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Abstract

We used data from the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) to study the incidence of
AGN in continuum-selected galaxies at z∼ 3. From optical and infrared imaging in the 24 deg2 Spitzer HETDEX
Exploratory Large Area survey, we constructed a sample of photometric-redshift selected z∼ 3 galaxies. We
extracted HETDEX spectra at the position of 716 of these sources and used machine-learning methods to identify
those which exhibited AGN-like features. The dimensionality of the spectra was reduced using an autoencoder, and
the latent space was visualized through t-distributed stochastic neighbor embedding. Gaussian mixture models
were employed to cluster the encoded data and a labeled data set was used to label each cluster as either AGN,
stars, high-redshift galaxies, or low-redshift galaxies. Our photometric redshift (photoz) sample was labeled with an
estimated 92% overall accuracy, an AGN accuracy of 83%, and an AGN contamination of 5%. The number of
identified AGN was used to measure an AGN fraction for different magnitude bins. The ultraviolet (UV) absolute
magnitude where the AGN fraction reaches 50% is MUV=−23.8. When combined with results in the literature,
our measurements of AGN fraction imply that the bright end of the galaxy luminosity function exhibits a power
law rather than exponential decline, with a relatively shallow faint-end slope for the z∼ 3 AGN luminosity
function.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Galaxy evolution (594)

1. Introduction

The shape of the active galactic nuclei (AGN) rest-frame

ultraviolet (UV) luminosity function, particularly the faint end,

can provide insights into the potential contribution of AGN to

the epoch of reionization (e.g., Giallongo et al. 2015; Madau &

Haardt 2015; Finkelstein et al. 2019; Kulkarni et al. 2019). The

luminosity function contains information about non-ionizing

radiation emitted by AGN, which can be utilized to extrapolate

the amount of ionizing photons emitted by such sources. A

steepening slope with increasing redshift would suggest a

potentially nonnegligible contribution of AGN to the ionizing

photon budget into the epoch of reionization, while a slope that

becomes shallower (or stays fixed) with increasing redshift

would fail to support such a hypothesis.
However, there are many uncertainties regarding the faint

end of the AGN luminosity function, particularly at z� 3, and

thus, there is profuse interest in better constraining this

function. One approach to make progress is to fit the combined

AGN + star-forming galaxy luminosity functions, now

possible given a wealth of wide-field surveys (Stevans et al.

2018; Zhang et al. 2021; Adams et al. 2022; Finkelstein &

Bagley 2022; Harikane et al. 2022). For example, Stevans et al.

(2018) created a rest-frame UV z= 4 luminosity function of

star-forming galaxies and AGN from the SHELA field but were

unable to determine if the AGN luminosity function faint-end

slope was shallow or steep. The shape of the faint end of the

AGN luminosity function depends on the shape of the bright

end of the galaxy luminosity function, where a power-law-

shaped bright end corresponds to a shallow AGN faint-end

slope and an exponential (Schechter-like) decline corresponds

to a steeper slope. An important parameter to determine the

shape of the bright end and constrain the faint end of the

luminosity function is the AGN fraction, i.e., the ratio of the

number density of AGN to the total population at a given UV

luminosity. Thus, calculating an AGN fraction in the

luminosity range where AGN begin to overtake galaxies could

aid in breaking the degeneracies in luminosity function fits.
Utilizing spectroscopic data from the Hobby–Eberly Tele-

scope Dark Energy Experiment (HETDEX; Gebhardt et al.
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2021), and optical and infrared imaging in the 24 deg2 Spitzer
HETDEX Exploratory Large Area (SHELA) survey (Papovich
et al. 2016), we devised a method to measure the AGN fraction
at z∼ 3 using machine learning. In future research, our
methodology could be applied to z= 4 and beyond and help
constrain the UV luminosity function of AGN. Section 2 of this
paper focuses on the selection criteria for the photoz, training,
and validation samples. The dimensionality reduction of all the
samples through an autoencoder neural network and
t-Distributed Stochastic Neighbor Embedding (t-SNE) is
described in detail in Section 3. Section 4 discusses the
clustering of the data and Section 5 shows our calculation of
the AGN fraction. Lastly, Section 6 provides a discussion of
the results, and Section 7 concludes with a summary of the
methods described in this paper and potential directions for
future work. Throughout this paper, all magnitudes are
provided in AB units (Oke & Gunn 1983). A 2013 Planck
cosmology is assumed, where H0= 67.8 km s−1 Mpc−1,
ΩM= 0.307, and ΩΛ= 0.693 (Planck Collaboration et al.
2014).

