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Abstract

In 1999, Katona and Kierstead conjectured that if a k-uniform hypergraph H on n
vertices has minimum co-degree |“=4+2|, i.e., each set of k — 1 vertices is contained
in at least L”‘zﬁj edges, then it has a Hamiltonian cycle. Rodl, Rucinski and Sze-
merédi in 2011 proved that the conjecture is true when £ = 3 and » is large. We show
that this Katona-Kierstead conjecture holds if k =4, n is large, and V' (H) has a
partition 4, B such that |4| = [n/2], [{e € E(H) : |eNn 4| = 2}|<en* for a fixed
small constant € > 0.

1 Introduction

A classical result of Dirac [3] states that any graph on n vertices with minimum
degree at least n/2 contains a Hamiltonian cycle, and Ky 2, shows that this is
best possible. However, paths and cycles may be defined in several ways for
hypergraphs [1, 5, 8, 10, 11].

A hypergraph is called k-uniform if every edge of it contains & vertices. For k-
uniform hypergraphs (or k-graphs, for short) with £ > 3, we consider paths which are

k-graphs  with  vertices  vi,vy,...,v; and edges  {Vi,Vii1,.- - Vitk—1}>
i=1,...,0—k+1. A cycle is defined similarly with the additional edges
{VisVitly o yVizg—1} for i=1—k+2,....1, where for h>1 we set v, =v,_;. A

Hamiltonian path (cycle) in a k-graph ‘H is a path (cycle) which is a sub-hypergraph
of 'H and contains all vertices of H.
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V(H)
k—1
Ny(T) :={x: TU{x} € E(H)}. The collective degree (or co-degree, for short) of T
is  di1(T) := [Ny(T)]. The  minimum co-degree  of H s

Ok—1 (H) = min{dk_] (T) : T € < V(H) ) }

Given a k-graph 'H and T € ( ), the neighbourhood of T is denoted by

k—1
Katona and Kierstead [10] proved that if H is an n-vertex k-graph with
dk—1(H) > (1 —55)n — k +4, then H contains a Hamiltonian cycle. In the same
paper, they make the following conjecture.
Conjecture 1.1 (Katona and Kierstead [10]) Let H be a k-graph on n>k +1>4

vertices. If 0x_1(H) > |23, then H has a Hamiltonian cycle.

The bound on J;_; (H) is best possible due to a construction of a non-Hamiltonian
k-graph on n vertices with &, (H) = [==5+3] — 1. We describe the construction for
k =4. Let Hy := Ho(A4, B) be a 4-graph with vertex set V' = AU B with AN B = ),
|4 = [n/2] and |B| = |n/2]. Its edge set consists of all (%’)]B[ + ]A|<’§|)
quadruples of vertices having an odd intersection with A. It is easy to see that if
|A|,|B|>2 then 063(Ho) = [n/2] —2=["51] -2 and H, does not have a
Hamiltonian path. In [15], R6dl, Rucinski and Szemerédi prove that Conjecture
1.1 is true when k£ = 3 and n is large.

Theorem 1.2 (Rédl, Rucinski and Szemerédi [15]) Let H be a 3-graph on n vertices,
where n is sufficiently large. If 6,(H) > |n/2]|, then 'H has a Hamiltonian cycle.
Moreover, for every n there exists an n-vertex 3-graph H, such that 6,(H,) =
|n/2| — 1 and 'H, does not have a Hamiltonian cycle.

For a 4-graph H on n vertices, let A, B be a partition of V(H) and
H(A,4,B,B) :={ec E(H) : lenA4| =2}, and let b(H):= min|H(4,4,B,B)|,
where the minimum is taken over all partitions V(H) = AU B with |4]| = [n/2]
and |B| = [n/2]. We know that if b(H) is very small, then H is very “close” to the
Ho, see Claim 2.1 below. We show that Conjecture 1.1 holds for these H with small
b(H).

Theorem 1.3  There exists ¢y > 0 such that, for sufficiently large n and any 4-graph
H on n vertices with b(H) < eon®, the following hold:

(i) If63(H) > [*5] — 1, then H has a Hamiltonian path;
(i) If 65(H) > |25, then H has a Hamiltonian cycle.

The bound in (i) is tight because of Hy. The bound in (ii) is tight because of Hj,
where H;, is obtained from H, by adding a new vertex v and joining it to all (’31)

triples of vertices. We can see that (i) is a corollary of (ii). Indeed, for n even the
thresholds in (i) and (ii) coincide. For n odd, however, they differ by 1. Suppose H is
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a 4-graph satisfying the conditions in (i). In order to see the implication in this case,
consider a 4-graph H' obtained from H by adding a new vertex v and join it to all

(n) triples of vertices. Then

3
S3(H) 2 55(H) +12 dn; 1} —1) +1z 3] = {%J

and by (ii) H' has a Hamiltonian cycle. After removing v, H has a Hamiltonian path.
We do not determine the optimal value of the constant ¢, in the theorem. We only
checked that ¢y = 1020 is sufficient.

For convenience, we will consider only the case when H has an even number of
vertices. The odd case can be treated by some easy modifications and it is discussed
in Sect. 5.

The rest of the paper is organized as follows. In Sect. 2, we study the typicality of
vertices and edges of H as in [15]. The proofs of (i) and (ii) in Theorem 1.3 will be
given in Sects. 3 and 4, respectively. Although (i) is a corollary of (ii), the proof of (1)
given here better illustrates the proof approach of both results without involving too
much technicality. Hence we also provide the proof of (i) here. In the final section,
we offer some concluding remarks.

2 The Typicality of Vertices and Edges of H

Throughout this section, unless there are special instructions, H, denotes the 4-graph
with V' (Hy) = AUB, where ANB = () and |A| = |B|, and E(H,) consisting of all
quadruples of V(Hy) each of which intersects 4 in precisely one or three vertices.
For a 4-graph ‘H with V' (H) = V(H,), we use notation H(A4,B) and H(4,B) to
indicate the partition. We will refer to the edges with exactly three vertices in A as the
AAAB edges, the edges with exactly one vertex in 4 as the ABBB edges, etc. The
AAAB edges and the ABBB edges will be referred to as the #ypical edges of H, and
the AABB edges will be called atypical. (The AAAA edges and BBBB edges remain
neutral.)

First we show the following claim which says that if 5(H) is small and d;(H) is
large, then H almost contains a copy of H.

Claim 2.1 Suppose H is a 4-graph with V(H) = AU B, such that ANB = () and

|4| = |B| = n. For any c,c; >0, if |H(4,4,B,B)|<cn* and 53(H)> (1 —ci)n,
then

|E(Ho(4, B)\E(H)| < = (c1 + 4c)n* + O(n?).

W | =

Proof For convenience, let ABB and AAB denote the sets of 3-vertex subset of V' (H)
with exactly one and two vertices from 4 respectively. Then
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> ds(S) = 2|44BB| + 3|4BBB| > (1 — cy)n - n - (")
S€ABB 2

and

n
> d5(S) = 2|44BB| + 3|444B| > (1 — ci)n - n - ( )
S€AAB 2

Summing the above two equations, we have

n
3|ABBB| + 3|AAAB| >2(1 —c\)n - n - (2) — 4|44BB|.

Since the number of edges of H((4,B) is n - (Z) + (Z) -nand |AABB| <cn*, we

have

|E(Ho(4,B)\E(H)| < = (c1 + dc)n* + O(n?).

W | —

O

From time to time, we also need to deal with hypergraphs whose vertex partitions
are not balanced. Therefore, in the remainder of this section we always assume that
‘H is a 4-graph on 2n vertices and 4, B is a partition of V' (H) such that

S3(H)=n—1, (2.1)
n—5en <|A| <n+ Sen, (2.2)

and
|H(A4,A4,B,B)| < eon’, (2.3)

where ¢y > 0 is sufficiently small and 7 is sufficiently large.

2.1 Classification of Vertices

We follow the notation and the set up in [15]. The link of a vertex v € V(H) is
defined as the set of triples L, := {uwt : uwtv € E(H)}; let L2V .= L, N V1LV
and 172" .= |LV"275| where ViV, V3 € {4AA,AAB, ABB, BBB}. Similarly, the link
of a pair u,v € V(H) is defined as the set of pairs L,, := {wt : uvwt € E(H)}; let
LL/VIVZ =L, N ViV, and l;/v‘VZ = |LZ;V2\, where V1V, € {44, AB, BB}.

