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Abstract
In 1999, Katona and Kierstead conjectured that if a k-uniform hypergraph H on n
vertices has minimum co-degree bn!kþ3

2 c, i.e., each set of k ! 1 vertices is contained
in at least bn!kþ3

2 c edges, then it has a Hamiltonian cycle. Rödl, Ruciński and Sze-
merédi in 2011 proved that the conjecture is true when k ¼ 3 and n is large. We show
that this Katona-Kierstead conjecture holds if k ¼ 4, n is large, and V ðHÞ has a
partition A, B such that jAj ¼ dn=2e, jfe 2 EðHÞ : je \ Aj ¼ 2gj\!n4 for a fixed
small constant ![ 0.

1 Introduction

A classical result of Dirac [3] states that any graph on n vertices with minimum
degree at least n/2 contains a Hamiltonian cycle, and Kdn2e!1;bn2cþ1 shows that this is
best possible. However, paths and cycles may be defined in several ways for
hypergraphs [1, 5, 8, 10, 11].

A hypergraph is called k-uniform if every edge of it contains k vertices. For k-
uniform hypergraphs (or k-graphs, for short) with k& 3, we consider paths which are
k-graphs with vertices v1; v2; . . .; vl and edges fvi; viþ1; . . .; viþk!1g,
i ¼ 1; . . .; l ! k þ 1. A cycle is defined similarly with the additional edges
fvi; viþ1; . . .; viþk!1g for i ¼ l ! k þ 2; . . .; l, where for h& l we set vh ¼ vh!l. A
Hamiltonian path (cycle) in a k-graph H is a path (cycle) which is a sub-hypergraph
of H and contains all vertices of H.
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Given a k-graph H and T 2 V ðHÞ
k ! 1

! "
, the neighbourhood of T is denoted by

NHðTÞ :¼ fx : T [ fxg 2 EðHÞg. The collective degree (or co-degree, for short) of T
is dk!1ðTÞ :¼ jNHðTÞj. The minimum co-degree of H is

dk!1ðHÞ :¼ minfdk!1ðTÞ : T 2 V ðHÞ
k ! 1

! "
g.

Katona and Kierstead [10] proved that if H is an n-vertex k-graph with
dk!1ðHÞ& ð1! 1

2kÞn! k þ 4, then H contains a Hamiltonian cycle. In the same
paper, they make the following conjecture.

Conjecture 1.1 (Katona and Kierstead [10]) Let H be a k-graph on n& k þ 1& 4
vertices. If dk!1ðHÞ& bn!kþ3

2 c, then H has a Hamiltonian cycle.

The bound on dk!1ðHÞ is best possible due to a construction of a non-Hamiltonian
k-graph on n vertices with dk!1ðHÞ ¼ bn!kþ3

2 c! 1. We describe the construction for
k ¼ 4. Let H0 :¼ H0ðA;BÞ be a 4-graph with vertex set V ¼ A [ B with A \ B ¼ ;,

jAj ¼ dn=2e and jBj ¼ bn=2c. Its edge set consists of all
jAj
3

! "
jBjþ jAj jBj

3

! "

quadruples of vertices having an odd intersection with A. It is easy to see that if
jAj; jBj& 2 then d3ðH0Þ ¼ bn=2c! 2 ¼ dn!1

2 e! 2 and H0 does not have a
Hamiltonian path. In [15], Rödl, Ruciński and Szemerédi prove that Conjecture
1.1 is true when k ¼ 3 and n is large.

Theorem 1.2 (Rödl, Ruciński and Szemerédi [15]) LetH be a 3-graph on n vertices,
where n is sufficiently large. If d2ðHÞ& bn=2c, then H has a Hamiltonian cycle.
Moreover, for every n there exists an n-vertex 3-graph Hn such that d2ðHnÞ ¼
bn=2c! 1 and Hn does not have a Hamiltonian cycle.

For a 4-graph H on n vertices, let A, B be a partition of V ðHÞ and
HðA;A;B;BÞ :¼ fe 2 EðHÞ : je \ Aj ¼ 2g, and let bðHÞ :¼ min jHðA;A;B;BÞj,
where the minimum is taken over all partitions V ðHÞ ¼ A [ B with jAj ¼ dn=2e
and jBj ¼ bn=2c. We know that if bðHÞ is very small, then H is very “close” to the
H0, see Claim 2.1 below. We show that Conjecture 1.1 holds for these H with small
bðHÞ.

Theorem 1.3 There exists !0 [ 0 such that, for sufficiently large n and any 4-graph
H on n vertices with bðHÞ\!0n4, the following hold:

(i) If d3ðHÞ & dn!1
2 e! 1, then H has a Hamiltonian path;

(ii) If d3ðHÞ & bn!1
2 c, then H has a Hamiltonian cycle.

The bound in (i) is tight because of H0. The bound in (ii) is tight because of H0
0,

where H0
0 is obtained from H0 by adding a new vertex v and joining it to all

n
3

! "

triples of vertices. We can see that (i) is a corollary of (ii). Indeed, for n even the
thresholds in (i) and (ii) coincide. For n odd, however, they differ by 1. Suppose H is
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a 4-graph satisfying the conditions in (i). In order to see the implication in this case,
consider a 4-graph H0 obtained from H by adding a new vertex v and join it to all
n
3

! "
triples of vertices. Then

d3ðH0Þ& d3ðHÞ þ 1& n! 1
2

# $
! 1

! "
þ 1& n

2

j k
¼ ðnþ 1Þ ! 1

2

% &

and by (ii) H0 has a Hamiltonian cycle. After removing v, H has a Hamiltonian path.
We do not determine the optimal value of the constant !0 in the theorem. We only
checked that !0 ¼ 10!20 is sufficient.

For convenience, we will consider only the case when H has an even number of
vertices. The odd case can be treated by some easy modifications and it is discussed
in Sect. 5.

The rest of the paper is organized as follows. In Sect. 2, we study the typicality of
vertices and edges of H as in [15]. The proofs of (i) and (ii) in Theorem 1.3 will be
given in Sects. 3 and 4, respectively. Although (i) is a corollary of (ii), the proof of (i)
given here better illustrates the proof approach of both results without involving too
much technicality. Hence we also provide the proof of (i) here. In the final section,
we offer some concluding remarks.

2 The Typicality of Vertices and Edges of H

Throughout this section, unless there are special instructions, H0 denotes the 4-graph
with V ðH0Þ ¼ A [ B, where A \ B ¼ ; and jAj ¼ jBj, and EðH0Þ consisting of all
quadruples of V ðH0Þ each of which intersects A in precisely one or three vertices.
For a 4-graph H with V ðHÞ ¼ V ðH0Þ, we use notation HðA;BÞ and H0ðA;BÞ to
indicate the partition. We will refer to the edges with exactly three vertices in A as the
AAAB edges, the edges with exactly one vertex in A as the ABBB edges, etc. The
AAAB edges and the ABBB edges will be referred to as the typical edges of H, and
the AABB edges will be called atypical. (The AAAA edges and BBBB edges remain
neutral.)

First we show the following claim which says that if bðHÞ is small and d3ðHÞ is
large, then H almost contains a copy of H0.

Claim 2.1 Suppose H is a 4-graph with V ðHÞ ¼ A [ B, such that A \ B ¼ ; and
jAj ¼ jBj ¼ n. For any c; c1 [ 0, if jHðA;A;B;BÞj\cn4 and d3ðHÞ & ð1! c1Þn,
then

jEðH0ðA;BÞÞnEðHÞj' 1
3
ðc1 þ 4cÞn4 þ Oðn3Þ:

Proof For convenience, let ABB and AAB denote the sets of 3-vertex subset of V ðHÞ
with exactly one and two vertices from A respectively. Then

123

Graphs and Combinatorics (2022) 38:122 Page 3 of 26 122



X

S2ABB
d3ðSÞ ¼ 2jAABBjþ 3jABBBj&ð1! c1Þn ( n (

n

2

! "

and

X

S2AAB
d3ðSÞ ¼ 2jAABBjþ 3jAAABj&ð1! c1Þn ( n (

n

2

! "
:

Summing the above two equations, we have

3jABBBjþ 3jAAABj& 2ð1! c1Þn ( n (
n

2

! "
! 4jAABBj:

Since the number of edges of H0ðA;BÞ is n (
n
3

! "
þ n

3

! "
( n and jAABBj\cn4, we

have

jEðH0ðA;BÞÞnEðHÞj' 1
3
ðc1 þ 4cÞn4 þ Oðn3Þ:

h

From time to time, we also need to deal with hypergraphs whose vertex partitions
are not balanced. Therefore, in the remainder of this section we always assume that
H is a 4-graph on 2n vertices and A, B is a partition of V ðHÞ such that

d3ðHÞ & n! 1; ð2:1Þ

n! 5!0n' jAj' nþ 5!0n; ð2:2Þ

and

jHðA;A;B;BÞj' !0n4; ð2:3Þ

where !0 [ 0 is sufficiently small and n is sufficiently large.