2. Data

2.1. Photometric Redshift Sample

Our sample of z∼ 3 star-forming galaxies and AGN in the
SHELA field was constructed from the photometric catalog of
Stevans et al. (2021) following the procedure described in
Stevans et al. (2018), tailoring our criteria to select galaxies at
z∼ 3. We used imaging from the u¢, g¢, r¢, i¢, and z¢ optical
bands from the Dark Energy Camera (DECam), the 3.6 and
4.5 μm mid-IR bands from Spitzer/the Infrared Array Camera
(IRAC), and the near-IR J and Ks from VISTA-CFHT. We
limited our sources’ signal-to-noise ratio to be greater than or
equal to 3.5 in the r¢ and i¢ photometric bands to reduce the
incidence of spurious sources. The photometric redshift
probability distribution functions (PDF) from Stevans et al.
(2021) were used to select sources around the desired redshift.
The area under a given source’s PDF at z> 1.5 was required to
be greater than 0.8, and the area under the PDF between z = 2.5
and z = 3.5 had to be greater than the area under the PDF for all
other redshift bins of width 1, centered around integer values of
z. This selection procedure produced 5388 potential z∼ 3
sources in the SHELA field. As the primary feature used to
select these galaxies is the Lyman break, this sample should be
inclusive of both AGN and star-forming galaxies.

2.2. HETDEX Spectra

HETDEX is an unbiased spectroscopic survey collecting
data at the 10 m Hobby–Eberly Telescope (HET). 74 integral-
field unit fiber arrays installed at HET feed two low-resolution
Visible Integral-field Replicable Unit Spectrographs (VIRUS;
Hill et al. 2004, 2021) that span a wavelength range of
3500–5500Å. The survey is set to cover the Spring field,
extending over 390 deg2, and the equatorial Fall field which
covers 150 deg2, for a total area of 540 deg2 (Gebhardt et al.
2021). The SHELA field, a 24 deg2 region of sky in the Sloan
Digital Sky Survey (SDSS; York et al. 2000) Stripe 82 field
(Papovich et al. 2016), was one of the fields targeted by
HETDEX for repeat observations. The first HETDEX catalog
(Mentuch Cooper et al., submitted) includes all observations up
until late 2020 June, with over 240 thousand Lyα emitter
candidates, and covers ∼10% of the SHELA field.

Utilizing the celestial coordinates of the photometric-redshift
selected sources and a search radius of 3″ for aperture, we
extracted PSF-weighted HETDEX spectra at the sources’
positions using HETDEX’s customized python software
hetdex-api.13 This resulted in a sample of 716 z∼ 3
photometrically selected sources with extracted HETDEX
spectra. We then limited the spectra to wavelengths between
3645 and 5475Å to remove high noise regions near the spectral
edges. The data were normalized by dividing the flux density
values of each spectrum by that spectrum’s maximum value, as
this normalization yielded the best reconstructions from the
autoencoder (see Section 3.1). Normalizing the data places all
spectra on the same scale, a key preprocessing step in the
machine-learning pipeline. The described selection of HET-
DEX spectra is referred to throughout this paper as the photoz
sample.

