as is typically done with remote sensing from airplanes and UAVs,  limits the use 

of the models beyond the region and training data, making it difficult to: 1) conduct research at 

regional to continental scales due to the lack of general models that can be applied across 

ecosystems; 2) identify rare or uncommon species due to limited data for training models, which 

often results in studies focusing on a limited subset of common species; and 3) accurately apply 

the model beyond the region or conditions of the associated field data. Furthermore, training 
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data from single site studies often lack the full range of variation in spectral characteristics that 

can occur for each species due to intraspecific variation.  Developing generalizable species 

classification models based on data across different forest types and large spatial extents 

unlocks the potential for overcoming these limitations and increases the utility of remote sensing 

for building reliable broad scale tree species surveys.

Developing individual tree level species classification models that span geographic 

areas, forest types and species pools poses a novel set of challenges. First, it requires building 

a library of co-registered field and remote sensing data that includes data from multiple sites 

and ecoregions for training and testing algorithms. Second, increasing the geographic extent of 

species classification risks confusing species that have similar spectral properties but do not 

overlap in their geographic distributions. Third, combining data from multiple sites may introduce 

variation in spectral reflectance due to differences in phenology (which affect leaf greenness) 

and environmentally driven intraspecific variation, which affect leaf biochemistry, crown shape 

and leaf biophysical traits (Sims & Gamon, 2002). Finally, aggregating remote sensing data 

from multiple flights, sensors, and sites may increase variation in spectral signatures due to 

complex sources of spatial and temporal variation that are linked, but not limited to, acquisition 

dates, solar angles, ecosystem types and variation in sensor calibrations (Pax-Lenney et al., 

2001). Therefore, while there are many potential benefits to models for species classification 

across large spatial extents, it is unclear how they will perform compared to local models 

developed for specific ecosystems.

Here, we leverage newly available data from the National Ecological Observatory 

Network (NEON) to develop a continental level model for tree species classification that can be 

applied to the entire network and compare its performance to the traditional approach of building 

individual models for each site. We used NEON remote sensing and field data on individual 

trees at 27 terrestrial sites from Puerto Rico to Alaska, covering a wide range of ecoregions and 
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biomes across the United States (US). Several studies have developed species classification 

models for NEON data, but all these studies focused on individual NEON sites (Scholl et al., 

2020, Fricker et al., 2019, Marrs & Ni-Meister, 2019, Marconi et al., 2020), or 2-3 sites in the 

same region (Graves et al. 2021). We build on these single site models to develop a general 

model that can be applied across the entire NEON network by connecting field-identified tree 

stems to hyperspectral images. We used an ensemble of species classification models to allow 

for leveraging the strengths of different machine learning classifiers and provide effective ways 

to estimate the uncertainty of predictions (Engler et al., 2013, Saini & Ghosh, 2017, Sagi & 

Rokach, 2018). Using this model, we (1) assess whether a general model approach improves 

performance compared to separate models for each site, (2) determine the importance of 

reflectance, geography, environmental and ecological conditions on the accuracy and precision 

of species predictions; (3) evaluate the uncertainty in predictions; and (4) discuss the potential 

for this general model to be used for ecological applications. 

2. Methods

2.1. Field Data

Vegetation structure field data 

(https://data.neonscience.org/data-products/DP1.10098.001) were collected by the NEON 

terrestrial observatory system (TOS) between 2015 and 2019 (Table S.1). This dataset, 

sampled from 400 m2 plots distributed across the landscape of each NEON site, includes 

information about individual trees' geolocation and properties such as species identity, health 

status, canopy position, crown diameter, and tree height. Vegetation structure plot locations are 

located randomly across the sites stratified by vegetation type within each site with the aim of 

capturing landscape level biological and structural diversity at each site.  Each subplot (200m2 in 
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size) is assigned to an ecosystem type extracted from the National Land Cover Dataset. For this 

study we used data from 27 of the 41 NEON sites with partial to complete forest cover, 

encompassing 17 out of 18 ecoclimatic domains in the US (Figure S.1). We used a total of 1701 

subplots from 714 plots. Data from the other NEON sites could not be used because either field 

data about tree stem positions was missing or the remote sensing imagery contained gaps in 

the hyperspectral or lacked information about the sensor angle at the time of data collection.  

We only included individual stem data that met the following criteria: (a) the stem had a species 

label assigned to it, (b) it was marked as “alive” and “tree” in the NEON field inventory, and (c) it 

belonged to a species with more than 5 entries for the entire cross-site dataset. We also did not 

use stems designated in the NEON vegetation structure data as fully shaded, shrubs or sapling, 

as these stems are most likely not visible in the remote sensing imagery and would therefore be 

erroneously paired with pixels belonging to species from neighboring overstory crowns. The 

final dataset used for species classification consisted of 5697 individual trees of 77 species.  

2.2. Remote sensing data

For this study we used the hyperspectral L3 data from the NEON Airborne Observatory 

Platform (NEON, 2021). These data are provided in 1 km2 tiles with 426 channels recording 

reflectance in 5 nm bands from 350 to 2450 nm. Reflectance data was atmospherically 

corrected using the ATCOR-4 approach (Krause et al., 2011). Pixel size is 1 m2. We applied 

bidirectional reflectance distribution function (BRDF) correction, topographic correction, 

and L2 normalization to reduce the effect of peripheral light and non-Lambertian scattering with 

the goal of minimizing variation in reflectance ascribable to flight path and airplane position 

(Marconi et al., 2020). For all tiles (n = 4500), we used the same general parameterization to 

define the BRDF kernel. We also dropped bands in the water absorption regions of the spectra 

(1340 – 1430 nm and 1800 - 1955 nm) as well as the spectrometer’s peripheral bands to reduce 
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the effects of noise and artifacts.  Thus, the hyperspectral data were reduced to a total of 347 

channels. In the tree species classification models, we included terrain elevation (1 m2 spatial 

resolution) along with the hyperspectral data because of elevation’s potential information in 

discriminating species within landscapes (Strahler et al., 1978, Scholl et al., 2020). Elevation 

data were derived from a LiDAR sensor mounted along with the hyperspectral sensor on the 

aircraft, which was converted into a 1 m spatial resolution raster and appended to the 

hyperspectral data as an additional band. 