In the remainder of this section, vertices a and a; (respectively, b and b;) are
contained in 4 (respectively, B). From (2.1), we see that
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20547 +212%° > |B|(|4] = 1)(n — 1) and  612%% +212%° > |B|(|B| — 1)(n — 1);
(2.4)
and
2BMB L 2EBE > 1A4|(1B] —1)(n — 1) and 6L 42118 > |4|(|4] — 1)(n — 1).
(2.5)
The vertices of H are classified according to the values of /458 and /418 as follows:
Definition 2.2 For € > 0 and vertex a € A4, a is called

« e-typical if 152 < ¢|4]| < |§| >;

« e-medium if /88 > ¢|4] < |§|> and /448 > 5( |§| ) |B;

« an e-anarchist if /418 < e( ’;” > |B|.

Similarly, for vertex b € B, b is called

« e-typical if /18 < e( |1;| ) |BJ;

« e-medium if /18 > e( |1;1| ) |B| and K88 > ¢|4| ( |Z§‘ );

« an e-anarchist if /58 <¢|4| ( uzgl )

We have the following observations:

Observation (i) For clarity, results and proofs below are presented in the balanced
case, when |4| = |B| = n, but they remain valid, except for Claim 2.3, in non-
balanced case with just slightly worse constants.

Observation (ii) By (2.4) and (2.5), if a € 4 is e-typical then

1 1 1 1
[44B > En(n —1)* - Een3 and %58 > gn(n —1)" - gen3; (2.6)

and if b € B is e-typical then

1 , 1 1 , 1
I158 > En(n —1) —§6n3 and 41> gn(n -1) —661’13. (2.7)
Hence each vertex of H only belongs to one of the above three types when 7 is
sufficiently large.
Observation (iii) Assume (2.2) holds. For sufficiently large n, if @ € 4 is an -
anarchist, let 4" = A\{a} and B’ = BU {a}. If (2.2) still holds for 4’, B, then
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/
JAAE = A48 < ¢|B| ( |g|> <¢|B| ( ‘I; |) for some ¢ > e. For any other vertex
v # a, I"72Y5 is changed by no more than max{ ( |1;| ), ( ’g' >, |4||B|} = O(n?). If
v is e-typical with rtespect to 4, B, say v € 4, then 155 <¢|4| ( |§|> and

/
BB < [ABE O(n2)<e’|A’|(|1;|>. So, transferring an e-anarchist a in 4 to B

makes a € -typical with respect to A’, B', and other e-typical vertices with respect to
A, B are ¢-typical with respect to 4’, B'.

By Observation (iii), we know that an anarchist acts like a typical vertex on the
other side. We claim that in the case of a balanced partition (4, B) such that
|H(A4,4,B,B)| = b(H), coexistence of an anarchist with an atypical vertex on the
other side is impossible.

Claim 2.3 Suppose |A| = |B| = n and b(H) = |H(4,A4, B, B)|. For every ¢ > 0 and
sufficiently large n, if there is an e-anarchist in B then every vertex in A is 3e-typical.
Also, if there is an e-anarchist in A then every vertex in B is 3e-typical.

Proof For v € V, define 1, = 448 — 188 Then, for a € 4,

I, = 17" — 1% = |H(4\{a},4\{a},BU {a},BU {a})| — |H(4,4,B,B)|,
while for b € B,

Iy = "% — 1% = |H(4,4,B,B)| - [H(4 U {b},4U {b}, B\{b}, B\{b})|.
Thus, for all a € A and b € B,

[H(A\{a} U{b}, 4\{a} U {b}, B\{b} U {a}, B\{b} U{a})|
= [H(4,4,B,B)| + I, — I + O(n*).

Here the O(n?) term comes from the edges abuv, where uv € Ny(a, b). Hence, by the
minimality of 5(H), we must have

I,>1, — O(n?).

Suppose that there exists a € A and b € B such that /5% < $n® and /458 > 3en’.
Then by (2.5),

Ib — l}/)lAB . IZIBB — IZIAB + l}/)lBB . 2[2133 2 %n3 . 61’13

and
1 3 1
1, = ZZIAB — lﬁBB< 5713 — 567’13 <I, — 56113,
a contradiction.
The proof of the second statement is analogous. U
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The next claim justifies the name “typical” and it shows that the number of
atypical vertices is small.

Claim 2.4 Assuming (2.1), (2.2) and (2.3), for all €y,e; > 0, less than 8(ey/e)n
vertices in 'H are €1-atypical. Among them, less than Segn vertices in A and less than
5eon vertices in B are €j-anarchists, provided €; <1/5.

Proof Let x be the number of €;-atypical vertices in . Then, since each of these
vertices contributes more than 1 e;n* edges to [H(4, 4, B, B)|, and every such edge is

counted at most four times, we have
1 1
3 4
=X-—en <e€n
4 2 ’

which implies that x <8(¢q/¢;)n.

Now, let X’ be the number of ¢;-anarchists in A. By (2.4), every ¢;-anarchist a € 4
contributes at least /55> L(B|(|4| - 1|)(n—1) — 18> 1 (1 — €))n® — O(n?)
edges to |H(4,4, B, B)|, and these edges are counted at most twice. Hence

1 1
Ex’- <§(l — )’ — O(nz)) <eon*,

which implies x’ <5€yn since €; <1/5.
The proof of the statement b € B is analogous. 0

lAA lAB or ZBB

uv > ‘uv

Now we classify the pair of vertices in ‘H by the values as follows.

Definition 2.5 Fix ¢ > 0. A pair of vertices

BB B] Y.
« {ai,a} is etypical if I < ( ) ),

« {a,b} is e-typical if [1f <¢|4]||B];

o {b1,b,} is etypical if ZZ’IAZZ < 6( ‘1;‘)’

o {u,v} CV(H) is (&, €)-typical if both u and v are ¢;-typical and the pair {u, v}
is €;-typical.

Observation. From (2.1),
AB BB
Zalaz + 2la1a > |B|(l’l - 1)’
2 4208 > (4]~ 1)(n — 1) and 122 + 2188 > (1B~ 1)(n — 1),
Lh + 25 > |A|(n—1).
Hence, if {a;, a2}, {a,b} and {b;,b,} are e-typical, then by definition, we have

8 >nn—1) - en?, (2.8)

ajay
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A4 B> (n— 1) — en?, (2.9)
KB >npn—1)— en’. 2.10
bi1by

Next we show that each typical vertex is contained in a small number of atypical
pairs.

Claim 2.6 Assuming (2.1) and (2.2), for all €,,¢; > 0, every €|-typical vertex in A
belongs to at most (€1 /¢ex)n ex-atypical pairs in AA and at most (€1 /ex)n ex-atypical
pairs in AB. Moreover, every €-typical vertex in B belongs to at most (€;/e;)n €;-
atypical pairs in BB and at most (€, /¢e;)n ex-atypical pairs in AB.

Proof Leta € A be ¢;-typical. If a belongs to more than (e; /€;)n e;-atypical pairs in
AA, then

PBE 5 22 Ty, Ly

“ € 2 ’
contradicting the €;-typicality of a. Similarly, if @ belongs to more than (e /€;)n €;-
atypical pairs in 4B, then,

1 €1 €1
HBE > —_en? x—n=—n
L
a contradiction.
The proof of the statement for €;-typical vertex in B is analogous. U

The triples of vertices in ‘H are classified as follows.
Definition 2.7 Fix ¢ > 0. A triple of vertices
o {a1,ay,a3} is e-typical if dg(ay,ay,a3) > (1 — €)|B|;
o {aj,ay,b} is etypical if dg(a;,ar,b) <€|B|;
o {a,by,by} is e-typical if dy(a, by, by) <e€|A|;
o {b1,by, b3} is etypical if dy(by,by,b3) > (1 —€)|4];

o {u,v,w} CV(H) is (€1, €2, €3)-typical if each of u, v and w is €;-typical, each of
pairs {u, v}, {v,w} and {u, w} is e,-typical, and the triple {u, v, w} is e;-typical.

Observation. From (2.1),

dA(a17a27b) +dB(a17a27b) Zl’l - 17
dA(a,bl,bz) +d3(a,b1,b2) >n—1.

Hence, if {a,as,a3},{a,b1,b2},{a1,a,b} and {by, b, b3} are e-typical, then by
definition, we have

dp(ay,az,a3)>n—1—en, (2.11)
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dq(ay,a,b) >n—1—en, (2.12)
dg(a,by,by) >n—1—en, (2.13)
dA(bl,bz,b3)Zn— 1 —en. (214)

The following two claims show that any typical vertex or typical pair is contained in
a small number of atypical triples.

Claim 2.8 Assuming (2.1) and (2.2), for all €, ¢35 > 0, every e|-typical vertex in A
belongs to at most (e1/e3)n* es-atypical triples in each type of AAB,ABB and AAA.