2.1 Classification of Vertices

We follow the notation and the set up in [15]. The link of a vertex v 2 V ðHÞ is
defined as the set of triples Lv :¼ fuwt : uwtv 2 EðHÞg; let LV1V2V3

v :¼ Lv \ V1V2V3

and lV1V2V3
v :¼ jLV1V2V3

v j, where V1V2V3 2 fAAA;AAB;ABB;BBBg. Similarly, the link
of a pair u; v 2 V ðHÞ is defined as the set of pairs Luv :¼ fwt : uvwt 2 EðHÞg; let
LV1V2
uv :¼ Luv \ V1V2 and lV1V2

uv :¼ jLV1V2
uv j, where V1V2 2 fAA;AB;BBg.

In the remainder of this section, vertices a and ai (respectively, b and bi) are
contained in A (respectively, B). From (2.1), we see that
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2lAABa þ 2lABBa & jBjðjAj! 1Þðn! 1Þ and 6lBBBa þ 2lABBa & jBjðjBj! 1Þðn! 1Þ;
ð2:4Þ

and

2lAABb þ 2lABBb & jAjðjBj! 1Þðn! 1Þ and 6lAAAb þ 2lAABb & jAjðjAj! 1Þðn! 1Þ:
ð2:5Þ

The vertices of H are classified according to the values of lABBv and lAABv as follows:

Definition 2.2 For ![ 0 and vertex a 2 A, a is called

● !-typical if lABBa ' !jAj jBj
2

! "
;

● !-medium if lABBa [ !jAj jBj
2

! "
and lAABa [ !

jAj
2

! "
jBj;

● an !-anarchist if lAABa ' !
jAj
2

! "
jBj.

Similarly, for vertex b 2 B, b is called

● !-typical if lAABb ' !
jAj
2

! "
jBj;

● !-medium if lAABb [ !
jAj
2

! "
jBj and lABBb [ !jAj jBj

2

! "
;

● an !-anarchist if lABBb ' !jAj jBj
2

! "
.

We have the following observations:
Observation (i) For clarity, results and proofs below are presented in the balanced

case, when jAj ¼ jBj ¼ n, but they remain valid, except for Claim 2.3, in non-
balanced case with just slightly worse constants.

Observation (ii) By (2.4) and (2.5), if a 2 A is !-typical then

lAABa & 1
2
nðn! 1Þ2 ! 1

2
!n3 and lBBBa & 1

6
nðn! 1Þ2 ! 1

6
!n3; ð2:6Þ

and if b 2 B is !-typical then

lABBb & 1
2
nðn! 1Þ2 ! 1

2
!n3 and lAAAb & 1

6
nðn! 1Þ2 ! 1

6
!n3: ð2:7Þ

Hence each vertex of H only belongs to one of the above three types when n is
sufficiently large.

Observation (iii) Assume (2.2) holds. For sufficiently large n, if a 2 A is an !-
anarchist, let A0 ¼ Anfag and B0 ¼ B [ fag. If (2.2) still holds for A0, B0, then
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lA
0A0B0

a ¼ lAABa ' !jBj jAj
2

! "
' !0jB0j jA0j

2

! "
for some !0 [ !. For any other vertex

v 6¼ a, lV1V2V3
v is changed by no more than maxf jAj

2

! "
;

jBj
2

! "
; jAjjBjg ¼ Oðn2Þ. If

v is !-typical with respect to A, B, say v 2 A, then lABBv ' !jAj jBj
2

! "
and

lA
0B0B0

v ' lABBv þ Oðn2Þ\!0jA0j jB0j
2

! "
. So, transferring an !-anarchist a in A to B

makes a !0-typical with respect to A0;B0, and other !-typical vertices with respect to
A, B are !0-typical with respect to A0;B0.

By Observation (iii), we know that an anarchist acts like a typical vertex on the
other side. We claim that in the case of a balanced partition (A, B) such that
jHðA;A;B;BÞj ¼ bðHÞ, coexistence of an anarchist with an atypical vertex on the
other side is impossible.

Claim 2.3 Suppose jAj ¼ jBj ¼ n and bðHÞ ¼ jHðA;A;B;BÞj. For every ![ 0 and
sufficiently large n, if there is an !-anarchist in B then every vertex in A is 3!-typical.
Also, if there is an !-anarchist in A then every vertex in B is 3!-typical.

Proof For v 2 V , define Iv ¼ lAABv ! lABBv . Then, for a 2 A,

Ia ¼ lAABa ! lABBa ¼ jHðAnfag;Anfag;B [ fag;B [ fagÞj! jHðA;A;B;BÞj;

while for b 2 B,

Ib ¼ lAABb ! lABBb ¼ jHðA;A;B;BÞj! jHðA [ fbg;A [ fbg;Bnfbg;BnfbgÞj:

Thus, for all a 2 A and b 2 B,

jHðAnfag [ fbg;Anfag [ fbg;Bnfbg [ fag;Bnfbg [ fagÞj
¼ jHðA;A;B;BÞjþ Ia ! Ib þ Oðn2Þ:

Here the Oðn2Þ term comes from the edges abuv, where uv 2 NHða; bÞ. Hence, by the
minimality of bðHÞ, we must have

Ia & Ib ! Oðn2Þ:

Suppose that there exists a 2 A and b 2 B such that lABBb ' !
2 n

3 and lABBa [ 3
2 !n

3.
Then by (2.5),

Ib ¼ lAABb ! lABBb ¼ lAABb þ lABBb ! 2lABBb & 1
2
n3 ! !n3

and

Ia ¼ lAABa ! lABBa \
1
2
n3 ! 3

2
!n3 ' Ib !

1
2
!n3;

a contradiction.
The proof of the second statement is analogous. h

123

122 Page 6 of 26 Graphs and Combinatorics (2022) 38:122



The next claim justifies the name “typical” and it shows that the number of
atypical vertices is small.

Claim 2.4 Assuming (2.1), (2.2) and (2.3), for all !0; !1 [ 0, less than 8ð!0=!1Þn
vertices in H are !1-atypical. Among them, less than 5!0n vertices in A and less than
5!0n vertices in B are !1-anarchists, provided !1\1=5.

Proof Let x be the number of !1-atypical vertices in H. Then, since each of these
vertices contributes more than 1

2 !1n
3 edges to jHðA;A;B;BÞj, and every such edge is

counted at most four times, we have

1
4
x ( 1

2
!1n3\!0n4;

which implies that x\8ð!0=!1Þn.
Now, let x0 be the number of !1-anarchists in A. By (2.4), every !1-anarchist a 2 A

contributes at least lABBa & 1
2 jBjðjAj! 1jÞðn! 1Þ ! lAABa & 1

2 ð1! !1Þn3 ! Oðn2Þ
edges to jHðA;A;B;BÞj, and these edges are counted at most twice. Hence

1
2
x0 ( 1

2
ð1! !1Þn3 ! Oðn2Þ

! "
\!0n4;

which implies x0\5!0n since !1\1=5.
The proof of the statement b 2 B is analogous. h

Now we classify the pair of vertices in H by the values lAAuv , l
AB
uv or lBBuv as follows.

Definition 2.5 Fix ![ 0. A pair of vertices

● fa1; a2g is !-typical if lBBa1a2 ' !
jBj
2

! "
;

● fa; bg is !-typical if lABab ' !jAjjBj;

● fb1; b2g is !-typical if lAAb1b2 ' !
jAj
2

! "
;

● fu; vg ) V ðHÞ is ð!1; !2Þ-typical if both u and v are !1-typical and the pair fu; vg
is !2-typical.

Observation. From (2.1),

lABa1a2 þ 2lBBa1a2 & jBjðn! 1Þ;
lABab þ 2lAAab &ðjAj! 1Þðn! 1Þ and lABab þ 2lBBab &ðjBj! 1Þðn! 1Þ;

lABb1b2 þ 2lAAb1b2 & jAjðn! 1Þ:

Hence, if fa1; a2g, fa; bg and fb1; b2g are !-typical, then by definition, we have

lABa1a2 & nðn! 1Þ ! !n2; ð2:8Þ
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lAAab þ lBBab &ðn! 1Þ2 ! !n2; ð2:9Þ

lABb1b2 & nðn! 1Þ ! !n2: ð2:10Þ

Next we show that each typical vertex is contained in a small number of atypical
pairs.