2.3. Training and Validation Samples

When training a neural network, training and validation
samples are required. The training set is utilized by the network
to learn the relationship of interest, while the validation set is
used to assess the network’s ability to generalize the relation-
ship to include new data. To create our training and validation
samples for our neural network, we collected HETDEX spectra
from known stars, AGN, low-redshift (z< 0.5), and high-
redshift (1.9< z< 3.5) star-forming galaxies. For the AGN, we
selected a quasar training set from SDSS DR16 objects labeled
as “Quasar” (Ahumada et al. 2020). The galaxies were drawn
from the sample presented in McCarron et al. (2022). We used
the HETDEX star catalog from Hawkins et al. (2021) to select
stars that had a signal-to-noise ratio greater than 15 in the r¢ and
b¢ photometric bands. Because the number of stars was orders
of magnitude greater than the number of all other training
objects, we selected every 90th star to avoid an overrepresenta-
tion of stars in training. The data were split between training
and validation sets in a 4:1 ratio, with 1,968 training sources
and 490 validation sources. 22% of the sources were stars, 23%
AGN, 42% low-z galaxies, and 13% high-z galaxies. As with
the photoz sample, both sets were limited to wavelengths
between 3645 and 5475Å, and normalized by dividing the flux
desnity values by the maximum flux density value.

3. Dimensionality Reduction

Each spectrum in our sample consisted of 914 flux values
corresponding to wavelengths across the selected range.
Analyzing data sets of high dimensionality, such as our photoz
sample, often presents challenges. Working with a high number
of variables can affect the performance of certain machine-
learning algorithms. Moreover, storing and analyzing high-
dimensional data can be a complication in the presence of
limited storage space (Raschka & Mirjalili 2019). Reducing the
dimensions of our data set allowed us to avoid the aforemen-
tioned complications. Projecting data onto lower-dimensional
spaces also serves as a data visualization tool. Thus, to make
our sample more manageable and extract information more
effectively, we utilized an autoencoder neural network to
decrease the number of variables associated with each
spectrum. To visualize the resulting encoding we employed
t-SNE to project our data to a two-dimensional space. Although

14
https://github.com/HETDEX/hetdex_api/blob/master/hetdex_tools/get_

spec.py
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t-SNE is a data-reduction tool in itself, reducing the data to
manageable dimensions before employing t-SNE allows for the
algorithm to better diminish noise and to decrease computation
time (Fabisch et al. 2014).

3.1. Autoencoder Neural Network

To reduce the dimensionality of our spectra, we trained an
autoencoder neural network using Keras (Chollet et al. 2015)
with the TensorFlow (Abadi et al. 2015) backend. Autoenco-
ders were first described in Rumelhart et al. (1986) as a neural
network trained to output a reconstruction of the input.
Autoencoders are composed of two networks, the encoder
and the decoder (see Figure 1). The encoder reduces the inputs’
dimensions via matrix multiplication until it outputs vectors of
the desired dimensions. The abstract space containing the
encoding is referred to as the latent space. The decoder then
takes as inputs the latent space representations and attempts,
again via matrix multiplication, to recreate the original inputs.
To learn more complex relationships beyond the linear nature
of matrix multiplication, the networks feature activation layers,
which apply nonlinear functions to the hidden layers’ nodes.

The architecture of our autoencoder was built through
hyperparameter optimization, i.e., selecting values for the
parameters which control the network’s learning in a way that
improves the performance of the predictive model. The tuning
parameters included the number of layers in the network, the
number of nodes per layer, the optimization algorithm and its
learning rate, dropout, and the type of activation function. As
the hyperparameters were modified, the performance of the
model was assessed by two measures. The first measure was
the training loss, the error resulting from comparing the training
input and its reconstruction. The network was designed to
attempt to minimize the training error after every epoch. The
second measure employed was the validation loss, which
resulted from comparing the reconstruction of the validation set
to the original validation spectra. Unlike the training loss, the
validation loss was not used by the network to modify itself. In
other words, the network was not learning from the validation
data, but calculating how well the current configuration was
reconstructing a previously unseen set.

To select the values of our hyperparameters, we sought to
minimize both the training and validation losses (see Figure 2).