We assigned each individual tree from the filtered field dataset to a square clip of 16 

pixels (4 m crown diameter), centered around the stem's GPS coordinates. This threshold was 

selected because it is smaller than more than 95% of individual tree crowns diameter measured 

from the NEON vegetation structure dataset. We adopted this strategy to reduce the number of 

mislabeled pixels at the edges of the crown that belong to neighboring trees, especially in dense 

closed canopies. To remove shaded and non-vegetation pixels from these clips, we removed all 

pixels with NDVI < 0.5 and low reflectance in the NIR (reflectance at 825nm < 0.2). Since stem 

positions often do not match precisely with the center of the tree crown in the canopy, pixels will 

sometimes be assigned to the wrong label. To reduce this, we filtered out pixels that were much 

shorter than the maximum height of the crown. These pixels are less likely to belong to the 

sunlit portion of the target crown or may even measure the reflectance from neighboring shorter 

tree crowns, or the understory within a gap in the target crown. 

 m below the top height of the tree as determined by the maximum height of the tree from the 

LiDAR data in the 16-pixel clip. Finally, we removed stems with field GPS locations that fell 

within 3 meters of one another where the stems belonged to different taxa to decrease the 

chance of confusing closely neighboring, and potentially intermixed, tree crowns of different 

species. After all these steps, the final, filtered dataset used ~50,000 out of 200,000 initial pixels 

and 6449 out of ~21,000 crowns in the original vegetation structure dataset. 
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Due to the large number of correlated bands in hyperspectral data, it is necessary to 

reduce the number of features used in classifiers and limit the potential for overfitting (Li et al., 

2011). Although PCA is the most common approach to achieve dimensionality reduction, it 

comes with a number of limitations that could be problematic when aggregating information from 

different image collections, since it is sensitive to outliers, assumes linear relationship across 

features, and it is prone to discarding low rank components that may have high discriminative 

information (Prasad & Bruce, 2008). An alternative solution to reduce these issues is to use 

untransformed hyperspectral reflectance and group highly correlated bands based on their 

distribution in the form of probability densities (Delicado, 2011). This is possible using a 

hierarchical dimensionality reduction, consisting of clustering bands with similar standardized 

distributions according to Kullback-Leibler divergence (KLD) (Zare et al., 2019). The advantage 

of this approach is that it allows for reducing the number of features used while using 

untransformed spectral information, thus identifying redundant bands, highlighting highly 

correlated regions of the spectra (Yang et al., 2014), and allowing for a direct identification of 

the most informative spectral regions. The main limitation is that it requires arbitrarily choosing 

the number of groups into which to cluster the bands and identifying meaningful summary 

statistics to summarize the information clustered in the groups. We chose 15 groups of bands 

because given the limited number of individuals available per rare species, a smaller number of 

features is necessary to minimize model overfitting on train data. The number of groups was 

selected after exploring a range of possible values from 8 to 40. Fewer groups resulted in a loss 

of information and generally lower accuracy, while more groups did not significantly change 

model performance. Groups of bands were trained using pixels in the training data. Since the 

KLD clustering resulted in grouping bands from mostly contiguous and distinct spectral regions 

(though on the boundary of some groups of bands the bands put into each group was 

discontinuous), we chose the maximum, minimum and average reflectance as features to 
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measure the peak of reflectance, peak of absorption and average reflectance within each 

spectral region, which have been linked to leaf traits and vegetation properties (Artiola et al., 

2004). This allowed us to reduce the 347 hyperspectral bands into 45 distinct features 

quantifying including information on the minimum, maximum and mean for each of 15 spectral 

regions (i.e., groups of bands). 

2.3. Site effects

To provide the model with information on site location, which could reduce confusion 

across species that do not co-occur within a site but are characterized by similar spectral 

signatures, we included the latitude and longitude of the centroid of each site in the model. This 

approach incorporates information on the proximity of different sites and can be readily 

generalized to use outside of NEON. To help control for potential differences resulting from 

variation in sensor calibration of the specific flight missions, which would be specific to each 

site, we added a “site identifier” to the remote sensing features in the model. The site identifier 

consisted of the NEON site names (a nominal variable) transformed into real positive numbers 

by applying Leave-One-Out regression encoding, based on the correlation between the 

categorical variable (i.e. site name) and the species classes for each site(https://contrib.scikit-

learn.org/category_encoders; Wright & König, 2019). The advantage of this approach over the 

more commonly used one-hot-encoder (i.e., adding a binary feature for each site in the dataset) 

is that it compresses the information into a single feature, which avoids undesired sparsity and 

potential overfitting due to a large number of encoded classes (27 in this study) (Rodriguez et 

al., 2018).  We used data in the training set to fit the encoder and assigned its average value to 

each site category.  The final model input for the general model was hyperspectral features, 

elevation, latitude and longitude and site.  For the site-specific models, only spectral features 

and elevation were used.
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2.4. Species classification

To assess whether a general model approach improves performance we built two sets of 

models: (1) a general model using data from all 27 NEON sites and (2) 27 separate models, 

each one using only the data from a single NEON site and covering a region of few hundred km2 

(hereafter referred to as site-specific models). For both the general and site-specific models, we 

performed species classification at the pixel level using an ensemble of five classifiers (Figure 

S.2): (1) a random forest classifier (Belgiu & Dragut, 2016), (2) a k-nearest neighbors classifier 

(Laaksonen & Oja, 1996), (3) a histogram gradient boosting classifier (Guryanov, 2019), (4) a 

fully connected multilayer perceptron (Pacifico et al., 2018), and (5) a bagging classifier with 

support vector machine as base estimators, using tools from the scikit-learn python package 

(Pedrosa et al., 2011). Details for each classifier can be found in supplementary materials 

(Supplement 1: classifiers). Ensemble-based approaches generally provide better performance 

and limit overfitting compared to using one classifier alone (Knauer et al., 2019). We chose the 

individual classifiers which form the ensemble because they have been shown to perform well 

for species classification on NEON data (Marconi et al., 2019). All predictors were normalized 

for model fitting by subtracting the mean and dividing by the standard deviation (i.e., setting the 

mean to zero and the standard deviation to 1). Parameters for all models and the ensemble 

were extracted by performing parameter tuning using cross validation.

We used entropy loss to measure the quality of tree-splits for random forests, categorical 

cross-entropy as the loss function for the histogram-gradient boosting, a radial basis function 

kernel to allow for a non-linear decision surface for the support vector classifiers, and the 

Manhattan distance for calculating the distance between k-nearest neighbors in the KNN 

classifier. We stacked these five pixel-based models by using the probability vectors produced 
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by each classifier as features for a meta-ensemble elastic-net logistic model (Tang et al., 2015, 

Hui & Hastie, 2005). We chose this approach because logistic classifiers are easily interpretable 

and use maximum likelihood to obtain estimates of the coefficients, returning as a result 

confidence scores that match the probability of a label-match and not just the single best 

predicted classification (Maddala, 1986), which is fundamental for assigning a reliable 

uncertainty score to each prediction. Pairing predictions to robust estimates of uncertainty is 

fundamental to increase the utility of remote sensing tree surveys for ecological analysis 

because it allows for (1) selecting trees and areas that meet or exceed minimum confidence in 

the derived measures for being used for scientific analyses, and (2) allows for cascading the 

uncertainty in predictions onto the results of analyses downstream (Dietze, 2017). Training the 

logistic meta-ensemble on calibrated scores from sub-classifiers offers an advantage over other 

modern algorithms, whose estimates of uncertainty do not match true probabilities and are not 

well calibrated to the output of interest (Guo et al., 2017, Mukhati et al. 2020). 