Claim 2.6 Assuming (2.1) and (2.2), for all !1; !2 [ 0, every !1-typical vertex in A
belongs to at most ð!1=!2Þn !2-atypical pairs in AA and at most ð!1=!2Þn !2-atypical
pairs in AB. Moreover, every !1-typical vertex in B belongs to at most ð!1=!2Þn !2-
atypical pairs in BB and at most ð!1=!2Þn !2-atypical pairs in AB.

Proof Let a 2 A be !1-typical. If a belongs to more than ð!1=!2Þn !2-atypical pairs in
AA, then

lABBa [
!2
2
n2 * !1

!2
n ¼ !1

2
n3;

contradicting the !1-typicality of a. Similarly, if a belongs to more than ð!1=!2Þn !2-
atypical pairs in AB, then,

lABBa [
1
2
!2n2 *

!1
!2
n ¼ !1

2
n3;

a contradiction.
The proof of the statement for !1-typical vertex in B is analogous. h

The triples of vertices in H are classified as follows.

Definition 2.7 Fix ![ 0. A triple of vertices

● fa1; a2; a3g is !-typical if dBða1; a2; a3Þ& ð1! !ÞjBj;
● fa1; a2; bg is !-typical if dBða1; a2; bÞ' !jBj;
● fa; b1; b2g is !-typical if dAða; b1; b2Þ' !jAj;
● fb1; b2; b3g is !-typical if dAðb1; b2; b3Þ& ð1! !ÞjAj;
● fu; v;wg ) V ðHÞ is ð!1; !2; !3Þ-typical if each of u, v and w is !1-typical, each of

pairs fu; vg, fv;wg and fu;wg is !2-typical, and the triple fu; v;wg is !3-typical.

Observation. From (2.1),

dAða1; a2; bÞ þ dBða1; a2; bÞ& n! 1;

dAða; b1; b2Þ þ dBða; b1; b2Þ& n! 1:

Hence, if fa1; a2; a3g; fa; b1; b2g; fa1; a2; bg and fb1; b2; b3g are !-typical, then by
definition, we have

dBða1; a2; a3Þ& n! 1! !n; ð2:11Þ
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dAða1; a2; bÞ& n! 1! !n; ð2:12Þ

dBða; b1; b2Þ& n! 1! !n; ð2:13Þ

dAðb1; b2; b3Þ& n! 1! !n: ð2:14Þ

The following two claims show that any typical vertex or typical pair is contained in
a small number of atypical triples.

Claim 2.8 Assuming (2.1) and (2.2), for all !1; !3 [ 0, every !1-typical vertex in A
belongs to at most ð!1=!3Þn2 !3-atypical triples in each type of AAB,ABB and AAA.
Moreover, every !1-typical vertex in B belongs to at most ð!1=!3Þn2 !3-atypical triples
in each type of AAB,ABB and BBB.

Proof Let a 2 A be !1-typical. If a belongs to more than ð!1=!3Þn2 !3-atypical triples
in AAB or more than ð!1=!3Þn2 !3-atypical triples in ABB, then

lABBa [
1
2
ð!1=!3Þn2 * !3n ¼ !1

2
n3 or lABBa [ ð!1=!3Þn2 * !3n[

!1
2
n3;

contradicting the !1-typicality of a. Let x be the number of !3-atypical triples in AAA.
Then by (2.4),

1
2
! !1

2
Þn3 ' lAABa ¼

X

a1;a2 6¼a

dBða1; a2; a

 !

' xð1! !3Þnþ
1
2
n2 ! x

! "
n ¼ 1

2
n3 ! x!3n:

So x'ð!1=2!3Þn2 'ð!1=!3Þn2.
The proof of the statement for !1-typical vertex in B is analogous. h

Claim 2.9 Assuming (2.1) and (2.2), for all !2; !3 [ 0, every !2-typical pair fa1; a2g,
or fa; bg, or fb1; b2g belongs to at most ð!2=!3Þn !3-atypical triples in each of the
four types AAA, AAB, ABB, andBBB.

Proof Let fa1; a2g be an !2-typical pair. If fa1; a2g belongs to more than ð!2=!3Þn
!3-atypical triples in AAB, then

lBBa1a2 [
1
2
ð!2=!3Þn* !3n ¼ !2

2
n2;

contradicting the !2-typicality of fa1; a2g. Let x be the number of !3-atypical triples
in AAA. Since lABa1a2 þ 2lBBa1a2 & jBjðn! 1Þ, we have

ð1! !2Þn2 ' lABa1a2 ¼
X

a6¼a1;a2

dBða1; a2; aÞ' xð1! !3Þnþ ðn! xÞn ¼ n2 ! x!3n;

we have x'ð!2=!3Þn.
The proof of the statement for fa; bg and fb1; b2g are analogous. h
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If jHðA;A;B;BÞj is small, then by Claim 2.4, H does not contain too many
atypical vertices. Next, we claim that the number of atypical triples in H is also
small.

Corollary 2.10 Assuming (2.1), (2.2) and (2.3), for all !0; !1; !2; !3 [ 0 and for every

!4 & 16ð!0=!1Þ þ 4ð!1=!2Þ þ ð!1=!3Þ, every set of at least !4n3 triples in
V ðHÞ
3

! "

contains at least one ð!1; !2; !3Þ-typical triple. In particular, there are less than !4n3

triples in
V ðHÞ
3

! "
which are not ð!1; !2; !3Þ-typical.

Proof It suffices to count all triples fu; v;wg ) V ðHÞ, such that at least one of them
is !1-atypical, or all of fu; v;wg are !1-typical and one of the pairs from fu; v;wg is
not !2-typical, or all vertices are !1-typical and all pairs from fu; v;wg are !2-typical,
but fu; v;wg is not !3-typical.

By Claim 2.4, the number of triples, of which at least one vertex is !1-atypical, is

at most 8ð!0=!1Þn*
2n! 1

2

! "
. By Claim 2.6, the number of triples, of which all

three vertices are !1-typical but at least one pair is !2-atypical, is at most
2n* ð2ð!1=!2ÞnÞ * ð2n! 2Þ * 1

2!. By Claim 2.8, the number of triples, of which all
vertices are !1-typical and all pairs are !2-typical but fu; v;wg is not !3-typical, is at
most 2n* ð3ð!1=!3Þn2Þ * 1

3!.
Hence, the number of all these atypical triples are at most !4n3. h

2.2 Short Paths Between Typical Triples

In this section, we prove that if |H(A, A, B, B)| is small and d3ðHÞ is large then certain
typical triples can be connected by a path of length at most 12. Recall that the 4-
graph H0 ¼ H0ðA;BÞ consists of all AAAB and ABBB quadruples. (Here, we allow
non-balanced partitions (A, B); however, they must satisfy (2.2).) A sextuple of
vertices ðv1; v2; v3; w1;w2;w3Þ is called H0-connected if both fv1; v2; v3g and
fw1;w2;w3g belong to AAV or both fv1; v2; v3g and fw1;w2;w3g belong to BBV. We
can call it an H0-connected sextuple formed by the triples fv1; v2; v3g and
fw1;w2;w3g. Given a set of vertices K, a path P is K-avoiding if V ðPÞ \ K ¼ ;. A
subset of vertices T ) V ðHÞ is said to be H0-complete if EðH½T ,Þ - EðH0½T ,Þ. We
show that for an H0-connected sextuple formed by two ð!1; !2; !3Þ-typical triples,
there is a path in H0 connecting these two triples.

Claim 2.11 Let !0; !1; !2; !3 be sufficiently small and assume that (2.1), (2.2) and
(2.3) hold. Let ðv1; v2; v3;w1;w2;w3Þ be an H0-connected sextuple in H, where
fv1; v2; v3g and fw1;w2;w3g are two ð!1; !2; !3Þ-typical triples. For every set of
vertices K ) V ðHÞnfv1; v2; v3;w1;w2; w3g with jKj' 2

3 n, there exists a subset T )
V ðHÞnðK [ fv1; v2; v3;w1;w2;w3gÞ such that jT \ Aj; jT \ Bj& 5, and T [
fv1; v2; v3g and T [ fw1;w2;w3g are H0-complete. In particular, there exists a K-
avoiding path P in H with at most 12 vertices such that the end triples of P are
fv1; v2; v3g and fw1;w2;w3g and all edges in P are typical.
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Proof We select a set T at random, by choosing each vertex of V ðHÞnðK [
fv1; v2; v3;w1;w2;w3gÞ independently with probability p ¼ 60=n. We will show that
it satisfies all required properties with positive probability.