A decreasing training loss indicates that the model is learning
patterns and relationships present in the training set. However,
solely focusing on minimizing the training error can lead to
overfitting, a network’s failure to generalize to new or unseen
data (e.g., Raschka & Mirjalili 2019). Hence, the validation
error provides valuable information about the model’s ability to
effectively reconstruct unseen data.
After hyperparameter optimization, our autoencoder’s enco-

der network was trained for 200 epochs and consisted of a 914-
dimensional input layer, and one dense hidden layer with 436
nodes and a Sigmoid activation function, which assigned a
value between 0 and 1 to the nodes’ output. At every training
epoch, a random 30% of the hidden layer’s nodes were
dropped, resulting in a different configuration after every
epoch. Dropout regularization allows the network to learn
patterns in the spectra rather than memorize the training data.
The resulting latent space was 30 dimensional. The decoder
network followed a mirrored architecture, with an input layer of
30 dimensions, and a dense hidden layer with 436 nodes and a
Sigmoid activation function. Dropout was omitted for the
decoder network. The decoder’s output layer was 914-
dimensional, the same size as the encoder’s input layer, and
had no activation function. During training, the network
utilized the Adam Optimizer (Kingma & Ba 2014) with a
learning rate of 0.0005 to minimize the mean-squared error of
the decoder’s reconstructed spectra when compared to the
original input.
After training the autoencoder, we utilized the encoder

network to reduce the dimensionality of our training, valida-
tion, and photoz-selected samples. To encode the photoz
sample, we inputted the spectra into the encoder, whose output
was a thirty-dimensional representation of the originally 914-
dimensional spectra. The encoding carries the key features
contained in the original spectra, in a much more compact
format that allows for further analysis.
Upon visually inspecting the reconstructed spectra (see

Figure 3), we observed that the decoder adequately recon-
structed spectral trends. The decoder was particularly effective
in reconstructing spectral features such as broad emission lines,
characteristic of AGN spectra, and stellar absorption lines.
However, the reconstructions appear to be unable to capture
narrow emission lines (see Section 6). Other spectral features

Figure 1. Schematic of an autoencoder neural network. The latent space
contains a lower-dimensional representation of the network’s inputs. We
implemented an autoencoder to reduce the dimensionality of the spectra of our
photoz sample, resulting in a more manageable data set that was later projected
onto two-dimensions through t-SNE and separated into clusters. This approach
allowed for the removal of contaminants from our sample and a measurement
of AGN fractions.

Figure 2. Training and validation loss curves. During training, we sought to
minimize the training error while avoiding overfitting. Hence, the training
stopped after 200 epochs on a decreasing training error and a plateauing
validation error.
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such as noise levels, the presence of bright lines, and
continuum can be exploited to distinguish between high and
low-redshift galaxies.

3.2. t-SNE

We employed a second dimensionality reduction algorithm,
t-SNE (van der Maaten & Hinton 2008), with the intention of
visualizing the photoz sample to identify differences between
different astronomical objects’ spectra. t-SNE maps higher-
dimensional data to a two-dimensional space, allowing for the
visualization of data in a simple two-dimensional display.

After encoding all the samples, we combined the training
and photoz sets and employed t-SNE using the scikit-learn
library (see Figure 4). The perplexity, which measures the
effective number of neighbors (van der Maaten & Hinton 2008),
was set to 10 as it resulted in the most distinct separation of
astronomical objects when visualizing the training and
validation samples. Perplexity values should range between 5
and 50, with larger data sets generally requiring a larger value
(Fabisch et al. 2014). The maximum number of iterations was
set to 3000. The resulting data set contained a coordinate pair
corresponding to each spectrum, which allowed for the creation
of a two-dimensional plot to visualize the separation between
different astronomical objects.

4. Clustering

Figure 4 reveals that each astronomical object appears closer
to other spectra of their kind, resulting in four distinct clusters
representing the four types of astronomical objects included in
the training sample. To identify the clusters and therefore the
astronomical objects based on their separation in the t-SNE
diagram, we employed several different clustering algorithms

—including Gaussian mixture models, agglomerative cluster-
ing, density-based spatial clustering of applications with noise
(DBSCAN), and spectral clustering—and compared their
performance. Gaussian mixture models are “parametric prob-
ability density function[s] represented as a weighted sum of
Gaussian component densities” (Reynolds 2009). Agglomera-
tive clustering employs a bottom-up approach to hierarchical

Figure 3. Example spectra for an AGN (upper left), a star (upper right), a low redshift galaxy (bottom left), and a high-redshift galaxy (bottom right). The blue spectra
represent normalized data extracted from the HETDEX survey. The orange spectra represent reconstructed spectra obtained from running the thirty-dimensional
encoding through the decoder network. Comparing the HETDEX spectra to their corresponding reconstructed spectra allows for a visualization of how well the
encoding preserves information. While the key features of the AGN and stars appeared to be preserved, narrow emission lines from galaxies were not reconstructed
adequately. This made the separation between low and high-redshift galaxies less prominent (see Section 6).