One of the main challenges of species classification algorithms is the imbalance 

between number of individual samples for rare and common species, which can cause models 

to overfit to highly abundant classes. In our data set, the number of pixels per species ranged 

from 44-28000 and the number of individual trees per species ranged from 5-1000. We used 

SMOTETomek technique (Batista et al., 2003) to reduce the effects of species class 

imbalances in the training set. SMOTETomek consists of a combination of under and 

oversampling which resulted in roughly 1000 spectral signatures (pixels) per species. First, we 

undersampled pixels from the most abundant species using Tomek links, which removes noisy 

and borderline pixels (Tomek, 1976). Then, we used a SMOTE oversampling approach (Chawla 

et al., 2002) to create non-identical synthetic pixels for any species with fewer pixels than the 

majority class, thus balancing each class to roughly 1000 pixels each. No over-undersampling 

was applied to the test data. Because of the stratified design of the train-test split, most species 
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and sites had a number of test trees proportional to their frequency in the original dataset. We 

also used the same train-test split to repeat the entire analysis once for each NEON site by 

building and testing site-specific models built using only data from each particular site. Finally, to 

estimate which spectral regions are most important for separating conifers from broadleaf 

species, we repeated the entire analysis by substituting species with broader taxonomy classes 

(i.e., angiosperms vs gymnosperms).

2.5. Evaluation 

We evaluated the performance of the models by training the model on 80% of the data 

and evaluating its performance on the remaining 20%. Since spatial autocorrelation across train 

and test data can lead to optimistic bias in classification (Millard & Richardson 2015), we placed 

all individuals within a plot together into either the training or testing data sets. A series of 

randomizations of the plots were performed to create an 80:20 split of individuals that optimized 

the number of species in the train and test data sets. For each randomization, we calculated the 

total number of species in the test set and repeated this random operation until we found the 

split which maintained the highest number of species from the original data in both train and test 

set.  For the general model, the training data set contained 4210 individuals of 77 species and 

the test data set 1487 individuals of 72 species. Data for the 5 species missing from the test-set 

were collected only within plots selected for training, therefore no individual tree was suited for 

held out testing of high risk of geographic autocorrelation.  The resulting data represents 56% of 

the total tree species in the original unfiltered vegetation structure dataset and these species 

account for an average of 89% of individuals per site (Figure S.3).

Predictions for the species class of each individual in the test set were made using a 4×4 

clip centered on the location of the test stem. Model performance was then evaluated using 

overall accuracy, individual tree level (micro) and average species-level (macro) F1 scores 
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(hereafter referred to as individual-level and species-level accuracy respectively). The F1 score 

combines precision and recall to provide a general measure of the overall accuracy of the 

species classification, allowing for direct comparison between models using a single metric 

(Chinchor, 1992). For each site, F1 scores for the general model were compared to those 

produced by equivalent single site models to determine how the general model performed 

relative to the traditional single site approach. Scores and confusion matrices were calculated 

using the Caret package (Kuhn, 2008). 

To understand the performance of the general model in different ecological contexts, we 

evaluated how performance varied across the United States, how performance correlated with 

the number of species being predicted at the NEON site, and which components of the model 

(site effect, elevation, geographic location, and hyperspectral reflectance) were most important 

for prediction. We used bootstrap features importance to quantify the relative importance of the 

different types of features, e.g., site identifier, site geolocation, hyperspectral reflectance and 

terrain elevation (Breiman, 2001). This approach is based on evaluating how the overall 

accuracy is affected by each individual feature. At every iteration, one feature is selected and 

the values are randomly shuffled among the samples, effectively removing the information held 

in it. The accuracy is recorded with the shuffled feature to determine the loss of performance 

compared to the unshuffled data. We used the same approach to quantify the relative 

importance of the 15 spectral regions in which we grouped the hyperspectral data. 

We also evaluated the characteristics of trees and forests associated with the most 

confusion between species (i.e., misclassification) based on forest type (using the National Land 

Cover Database; Homer et al., 2001) and information from the NEON field data on canopy 

position, tree status, and growth form from the NEON field data. We also assessed spatial 

structure in confusion by determining, for every misclassified tree, whether the species to which 

it was incorrectly classified to also occurred in the same NEON field plot. Finally, since 
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confusion commonly occurred within genera we also evaluated model performance for 

predicting genus instead of species.

2.6. Prediction

We generated predictions for individual trees at the landscape scale (~350 km2) by 

integrating our approach with individual tree detections from previous work (Weinstein et al., 

2021). The Weinstein et al. (2021) dataset consists of 100 million individual tree crowns from 37 

NEON sites identified using a retinanet neural network object detector and represented by 

quadrangular polygons (i.e., bounding boxes) roughly representing the surface of the sunlit 

portion of the crown. For consistency between the approach used for training and testing the 

model (16-pixel clips), we extracted the pixels from the centroid of each estimated bounding 

box. First, we extracted a 4x4 square window of pixels around the centroid of each detection. 

For bounding boxes smaller than 16m2, we dropped the pixels falling outside the bounding 

boxes. Second, we filtered vegetation pixels from the background using the same procedure as 

applied to the training/test data set. We finally selected all pixels with uncertainty scores > 0.5 to 

be used to make predictions at the level of individual trees. We assigned each tree to a species 

class by averaging the probability vectors (i.e., probability that the pixel is assigned to any of the 

77 classes) of each pixel in the crown and selecting the species with the highest average 

probability. We assigned each individual-tree prediction an uncertainty score consisting of the 

average pixel probability, which ranged from 0-1.

3. Results

The general (cross-site) model yielded more accurate species classifications (larger F1 

scores) than site-level models for 13 (species-level F1) and 18 (individual-level F1) of the 27 

sites and identical accuracies for 5 (species-level F1) and 6 (individual-level F1) additional sites. 
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There were only three sites that showed better site-level species-level and individual-level F1 

scores: Blandy Experimental Farm, Washington (BLAN) and Talladega National Forest, 

Alabama (TALL), and Jones Ecological Research Center, Georgia (JERC) (Figure 1, Figure S. 