Moreover, every e, -typical vertex in B belongs to at most (€, /e3)n® es-atypical triples
in each type of AAB,ABB and BBB.

Proof Leta € A be ¢ -typical. If @ belongs to more than (e; /€3 )n? e3-atypical triples
in AAB or more than (e;/e3)n” e3-atypical triples in ABB, then

1
48 > 5(61/63)1’12 X €31 = 62—1113 or BB > (e)/e3)n* x e3n > 62—1113,

contradicting the € -typicality of a. Let x be the number of e3-atypical triples in A44.
Then by (2.4),

1 1 1
(5—%)113 SlaAAB = Z dB(al,az,a> <x(1 —e)n+ (En2 —x)n = 5713 — Xe3n.

ar,a#a

So XS (61/263)1’12 S (61/63)1’12.
The proof of the statement for €;-typical vertex in B is analogous. 0

Claim 2.9 Assuming (2.1) and (2.2), for all €3, €5 > 0, every ex-typical pair {a,,a,},
or {a,b}, or {by, by} belongs to at most (e2/e3)n e3-atypical triples in each of the
Sfour types AAA, AAB, ABB, andBBB.

Proof Let {a;,a,} be an e;-typical pair. If {a1,a,} belongs to more than (e;/e3)n
es-atypical triples in 44B, then

1
lf]iz > 5(62/63)1’1 X €e3n = E521’12,

contradicting the e,-typicality of {a,a,}. Let x be the number of e3-atypical triples
in A4A. Since [/% + 2188 >|B|(n — 1), we have
(1—e)n*< Zﬁﬁlz = Z dg(ar,az,a) <x(1 —&)n+ (n — x)n = n* — xe3n;
a#ay,ay

we have x < (e;/€3)n.
The proof of the statement for {a, b} and {b;,b,} are analogous. O
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If |H(4,4,B,B)| is small, then by Claim 2.4, H does not contain too many
atypical vertices. Next, we claim that the number of atypical triples in H is also
small.

Corollary 2.10 Assuming (2.1), (2.2) and (2.3), for all €y, €1, €2, €3 > 0 and for every

€42 16(co/e1) +4(e1/e2) + (e1/e3), every set of at least eun® triples in ( 4 )>

contains at least one (€1, €3, €3)-typical triple. In particular, there are less than esn

V(H)

triples in ( 3 ) which are not (€1, €;, €3)-typical.

3

Proof 1t suffices to count all triples {u, v, w} C V' (H), such that at least one of them

is ej-atypical, or all of {u, v, w} are €;-typical and one of the pairs from {u, v, w} is

not e,-typical, or all vertices are €, -typical and all pairs from {u, v, w} are e,-typical,
but {u,v,w} is not e;-typical.

By Claim 2.4, the number of triples, of which at least one vertex is €;-atypical, is
2n—1

at most 8(eg/€1)n % ( )
three vertices are e€;-typical but at least one pair is ep-atypical, is at most
2n x (2(e1/€2)n) x (2n — 2) x ;. By Claim 2.8, the number of triples, of which all
vertices are €-typical and all pairs are e,-typical but {u, v, w} is not e;-typical, is at
most 2n x (3(e;/e3)n*) X 4.

Hence, the number of all these atypical triples are at most e4n°. 0

). By Claim 2.6, the number of triples, of which all

2.2 Short Paths Between Typical Triples

In this section, we prove that if |H(4, A, B, B)| is small and 63 (H) is large then certain
typical triples can be connected by a path of length at most 12. Recall that the 4-
graph Hy = Ho (A4, B) consists of all A44AB and ABBB quadruples. (Here, we allow
non-balanced partitions (4, B); however, they must satisfy (2.2).) A sextuple of
vertices (vi,va,v3, wi,wa,ws) is called Ho-connected if both {vi,v,,v3} and
{wy, w2, w3} belong to A4V or both {v;,v,,v3} and {w;, w,, w3} belong to BBV. We
can call it an Ho-connected sextuple formed by the triples {v;,v,,vs} and
{w1, w2, ws}. Given a set of vertices K, a path P is K-avoiding if V(P)NK = (. A
subset of vertices I C V' (H) is said to be Ho-complete if E(H[T]) D E(Ho[T]). We
show that for an Hy-connected sextuple formed by two (e, €2, €3)-typical triples,
there is a path in Hy connecting these two triples.

Claim 2.11 Let €y, €1, €5, €3 be sufficiently small and assume that (2.1), (2.2) and
(2.3) hold. Let (vi,vy,v3, w1, wy,w3) be an Hy-connected sextuple in H, where
{vi,v2,v3} and {wi,wy, w3} are two (e, €, ¢€3)-typical triples. For every set of
vertices K C V(H)\{v1,va, v3, w1, wa, w3} with |[K| < %n, there exists a subset T C
V(HO\(K U {vi,va,v3,wi,wa,w3}) such that |TNA|,|TNB|>5, and TU
{vi,vo,v3} and T U{w,wy, w3} are Ho-complete. In particular, there exists a K-
avoiding path P in 'H with at most 12 vertices such that the end triples of P are
{vi,va,v3} and {wi,wr, w3} and all edges in P are typical.
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Proof We select a set T at random, by choosing each vertex of V(H)\(KU
{vi,v2,v3, w1, wp,w3}) independently with probability p = 60/n. We will show that
it satisfies all required properties with positive probability.

Let E, and E,, be the events that the subsets 7 U {v, v, v3} and T U {wy, w,, w3}
are not Hy-complete, and let £ = FE, U E,,. We claim that

P(E,) <Py + 3P + 3P, + P3,

where Py is the probability that 7" is not Hy-complete, P; is the probability that there
exist x,y,z € T such that vixyz € E(Ho)\E(H[T U {v;}]), P, is the probability that
there exist x,y € T such that vyvxy € E(Ho)\E(H[T U {v;,v;}]), and P3 is the
probability that there exist x € T such that viv,v3x € E(Ho)\E(H[T U {vi,v2,v3}]).

By Claim 2.1 with ¢ =¢ and ¢; = 1/n, we know |E(Ho)\E(H)| < 2eon*.
(Although the partition of ¥ (H) might not be balanced, the result of Claim 2.1 still
holds with a larger constant.) Thus, Py <2en*p*. By (2.6) and (2.7), for any
1 <i< 3, the number of edges of H, containing v; that are not edges of H is at most
ein’, since v; is € -typical. Thus, P; <en’p®. By (2.8), (2.9) and (2.10), for any
1 <i#j<3, the number of edges in H, containing the pair {v;,v;} that are not
edges of H is at most en?, since {v;,v;} is e-typical. Thus, P, <en’p?
By (2.11), (2.12), (2.13) and (2.14), the number of edges in H, containing the triple
{vi,v2,v3} that are not edges of H is at most e3n, since {vi,v,,v3} is e3-typical.
Thus, P; < e3np.

Hence,

1

P(E,) <2en'p* +3-ein’p® +3 - en’p* + esmp< )
for €9, €1, &2, €3 sufficiently small. Similarly, P(E,,) < 1.

Finally, recalling that [A\(K U {vi,v2,vs,wi,wa, w3})|>4n—6> in+4, we

have
.1
P(|TN4|<4)< (1 +np + (Z)pz + (Z)ﬁ + (Z)p“)(l —p)4<Z.

Similarly, P(|T N B| <4)<1/4. Hence, the required set T does exist.

Consider the case when an Hy-connected sextuple is formed by two (€1, €, €3)-
typical triples {a1, a, a3} and {ay, as, ag }. By the above argument, the required set T
exists. Suppose {by,a,d’,a",b,} CT. Then by the properties of 7, P =
ayazazbyad' a’bragasae is a K-avoiding path with 11 vertices in H and all edges of P
are AAAB edges. For other cases, it can be checked that the two (ej, €2, €3)-typical
triples in any Hj-connected sextuple can be connected by a K-avoiding path with at
most 12 vertices in which every edge is typical. Moreover, if both triples are in 44V
(or BBYV), all edges in this K-avoiding path connecting these two triples are A4AB (or
ABBB) edges. U
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3 Hamiltonian Paths

In this section, we prove the following

Theorem 3.1 There exists €y > 0 such that, for sufficiently large n and any 4-graph
H on 2n vertices with b(H) < eon* the following holds. If 53(H) > n — 1, then H has
a Hamiltonian path.

For typical vertices, we want to use paths similar to these in Hy to connect them.
So we need to deal with atypical vertices, which are medium vertices or anarchists.
By Claim 2.4, the number of such vertices is small. In our proof, we find a path to
absorb all medium vertices. By Claim 2.3, the anarchists can only exist on one side.
We may transfer all anarchists to the other side, so that all vertices will be typical in a
new partition.