Figure 4. t-SNE plot of the combined training (colored circles) and photoz
(black triangles) samples. t-SNE allows for a visualization of our samples in a
two-dimensional plane, revealing where each spectrum lies in relationship to
the others. Astronomical objects form clusters with others of their kind, a
feature that allowed us to employ a clustering algorithm to label our photoz
sample. Most of the spectra from the photoz sample appeared to be
concentrated around the high-redshift galaxies and AGN from the training
sample, which was to be expected based on our selection criteria.
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clustering, where all data points begin as their own cluster
which are later merged together based on linkage distance
(Michel et al. 2022). DBSCAN operates under a “density-based
notion of clusters,” and “requires only one input parameter and
supports the user in determining an appropriate value for it”
(Ester et al. 1996). Lastly, spectral clustering allows the user to
“apply clustering to a projection of the normalized Laplacian”
(Varoquaux et al. 2022).

To identify the algorithm that best clustered the data, we
applied them all to the t-SNE of the combined training and
validation samples, leaving out the photoz sample to avoid bias
in selecting the clustering algorithm. From a simple visual
inspection of the clustering on the t-SNE plot, the two
algorithms that best clustered the training and validation sets
were Gaussian mixture models and spectral clustering, with
further evaluation needed to identify the best one. We
calculated the total accuracy (overall percentage of correctly
classified sources), AGN accuracy (percentage of true AGN
that were predicted as AGN out of all true AGN), and
contamination in AGN sample (percentage of non-AGN
incorrectly labeled as AGN out of all the predicted AGN),
using the validation set for both algorithms; the results are
summarized in Table 1. We determined that Gaussian mixture
models performed better with the validation set and thus
selected this algorithm to cluster our photoz data. To further
understand how the algorithm performed in the different groups
of astronomical objects, a confusion matrix was calculated (see
Table 2). The confusion matrix entries contain the predicted
and actual labels of a sample, which allows for the visualization
and evaluation of an algorithm’s classifying performance.

We used the sklearn.mixture python package to cluster the
t-SNE of the combined training and photoz samples,
implementing Gaussian mixture models with k-means as the
initialization method and four mixture components (one for
each astronomical object type in the training sample). The
resulting clusters are displayed in Figure 5. Using the training
sample, we assigned a label to each cluster. We then assigned a
label to each of the photoz sample spectra, depending on which
cluster they belonged to. Out of the 716 spectra, 147 were
labeled AGN, 438 high-redshift galaxies, 100 low-redshift
galaxies, and 31 stars.

5. AGN Fraction

Having labeled all the photoz sample spectra, we determined
the AGN fraction at different magnitude bins. We first removed
the sources that were labeled as stars and low-z, leaving the
identified high-z galaxies and AGN. Using the r-band flux of
the remaining sources, which corresponds to rest-frame
λ∼ 1500–2000Å across our redshift range, we calculated
their absolute magnitudes by applying the cosmological
distance modulus at the spectroscopic redshift and separated
them into nine magnitude bins. We then found the AGN
fraction for each of the magnitude bins by finding the ratio of
AGN to the sum of AGN and high-z galaxies (see Figure 6).
We assumed that the uncertainties for the AGN and high-z
galaxy counts were consistent with a Poisson distribution. If x
was the number of counts, the uncertainty σx was set to x .
The uncertainties were then propagated to find the uncertainty
in the AGN fraction.
The z∼ 3 AGN fraction of 50% occurs at a UV absolute

magnitude of −23.8, which is consistent with the Stevans et al.
(2018) results where the bright end of the galaxy luminosity
function follows a power-law decline and the faint end of the
AGN luminosity function is consistent with a shallower slope.