Let Ev and Ew be the events that the subsets T [ fv1; v2; v3g and T [ fw1;w2;w3g
are not H0-complete, and let E ¼ Ev [ Ew. We claim that

PðEvÞ'P0 þ 3P1 þ 3P2 þ P3;

where P0 is the probability that T is not H0-complete, P1 is the probability that there
exist x; y; z 2 T such that vixyz 2 EðH0ÞnEðH½T [ fvig,Þ, P2 is the probability that
there exist x; y 2 T such that vivjxy 2 EðH0ÞnEðH½T [ fvi; vjg,Þ, and P3 is the
probability that there exist x 2 T such that v1v2v3x 2 EðH0ÞnEðH½T [ fv1; v2; v3g,Þ.

By Claim 2.1 with c ¼ !0 and c1 ¼ 1=n, we know jEðH0ÞnEðHÞj' 2!0n4.
(Although the partition of V ðHÞ might not be balanced, the result of Claim 2.1 still
holds with a larger constant.) Thus, P0 ' 2!0n4p4. By (2.6) and (2.7), for any
1' i' 3, the number of edges of H0 containing vi that are not edges of H is at most
!1n3, since vi is !1-typical. Thus, P1 ' !1n3p3. By (2.8), (2.9) and (2.10), for any
1' i 6¼ j' 3, the number of edges in H0 containing the pair fvi; vjg that are not
edges of H is at most !2n2, since fvi; vjg is !2-typical. Thus, P2 ' !2n2p2.
By (2.11), (2.12), (2.13) and (2.14), the number of edges in H0 containing the triple
fv1; v2; v3g that are not edges of H is at most !3n, since fv1; v2; v3g is !3-typical.
Thus, P3 ' !3np.

Hence,

PðEvÞ' 2!0n4p4 þ 3 ( !1n3p3 þ 3 ( !2n2p2 þ !3np\
1
4

for !0; !1; !2; !3 sufficiently small. Similarly, PðEwÞ\ 1
4.

Finally, recalling that jAnðK [ fv1; v2; v3;w1;w2;w3gÞj& 1
3 n! 6[ 1

4 nþ 4; we
have

PðjT \ Aj' 4Þ' 1þ npþ
n

2

! "
p2 þ

n

3

! "
p3 þ

n

4

! "
p4

! "
ð1! pÞ

n
4\

1
4
:

Similarly, PðjT \ Bj' 4Þ\1=4. Hence, the required set T does exist.
Consider the case when an H0-connected sextuple is formed by two ð!1; !2; !3Þ-

typical triples fa1; a2; a3g and fa4; a5; a6g. By the above argument, the required set T
exists. Suppose fb1; a; a0; a00; b2g ) T . Then by the properties of T, P ¼
a1a2a3b1aa0a00b2a4a5a6 is a K-avoiding path with 11 vertices in H and all edges of P
are AAAB edges. For other cases, it can be checked that the two ð!1; !2; !3Þ-typical
triples in any H0-connected sextuple can be connected by a K-avoiding path with at
most 12 vertices in which every edge is typical. Moreover, if both triples are in AAV
(or BBV), all edges in this K-avoiding path connecting these two triples are AAAB (or
ABBB) edges. h
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3 Hamiltonian Paths

In this section, we prove the following

Theorem 3.1 There exists !0 [ 0 such that, for sufficiently large n and any 4-graph
H on 2n vertices with bðHÞ\!0n4 the following holds. If d3ðHÞ& n! 1, then H has
a Hamiltonian path.

For typical vertices, we want to use paths similar to these in H0 to connect them.
So we need to deal with atypical vertices, which are medium vertices or anarchists.
By Claim 2.4, the number of such vertices is small. In our proof, we find a path to
absorb all medium vertices. By Claim 2.3, the anarchists can only exist on one side.
We may transfer all anarchists to the other side, so that all vertices will be typical in a
new partition.

First, we introduce a structure called bridge, which helps us construct a path
containing all medium vertices.

Definition 3.2 Given !1; !2; !3 [ 0, an ð!1; !2; !3Þ-bridge is a path of at most 800
vertices whose end triples are ð!1; !2; !3Þ-typical with one in AAA and the other in
BBB.

For convenience, for some small ! we set

!0 ¼ !4; !1 ¼ !3; !2 ¼ !2; !3 ¼ !; !4 ¼ 40!; !5 ¼ 120!:

The proof of Theorem 3.1 can be described in four steps: Build a bridge M (cf.
Lemma 3.3); arrest all medium vertices by a path Q containing M (cf. Lemma 3.5);
transfer all anarchists not belonging to Q to the other side of the partition; complete
the Hamiltonian path P (cf. Lemma 3.8).

3.1 Building a Bridge

Lemma 3.3 For sufficiently small ![ 0, H contains an ð!1; !2; !3Þ-bridge M with at
most 25 vertices.

Proof Fix two ð!1; !2Þ-typical pairs fa1; a2g and fb1; b2g. Suppose
a1a2b1b2 2 EðHÞ. Since d3ðHÞ & n! 1 and fa1; a2g; fb1; b2g are ð!1; !2Þ-typical,
it follows from Claim 2.9 that there exists x 2 Nða1; a2; b1Þnfb2g and
y 2 Nða1; b1; b2Þnfa2; xg, such that fx; a1; a2g and fb1; b2; yg are ð!1; !2; !3Þ-typical.
Hence, xa2a1b1b2y is a path inH. Now we show that the path P ¼ xa2a1b1b2y can be
extended to an ð!1; !2; !3Þ-bridge by Claim 2.11. By Corollary 2.10, there exist
ð!1; !2; !3Þ-triples fa01; a02; a03g and fb01; b02; b03g disjoint from V(P). Since fa01; a02; a03g
and fx; a1; a2g are AAV triples, there exists a fb1; b2; y; b01; b02; b03g-avoiding path
P1 ¼ a01a

0
2a

0
3 ( ( ( xa1a2 with at most 12 vertices by Claim 2.11. Similarly, there exists

a V ðP1Þ-avoiding path P2 ¼ b1b2y ( ( ( b01b02b03 with at most 12 vertices. Hence, we
extend P to P1 [ P [ P2 such that P1 [ P [ P2 is an ð!1; !2; !3Þ-bridge with at most
24 vertices and the end triples are fa01; a02; a03g and fb01; b02; b03g.

So assume a1a2b1b2 62 EðHÞ. Let X ¼ Nða1; a2; b1Þ and Y ¼ Nða1; b1; b2Þ. Since
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a1a2b1b2 62 EðHÞ, we have X [ Y ) V ðHÞnfa1; a2; b1; b2g and jX [ Y j' 2n! 4.
Since d3ðHÞ & n! 1, jX j& n! 1 and jY j& n! 1. So jX \ Y j ¼ jX jþ jY j! jX [
Y j& 2 implies that there exists a vertex z 2 X \ Y . Similarly, by Claim 2.11, we can
find x 2 Nða1; a2; zÞ and y 2 Nðb1; b2; zÞ, such that xa2a1zb1b2y can be extended to
the desired bridge. Hence, in any case, we can always find an ð!1; !2; !3Þ-bridge in H
with no moth than 25 vertices. h

The construction in the proof of Lemma 3.3 can also be used for 3-graphs, which
would shorten Section 8 in [15].

3.2 Taking Care of Atypical Vertices

First, we need a simple claim from [15].

Claim 3.4 (Rödl, Ruciński and Szemerédi [15]) Given a[ 0 and k& 2, every k-

graph F with m vertices and with at least a
m
k

! "
edges contains a path on at least

am/k vertices.

Lemma 3.5 Let z1; . . .; zt1 be the !5-medium vertices and K ) V ðHÞ with jKj\!3n.
There exist pairwise disjoint K-avoiding paths Q1; . . .;Qt1 such that for every integer
i such that 1' i' t1, all edges in Qi are typical, and Qi contains zi with jV ðQiÞj ¼ 7
and both end triples ð!1; !2; !3Þ-typical. In particular, assume that M is an ð!1; !2; !3Þ-
bridge. Then there exists a path Q of length at most !3n, which contains M and all !5-
medium vertices of H, and whose end triples, one in AAA and one in BBB, are
ð!1; !2; !3Þ-typical. Moreover, all edges in Q!M are typical.

Proof By Claim 2.4, we know that t1 ' 8ð!0=!5Þn. We do an induction on the
number of such paths. Suppose that we have already found paths Qj for
j ¼ 1; . . .; i! 1, such that Qj satisfies the properties in Lemma 3.5. Set z ¼ zi.