First, we introduce a structure called bridge, which helps us construct a path
containing all medium vertices.

Definition 3.2 Given €;,¢,¢e3 > 0, an (€1, €, €3)-bridge is a path of at most 800
vertices whose end triples are (ej, €;, €3)-typical with one in 444 and the other in
BBB.

For convenience, for some small € we set
=€, =€, =€, g=¢c, e =40¢, 5= 120¢.

The proof of Theorem 3.1 can be described in four steps: Build a bridge M (cf.
Lemma 3.3); arrest all medium vertices by a path O containing M (cf. Lemma 3.5);
transfer all anarchists not belonging to Q to the other side of the partition; complete
the Hamiltonian path P (cf. Lemma 3.8).

3.1 Building a Bridge

Lemma 3.3 For sufficiently small € > 0, H contains an (€, €2, €3 )-bridge M with at
most 25 vertices.

Proof Fix two (e,€e)-typical pairs {aj,a,} and {by,b,}. Suppose
ayazbiby € E(H). Since 035(H)>n—1 and {aj,a2},{b1, b2} are (e, €;)-typical,
it follows from Claim 2.9 that there exists x € N(aj,az,b1)\{b2} and
vy € N(ay,b1,b2)\{az2,x}, such that {x,a;,a,} and {b;, by, y} are (€1, €2, €3)-typical.
Hence, xa,a1b1b,y is a path in H. Now we show that the path P = xa,a;b1b,y can be
extended to an (e, €, €3)-bridge by Claim 2.11. By Corollary 2.10, there exist
(€1, €2, €3)-triples {a},a),dy} and {b),b),b}} disjoint from V(P). Since {a},a,,ds}
and {x,a;,ay} are AAV triples, there exists a {b;,b,,y,b!, b, b} }-avoiding path
P, = d\d,d} - - - xa,a, with at most 12 vertices by Claim 2.11. Similarly, there exists
a V(P;)-avoiding path P, = bbyy- - - b|b)b with at most 12 vertices. Hence, we
extend P to Py UP U P, such that P UP U P, is an (€1, €3, €3)-bridge with at most
24 vertices and the end triples are {a},a},d}} and {b},b),D}}.

So assume ajab by ¢ E(H). Let X = N(aj,a2,b1) and Y = N(ay, by, b,). Since
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a1a2b1b2 gE(H), we have X UY Q V(H)\{al,az,bl,bz} and |XU Y‘ §2n — 4.
Since 03(H)>n—1, [X|>n—1and |[Y|>n—1.So [XNY|=|X|+|Y|—-|XU
Y| > 2 implies that there exists a vertex z € X N Y. Similarly, by Claim 2.11, we can
find x € N(ay,a;,z) and y € N(by, by, z), such that xaa,zb, b,y can be extended to
the desired bridge. Hence, in any case, we can always find an (e, €;, €3)-bridge in H
with no moth than 25 vertices. U

The construction in the proof of Lemma 3.3 can also be used for 3-graphs, which
would shorten Section 8 in [15].

3.2 Taking Care of Atypical Vertices

First, we need a simple claim from [15].

Claim 3.4 (Rodl, Rucinski and Szemerédi [15]) Given a > 0 and k> 2, every k-

graph F with m vertices and with at least a( ) edges contains a path on at least

k

am/k vertices.

Lemma 3.5 Letzy,...,z, be the es-medium vertices and K C V(H) with |K| <éen.
There exist pairwise disjoint K-avoiding paths Q,, ..., Q;, such that for every integer
i such that 1 <i<ty, all edges in Q; are typical, and Q; contains z; with |V (Q;)| =7
and both end triples (€, €3, €3)-typical. In particular, assume that M is an (€1, €2, €3)-
bridge. Then there exists a path Q of length at most €’ n, which contains M and all €s-
medium vertices of 'H, and whose end triples, one in AAA and one in BBB, are
(€1, €2, €3)-typical. Moreover, all edges in Q — M are typical.

Proof By Claim 2.4, we know that #; <8(ey/es)n. We do an induction on the
number of such paths. Suppose that we have already found paths Q; for
Jj=1,...,i—1, such that Q; satisfies the properties in Lemma 3.5. Set z = z;.

We may assume z € 4 as the proof is analogous for z € B. Let G#8 be the set of
(€1, €2, €3)-typical triples in L448. By Corollary 2.10, /448 — |G44B| < ¢4n’. Then
|GA4B| > 448 ean® > %“n3 —en®, since z is es-medium. Further, let
FME = GMB(y (H)\K)\U}], where U; = (JZ] V(). Note that [F245| > | GAE| —
(Uil + [K|)n* and (|U;| + [K)n* < (7(i — 1) + 1€n)n* <Ttyn® + €n <20’ for
sufficiently large n. Thus, by the above estimates and because z is es-medium, we
have

€
48] 2 |GHE) — 26" > (S — e ) =267 > 10en’s

so by Claim 3.4, FA8 contains a path of length six, i.e., aja;biazasb,. Then
Q; = ayaxbzazasb,, disjoint from Qy, . . ., Q;_1, gives the desired path, since Q; is K-
avoiding, the end triple of Q; are (e1, €, €3)-typical AAB triples and all edges in Q;
are AAAB edges.

Now we have a given bridge M. Let K = V(M) as |V(M)| <800 <é’n. Set
Q. =0, fori=1,....t1. By Claim 2.11, for all es-medium vertices w € A\V (M),
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since the end triples of Q,, are in AAB and (e, €;, €3)-typical, we connect all paths Q,,
into a V(M)-avoiding path, denoted by Qy,,. Similarly, for all es-medium vertices
w € B\V(M), we connect all paths Q,, into a V(M U Q,,,)-avoiding path, denoted
by Q.j,, since the end triples of Q,, are in BBA and (e, €, €3)-typical. Now we use
the given bridge M to connect Qy,, and O.;,. We connect the end triple of M in 444
with one A4B end triple of Qy,,, and connect the end triple of M in BBB with one
BBA end triple of O, also by Claim 2.11. Then we obtain a path P, which contains
M and all es-medium vertices of H, whose end triples are (€1, €;, €3)-typical, and one
of its triples is in 44B and the other is in BBA.

By Claim 2.11, |V(P)|<8(eo/es)n- (7+ (12 —6)) + |[V(M)| +2- (12 — 6). By
Corollary 2.10, there exists an (ej, €, €3)-typical triple {ao,a;,a,} in A44 and an
(61 , €2, 63)—typical triple {bo, b1 s bz} n BBB, such that {ao, a,ay, bo,
bi,b2} NV (P) = (). We apply Claim 2.11 to connect {ag,a1,a,} with the A4B end
triple of P, and connect {bg, b1, b, } with the BBA end triple of P. This gives a path
O = aayag - - - bob1b,, containing M and all es-medium vertices of H, such that
V(Q)|<|V(P)|+2-(12—=3)<8(eo/es)n- (T+6) + |V(M)|+2-6+2-9<¢én.

O

3.3 Completing the Hamiltonian Path

To complete the proof of Theorem 3.1, we need the following lemma in [12].
Lemma 3.6 (Reiher, Rodl, Rucinski, Schacht and Szemerédi [12]) Every 3-graph
with n vertices and minimum vertex degree at least (3+ o(1)) (;) has a
Hamiltonian cycle.

Lemma 3.5 gives a path Q containing all es-medium vertices. By Claim 2.3, we
know that if there exists an es-anarchist in one side of the vertex partition, then all
vertices in the other side are 3es-typical. Moreover, the number of es-anarchists is
less than S¢pn. So we transfer all such vertices to the other side of the vertex partition.
Then all vertices in V' (H)\V (Q) are 4es-typical with respect to the new partition. We
use Lemma 3.6 to derive the following.

Lemma 3.7 Assume (2.1), (2.2) and (2.3) hold. Let X be a set of 4es-typical vertices
with m = |X| > cn, where c is a constant. Suppose {xy,x1,x,} and {x;,x|,x,} are
two disjoint (4es, 62/4, e;/z)—lypical triples disjoint from X. For sufficiently large n
and sufficiently small ¢, there exists a sequence of vertices XoX1X3X3 « -+ Xpmi2Xm+3 (=

X5)Xma(= X)) Xmis(= X)), such that all {x;,x;11,x;+2} are (4es, 63/4, 6;/2)—lypicalf0r

0<i<m+3and X = {x3,x4, ..., Xmi2}.