Table 1

Comparison between Gaussian Mixture Models and Spectral Clustering (See
Section 4)

Gaussian Mixture Spectral

Total accuracy 92% 83%

AGN accuracy 83% 80%

AGN contamination 5% 4%

Note. All values were calculated using the validation data only. The total and

AGN accuracy were the total percentage of correctly classified spectra and the

percentage of correctly classified AGN respectively. The AGN contamination

was the percentage of non-AGN incorrectly labeled as AGN out of all the

predicted AGN. From comparing both clustering algorithms, we concluded that

Gaussian mixture models better captured the clusters formed by the t-SNE of

the training and validation samples. Thus, we chose the former algorithm to

cluster the t-SNE of the training and photoz sets in order to label the photoz

sample’s spectra.

Table 2

Confusion Matrix of the Validation Data

True labels AGN High-z Low-z Stars

AGN 92 5 11 3

High-z 1 60 2 0

Low-z 1 11 197 0

Stars 3 1 3 100

Note. The rows contain the actual labels and the columns contain the labels

predicted by employing Gaussian mixture models on the t-SNE of the training

and validation sets. The diagonal represents all correctly labeled sources.

Through our methodology we were able to label the spectra from our photoz

sample in order to remove contaminants and find the number of AGN and high-

z galaxies present in our sample. The AGN and high-z counts allowed us to

calculate AGN fractions.

Figure 5. Clusters identified through Gaussian mixture models on the t-SNE of
the combined training and photoz samples. The four pairs of ellipses represent
two standard deviations away from the mean of each cluster, as estimated by
the sklearn.mixture.GaussianMixture class. The clustering algorithm appears to
adequately capture the clusters formed by each group of astronomical objects.
Clustering allowed us to classify the photoz spectra and therefore remove
contaminants and find an AGN fraction.
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At a UV magnitude of −23.5, Stevans et al. (2018) predicts an
AGN fraction of ∼18% for a double-power-law fit to the
galaxy luminosity function, and ∼94% for a Schechter fit. At
this magnitude, our measured AGN fraction was 37%± 3%,
which is more closely related to the predictions for the power-
law fit. Through both measurements, our results suggest an
AGN fraction more consistent with a double-power-law shape
for the star-forming galaxy luminosity function, and thus a
shallower AGN faint end slope. Due to the wavelength
restriction of HETDEX, our measurements are at z∼ 3, while
the Stevans et al. (2018) luminosity function is at z= 4, thus
future work with redder spectra can explore whether our results
hold at this slightly larger redshift.

We note that our AGN fraction does not reach unity, even at
M<−26. As it is highly unexpected to find star-forming
galaxies at these luminosities, we visually inspected the spectra
classified as high-redshift galaxies in these bins. The spectra
appeared noisy and did not exhibit any visible high-z or AGN
features. We conclude that the likely explanation for these
sources is that their photometric redshifts have been incorrectly
estimated, a factor that can soon be improved with the new
SHELA photometric catalog (G. Leung et al. 2023, in
preparation), which incorporates new HSC imaging that is at
least one magnitude deeper than the DECam imaging in the
current catalog.

6. Discussion

6.1. Autoencoder

The autoencoder approach to reduce the dimensionality of
the spectra had both benefits and shortcomings. The recon-
structed spectra effectively captured broad emission lines,
which are generally present in AGN spectra. The autoencoder
also succeeded at reconstructing stellar spectra. However, the
autoencoder generally failed to reconstruct narrow emission
lines and thus separating high and low-redshift galaxies became
a challenge. Although the network may have used other
features such as continuum to differentiate between galaxies,
improving the autoencoder’s ability to recognize narrow
emission lines could significantly improve the separation

between low and high-redshift galaxies. Moreover, the
described methodology did not allow for sources to be labeled
as noise. Therefore, pure noise spectra could have been labeled
as high-redshift galaxies, which may impact the calculated
AGN fractions (see Section 7).

6.2. Gaussian Mixture Models

Gaussian mixture models significantly outperformed
agglomerative clustering, spectral clustering, and DBSCAN.
Upon visual inspection, it is not evident that the data is
composed of a mixture of Gaussian distributions. However, as
exemplified by our results, Gaussian mixture models can
successfully cluster data that does not appear to follow a
Gaussian distribution. Modeling our data using a mixture of
Gaussian probability distributions, despite its potential non-
Gaussian nature, resulted in almost all of the data points in each
cluster falling within two standard deviations of the estimated
mean (see Figure 5).