4, Figure S. 5). On average, the general model resulted in higher accuracy of individual tree 

level classification (increases in individual-level F1) from 0.70 to 0.77 and species-average 

accuracy (increases in species-level F1) from 0.46 to 0.54. Accuracy of the ensemble was 

higher than its sub-models trained singularly whose average site-level accuracy ranged 

between 0.09 and 1 species-level F1 and between 0.31 and 1 individual-level F1 (Figure S.7 

and Supplement 2 for detailed species level accuracies, site-level and general model confusion 

matrixes in Supplement 3, raw outputs available at https://doi.org/10.5281/zenodo.5796142), 

which is consistent with the general observation that ensemble-based approaches produce 

more accurate predictions (Healey et al., 2018). Since the general ensemble model proved to 

be the best performing approach in this study, we focus primarily on it from this point forward. 

Our results show a link between classification accuracy and ecological properties such 

as ecosystem type, tree health, and growth form (Figure 2, Figure S.6). Damaged trees, 

including broken boles and other types of damage (but not diseased trees), exhibited higher 

rates of misclassification than healthy crowns (Figure 2), with broken boles exhibiting a 44% 

misclassification rate. The general model performed best in evergreen forests (~12% 

misclassification rate) and worst in wetlands (~38% misclassification rate), with deciduous 

forests falling in between (~30% misclassification rate). Average classification accuracy was 

higher in eastern forests compared to western forests (Figure 3a), and was significantly 

correlated with the number of species within the site (Figure 3b,d). The algorithm generally 

underperformed in the Prairie Peninsula and Central and Southern Plains ecoregions which are 

characterized by patches of closed forest at the edges of prairies or farmland (Figure 3a, Figure 

S.6). These results align with previous work in showing that classification from remote sensing 
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is more challenging for more complex canopies, overlapping crowns, and coexisting species 

with similar life history and spectral properties (Heinzel & Koch 2016, Bioucas-Dias, 2013).

Roughly 80% of the information used by the algorithm for classifying species was from 

the hyperspectral reflectance (Figure 4). Important information was present across the entire 

spectrum, but our results show that some groups of bands in some spectral regions were more 

informative than others. Specifically, the most important spectral regions are the blue and green 

(0.450 to 0.550 nm) in the visible region, the red-edge in the near infrared (0.62 to 0.85), 1.15 to 

1.27 nm in SWIR1 and 1.62 to 1.68 nm in SWIR2. Spectral regions in the SWIR1, SWIR2, and 

red-edge were the most important also in classifying angiosperms vs gymnosperms. The site’s 

coordinates, which represent the geographic locations of sites, explained 11% of total variation 

and were the second most important variable (Figure 4). Elevation, a proxy of potential local 

changes in the environment within each site, accounted for another 4%. The site effect, a proxy 

of other site level ancillary information (e.g., sensor calibration, flight and atmospheric 

conditions), only accounted for 3% of the total explained variance.

Comparing misclassification among species shows there is greater confusion for rare 

species, congenerics, and species that co-occur within NEON field plots, and that model-

estimated uncertainty accurately reflects confidence in the model prediction. All species 

performing poorly (F1 < 0.5) belonged to taxa with low sample sizes (less than 50 trees for 

training) (Figure S6, Figure S7). In general, most of the confusion was among species co-

occurring within plot (74%) and site (93%). A large amount of confusion also occurred among 

congeneric species (~27% of total misclassifications), mostly within pines, poplars, oaks and 

maples, which make up 57% of the test dataset (Figure S.9). Oaks, pines and poplars in 

particular accounted for ~87% of the total within-genus confusion, and most misclassifications 

had confidence scores >0.8. Aggregating predictions at the genus level improved the overall 

accuracy by 6% (individual-level F1 accuracy of 83%), confirming that part of the confusion is 
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embedded in physiological similarities across taxonomically related trees. Likewise, reducing 

tree classification into 2 plant functional types dramatically increased accuracy (F1 ~0.95). The 

model showed a fair ability in predicting 5 of 9 species tested in sites where no data was used 

for that particular species in the training set. For these trees, the average individual-level F1 of 

~0.69 and average species accuracy of 0.47, but accuracy varied largely across taxa, with 

better results for needleleaf species (individual-level F1 ~0.825, species-level F1 ~ 0.71) 

compared to broadleaf species (individual-level F1 ~0.44, species-level F1 ~0.27). The model 

produced reliable estimates of uncertainty for all species regardless of the accuracy. Uncertainty 

scores matched closely with the probability of correct classification (R2 =of 0.89, Figure 5). 

Leveraging crown-data predictions, the model was tested to produce fair species predictions for 

millions of trees per NEON site (Figure 6).

4. Discussion

Using a single general model that integrated data from plots across a continental scale 

resulted in more accurate classification of tree species identity from remote sensing data than 

building separate models for individual sites. The more accurate classification occurred despite 

the continental data set containing samples from many different forest types, structures, and 

species compositions across 27 sites. This suggests that the benefits of increasing the number 

of samples for less common species and more fully characterizing within-species variance 

outweighs the costs associated with including species that do not overlap geographically and 

including components of within-species variance not observed at individual sites (Figure 1).  To 

our knowledge this is the first study which developed a generalized model for species 

classification of individual tree crowns across multiple biomes. The success of the general 

model here suggests that developing generalized algorithms offers a potential step forward in 

species classification from remote sensing more broadly. Our model resulted in better cross-site 
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classification compared to other approaches in literature (e.g., Castro-Esau et al. 2006) possibly 

because of the wider spectral range available from NEON hyperspectral images (445 - 2500 vs 

445 - 950 nm), as suggested by the strong contribution of reflectance from 950 to 2500 nm to 

our generalized model (Figure 4). Also, better cross-site transferability of species classification 

may be related to the models used in the ensemble. Our model included methods like the 

gradient boosting classifier, which proved to be among the most robust for cross-site 

transferability of species classification (Graves et al., 2021).  Our generalized approach 

leveraged the information from multiple locations, biomes, and survey efforts, increasing the 

number of individuals from rarely sampled or highly variable classes and allowing models to 

learn more broadly about how to distinguish species in the taxonomic group of interest. In 

addition to yielding improved predictions, generalized cross-site approaches can potentially 

generate predictions for a wide range of ecosystems, including those with limited or no training 

data, allowing other studies to leverage the same shared model and thereby facilitating large-

scale ecological research (Weinstein et al. 2021).

By providing classification of the most common tree species in the canopy, the results of 

this model are potentially useful for several ecological applications, such as mapping biomass 

and modeling carbon, energy and water flux. Our model included species making up ~80% of 

the individual trees in the upper canopy when all sites are taken together. The fraction, however, 

varied among sites. Furthermore, given the stratified sampling of the NEON vegetation structure 

data used to develop the generalized model, the model is likely to capture the major vegetation 

types and most common species at each site. Canopy trees, which are visible from optical 

remote sensing devices, represent the majority of biomass in forests (Lutz et al., 2012).  