We may assume z 2 A as the proof is analogous for z 2 B. Let GAAB
z be the set of

ð!1; !2; !3Þ-typical triples in LAABz . By Corollary 2.10, lAABz ! jGAAB
z j' !4n3. Then

jGAAB
z j& lAABz ! !4n3 & !5

2 n
3 ! !4n3, since z is !5-medium. Further, let

FAAB
z ¼ GAAB

z ½ðV ðHÞnKÞnUi,, where Ui ¼
Si!1

j¼1 V ðQjÞ. Note that jFAAB
z j& jGAAB

z j!
ðjUijþ jKjÞn2 and ðjUijþ jKjÞn2 'ð7ði! 1Þ þ 1

2 !
3nÞn2 ' 7t1n2 þ !3n3\2!3n3 for

sufficiently large n. Thus, by the above estimates and because z is !5-medium, we
have

jFAAB
z j& jGAAB

z j! 2!3n3 & !5
2
n3 ! !4n3

' (
! 2!3n3 [ 10!n3;

so by Claim 3.4, FAAB
z contains a path of length six, i.e., a1a2b1a3a4b2. Then

Qi ¼ a1a2b1za3a4b2, disjoint from Q1; . . .;Qi!1, gives the desired path, since Qi is K-
avoiding, the end triple of Qi are ð!1; !2; !3Þ-typical AAB triples and all edges in Qi

are AAAB edges.
Now we have a given bridge M. Let K ¼ V ðMÞ as jV ðMÞj' 800' !3n. Set

Qzi ¼ Qi for i ¼ 1; . . .; t1. By Claim 2.11, for all !5-medium vertices w 2 AnV ðMÞ,
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since the end triples of Qw are in AAB and ð!1; !2; !3Þ-typical, we connect all paths Qw

into a V(M)-avoiding path, denoted by Qtop. Similarly, for all !5-medium vertices
w 2 BnV ðMÞ, we connect all paths Qw into a V ðM [ QtopÞ-avoiding path, denoted
by Qzig, since the end triples of Qw are in BBA and ð!1; !2; !3Þ-typical. Now we use
the given bridge M to connect Qtop and Qzig. We connect the end triple of M in AAA
with one AAB end triple of Qtop, and connect the end triple of M in BBB with one
BBA end triple of Qzig, also by Claim 2.11. Then we obtain a path P, which contains
M and all !5-medium vertices of H, whose end triples are ð!1; !2; !3Þ-typical, and one
of its triples is in AAB and the other is in BBA.

By Claim 2.11, jV ðPÞj' 8ð!0=!5Þn ( ð7þ ð12! 6ÞÞ þ jV ðMÞjþ 2 ( ð12! 6Þ. By
Corollary 2.10, there exists an ð!1; !2; !3Þ-typical triple fa0; a1; a2g in AAA and an
ð!1; !2; !3Þ-typical triple fb0; b1; b2g in BBB, such that fa0; a1; a2; b0;
b1; b2g \ V ðPÞ ¼ ;. We apply Claim 2.11 to connect fa0; a1; a2g with the AAB end
triple of P, and connect fb0; b1; b2g with the BBA end triple of P. This gives a path
Q ¼ a2a1a0 ( ( ( b0b1b2, containing M and all !5-medium vertices of H, such that
jV ðQÞj' jV ðPÞjþ 2 ( ð12! 3Þ' 8ð!0=!5Þn ( ð7þ 6Þ þ jV ðMÞjþ 2 ( 6þ 2 ( 9' !3n.

h

3.3 Completing the Hamiltonian Path

To complete the proof of Theorem 3.1, we need the following lemma in [12].

Lemma 3.6 (Reiher, Rödl, Ruciński, Schacht and Szemerédi [12]) Every 3-graph

with n vertices and minimum vertex degree at least ð59 þ oð1ÞÞ n
2

! "
has a

Hamiltonian cycle.

Lemma 3.5 gives a path Q containing all !5-medium vertices. By Claim 2.3, we
know that if there exists an !5-anarchist in one side of the vertex partition, then all
vertices in the other side are 3!5-typical. Moreover, the number of !5-anarchists is
less than 5!0n. So we transfer all such vertices to the other side of the vertex partition.
Then all vertices in V ðHÞnV ðQÞ are 4!5-typical with respect to the new partition. We
use Lemma 3.6 to derive the following.

Lemma 3.7 Assume (2.1), (2.2) and (2.3) hold. Let X be a set of 4!5-typical vertices
with m ¼ jX j& cn, where c is a constant. Suppose fx0; x1; x2g and fx00; x01; x02g are

two disjoint ð4!5; !3=45 ; !1=25 Þ-typical triples disjoint from X. For sufficiently large n
and sufficiently small !, there exists a sequence of vertices x0x1x2x3 ( ( ( xmþ2xmþ3ð¼
x02Þxmþ4ð¼ x01Þxmþ5ð¼ x00Þ; such that all fxi; xiþ1; xiþ2g are ð4!5; !3=45 ; !1=25 Þ-typical for
0' i'mþ 3 and X ¼ fx3; x4; . . .; xmþ2g.

Proof Construct a 3-graph GX with vertex set V ðGX Þ ¼ X [ fx2g and edge set
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EðGX Þ ¼ fx2uv : fu; vg ) X such that fx2; u; vg; fx1; x2; ug; fx01; x
0
2; vgandfu; v; x

0
2g

are !1=25 -typicalg [ fuvw : fu; v;wg ) X is ð4!5; !3=45 ; !1=25 Þ-typicalg:

We show that d1ðGX Þ[ 2
3

m
2

! "
. Since the pairs fx1; x2g and fx01; x02g are !3=45 -

typical, each of them belongs to at most 2!1=45 n !1=25 -atypical triples in X (by

Claim 2.9); so there are at least m! 4!1=45 n
2

! "
pairs of fu; vg such that

fx1; x2; ug; fx01; x02; vg are !1=25 -typical. The number of !1=25 -atypical triples containing

x2 or x02 is at most 2 ( 3 ( 4!1=25 n2 (by Claim 2.8 as they are 4!5-typical). Thus,

dGX ðx2Þ&
m! 4!1=45 n

2

! "
! 24!1=25 n2 [ 2

3
m
2

! "
because m ¼ jX j& cn. Since all

vertices in X are 4!5-typical, by Claim 2.6 and 2.8, the number of !3=45 -atypical pairs

in X containing a fixed 4!5-typical vertex is at most 2 ( 4!1=45 n, and the number of

!1=25 -atypical triples in X containing a fixed 4!5-typical vertex is at most 3 ( 4!1=25 n2.
Thus, for any vertex u 2 X , we have

dGX ðuÞ&
m
2

! "
! 16!1=45 mn! 12!1=25 n2 [ 2

3
m
2

! "
.

Since jV ðGX Þj ¼ mþ 1 and m& cn, by Lemma 3.6, GX has a Hamiltonian cycle.
So we can find a Hamiltonian path in GX , say PX ¼ x2x3 ( ( ( xmþ2, such that

fx1; x2; x3g; fxmþ1; xmþ2; x02g and fxmþ2; x02; x
0
1g are !1=25 -typical. Hence, we obtain a

sequence of vertices

x0x1x2x3x4 ( ( ( xmþ2xmþ3ð¼ x02Þxmþ4ð¼ x01Þxx1þ5ð¼ x00Þ;

where fxi; xiþ1; xiþ2g is !1=25 -typical for 0' i'mþ 3 and X ¼ fx3; x4; . . .; xmþ2g. h

Now we are ready to prove the following lemma, which implies Theorem 3.1.

Lemma 3.8 Suppose thatH contains a path Q ¼ a2a1a0 ( ( ( b0b1b2 of length at most
!3n such that

● fa0; a1; a2g 2 AAA and fb0; b1; b2g 2 BBB, and both are ð2!1; 2!2; 2!3Þ-typical;
● every vertex of V ðHÞnV ðQÞ is 4!5-typical.

Then Q can be extended to a Hamiltonian path in H.

Proof We use typical edges to connect all remaining vertices in H. Note that all
vertices in V ðHÞnV ðQÞ are 4!5-typical, but with respect to a (possibly) slightly
modified partition, still denoted by (A, B), in which the two sides may differ in size
by at most 10!0n. Let A0 ¼ AnV ðQÞ and B0 ¼ BnV ðQÞ and let m1 ¼ jA0j and
m2 ¼ jB0j. Without loss of generality, suppose m1 'm2. Then m1 & n! 5!0n!
!3n& n! 2!3n and m2 ! m1 ' 2!3n.