6.3. Implications and Further Work

The described methodology serves as a proof-of-concept
that, if applied to other redshifts, could better constrain the faint
end of the AGN UV luminosity function. In particular, finding
the AGN fractions at z∼ 4 could break the degeneracy of the
faint-end slope and identify whether the shape of the AGN
luminosity function presented by Stevans et al. (2018) is best
described by a shallow or a steep faint-end slope. Combining
our results with studies at other redshifts, we can explore if
there is a steepening faint-end slope with increasing redshift,
which would imply a potential contribution by faint AGN to
the ionizing photon budget at the end of reionization. However,
our results at z∼ 3 are consistent with a shallower faint-end
slope of the AGN luminosity function. If similar results were
found at higher redshifts, the findings may suggest a smaller
AGN contribution. The faint-end slope remains a key
parameter to investigate the role that AGN played in reionizing
the intergalactic medium.

7. Conclusions

In this paper, we develop a method to measure the AGN
fraction in a photometrically selected sample at z∼ 3 using
machine learning. We used optical and infrared imaging from
the SHELA field to select potential AGN and star-forming
galaxies, and extracted spectroscopic data from HETDEX at
these sources’ positions. To reduce the dimensionality of the
resulting 716 spectra, we employed the encoder network of an
autoencoder. We used t-SNE to visualize the encoded data and
Gaussian mixture models to identify clusters. Using the labels
of the training data we assigned a label to each cluster and thus
to each spectrum in our photoz sample, allowing us to remove
stars and low-redshift galaxies and to calculate an AGN
fraction.
When applying the described methodology to a validation

set, we labeled the spectra with an accuracy of 92% and 5%
AGN contamination. Hence, we were able to apply these
methods to our unlabeled photoz sample from the SHELA field
to measure an AGN fraction. Our method resulted in 147
sources being classified as AGN and 438 as high-redshift
galaxies, which yielded an AGN fraction of 50% at a UV
absolute magnitude of −23.8. This fraction can be used to
define the shape of the faint end of the UV luminosity function

Figure 6. AGN fraction as a function of r-band absolute magnitude and an
interpolated curve. The two brightest bins have an AGN fraction of 0.8 ± 0.1.
The AGN fraction drops to 0.37 ± 0.03 at a magnitude of −23.5, and
approaches zero at the faintest bins. Our calculated AGN fractions imply a
shallower faint-end slope for the AGN luminosity function at redshift three.
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and assess the contribution of faint AGN to reionization. If this
result is similar at z= 4, it would break the luminosity function
degeneracy found by Stevans et al. (2018) in favor of a
shallower AGN faint end slope, and imply a smaller
contribution from AGNs to the ionizing photon budget at
higher redshift.

However, there are changes that could be implemented that
may increase confidence in the results. For instance, the
influence of noise on the described methodology merits a
thorough analysis. Including pure noise spectra in the training
and validation sets may help avoid the mislabeling of noise in
the photoz sample as high-redshift galaxies that could be
lowering the measured AGN fraction. However, including
noise as a category may also result in high-z galaxies with no
distinguishable emission line being misclassified as noise and
therefore an artificially higher AGN fraction. The methods
chosen to address noise in the analysis have the potential to
influence the AGN fraction and hence are worth exploring in
future work.

Further research is needed to fulfill our motivation of
constraining the faint-end slope of the AGN UV luminosity
function at z= 4 and beyond to assess AGN contribution to the
ionizing photon budget. Future studies could focus on
constructing a z∼ 3 luminosity function from our measured
AGN fractions. Applying our methodology to analyze similar
spectra with different photometric redshifts or including
sources outside of the SHELA field may also be of interest.
Moreover, the described methods could be applied to z= 4 data
to find an AGN fraction and break the degeneracy identified in
Stevans et al. (2018). Lastly, following the same procedure at
higher redshifts could allow for a study of the evolution of the
faint-end slope of the luminosity function, which may provide
insights into the role that AGN played, if any, during the epoch
of reionization.

We acknowledge that the location where most of this work
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