Because they form the interface between the atmosphere and land surface, the canopy layer 

also is particularly important for water and energy flux (Paul-Limogens et al., 2017).  Because 

carbon storage, water and energy flux can vary among species (Wright et al., 2006), the ability 
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to map the location and coverage of canopy species is important for assessing these important 

ecosystem characteristics.  Other ecological applications, such as assessing total forest species 

richness, and quantifying tree regeneration, cannot be addressed using the model because our 

model could not classify rare canopy species or understory individuals,

One of the main challenges in developing models that generalize well across the 

continent is overcoming differences across sites in factors including seasonality, background, 

and sensor calibration (Hesketh & Sanchez-Azofeifa, 2012, Clark et al., 2005, Pu, 2021). To 

quantify the sensitivity of the algorithm to this ancillary information, we evaluated the relative 

importance of the site-effect features compared to reflectance, geography and elevation. Our 

results showed that the relative importance of the site-effect is marginal and accounts for less 

than 3% of the total information captured (Figure 4). This suggests that the spectral signal from 

NEON data is comparable across different flights and that flight-specific noise can be minimized 

using BRDF corrections and vector normalization to limit the impact on the accuracy of 

generalized algorithms. This is due in part to NEON data being highly standardized and using 

the same image pre-processing protocol across the entire network (Kampe et al., 2014). NEON 

remote sensing data is also collected at the peak of vegetation productivity for each site, 

reducing the confounding effect of different phenological stages for species occurring at multiple 

sites (Gartner et al., 2016). Expanding large scale surveys outside the NEON network would 

require integrating information from less standardized sources, raising new challenges related to 

fusion of sensors that are not cross-calibrated and images collected in different seasons (Brook 

& Ben-Dor, 2015, Zou et al., 2018). Further investigation is therefore fundamental to evaluating 

whether our findings apply to applications that involve integrating multiple sensors, missions, or 

resolutions. 

Clustering adjacent bands in the electromagnetic spectrum using KLD facilitated 

evaluating tree attributes, such as leaf chemistry, that may allow spectral separation of different 
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species. The phylogenetic conservation of these attributes may help explain why a large part of 

the confusion in species classification was for congeneric species (Cavender-Bares et al., 

2016). Our results indicating important spectral regions support patterns shown in previous 

work, including (a) reflectance in the red edge (Curran et la., 1995), (b) 450-475 nm (Kira et al., 

2015), and (c) the SWIR around 1200 nm (Li et al., 2021), 1600 nm and 2000 nm (Kokaly et al., 

2015). The importance of the 450-475 nm region may be linked to carotenoids and chlorophyll 

content, with chlorophyll content generally lower in needleleaf species (Croft et al., 2020) and 

carotenoids varying across different environments (Valiente et. al, 2015). Reflectance in red-

edge can be related to leaf age, chlorophyll, and pigment concentration (Gitelson et al., 1996) 

that vary widely among species (Cavender-Bares et al., 2016). Reflectance in the 1200 nm was 

previously linked to equivalent water thickness (Li et al., 2021), a key functional trait for 

classifying species in temperate biomes (Shi et al., 2018), or distinguishing early to late 

succession species (Feret et al., 2019, Wright et al., 2004). Reflectance in SWIR at 1600 and 

2000 nm can be linked to leaf phenolics (Kokaly et al., 2015), tannins and secondary 

metabolites (Couture et al., 2016), proxies of leaf toughness and structure across species.  The 

link between water thickness, toughness and structure may also explain why the regions in 

1200 nm and 1600 nm are the two most important in distinguishing broadleaf from needleleaf 

species.

The dimensionality reduction algorithm used in this study identified groups of adjacent 

bands in relatively discrete spectral regions that overlap with spectral regions used in 

multispectral satellites, supporting the idea that multispectral satellite sensors can access a 

large amount of spectral information for species classification (Laurin et al., 2016). 

Hyperspectral satellite data is still limited to few prototype datasets with relatively low spatial 

resolution (Loizzo et al., 2018, Diaz et al., 2018, Bogan et al., 2019), compared to multispectral 

satellites with sub-meter resolution (e.g. WorldView3). Our results show that most of the 
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information required for species classification across NEON sites overlap with WorldView3 

satellite multispectral bands supporting that species identification at the tree and plot level with 

satellite data is feasible (Immitzer et al., 2012, Hartling et al., 2019, Ferreira et al., 2019). 

One of the advantages to broad scale general models is that they allow assessment of 

how different ecological and environmental conditions influence the accuracy of the species 

classification. Understanding variation in model performance across space, forest types, and 

taxa is fundamental to better understanding where and when these models can be applied and 

improvement of large-scale surveys from remote sensing. In our analysis, eastern US forests 

showed lower accuracy compared to western ecosystems. We believe this is at least partly 

because eastern ecosystems are characterized by a higher species diversity of canopy trees as 

well as crown geometry that makes aligning stems to crowns more difficult compared to western 

conifer stands (Figure 2, 3, S.6). Higher species diversity in eastern forests (mean species per 

site ~15) compared to western forests (mean species diversity per site ~4), inherently makes 

classification tasks more challenging due to larger numbers of classes typically resulting in 

lower accuracy predictions (Takahashi et al., 2020). Continuous closed canopies also increase 

the likelihood pixels selected in a window centered on the stem will be from neighboring tree 

crowns.  This is due to the difficulty of obtaining accurate GPS points of stems in closed canopy 

(Rodriguez-Perez et al., 2007), as well as the increased likelihood of sunlit portions of the crown 

being displaced from the stem location in continuous broadleaf forests (Strigul et al., 2008). This 

is a common problem, since field surveys often provide only the geographic coordinates of tree 

stems and lack information about crown position or size, making it very challenging to correctly 

align crown borders with species labels. For example, pixel mislabeling may be one of the 

reasons why our classifier was weaker at sites in the Great Plains region (e.g., the NEON sites 

of Lyndon B. Johnson National Grasslands, CLBJ and University of Kansas Field Station, 

UKFS), where patches of grasslands alternate with dense forests characterized by multiple oak 

23

67

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

68

69



species forming a complex mosaic of crowns that may not be located directly above their stem 

locations.  In contrast, conifers in western US forests tend to be dominated by species 

characterized by apical dominance (e.g., aspens and firs) with crowns centered directly above 

the main stem, reducing pixel mislabeling and improving classification. Finally, savannas, such 

as the San Joaquin Experimental Range (SJER), characterized by isolated trees of few species 

(mostly broadleaved), may be less likely to suffer from confounding effects like crown 

displacement and stem-crown misalignment, making them less prone to spectral mixing or 

potential pixel-mislabeling (Heinzel & Koch, 2012). The most challenging ecosystem type in our 

analysis, wetlands, combines all of these challenges. Species like Carpinus caroliniana and 

Betula papyrifera, found often in plots from wetland ecosystems, were among the species with 

the worst classification accuracy, partly because they are generally smaller trees that can occur 

in the understory, grow in closed canopies in the overstory (e.g., an average dbh ~16.5 cm and 

average height of ~10 m), and often include limited training samples because they are mostly 

found in riparian ecosystems which make up a small fraction of the landscapes from the NEON 

sites included in this study (less than 50 individuals per species). Because of these challenges, 

the accuracy of the species predictions needs to be assessed depending on the site and 

ecosystem types within sites to ensure it is sufficient for the intended ecological application.