Proof Construct a 3-graph Gy with vertex set V' (Gy) = X U {x,} and edge set
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E(Gy) = {xuv : {u,v} C X such that {xp,u, v}, {x1,x2,u}, {x], x5, viand{u,v,x,}

are eé/z-typical} U{uvw : {u,v,w} C X is (4es, 62/4, e;/z)-typical}.

We show that 0;(Gy) > %(r;) Since the pairs {x;,x,} and {x},x}} are e§/4—

/ /

typical, each of them belongs to at most 26; “n e; 2-atypical triples in X (by

1/4
Claim 2.9); so there are at least (m_;% n) pairs of {u,v} such that
{x1,%2,u}, {x},x5,v} are e;/ >_typical. The number of e;/ *_atypical triples containing
1/2

Xy or X, is at most 2 -3 -4es’n* (by Claim 2.8 as they are 4es-typical). Thus,
1/4
dg, (x2) > (m - ;65 n) — 24t n? > %(’;) because m = |X|>cn. Since all

vertices in X are 4¢s-typical, by Claim 2.6 and 2.8, the number of eg/ 4-a‘[ypical pairs

/ 4n, and the number of

2
Pp2,

in X containing a fixed 4es-typical vertex is at most 2 - 46;

eé/ 2-a‘[ypical triples in X containing a fixed 4es-typical vertex is at most 3 - 46;

Thus, for any vertex uckX, we have

dg, (1) > <’;) — 16y *mn — 12¢¥*n? > %(’3)
Since |V (Gx)| = m + 1 and m > ¢n, by Lemma 3.6, Gy has a Hamiltonian cycle.
So we can find a Hamiltonian path in Gy, say Py = xpx3--- X2, such that
X1,X2, X3}y {Xma1, Xmi2, x5t and {x,,12,x5,x|} are e;'“-typical. Hence, we obtain a
4} and {2, } are cl/*-typical. H btai
sequence of vertices

XOX1X2X3X4 " * X4 2Xm+3 (= X ) Xmr4 (= X )Xy, 45 (= X5),

where {x;,x;11,Xi+2} 18 eé/z-typical for0<i<m+3and X = {x3,x4,...,Xpn42}. O
Now we are ready to prove the following lemma, which implies Theorem 3.1.

Lemma 3.8 Suppose that H contains a path Q = axaay - - - bob1 by of length at most

en such that

o {ao,a1,ar} € AAA4 and {by,by,b,} € BBB, and both are (2¢,,2¢,,2¢3)-typical;
o every vertex of V(H)\V(Q) is 4es-typical.

Then Q can be extended to a Hamiltonian path in 'H.

Proof We use typical edges to connect all remaining vertices in H. Note that all
vertices in V(H)\V(Q) are 4es-typical, but with respect to a (possibly) slightly
modified partition, still denoted by (4, B), in which the two sides may differ in size
by at most 10eon. Let A" = A\V(Q) and B' = B\V(Q) and let m; = |A'| and
my = |B'|. Without loss of generality, suppose m; <m,. Then m; >n — Seon —
en>n—26e8n and my —my <2en.

First, we label the vertices in B’. Since all vertices in B’ are 4es-typical and
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|B'| = my >n — 2€’n, there exists a (4es, 62/4, eé/z)—typical triple {byy, By 15 by 12 }

such that by, by,11,bm+2 € B'. Applying Lemma 3.7 to {bo,b1,br},
{bmy, biy+1,bmy+2} and B\{by,, by, +1,bm,+2}, we have a sequence, denoted by
Py = boby -+ by,2 such that {b; b1, bis} is ey *-typical for 0<i<m, and
B' = {b3,bs,...,by,+2}. Construct an auxiliary bipartite graph I's between 4’ and
By, where By = {b,,bs, ..., b3, 1} with p; = Lsz%J such that for any a € 4’ and
b; € By, ab; € E(I'p) if and only if

a € N(bi_2,bi—1,b;) NN (bi—1,bi,biy1) N N(bi, biy1, biva) NN (i1, bita, bivs).

Observe that if we find a matching in I g, then we find a path in H similar to paths in
Ho. Since {b;, bi1,biy2} (0<i<my) is typical, dr,(b) >0.99m, for all b € B'; so at
least 0.9m; vertices a € A’ have degree dr,(a) >0.9p;. We need to deal with the
vertices in 4’ of small degree since vertices of larger degree can be included in a
matching of T's. Let Ay, ={a €4 :dr,(a)>09p1}; so |Apg|>0.9m;. Let
Asman = A'\Apig. We claim the following.

(1) There exists a path Py, in H such that Aguay C V(Prp) NA C {ag,a1,a2} U
A,V (Pywp) NB C B’ and one end triple of Py, is apa;as.

Let t:= [3’"“%'”2}, then % <t< w. Since
(1 —2)n<my <my<(1+¢e)n, we have 0.24n <t<0.25n. Let As be a subset
of A" such that A,y CAs and |4s| =3t —3>0.7n. Note that
| Asman| <0.1m; <3t — 3, ) we can find such Ag. Since
|A"\As| = m; — (3t — 3) >0.2n, there exist as;, asi1,a32 € A\As such that
{a3t7a3t+17a3l+2} is (465762/476é/2)-typica1‘ We apply Lemma 3.7 to {a07a17a2}a
{as;,asi11,a342} and  As. Then there exists a sequence of vertices
aApa1ayas. . .az—1a3,a3,41a342, such that {a;,a;11,a;,} s eé/z-typical and
Asman € As = {as,aa,...,a3,_1}. Construct another auxiliary bipartite graph I’y
between A, and B”, where 4, = {ay,as,..., ax—1} and B” is the set of the last
p>» = [0.3m ] vertices of P, i.e., B” = {by,+2,Dm41,- -, bm,+3-p, }. For any a; €
Ay and b € B, a;b € E(T'4) if and only if

b € N(ai-2,ai-1,a;) " N(ai_1,a;,a;11) NN(a;,ai1,ai12) N N(Giy1, @iva, aivs).

Again, since {a;,a;1,a;:2}(0<i<¢) is e;/z—typical, dr,(a) >0.99p, for all a € Ay;
so at least 0.9p, wvertices b€ B’ have degree dr,(b)>0.9t. Let
Bpig = {b € B" : dr,(b) >0.9t}. Then |Bpig| > 0.9p7 >t (since
t< W <0.26m; <0.9 - [0.3m; | = 0.9p, for sufficiently large n). We choose a
set B C By, of size |B| = t. Consider the subgraph I, = I'4[4> U B]. Since |4,| =
|B| =t and all vertices in 4, and B have degree at least 0.9¢ in I",, there exists a
perfect matching in I'), by Dirac’s theorem. The perfect matching forms a path in M,
denoted by
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Pyop = aparasbiazasasby - - - az1by. . .,

where a3;_1b; € E(T'y). Note that the end of Pyop, possibly az;_3a3,_2a31b; or
3423, 1b;a3; OF az,_1bya3a30,1 OF byazazsy a0, is determined by the numbers m,
and mj,. This proves (1).

We now show the following claim.

(2) There exists a path P in H such that
V(Pzig) N4 = A/\V(Ptop)7 V(Pzig) NB = {by,b1,b} U B'\V(Ptop), and one
end triple of P, is bob1b;.

Consider Pg, = bob1b,...by, 12—, and V(Pp ) = V(Pg)\B". Since all vertices in
B, .= B"\B are 4es-typical and |By| =p, —1>0.04n, there exist vertices
: 3/4 12
Bry—ts Oy 11> By 42—, € Bo such that {b, .0, ., b, , }is (465765/ v€5/ )-
typical. We extend Pp, by applying Lemma 3.7 t0 {bu,—p,, bmst1-pys Prmst2—ps
10, i bt 150,40}, and B\{b, b, . b, ., }. Hence, we obtain
byb\by. . by, o, such  that bj’- =b, for all 0<j<my+2-—ps,
By ={b}, 15 pyse- s Do y}> and  {b b, b},} s eé/z-typical for any
0<i<my —t.