First, we label the vertices in B0. Since all vertices in B0 are 4!5-typical and
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jB0j ¼ m2 & n! 2!3n, there exists a ð4!5; !3=45 ; !1=25 Þ-typical triple fbm2 ; bm2þ1; bm2þ2g
such that bm2 ; bm2þ1; bm2þ2 2 B0. Applying Lemma 3.7 to fb0; b1; b2g,
fbm2 ; bm2þ1; bm2þ2g and B0nfbm2 ; bm2þ1; bm2þ2g, we have a sequence, denoted by

PB ¼ b0b1 ( ( ( bm2þ2 such that fbi; biþ1; biþ2g is !1=25 -typical for 0' i'm2 and
B0 ¼ fb3; b4; . . .; bm2þ2g. Construct an auxiliary bipartite graph CB between A0 and
B1, where B1 ¼ fb2; b5; . . .; b3p1!1g with p1 ¼ bm2þ3

3 c such that for any a 2 A0 and
bi 2 B1, abi 2 EðCBÞ if and only if

a 2 Nðbi!2; bi!1; biÞ \ Nðbi!1; bi; biþ1Þ \ Nðbi; biþ1; biþ2Þ \ Nðbiþ1; biþ2; biþ3Þ:

Observe that if we find a matching in CB, then we find a path in H similar to paths in
H0. Since fbi; biþ1; biþ2g ð0' i'm2Þ is typical, dCBðbÞ& 0:99m1 for all b 2 B0; so at
least 0:9m1 vertices a 2 A0 have degree dCBðaÞ& 0:9p1. We need to deal with the
vertices in A0 of small degree since vertices of larger degree can be included in a
matching of CB. Let Abig ¼ fa 2 A0 : dCBðaÞ& 0:9p1g; so jAbigj& 0:9m1. Let
Asmall ¼ A0nAbig. We claim the following.

(1) There exists a path Ptop in H such that Asmall ) V ðPtopÞ \ A ) fa0; a1; a2g [
A0;V ðPtopÞ \ B ) B0 and one end triple of Ptop is a0a1a2.

Let t :¼ d3m1!m2
8 e; then 3m1!m2!3

8 ' t' 3m1!m2þ9
8 . Since

ð1! 2!3Þn'm1 'm2 'ð1þ !3Þn, we have 0:24n' t' 0:25n. Let AS be a subset
of A0 such that Asmall ) AS and jAS j ¼ 3t ! 3& 0:7n. Note that
jAsmallj' 0:1m1 ' 3t ! 3, so we can find such AS . Since
jA0nAS j ¼ m1 ! ð3t ! 3Þ& 0:2n, there exist a3t; a3tþ1; a3tþ2 2 A0nAS such that

fa3t; a3tþ1; a3tþ2g is ð4!5; !3=45 ; !1=25 Þ-typical. We apply Lemma 3.7 to fa0; a1; a2g,
fa3t; a3tþ1; a3tþ2g and AS . Then there exists a sequence of vertices

a0a1a2a3. . .a3t!1a3ta3tþ1a3tþ2, such that fai; aiþ1; aiþ2g is !1=25 -typical and
Asmall ) AS ¼ fa3; a4; . . .; a3t!1g. Construct another auxiliary bipartite graph CA

between A2 and B00, where A2 ¼ fa2; a5; . . .; a3t!1g and B00 is the set of the last
p2 ¼ d0:3m1e vertices of PB, i.e., B00 ¼ fbm2þ2; bm2þ1; . . .; bm2þ3!p2g. For any ai 2
A2 and b 2 B00, aib 2 EðCAÞ if and only if

b 2 Nðai!2; ai!1; aiÞ \ Nðai!1; ai; aiþ1Þ \ Nðai; aiþ1; aiþ2Þ \ Nðaiþ1; aiþ2; aiþ3Þ:

Again, since fai; aiþ1; aiþ2gð0' i' tÞ is !1=25 -typical, dCAðaÞ& 0:99p2 for all a 2 A2;
so at least 0:9p2 vertices b 2 B00 have degree dCAðbÞ& 0:9t. Let
Bbig ¼ fb 2 B00 : dCAðbÞ& 0:9tg. Then jBbigj& 0:9p2 [ t (since
t' 3m1!m2þ9

8 \0:26m1\0:9 ( d0:3m1e ¼ 0:9p2 for sufficiently large n). We choose a
set B ) Bbig of size jBj ¼ t. Consider the subgraph C0

A ¼ CA½A2 [ B,. Since jA2j ¼
jBj ¼ t and all vertices in A2 and B have degree at least 0.9t in C0

A, there exists a
perfect matching in C0

A by Dirac’s theorem. The perfect matching forms a path in H,
denoted by
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Ptop ¼ a0a1a2b1a3a4a5b2 ( ( ( a3t!1bt. . .;

where a3i!1bi 2 EðCAÞ. Note that the end of Ptop, possibly a3t!3a3t!2a3t!1bt or
a3t!2a3t!1bta3t or a3t!1bta3ta3tþ1 or bta3ta3tþ1a3tþ2, is determined by the numbers m1

and m2. This proves (1).
We now show the following claim.

(2) There exists a path Pzig in H such that
V ðPzigÞ \ A ¼ A0nV ðPtopÞ;V ðPzigÞ \ B ¼ fb0; b1; b2g [ B0nV ðPtopÞ, and one
end triple of Pzig is b0b1b2.

Consider PB1 ¼ b0b1b2. . .bm2þ2!p2 and V ðPB1Þ ¼ V ðPBÞnB00. Since all vertices in
B2 :¼ B00nB are 4!5-typical and jB2j ¼ p2 ! t& 0:04n, there exist vertices

b0m2!t; b
0
m2þ1!t; b

0
m2þ2!t 2 B2 such that fb0m2!t; b

0
m2þ1!t; b

0
m2þ2!tg is ð4!5; !3=45 ; !1=25 Þ-

typical. We extend PB1 by applying Lemma 3.7 to fbm2!p2 ; bm2þ1!p2 ; bm2þ2!p2g,
fb0m2!t, b0m2þ1!t; b

0
m2þ2!tg, and B2nfb0m2!t; b

0
m2þ1!t; b

0
m2þ2!tg. Hence, we obtain

b00b
0
1b

0
2. . .b

0
m2þ2!t such that b0j ¼ bj for all 0' j'm2 þ 2! p2,

B2 ¼ fb0m2þ3!p2 ; . . .; b
0
m2þ2!tg, and fb0i; b0iþ1; b

0
iþ2g is !1=25 -typical for any

0' i'm2 ! t.
Similarly, construct an auxiliary bipartite graph C0

B with partition classes A, B3,
where A ¼ AnV ðQ [ PtopÞ and B3 ¼ fb02; b05; . . .; b03p3!1g with p3 ¼ bm2þ3!t

3 c. We

choose the end triple for Ptop to make jAj ¼ jB3j. For any a 2 A and b0i 2 B3, ab0i 2
EðC0

BÞ if and only if

a 2 Nðb0i!2; b
0
i!1; b

0
iÞ \ Nðb0i!1; b

0
i; b

0
iþ1Þ \ Nðb0i; b

0
iþ1; b

0
iþ2Þ \ Nðb0iþ1; b

0
iþ2; b

0
iþ3Þ:

We know dC0
B
ðbÞ& 0:99p3 for all b 2 B3. Since Asmall ) V ðPtopÞ, A ) Abig and

dCBðaÞ& 0:9p1 for each a 2 A. Hence,
dC0

B
ðaÞ& 0:9p1 ! dp23 e& 0:3m2 ! 0:1m1 & 0:8p3. Therefore, dðC0

BÞ& 0:8p3. By Dir-
ac’s theorem, C0

B has a perfect matching, which forms a path in H, denoted by

Pzig ¼ b00b
0
1b

0
2a1b

0
3b

0
4b

0
5a2 ( ( ( b

0
3p3!1ap3 . . .;

where aib03i!1 2 EðC0
BÞ.

Now, Q [ Ptop [ Pzig is a Hamiltonian path in H. h

4 Hamiltonian Cycles

In this section, we prove the following

Theorem 4.1 There exists !0 [ 0 such that, for sufficiently large n and any 4-graph
H on 2n vertices with bðHÞ\!0n4 the following holds: If d3ðHÞ & n! 1, then H has
a Hamiltonian cycle.
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The proof of Theorem 4.1 proceeds along the lines of the proof of Theorem 3.1,
except that to get a Hamiltonian cycle we will need a second bridge. Suppose we
have two disjoint bridges M1 and M2. The arguments for taking care of medium and
anarchist vertices are essentially the same as in the proof of Theorem 3.1. So we have
a path Q which contains M1 and all remaining medium vertices, and is disjoint from
M2. Let n1 ¼ jAnV ðQ [M2Þj, n2 ¼ jBnV ðQ [M2Þj, and let m ¼ 3n1!n2þ6

8 . When m is
an integer, we may apply the following variation of Lemma 3.8, whose proof
basically repeats the proof of Lemma 3.8 with just minor modifications.