Because species predictions from remote sensing are imperfect, it is important that 

classification models produce robust estimates of uncertainty to allow this uncertainty to be 

propagated through ecological analyses and considered during decision making. This is 

particularly important when generating large numbers of predictions at large scales, because 

this will result in including species located in undersampled areas and challenging ecosystems 

as well as species that are difficult to classify due to rarity or similarity to other closely related 

species. Our results confirmed that stacking scores from different classifiers using a logistic 

regression produces accurate estimation of classification uncertainty (Figure 6). 
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While our generalized approach resulted in significant improvements over site-level 

models, it is important to recognize that the accuracy of this approach is still insufficient for 

ecological analyses contingent on rare or untrained species. For example, biodiversity patterns 

are often driven by rare species (Leitao et al., 2016, Mouilllot et al., 2013), which are the most 

challenging taxa for species classification, especially species so rare that they cannot be 

included in the model due to data limitations (n < 5 individual trees in this study). Extrapolating 

outside of NEON sites, a goal for general models, would also result in the presence of additional 

species missing from the field dataset, restricting the range of ecological analyses to species 

sampled within the footprint of NEON sites. Some of these limitations may be mitigated by 

classifying trees into higher level taxonomic levels. In this study we observed that misclassified 

trees were generally limited to species in the same genus and species co-occurring in the same 

plot (Figure S.9, Figure S.10, Figure S.11, Supplement 3). Oaks, pines, and poplars in particular 

accounted for ~87% of the total within genus confusion. One possible driver of confusion among 

oak species is their similar physiological and spectral characteristics (Figure S.12). Some co-

occurring oaks species like Quercus alba and Quercus stellata can also cross-breed and 

therefore be physiologically very similar (Hardin, 1975), making them particularly hard to 

distinguish from imagery. For these reasons, most of the cases leading to misclassification 

resulted from within-genus confusion. This implies that uncertainty can be significantly reduced 

by aggregating predictions to the genus level, offering a more robust solution for large scale 

ecological applications that can be successfully addressed by accurately classifying trees at the 

level of genus, families, or plant functional type. For example, earth system models use plant 

functional types as the taxonomic unit for quantifying carbon dynamics at continental to global 

scale (Lawrence et al., 2019), large scale fire risk assessment and management can be 

achieved by using genus level surveys of the most dominant taxa (Ma et al., 2021), and patterns 

of forest biomass largely depend on which taxa dominate the ecosystem (Cheng et al., 2018). 
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An increase in taxonomic level also reduces issues with applying general models beyond the 

training data (e.g., outside of NEON sites) because it is much more likely that all genera or 

families have been sampled in the training data.

Building generalized algorithms provides an approach to overcome the significant field 

data limitations present in most remote sensing tasks in ecology, by allowing pooling data from 

ever growing sources of spatially explicit field surveys and high-resolution remote sensing 

imagery. Our results showed that by integrating field surveys from dozens of NEON sites, it is 

possible to produce a general model that provides improvements over single-site models for 

species classification, with good estimates of uncertainty, and the ability to increase accuracy 

further by aggregating predictions at the genus level. This general approach also unlocks the 

potential for making predictions outside of NEON sites. The ultimate goal is to develop general 

models that can be used anywhere in the region of interest (in our case the United States). 

Using only NEON data, we successfully built a single integrated classifier that includes 20% of 

all tree species found in forest ecosystems across the US (n=77 out of 396 surveyed by the 

United States Forest Inventory and Analysis project; appendix F; Woudenberg, et al., 2010). 

Beyond NEON, more and more openly available field, multispectral and hyperspectral 

datasets are being released from aerial (airborne and UAV) and satellite missions worldwide 

(Cook et al., 2013, Vangi et al., 2021, Claverie et al., 2018). Our results show that instead of 

training hundreds of separate models for local applications, there is the potential for integrating 

field and remote sensing collections from multiple locations and sources to build general models 

with improved accuracy for a broader range of landscapes and geographic locations. 

Leveraging the broad geographic distribution of NEON sites and the overlapping information 

held by multispectral and hyperspectral imaging, our results also suggest the potential for linking 

different data sources to unlock the ability of scaling species classification of individual trees 

beyond NEON. For example, future work could focus on developing approaches for bridging the 
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information held in hyperspectral data (sparsely acquired, high radiometric resolution) to the 

ever-growing pool of high-resolution multispectral and RGB + NIR data (e.g. National 

Agriculture Imagery Program data) available for a broad geographic continuum across the US. 

Further integration with more field and remote sensing datasets could potentially provide remote 

sensing-based surveys of hundreds of millions of trees, making it possible to investigate the 

properties of ecosystems from local to continental scales.  

5. Conclusions

Remote sensing is facing a revolution in the quality of data and accuracy of methods, 

making it a good candidate for developing applications to survey species and forest properties 

at large spatial extents. Leveraging data collected from NEON across the US, we demonstrated 

that building continental scale algorithms for generalized species classification offers several 

advantages over the more traditional site level applications. Despite being very high for 

dominant taxa, accuracy in predictions for less represented species can be taunted by 

limitations in field-to-image misalignment, the number of species and individuals from rarely 

sampled taxa, making surveys from remote sensing unsuited to date for analyzing patterns in 

species alpha diversity at scale. Yet, building generalized algorithms is a fundamental 

cornerstone to overcome these limitations, because it allows for pooling from ever growing 

sources of geo-explicit field surveys and high-resolution remote sensing imagery. Our results 

showed that by integrating field surveys with NEON airborne data, it is possible already to 

generate highly accurate predictions at the genus level and overall good estimates of 

uncertainty for individual trees. This allows for generating surveys of hundreds of millions of 

individual crowns across the continent, unlocking the potential for investigating large scale 

ecological applications focusing on the sun-exposed part of the canopy, dominant species, 

genuses or functional types. 
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Figure 1. Performance of generalized vs site-specific classification models for each NEON site. 

Positive values are sites for which the generalized model performed better than site-level. 