Similarly, construct an auxiliary bipartite graph I';, with partition classes 4, Bs,
where 4 = A\V(QU Py,) and By = {b},b5,..., b5, |} with p3 = |23 We
choose the end triple for Py,, to make |4| = |B3|. For any a € 4 and b} € B3, ab; €
E(T',) if and only if

ac N(b;—27b;—l7b;) mN(b;—hb;? b;H) ﬂN(b;, b;+1=b§+2) nN(b;'+l7b;+27b;+3)'

We know dpr (b)>0.99ps for all b€ Bs. Since Agman € V(Prop), A C Apjg and
dr,(a) >0.9p; for each ac€A. Hence,
dr, (a) >0.9p; — [5]>0.3my — 0.1m; > 0.8p3. Therefore, 6(I'y) > 0.8p3. By Dir-
ac’s theorem, I'; has a perfect matching, which forms a path in H, denoted by

ol ! ! —
Puig = bybybyarbyb,bsaz - - - by, ap,. .,

where @;by; | € E(I'p).
Now, QU Py, U P 1s a Hamiltonian path in H. O

4 Hamiltonian Cycles

In this section, we prove the following

Theorem 4.1 There exists g > 0 such that, for sufficiently large n and any 4-graph
H on 2n vertices with b(H) < eon* the following holds: If 63(H) >n — 1, then H has
a Hamiltonian cycle.
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The proof of Theorem 4.1 proceeds along the lines of the proof of Theorem 3.1,
except that to get a Hamiltonian cycle we will need a second bridge. Suppose we
have two disjoint bridges M; and M,. The arguments for taking care of medium and
anarchist vertices are essentially the same as in the proof of Theorem 3.1. So we have
a path Q which contains M; and all remaining medium vertices, and is disjoint from
M. Letny = [A\V(QUM,)|,n, = [B\V(Q UM,)|, and let m = 212218 When m is
an integer, we may apply the following variation of Lemma 3.8, whose proof
basically repeats the proof of Lemma 3.8 with just minor modifications.

Lemma 4.2 Suppose that H contains a path Q = axaay - - - bob1 b, of length at most
e*n and a bridge M, = dya\aly- - - byb| b, such that

. V(Q)NV(My) = 0

. M= 3}’!]78}’124»6

o all end triples {ag,ai,az}, {bo,b1,b2}, {ay,d\,ds} and {bj,b|,b)} are
(2€1,2¢€,2€3)-typical;
o« every vertex of V(H)\V(Q U M,) is 4es-typical.

Is an integer,

Then QU M, can be extended to a Hamiltonian cycle in H.

Proof Let A'=A\V(QUM,) and B =B\V(QUM,). 1t follows that
|A'| =n1,|B'|=n,. We build a top path P, with V(Py,)NA4C
{ag,a1,a2,d, d},ap} U A’ and V(Pwp) NBC B such that
|V (Piop) NA| =3(m + 1), |V (Prwp) N B| = m, and Py, connects two 444 end triples
of O and M, ie., apaja, and a,aja,. Then, we use P, with V(P,,)NA =
A'\V (Pyp) and V(P.ig) N B = {bg, b1, by, b}, b, by} UB'\V(Pyp) to connect bob b,
with  bbiby. Note that |V(Pye)NA|=n —B3(m+1)—6)=m and
|V(P:ig) NB| =6 +ny, —m=3(m+1). Therefore, QUM,UP,, UP,, is a
Hamiltonian cycle in H.

To construct Py,,, we apply Lemma 3.7 to {bg, b1, b2}, {0}, b}, by}, and B'. We

obtain a sequence of vertices bob1b,b3 - - - by, 1264, 43(= b5) by, a(= b)) by, 15(= by),
where  {b;, b1, biia} is  (des,ert es/*)-typical for 0<i<m +3 and
B = {b3,b4,...,by,12}. Consider a bipartite graph I's between A’ and By, where
B, = {bz, b5, .. ‘?b3p1—1} Withpl = L%J For any a < A" and b; € By, ab; € E(FB)

if and only if
a € N(bi—2,bi—1,b;)) "N (bi—1,bi,bi1) "N (bi,bit1,bir2) NN (bit1, biy2, biv3).

By the typicality of all triples, dr,(b) > 0.99n; for any b € By, and there are a lot of
vertices in 4’ having large degree in I's. We partition A" = Apig U Agmau, Where
Apig ={a € A" :dr,(a) >09p,}. Then |Agpan| <0.1ny <3(m — 1). By Lemma 3.7
again, there exists a sequence of vertices ayaa2as. . .A3m—2a3m—1A3m (= a5)azm+1 (=

/

a)) asmi2(=ap), such that{a;,a;11,ai2} 1is eé 2—typical for 0<i<3m and

Asmall g {613,614, e ->a3m—l}-
Consider a bipartite graph Iy with partition classes A,,B”, where A, =

@ Springer



Graphs and Combinatorics (2022) 38:122 Page 19 of 26 122

{az,as, ..., a3y} and B” is the set containing the last p, = [0.3n; | vertices of B/, i.
e, B ={by+2,bn+1,---, buy43—p,}. Then we can find a perfect matching in

['4[42, B, where B is a subset of B” and |B| = |45|. Therefore,

Ptop = aoalaZb_la3a4a5b_2a6 o 'a3m—lEa3m(: alz)a3m+1 (: a’l)a3m+2(: 06)-
For the remaining vertices, we use a similar step in the proof of Lemma 3.8 to find
P.ig, and QU M, U P, U Pj; is a Hamiltonian cycle in H. O

Since Lemma 4.2 has some requirements on the number of vertices in 4\ V' (Q U
M,) and B\V(Q U M,), the above proof works only if m € N. When m is not an
integer, we use a good set defined below. Here, we will consider the order of sets in
V1V, V3. For example, AAB and ABA are different.

Definition 4.3 For a 4-graph H, let 4, B be a partition of V' (H).

o The difference of a path P in H with respect to 4,B is the number p* =
3|V(P)NA| — |V(P)NB| (mod 8).
« An (€], 6,6 )-switcher is a path S, which contains no es-anarchists, has two

(€1, €2, €3)-typical end triples type of BAA4 and A4A4 or type ABB and BBB, and has
nonzero difference.

« A set X of vertices in V' (H) is called good if |X| <1600 and X does not contain
any es-anarchists of H, and, for any number a € {0, 1,2, ..., 7}, there exists two
disjoint bridges M; and M, such that V' (M), V(M,) C X and m| + m} = a (mod
8) where m is the difference of M; fori =1,2.

Note. Given two disjoint (1, €, €3)-bridges R; and R», let 7} be the difference of
R; for i =1,2. By Claim 2.11, we can connected any two (€, €2, €3)-bridges to
obtain a path with both end triples in 444 or in BBB. For example, the BBB triples of
the two bridges can be connected by two vertices in 4 and three vertices in B (these
vertices are from the vertex set 7 by Claim 2.11), and we have a path with both end
triples in 44A. Adding some vertex from B to one end of this path to make it have an
(€1, €2, €3)-typical end triple of type BAA, we can obtain a path P with difference
ri+7r5+2 and both end triples are (€,e,€3)-typical. Therefore, if
ri + 15 # 6 (mod 8), Ry and R, can form an (e, e, €3)-switcher with difference
ry+ry + 2.

If there exists a good set X in ‘H, then firstly, make a small modification of the
partition of V(H) by transferring all es-anarchists to the other side, denoted by
(4", B"). Since X is good, we can find two disjoint bridges M, and M; in X to make
3 78"/2% an integer, where n| = |[A'\V (M, UM,)| and n} = |B'\V (M, U M,)| (We
can do it since X does not contain any es-anarchists of H). Next, by the proof of
Lemma 3.5, there is a path O,,, connecting all es-medium vertices in A"\ V' (M, U M)
and a path ., connecting all es-medium vertices in B'\ V' (M; U M,). By Claim 2.11,

using M; connects Oy, and Q.;; to get a path O whose end triples are 444 and BBB,
t 3n1—m+6
8

and both of them are (€, €;, €3)-typical. It can be checked tha is an integer
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when w an integer, where n; = [A'\V(QUM,)| and n, = |B\V(Q U M,)|.

(This is because Q — M| contains two paths O; and O, such that all edges of Q; are

AAAB edges and Q) contains 3x vertices in A" and x vertices in B’ while O, of which

all edges are ABBB edges contains 3y vertices in B’ and y vertices in 4’ for some

integers x and y.) Finally, by Lemma 4.2, we can find a Hamiltonian cycle in H.
So the key is to prove the following lemma.

Lemma 4.4 For any 4-graph 'H, let A, B be a partition of V(H) and assume that
(2.1), (2.2), (2.3) hold. Then H contains a good set X.

Next, we introduce a special type of edges, called seed. It is used to find a good set
X.

Definition 4.5 A quadruple of vertices (a,d’, b, w) is called a seed if

« adbwe€ E(H),
o {a,d b} is (e, €, €3)-typical, and
e« WE Bis es-typical.

Similarly, a quadruple of vertices (b, b’,a,w) is called a seed if

« bbaw € E(H),
o {b,b,a} is (€, ¢€,€3)-typical, and
« WEAIis es-typical.