Lemma 4.2 Suppose thatH contains a path Q ¼ a2a1a0 ( ( ( b0b1b2 of length at most
!3n and a bridge M2 ¼ a02a

0
1a

0
0 ( ( ( b00b01b02 such that

● V ðQÞ \ V ðM2Þ ¼ ;;

● m ¼ 3n1!n2þ6
8 is an integer;

● all end triples fa0; a1; a2g, fb0; b1; b2g, fa00; a01; a02g and fb00; b01; b02g are
ð2!1; 2!2; 2!3Þ-typical;

● every vertex of V ðHÞnV ðQ [M2Þ is 4!5-typical.

Then Q [M2 can be extended to a Hamiltonian cycle in H.

Proof Let A0 ¼ AnV ðQ [M2Þ and B0 ¼ BnV ðQ [M2Þ. It follows that
jA0j ¼ n1; jB0j ¼ n2. We build a top path Ptop with V ðPtopÞ \ A )
fa0; a1; a2; a02; a01; a00g [ A0 and V ðPtopÞ \ B ) B0 such that
jV ðPtopÞ \ Aj ¼ 3ðmþ 1Þ; jV ðPtopÞ \ Bj ¼ m, and Ptop connects two AAA end triples
of Q and M2, i.e., a0a1a2 and a02a

0
1a

0
0. Then, we use Pzig with V ðPzigÞ \ A ¼

A0nV ðPtopÞ and V ðPzigÞ \ B ¼ fb0; b1; b2; b02; b01; b00g [ B0nV ðPtopÞ to connect b0b1b2
with b02b

0
1b

0
0. Note that jV ðPzigÞ \ Aj ¼ n1 ! ð3ðmþ 1Þ ! 6Þ ¼ m and

jV ðPzigÞ \ Bj ¼ 6þ n2 ! m ¼ 3ðmþ 1Þ. Therefore, Q [M2 [ Ptop [ Pzig is a
Hamiltonian cycle in H.

To construct Ptop, we apply Lemma 3.7 to fb0; b1; b2g; fb02; b01; b00g, and B0. We
obtain a sequence of vertices b0b1b2b3 ( ( ( bn2þ2bn2þ3ð¼ b02Þbn2þ4ð¼ b01Þbn2þ5ð¼ b00Þ,
where fbi; biþ1; biþ2g is ð4!5; !3=45 ; !1=25 Þ-typical for 0' i' n2 þ 3 and
B0 ¼ fb3; b4; . . .; bn2þ2g. Consider a bipartite graph CB between A0 and B1, where
B1 ¼ fb2; b5; . . .; b3p1!1g with p1 ¼ bn2þ3

3 c. For any a 2 A0 and bi 2 B1, abi 2 EðCBÞ
if and only if

a 2 Nðbi!2; bi!1; biÞ \ Nðbi!1; bi; biþ1Þ \ Nðbi; biþ1; biþ2Þ \ Nðbiþ1; biþ2; biþ3Þ:

By the typicality of all triples, dCBðbÞ& 0:99n1 for any b 2 B1, and there are a lot of
vertices in A0 having large degree in CB. We partition A0 ¼ Abig [ Asmall , where
Abig ¼ fa 2 A0 : dCBðaÞ& 0:9p1g. Then jAsmallj' 0:1n1\3ðm! 1Þ. By Lemma 3.7
again, there exists a sequence of vertices a0a1a2a3. . .a3m!2a3m!1a3mð¼ a02Þa3mþ1ð¼
a01Þ a3mþ2ð¼ a00Þ, such thatfai; aiþ1; aiþ2g is !1=25 -typical for 0' i' 3m and
Asmall ) fa3; a4; . . .; a3m!1g.

Consider a bipartite graph CA with partition classes A2;B00, where A2 ¼
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fa2; a5; . . .; a3m!1g and B00 is the set containing the last p2 ¼ d0:3n1e vertices of B0, i.
e., B00 ¼ fbn2þ2; bn2þ1; . . .; bn2þ3!p2g. Then we can find a perfect matching in
CA½A2;B,, where B is a subset of B00 and jBj ¼ jA2j. Therefore,

Ptop ¼ a0a1a2b1a3a4a5b2a6 ( ( ( a3m!1bma3mð¼ a02Þa3mþ1ð¼ a01Þa3mþ2ð¼ a00Þ:

For the remaining vertices, we use a similar step in the proof of Lemma 3.8 to find
Pzig, and Q [M2 [ Ptop [ Pzig is a Hamiltonian cycle in H. h

Since Lemma 4.2 has some requirements on the number of vertices in AnV ðQ [
M2Þ and BnV ðQ [M2Þ, the above proof works only if m 2 N. When m is not an
integer, we use a good set defined below. Here, we will consider the order of sets in
V1V2V3. For example, AAB and ABA are different.

Definition 4.3 For a 4-graph H, let A, B be a partition of V ðHÞ.

● The difference of a path P in H with respect to A,B is the number p. /
3jV ðPÞ \ Aj! jV ðPÞ \ Bj (mod 8).

● An ð!1; !2; !3Þ-switcher is a path S, which contains no !5-anarchists, has two
ð!1; !2; !3Þ-typical end triples type of BAA and AAA or type ABB and BBB, and has
nonzero difference.

● A set X of vertices in V ðHÞ is called good if jX j\1600 and X does not contain
any !5-anarchists of H, and, for any number a 2 f0; 1; 2; . . .; 7g, there exists two
disjoint bridges M1 and M2 such that V ðM1Þ;V ðM2Þ ) X and m.

1 þ m.
2 / a (mod

8) where m.
i is the difference of Mi for i ¼ 1; 2.

Note. Given two disjoint ð!1; !2; !3Þ-bridges R1 and R2, let r.i be the difference of
Ri for i ¼ 1; 2. By Claim 2.11, we can connected any two ð!1; !2; !3Þ-bridges to
obtain a path with both end triples in AAA or in BBB. For example, the BBB triples of
the two bridges can be connected by two vertices in A and three vertices in B (these
vertices are from the vertex set T by Claim 2.11), and we have a path with both end
triples in AAA. Adding some vertex from B to one end of this path to make it have an
ð!1; !2; !3Þ-typical end triple of type BAA, we can obtain a path P with difference
r.1 þ r.2 þ 2 and both end triples are ð!1; !2; !3Þ-typical. Therefore, if
r.1 þ r.2 6/ 6 ðmod 8Þ, R1 and R2 can form an ð!1; !2; !3Þ-switcher with difference
r.1 þ r.2 þ 2.

If there exists a good set X in H, then firstly, make a small modification of the
partition of V ðHÞ by transferring all !5-anarchists to the other side, denoted by
ðA0;B0Þ. Since X is good, we can find two disjoint bridges M1 and M2 in X to make
3n01!n02þ6

8 an integer, where n01 ¼ jA0nV ðM1 [M2Þj and n02 ¼ jB0nV ðM1 [M2Þj (We
can do it since X does not contain any !5-anarchists of H). Next, by the proof of
Lemma 3.5, there is a path Qtop connecting all !5-medium vertices in A0nV ðM1 [M2Þ
and a path Qzig connecting all !5-medium vertices in B0nV ðM1 [M2Þ. By Claim 2.11,
using M1 connects Qtop and Qzig to get a path Q whose end triples are AAA and BBB,
and both of them are ð!1; !2; !3Þ-typical. It can be checked that 3n1!n2þ6

8 is an integer
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when 3n01!n02þ6
8 an integer, where n1 ¼ jA0nV ðQ [M2Þj and n2 ¼ jB0nV ðQ [M2Þj:

(This is because Q!M1 contains two paths Q1 and Q2 such that all edges of Q1 are
AAAB edges and Q1 contains 3x vertices in A0 and x vertices in B0 while Q2 of which
all edges are ABBB edges contains 3y vertices in B0 and y vertices in A0 for some
integers x and y.) Finally, by Lemma 4.2, we can find a Hamiltonian cycle in H.

So the key is to prove the following lemma.

Lemma 4.4 For any 4-graph H, let A, B be a partition of V ðHÞ and assume that
(2.1), (2.2), (2.3) hold. Then H contains a good set X.

Next, we introduce a special type of edges, called seed. It is used to find a good set
X.

Definition 4.5 A quadruple of vertices ða; a0; b;wÞ is called a seed if

● aa0bw 2 EðHÞ,
● fa; a0; bg is ð!1; !2; !3Þ-typical, and
● w 2 B is !5-typical.

Similarly, a quadruple of vertices ðb; b0; a;wÞ is called a seed if

● bb0aw 2 EðHÞ,
● fb; b0; ag is ð!1; !2; !3Þ-typical, and
● w 2 A is !5-typical.