Negative values are sites for which the generalized model performed worse compared to site-

level. Blue bars represent species-level F1 score, yellow bars individual-level F1. Numbers 

separated by (:) on top of each site name represent the total number of species in the training 

for each site (general model: site-only model). 
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Figure 2. Fraction of misclassified trees across ecosystem types (blue), growth form (yellow), 

canopy position (red) and health status (gray). Numbers above the x-axis labels are the number 

of trees in each category.
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Figure 3. Variation in accuracy of the generalized algorithm across the US. (a) map of average 

individual-level accuracy (Micro F1) for each ecological domain. Dots represent the location of 

each NEON site. Blue polygons represent the Prairie Peninsula and Central-Southern Plains. 

(b) Relationship between individual-level accuracy (Micro F1) and number of species in the 

training dataset for each site (Number of Species). The blue line is the loess smoother 

relationship over the 27 sites. (c) Kernel density estimate of the distribution of individual-level F1 

scores (averages per site). (d) Relationship between species-level accuracy (Macro F1) and 

number of trained species found in site (Number of Species); orange line is the loess smoother 

relationship over the 27 sites. (e) Kernel density estimate of the distribution of species-level 

accuracy scores (averages per site). Horizontal black lines in (d) and (e) represent the average 

accuracy across sites.
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Figure 4: Features importance calculated from the permutation feature importance procedures 

described in Breiman, 2001, on the meta-ensemble model. (a) Relative contribution of different 

feature types: reflectance, as the sum of the 45 features (gray), site coordinates (yellow), 

elevation (blue) and site effect (red).(b) Relative importance of each Kullback-Leibler group of 

features used for dimensionality reduction of reflectance. Blue bars represent the reflectance for 

the average minimum, mean and maximum band in the specific KL group. Numbers on top of 

each bar represent the number of bands in each group. Bar width represents the range of bands 

covered by the specific KL group. Some bars overlap due to discontinuity of band assignments 

to different groups/bars at the group boundaries. Gray bars represent areas with water 

absorption bands dropped from the original hyperspectral images. Color intensity represents the 

relative importance of the specific KL group for the classifier (from light blue being of little 

importance, to dark blue being highly important). Black lines represent the reflectance of a 

randomly selected pixel to illustrate a typical vegetation reflectance pattern. Reflectance was 

normalized using L2 normalization. Numbers on top of each blue bar represent the total number 

of bands in the group.
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Figure 5. Evaluation of model confidence score (the probability of assigning the correct label to 

a prediction) as a measure of uncertainty. Confidence score was binned into 34 equal-width 

bins (each bin representing an interval of 0.03). Bin centers were plotted against the fraction of 

trees in that confidence score bin that were correctly classified. The blue line shows the fitted 

linear relationship between the confidence score and the proportion of correctly classified trees. 

The black line is the 1:1 line. 
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Figure 6. Example of species classification maps for all individual trees at the Bartlett 

Experimental Forest (BART) NEON site in New Hampshire. Species in legend include six of the 

most abundant taxa predicted at the site. Individual crown boundaries were estimated using 

predictions from Weinstein et al., 2021. The background is gray scale imagery of the site, so the 

gray areas on the left panel are regions for which NEON airborne data was not available;  the 

gray areas on the right hand panels are areas without any trees including roads and other open 

areas.
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Supplement 1: parameterization of classifiers and meta ensemble 

KNN classifier was trained using 20 neighboring points, with distance weighted by the 

inverse of their Manhattan distance. The Random Forest classifier was trained using 300 trees 

with up to 7 features (square root of the total predictors) considered for better split, validated 

using cross-entropy loss function on out-of-bag samples. The gradient boosting classifier 

was trained using 1000 maximum iterations, a learning rate of 0.01, max depth of 25 and 0.5 L2 

regularization. Loss was calculated using categorical cross-entropy on out-of-bag samples. 

Multi-layer Perceptron classifier was trained for 1200 max iterations, using 

relu activation, 1 hidden layer, weight optimization through adam booster 

with exponential decay rate of 0.9. The Bagging Classifier was trained using 

10 support vector machine classifiers as base estimators. We used loose 

regularization (C = 1000), RBF kernel, and 5-fold cross validation to calibrate 

probability estimates. The meta ensemble was trained using probability vectors 

produced by each weak classifier. We used a regularized logistic regression (elasticnet), with 

0.5 L1 to L2 penalty ratio. We used a saga solver to optimize the loss function. 
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Supplement 2: Species level accuracy and scientific names

Species names for all species used for this manuscript along with their precision, recall and 

accuracy can be found in the supplementary file titled “overview_precision_recall_names.csv”. 

Recall is defined as the amount of true positives divided by the sum of true positives plus and 

false negatives; it represents the fraction of relevant instances predicted by the model. F1 

represents the model accuracy for each species.
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Supplement 3: Confusion matrix

Confusion matrices were produced using the Caret R package (Kuhn, 2008). For species with 

both precision and recall equaling 0, F1 score was calculated as 0.  Tabular version of the 

confusion matrices for predictions on the test (total n = 1487) set for (1) all trees in the test set, 

(2) trees in the test set for each ecodomain, (3) trees in the test set for each site from the 

generalized approach, (4) trees in the test set for each site from site-specific approach, (5) for 

predictions at the genus level can be found in the supplementary file “confusion_matrices.zip” 

and are organized in separate folders. For each confusion matrix, rows represent observations, 

columns represent predictions. In cases where columns are entirely filled with zeros, we 

removed all species that were not found in either the training or held-out test datasets at each 

individual site. For site level confusion matrices, we only included species for which at least one 

tree was either observed or predicted. Therefore, species with no observations in the test set 

will be assigned to empty columns; species never predicted in the test set will be assigned to 

empty rows.
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Supplementary Figures

Figure S1 Geographic distribution of NEON sites included for this study.  Colored regions 

represent ecological regions defined by NEON (https://www.neonscience.org/field-sites/about-

field-sites).  A description of each site and their ecological domain can be found in the 

Supplementary Table 1.

49

145

1054

1055

1056

1057

1058

1059

1060

146

147



Figure S. 2: Flowchart of the species classification pipeline developed for this study
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Figure S.3 For each site, the fraction of species included in the test/train dataset compared to 

the total amount of tree species in the raw NEON vegetation structure dataset (red); the fraction 

of trees that the species from the test/train dataset comprise out of all canopy trees  (blue) in the 

NEON vegetation structure dataset. The numbers separated by “/” above each site name 

represent the total number of species in the original dataset and in the filtered data respectively, 

specific for each site.  Trees in the canopy (blue bars) were determined by canopy position data 

in the vegetation structure data where trees in the canopy were designated as "Full sun", 

"Mostly shaded", "Partially shaded", “Open growth”, or non-classified (“NA”).