Claim 4.6 Let K C V(H) with |K| <en. Given two disjoint seeds not intersecting
with K, (a;, d}, bj,w;), i = 1,2, we can build a K-avoiding (¢, €2, €3)-switcher of odd
difference and at most 100 vertices. Analogically, two disjoint seeds not intersecting
with K, (b;,b.,a;,w;), i=1,2, give a K-avoiding (e, €, €3)-switcher of odd
difference and at most 100 vertices.

Proof For the simplicity of the proof, we do not involve K in our proof. But all
vertices we need to choose in the following paragraphs can be chosen from the vertex
set not intersecting with K as the size of K is small.

Since w) is es-typical and d3(H) >n — 1, we can extend the edge a;a}byw) to a
path P = a;d|bywiu;vy, such that {u;,v,} is an (e, €2)-typical pair, {wy,u;,v,} is
an e;/z-typical triple and {by,u;, v} is (€1, €2, €3)-typical. If u;v; € A4, then there
exist three € -typical vertices ay,af, b such that all triples {ar, a1,d}}, {ui,vi1,a}
and {v;,a,b}} are (e, €, €3)-typical. Hence, S = a@ya;a}bywiu;viab] is a path
with both ends in 444 and AAB, and then S is a switcher with s* = 7.

Otherwise, u;v; € BA, or uyv; € AB, or u;v; € BB. Similarly, extending the seed
aabyw to a path P = a,abywiu;vi, we can find an (€1, €3, €3)-bridge Ry, R, or R;
with ¥} = 6, 75 = 7 or r; = 5, respectively. We repeat the same construction on the
second seed to get P’ = axabbywrunvy. If we cannot get a switcher with odd
difference, then there exists an (e, €;, €3)-bridge obtained from the second seed, R,
or R}, or R, with (r])" =6, or (r5)" =7, or (r;)" =5, respectively. By applying
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Claim 2.11, we can use these two (e, €, €3)-bridges R; and R!, i,j € {1,2,3}, to
form a switcher with odd difference.

If the differences of these two bridges have different parity, connecting these two
bridges results in a switcher with odd difference. Now assume the difference of these
two bridges have the same parity.

Suppose there are two bridges R;, R, with even difference 7| = r; = 6. Then
uivi € BA and urv, € BA. If I8,

a1 wy > 2, then we have a path b a,a)w b u;v;, where
by € Band {b},a;,d}} is (€1, e, 63) -typical; this path can be extended to a bridge R

with difference r* = 3. If Iﬁla " % consider the path biaa\wia] where af € 4 is

€1-typical. Extending this path, we can get either a switcher with difference 5, or a
bridge with difference 5.
Now assume there are two bridges Ry and R, with odd differences. Then u;v; €

AB or BB fori=1,2.If 121 b , We may assume u;v; € AB; otherwise we obtain

a switcher with odd difference. If lfla, " > %, then ajaywbju;v) can be extended to a
1

bridge with difference 4. Connecting this bridge with R, gives a switcher with odd

difference. We may assume 1;4 o > 2 2 Then | La - N Lﬁ - | > 2 Tn this case,

there exists @ € 4 such that a € N(al,a1 ,wi) N N(a1 : bl,wl) and the pair {a, w, } is
e/ 4—typical If lA wa > 3> We have a switcher with difference 5 by the path

biaid\wia. If la, the path a,b,a}w;a gives a bridge with even difference 2,

wia — 2’
which also glves a switcher with odd difference by connecting it and R,.

If lf ' by, , we may assume u;v; € BB for all possible choices of u;v;; otherwise

we can obtaln a bridge with even difference. Consider the path P; = aba\wyu;. If

Zf _— > 4, we extend P to a bridge with difference 0. We may assume IaA iy 2 %”

and hence ZAB o 25 w , as there are at least 2?” possible choices of u; € B. Let

= {ab € L :{d},a,b} is (€1, e, €3)-typical }. Since a) is e -typical and
ZAB > ]F| > . We know that (a),a,b,w) is a seed for any ab € F. Then for
all poss1ble aée A with ab € F' (the number of such vertices is at least §), we may

assume ZaAfjl > ”3—2 Otherwise we have a switcher with odd difference by the above

analysis. Hence, /4% > ”3—2 il 4, contradicting the fact that w; is es-typical. (]

We know that connecting a bridge with a switcher forms a new bridge with
different difference. If there are two given disjoint bridges with small lengths,
switchers can help construct a good set. By Claim 4.6, a lot of pairwise disjoint seeds
give many switchers with odd differences. In the proof of Lemma 4.4, we explore
when H contains many seeds or not and this completes the proof of Theorem 4.1.

Proof of Lemma 4.4 First, we claim that for sufficiently small € > 0, H contains two
disjoint (e€j, €2, €3)-bridges M; and M, with |V (M;)| <25 fori=1,2.

We repeat the proof of Lemma 3.3 to build the first (1, €;, €3)-bridge M, and find
two (€1, € )-typical pairs {aj,a>} and {by, b, }. If aja,b1by € E(H), we can extend
this edge to a bridge. If ajab1by & E(H), then there exists a vertex z €
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N(ay,az,b1) N N(ay,by,by) such that we can extend aya zb b, to an (e, €, €3)-
typical bridge.

To build the second bridge, find two (e, €;)-typical pairs {a},a5} and {b},b}},
such that if ¢|a)b|b, ¢ E(H) then a;,ay, by, b, are not contained in the common
neighbors of {d/, d}, b} } and {d|, b}, b} }, in order to get disjoint bridges. We can do
it since these vertices a;,ay, b, and b, are €;-typical, by Claim 2.8, there exists an
(€1,€)-typical pair {a|,b}}, such that all triples {da|,b},ai}, {d},b},a},
{d},b),b1} and {d),b},b,} are es-typical. Then we know d4(a, b}, b;) <e3n and
dp(a), b, a;) <esn for i = 1,2. By Claim 2.6, we find two vertices a5, b’, such that
{d|,d,} and {b}, b} } are (), €2)-typical pairs and for i = 1,2, dbab\b; ¢ E(H), and
bibia\a; ¢ E(H). Similarly, if aba|b\b, € E(H), b,b|d\d, can be extended to an
(€1, €2, €3 )-typical bridge M, and M| N M, = (), since 5(H) > n — 1. Otherwise, there
exist two  vertices 7,z different  from  ay,ap,by,b,  satisfying
Z,Z) € N(ay,dy,by) NN (b, b}, d)). Without loss of generality, suppose z' # z, then
ahaZ b bl can be extended to a (e, €2, €3)-bridge M, such that M, N M, = (). So in
any case, there are two disjoint (€, €;, €3 )-bridges M; and M, in H with |V (M;)| <25
fori=1,2.

Case 1. All vertices in B are es-typical (or all vertices in 4 are es-typical).

We may consider the case when all vertices in B are es-typical. Let
V' :=V(M, UM,). It suffices to show that H has fourteen pairwise disjoint seeds
of type (a,d’, b, w) that are also disjoint from V. Then by Claim 4.6, every two such
seeds can form a switcher with odd difference. Hence, we can obtain seven pairwise
disjoint switchers and each has odd difference.

Since all b € B are es-typical, we have /448 <esn®. Consider the set of triples
E =Upepnp L3*8. Since |V'| <50, we have |E| <50esn® and, thus, by Corollary
2.10, there exists an (ej, €, €3)-typical triple {a;,a},b;} such that a a}b; ¢ E and
ap,dy,by € V'. Let w; € Ng(ay,d),b;); the existence of w; follows from (2.1). By
the definition of E, w; & V. So we get a seed (a1, a), b1, w;). Assume that we have
produced i — 1 seeds, (a;,a;, bj,w;), forj=1,...,i — 1. Set

AA A A A4
Ey = EU(LPuLy®) - u (Lt u L)

and note that |E; || <100esn® if i<15. Similarly as before, we can find an
(€1, €2, €3)-typical triple {a;,d,b}} such  that  aalb; ¢ Eiy and
aidi, by  V'U{ay,d\,by,wi}U---U{ai_1,a._,bi_1,wi—1}. We can also find
w; € Ng(a;, d}, b;) such that a;,a’,bl,w; is a seed. So there are at least fourteen
pairwise disjoint seeds and, applying Claim 4.6, we can form seven pairwise disjoint
(€1, €2, €3)-switchers with odd differences. For any a € {0,1,2,...,7}, we can find
some numbers from those seven odd differences such that the summation of them is a
(mod 8). In particular, for the case a = 0, we do not use any switchers. Let V" denote
the set of all vertices of these seven switchers. Then V/ U V" and a small number of
es-typical vertices, which are used to connect bridges and switchers, form a good set
in H.

Case 2. There exists an es-anarchist in H.

By Claim 2.3, all vertices in one side are 3es-typical. Then a similar proof
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argument as in Case 1 completes this case.

Case 3. There exists an es-medium vertices in H and H doesn’t contain any es-
anarchist.

We may assume there are at least two es-medium vertices, otherwise we get back
to Case 1. If there are at least 28 pairwise disjoint seeds in 7 that are also disjoint
from V' = V(M; U M,), then there exist at least 14 pairwise disjoint seeds of the
same type. Then we can find a good set X by Claim 4.6 and the argument in Case 1.
So we may assume that the number of pairwise disjoint seeds is less than 28. Let V
denote a maximal set of vertices containing pairwise disjoint seeds in H — 7’ and let
V.» denote the set of es-typical vertices in V. Then all vertices in V' := V; U V,, are
es-typical. Let Vy =V N4 and Vg =V NB. Then |V, <2-25+2-28 = 106 and
|Vp| <2-25+2-28 =106 (by |M;| <25 for i = 1,2 and the fact that each seed
forms an AABB edge).

Let EA = UaEVA LﬁBB, EB = UbEVB ngAB. Then |EA| é 106651’13 and ’EB‘ S 106651’13
since all vertices in Vare es-typical. Let T be a set of quadruples (a;, a;, by, b;) such
that both {a;,a;,br} and {a;, by, b;} are (e1,€,€3)-typical triples, a,a;by & Es,

ajbyb; ¢ E4 and a;,a;,bi,b; ¢ V, where a; # a; € A and by # b; € B. By Corol-
lary 2.10, H contains at most e4n® (€1, €2, €3)-atypical triples. So |T| >n2(n — 1) —
2 eqnd - (n—1)—2-2-106esn® - (n — 1) =2 - 106 - n(n — 1)* > 2.

For any (a;,a;,br,b;) € T, a;,a;,bi,by € V' UV, (by the definition of 7) and
a;a;bib; ¢ 'H (by the maximality of V). Since a,a;bib; ¢ 'H, it follows from the proof
of Lemma 3.3 that |[N(aj, bi, b)) N N(a;,a;,br)| >2. Now we claim that for each
vertex v € N(aj, by, by) N N(a;, a;, by), either v € V' U ¥ or v is es-medium. Suppose
v V' UV and v is not es-medium. Then v is es-typical, and hence, if v € B then
(a;,aj, bi,v) is a seed disjoint from V' U ¥V, and if v € 4 then (by, by, a;,v) is a seed
disjoint from ¥V’ U V;. This contradicts the maximality of V. Since the number of es-
medium vertices in H is at most 8¢p/esn and |V’ U V| <225+ 28 -4 = 162, the
number of all possible vertices in N (a;, by, b;) N N(a;,a;, by) for all (a;, a;, b, b;) €
T is at most 8¢y /esn + 162 < 613—(’)“. Therefore, we can find a vertex u, such that at least
i jen = 50 quadruples (a;, aj, by, by) satisty u € N(a;, aj,b) NN (a;, by, by). Since
|N(aj, b, b)) N N(a;,aj,br)| > 2, we can find two such vertices u, v by applying
Pigeonhole principle twice.

Next, we claim that for each integer i € I = {0, 3,6, 7}, u is contained in a bridge
U; with difference i, and v is contained in a bridge V; with difference i. Moreover,
(Uier V(U) 0 (Uier V(7)) = 0.

Without loss of generality, we may assume u € B. (The proof for the case when
u € A4 is analogous.) Construct an auxiliary bipartite graph G with partition classes
Y, Z, where Y = {(a;,q) : ai,a; € A,a; # a;} and
7 = {(bk, b]) . bk, b[ € B, bk 7é b[}, and (ai, aj) ~ (bk, b[) if and only if
(a1, aj, by, by) € T and u € N(a;, a;,b) NN (a;, by, by). Then |E(G)| > 32 > 8n® and
the average degree of G is at least 8n.

Note that every graph H contains a subgraph D, of which the minimum degree is
at least half of the average degree of H. Hence there exists G’ C G such that
0(G")>4n. In G, dg((aj,az))>4n for (ay,a;) € V(G')NY. There exist
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(b],b3), (bz,b3> € V(G/) NZ such that (al,az)(bl,b3), (al,az)(bz,b3) S E(Gl)
with by # by; otherwise dg ((a1,az)) <n. Since dg((b2,b3))>4n, there exists
(asz,as) € V(G') N Y such that (a3,a4) € Ng/((b2,b3)) and a3, a4 & {a1,a,}. Hence,
we have

uc N(al,az,bl) ﬂN(az,bl,b3) ﬂN((ll,az,bz) ﬁN(az,b27b3) ﬂN(a3,a4,b2)
ﬁN(a4,bz,b3).

Now the path a;b1a,ubsbya4 can be extended to a bridge with difference 0 by Claim
2.11. Similarly, the path bya;a,ub,bsa4 gives a bridge with difference 3 and the path
asasbrubsay by gives a bridge with difference 6.

To obtain a bridge with difference 7, we consider another bipartite graph H with
partition  classes U, W, where U ={(a;,b;):a;€ A,by € B} and
W ={(a;,b;) : aj € A,b; € B}, and (a;, br) ~ (a;,b;) if and only if (a;,a;, b, b;) €
T and u € N(a;,a;,br) N N(a;, b, b;). Then |E(H)|> 56%3 > 8n° and the average
degree of H is at least 8n. Similarly, for some (a;,b;) € U, there exists
(a27b2),(a3,b3) ew such that ar 7é a3,dH((a2,b2)) >4n and
(ay,b1)(az,by), (a1,b1)(as,bs) € E(H). Since dy((az,by))>4n, there exists
(as,bs) € U such that (a4, bs) € Ny((az,b,)) and by # by. Hence, we have

uec N((ll,(lz,bl) mN(az,bl,bz) ﬂN(al,ag,bl) ﬂN(az,b4,b2).

The path asa;bjuaybybs results in a bridge with difference 7.

To summarize, we found four bridges with difference 0, 3, 6, 7 respectively, and
all contain u. Let V] be the set of vertices of these four bridges. Since each bridge is
obtained by extending a path with 7 vertices and both end triples (e, €, €3)-typical
by the application of Claim 2.11, it has at most 7 + 2 - (12 — 3) = 25 vertices. Then
|V]] <4 -25=100. Repeat the same argument for v, we find four bridges with
difference 0, 3, 6, 7 respectively, and all are disjoint from V] and contain v. We
complete the proof of this claim.

Now we find a good set X. Let V) be the set of vertices of such four bridges
containing v. We can choose one bridge M, containing u and one bridge M, con-
taining v to make w an integer where n| = [A\V (M, UM,)| and
ny, = |B\V (M, UM,)|, since

0+0=0(mod 8); 3+ 6= 1(mod 8); 3+ 7 =2(mod 8); 0+ 3 = 3(mod 8);
6+ 6 =4(mod 8); 6+ 7 = 5(mod 8); 0+ 6 = 6(mod 8); 0+ 7 = 7(mod 8).

Therefore, X = V] UV} is a good set in H. O

5 Concluding Remarks

For the case when |V (H)| = 2n + 1, choose a partition 4, B of V(H) with |4]| =
n+ 1 and |B| = n and, subject to this, [H(4, 4, B, B)| is minimal. The proof is almost
exactly the same as that of Theorems 3.1 and 4.1, since one extra vertex almost does
not make any difference here. Theorem 1.3 will become the following
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Theorem 5.1 There exists €y > 0 such that, for sufficiently large n and any 4-graph
H on 2n + 1 vertices with b(H) < eon*, the following hold.

(i) If03(H)>n — 1, then H has a Hamiltonian path;
(i) If 05(H) > n, then 'H has a Hamiltonian cycle.

Thus, if a 4-graph H with n vertices is close to extremal graph H, and its
minimum co-degree is at least |“51|, then H must contain a Hamiltonian cycle. It
remains to consider the other case, that is, when H is far from H,.

Conjecture 5.2 For all ¢ > 0 there exists ¢; > 0 such that, for sufficiently large n
and a 4-graph on n vertices, if b(H) > cn* and 63(H) > (1 —c|)% then 'H has a
Hamiltonian cycle.

Conjecture 5.2 is equivalent to Conjecture 1.1 for k£ = 4. It is likely that this case
requires the use of absorption technique that Rodl, Rucinski and Szemerédi [15] used
to prove the case of 3-graphs.

On the other hand, using the tools in this paper, one might ask if Theorem 1.3
holds for k-graphs with k£ > 5.

Conjecture 5.3 There exists €y > 0 such that, for sufficiently large n and any k-
graph H on n vertices with b(H) <eon* the following holds: If 5;_i(H) > ==,
then 'H has a Hamiltonian cycle.
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