51

151

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

152

153



Figure S.4 Density functions of the difference in ΔF1 scores between the generalized and each 

single-site algorithm for species-level F1 (yellow) and individual-level F1 (blue). Positive ΔF1 

values (17 out of 27 sites) represent sites where the generalized algorithm outperformed its site-

specific counterpart. Dashed vertical lines represent the average ΔF1 across sites (species-

level F1 = 0.09, individual-level F1 = 0.05).
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Supplement S.5. Difference in accuracy between the general and site-specific approaches for 

each species-site combination. Negative values (red) represent taxa whose accuracy is higher 

in the general approach. Blue values represent taxa whose accuracy is higher in the site-

specific approach.  White values where accuracy was similar for the general and site-specific 

approaches.  Grey are species that do not occur at the site.  Sites are sorted by geographic 

similarity.  Species names for each taxon acronym can be found in Supplement 2. Site names 

can be found in table S1.
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Figure S.6 Example of 400 m2 plots for 6 sites from western (left panel), central (center panel) 

and eastern US (right panel). Dots represent field stem data collected from NEON vegetation 

structure. Different dot colors represent different species. Only stems that have been filtered to 

include only stems that are likely to be in the canopy.  From top left to bottom right sites 

acronyms are Abby Road (ABBY), Delta Junction (DEJU), Harvard Forest (HARV), San Joaquin 

Experimental Range (SJER), Blandy Experimental Farm (BLAN), Lenoir Landing (LENO),
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Figure S.7. Precision (blue), Recall (yellow) and F1 (gray) for each individual species included in 

the dataset. Precision is defined by the ratio between the number of true positives and the 

number of true positives plus the number of false positives; it represents the ability of a 

classification model to identify only the relevant data points. Recall is defined as the amount of 

true positives divided by the sum of true positives plus and false negatives; it represents the 

fraction of relevant instances predicted by the model. F1 represents the model accuracy for 

each species. These results, along with the list of species scientific names assigned to each 

code can be found in Supplement S2. Confusion matrices can be found in separate 

supplementary file as described by Supplement 3. 
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Figure S.8. The relationship between individual species F1 scores and number of individual 

trees available for training for that species.  The blue line shows a fitted relationship using local 

polynomial regression fitting (loess) and the grey region shows the 95% confidence interval 

around that relationship. 
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Figure S.9. Confidence score P(x) for those taxa each species was most confused with. Taxa 

with a P(x) lower than 0.02 were not included. Species names for each taxon acronym can be 

found in supplement 2.
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Figure S.10. Distribution of species across sites. Species names for each taxon acronym can be 

found in supplement 2. Site names can be found in table S1.
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Figure S.11. Overall confusion matrix for all data in the test set. Tabular versions, including the 

confusion for each site, ecodomain and the confusion matrix for predictions at the genus level 

can be found in the supplementary files. Species names for each taxon acronym can be found 

in supplement 2.
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Figure S.12 Example of spectral signature overlap between often confused congeneric species. 

Lines represent the average spectra, shaded areas represent the standard deviation for all 

pixels extracted for that particular species. The first species in legend is in blue, the second in 

grey. The X-axis is the band number from brdf corrected hyperspectral image. Couples of 

species are: (a) Quercus marilandica and Quercus stellata, (b) Quercus alba and Quercus 

rubra, (c) Pinus palustris and Pinus elliottii, (d) Abies magnifica and Abies lowiana.
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Site Name
Ecological 

Domain
Domain Name State

Geolocation 

(Lat-Lon)

Abby Road NEON (ABBY) D16
Pacific 

Northwest
Washington

45.76

-122.33

Bartlett Experimental Forest 

NEON (BART)
D01 Northeast

New 

Hampshire

44.06

-71.29

Blandy Experimental Farm NEON 

(BLAN)
D02

Mid 

Atlantic
Virginia

39.03

-78.04

Caribou-Poker Creeks Research 

Watershed NEON (BONA)
D19 Taiga Alaska

65.15

-147.5

Dead Lake NEON (DELA) D08
Ozarks 

Complex
Alabama

32.54

-87.8

Delta Junction NEON (DEJU) D19 Taiga Alaska

63.88

-145.75

Disney Wilderness Preserve 

NEON (DSNY)
D03 Southeast Florida

28.13

-81.44

Guanica Forest NEON (GUAN) D04

Atlantic 

Neotropica

l

Puerto Rico

17.97

-66.87

Harvard Forest & Quabbin 

Watershed NEON (HARV)
D01 Northeast Massachusetts

42.54

-72.17
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KU Field Station NEON (UKFS) D06
Prairie 

Peninsula
Kansas

39.04

-95.19

Konza Prairie Biological Station 

NEON (KONZ)
D06

Prairie 

Peninsula
Kansas

39.1

-96.56

Lenoir Landing NEON (LENO) D08
Ozarks 

Complex
Alabama

31.85

-88.16

Lyndon B. Johnson National 

Grassland NEON (CLBJ)
D11

Southern 

Plains
Texas

33.4

-97.57

Moab NEON (MOAB) D13

Southern 

Rockies / 

Colorado 

Plateau

Utah

38.25

-109.39

Mountain Lake Biological Station 

NEON (MLBS)
D07

Appalachia

ns / 

Cumberlan

d Plateau

Virginia

37.38

-80.52

Niwot Ridge NEON (NIWO) D13

Southern 

Rockies / 

Colorado 

Plateau

Colorado

40.05

-105.58

Ordway-Swisher Biological 

Station NEON (OSBS)
D03 Southeast Florida

29.69

-81.99
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Rocky Mountains NEON (RMNP) D10
Central 

Plains
Colorado

40.28

-105.55

San Joaquin Experimental Range 

NEON (SJER)
D17

Pacific 

Southwest
California

37.11

-119.73

Smithsonian Conservation Biology 

Institute NEON (SCBI)
D02

Mid 

Atlantic
Virginia

38.89

-78.14

Smithsonian Environmental 

Research Center NEON (SERC)
D02

Mid 

Atlantic
Maryland

38.89

-76.56

Steigerwaldt-Chequamegon 

NEON (STEI)
D05

Great 

Lakes
Wisconsin

45.51

-89.59

Talladega National Forest NEON 

(TALL)
D08

Ozarks 

Complex
Alabama

32.95

-87.39

The Jones Center At Ichauway 

NEON (JERC)
D03 Southeast Georgia

31.19

-84.47

Treehaven NEON (TREE) D05
Great 

Lakes
Wisconsin

45.49

-89.59

University of Notre Dame 

Environmental Research Center 

NEON (UNDE)

D05
Great 

Lakes
Michigan

46.23

-89.54

Wind River Experimental Forest 

NEON (WREF)
D16

Pacific 

Northwest
Washington

45.82

-121.95

Yellowstone National Park NEON 
D12 Northern Wyoming 44.95
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(YELL) Rockies -110.54

Table S.1 Description of NEON sites and ecological domains used in this study.
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