Claim 4.6 Let K ) V ðHÞ with jKj' !n. Given two disjoint seeds not intersecting
with K, ðai; a0i; bi;wiÞ, i ¼ 1; 2, we can build a K-avoiding ð!1; !2; !3Þ-switcher of odd
difference and at most 100 vertices. Analogically, two disjoint seeds not intersecting
with K, ðbi; b0i; ai;wiÞ, i ¼ 1; 2, give a K-avoiding ð!1; !2; !3Þ-switcher of odd
difference and at most 100 vertices.

Proof For the simplicity of the proof, we do not involve K in our proof. But all
vertices we need to choose in the following paragraphs can be chosen from the vertex
set not intersecting with K as the size of K is small.

Since w1 is !5-typical and d3ðHÞ& n! 1, we can extend the edge a1a01b1w1 to a
path P ¼ a1a01b1w1u1v1, such that fu1; v1g is an ð!1; !2Þ-typical pair, fw1; u1; v1g is

an !1=25 -typical triple and fb1; u1; v1g is ð!1; !2; !3Þ-typical. If u1v1 2 AA, then there
exist three !1-typical vertices a1; a001 ; b

0
1 such that all triples fa1; a1; a01g, fu1; v1; a001g

and fv1; a001; b01g are ð!1; !2; !3Þ-typical. Hence, S ¼ a1a1a01b1w1u1v1a001b
0
1 is a path

with both ends in AAA and AAB, and then S is a switcher with s. / 7.
Otherwise, u1v1 2 BA, or u1v1 2 AB, or u1v1 2 BB. Similarly, extending the seed

a1a01b1w1 to a path P ¼ a1a01b1w1u1v1, we can find an ð!1; !2; !3Þ-bridge R1;R2 or R3

with r.1 / 6, r.2 / 7 or r.3 / 5, respectively. We repeat the same construction on the
second seed to get P0 ¼ a2a02b2w2u2v2. If we cannot get a switcher with odd
difference, then there exists an ð!1; !2; !3Þ-bridge obtained from the second seed, R0

1,
or R0

2, or R
0
3 with ðr01Þ

. / 6, or ðr02Þ
. / 7, or ðr03Þ

. / 5, respectively. By applying
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Claim 2.11, we can use these two ð!1; !2; !3Þ-bridges Ri and R0
j, i; j 2 f1; 2; 3g, to

form a switcher with odd difference.
If the differences of these two bridges have different parity, connecting these two

bridges results in a switcher with odd difference. Now assume the difference of these
two bridges have the same parity.

Suppose there are two bridges R1;R2 with even difference r.1 ¼ r.2 / 6. Then
u1v1 2 BA and u2v2 2 BA. If lBa1a01w1

& n
2, then we have a path b01a1a

0
1w1b1u1v1, where

b01 2 B and fb01; a1; a01g is ð!1; !2; !3Þ-typical; this path can be extended to a bridge R
with difference r. / 3. If lAa1a01w1

& n
2, consider the path b1a1a01w1a001 where a001 2 A is

!1-typical. Extending this path, we can get either a switcher with difference 5, or a
bridge with difference 5.

Now assume there are two bridges R1 and R2 with odd differences. Then uivi 2
AB or BB for i ¼ 1; 2. If lAa01b1w1

& n
2, we may assume u1v1 2 AB; otherwise we obtain

a switcher with odd difference. If lBa1a01w1
& n

3, then a1a01w1b1u1v1 can be extended to a

bridge with difference 4. Connecting this bridge with R2 gives a switcher with odd
difference. We may assume lAa1a01w1

& 2n
3 . Then jLAa1a01w1

\ LAa01b1w1
j& n

6. In this case,

there exists a 2 A such that a 2 Nða1; a01;w1Þ \ Nða01; b1;w1Þ and the pair fa;w1g is

!3=45 -typical. If lAa01w1a
& n

2, we have a switcher with difference 5 by the path

b1a1a01w1a. If lBa01w1a
& n

2, the path a1b1a01w1a gives a bridge with even difference 2,

which also gives a switcher with odd difference by connecting it and R2.
If lBa01b1w1

& n
2, we may assume u1v1 2 BB for all possible choices of u1v1; otherwise

we can obtain a bridge with even difference. Consider the path P1 ¼ a1b1a01w1u1. If
lBa01w1u1

& n
6, we extend P1 to a bridge with difference 0. We may assume lAa01w1u1

& 5n
6

and hence lABa01w1
& n2

3 , as there are at least 2n
5 possible choices of u1 2 B. Let

F :¼ fab 2 LABa01w1
: fa01; a; bg is ð!1; !2; !3Þ-typical g. Since a01 is !1-typical and

lABa01w1
& n2

3 , jFj&
n2
4 . We know that ða01; a; b;w1Þ is a seed for any ab 2 F. Then for

all possible a 2 A with ab 2 F (the number of such vertices is at least n
4), we may

assume lABaw1
& n2

3 . Otherwise we have a switcher with odd difference by the above

analysis. Hence, lAABw1
& n2

3 ( n4 (
1
2 ¼

n3
24, contradicting the fact that w1 is !5-typical. h

We know that connecting a bridge with a switcher forms a new bridge with
different difference. If there are two given disjoint bridges with small lengths,
switchers can help construct a good set. By Claim 4.6, a lot of pairwise disjoint seeds
give many switchers with odd differences. In the proof of Lemma 4.4, we explore
when H contains many seeds or not and this completes the proof of Theorem 4.1.

Proof of Lemma 4.4 First, we claim that for sufficiently small ![ 0, H contains two
disjoint ð!1; !2; !3Þ-bridges M1 and M2 with jV ðMiÞj' 25 for i ¼ 1; 2.

We repeat the proof of Lemma 3.3 to build the first ð!1; !2; !3Þ-bridge M1, and find
two ð!1; !2Þ-typical pairs fa1; a2g and fb1; b2g. If a1a2b1b2 2 EðHÞ, we can extend
this edge to a bridge. If a1a2b1b2 62 EðHÞ, then there exists a vertex z 2

123

Graphs and Combinatorics (2022) 38:122 Page 21 of 26 122



Nða1; a2; b1Þ \ Nða1; b1; b2Þ such that we can extend a2a1zb1b2 to an ð!1; !2; !3Þ-
typical bridge.

To build the second bridge, find two ð!1; !2Þ-typical pairs fa01; a02g and fb01; b02g,
such that if a01a

0
2b

0
1b

0
2 62 EðHÞ then a1; a2; b1; b2 are not contained in the common

neighbors of fa01; a02; b01g and fa01; b01; b02g, in order to get disjoint bridges. We can do
it since these vertices a1; a2; b1 and b2 are !1-typical, by Claim 2.8, there exists an
ð!1; !2Þ-typical pair fa01; b01g, such that all triples fa01; b01; a1g, fa01; b01; a2g,
fa01; b01; b1g and fa01; b01; b2g are !3-typical. Then we know dAða01; b01; biÞ' !3n and
dBða01; b01; aiÞ' !3n for i ¼ 1; 2. By Claim 2.6, we find two vertices a02, b

0
2, such that

fa01; a02g and fb01; b02g are ð!1; !2Þ-typical pairs and for i ¼ 1; 2, a02a
0
1b

0
1bi 62 EðHÞ, and

b02b
0
1a

0
1ai 62 EðHÞ. Similarly, if a02a

0
1b

0
1b

0
2 2 EðHÞ, b02b01a01a02 can be extended to an

ð!1; !2; !3Þ-typical bridge M2 and M1 \M2 ¼ ;, since dðHÞ & n! 1. Otherwise, there
exist two vertices z0; z01 different from a1; a2; b1; b2 satisfying
z0; z01 2 Nða02; a01; b01Þ \ Nðb02; b01; a01Þ. Without loss of generality, suppose z0 6¼ z, then
a02a

0
1z

0b01b
0
2 can be extended to a ð!1; !2; !3Þ-bridge M2 such that M1 \M2 ¼ ;. So in

any case, there are two disjoint ð!1; !2; !3Þ-bridgesM1 andM2 inH with jV ðMiÞj' 25
for i ¼ 1; 2.

Case 1. All vertices in B are !5-typical (or all vertices in A are !5-typical).
We may consider the case when all vertices in B are !5-typical. Let

V 0 :¼ V ðM1 [M2Þ. It suffices to show that H has fourteen pairwise disjoint seeds
of type ða; a0; b;wÞ that are also disjoint from V 0. Then by Claim 4.6, every two such
seeds can form a switcher with odd difference. Hence, we can obtain seven pairwise
disjoint switchers and each has odd difference.

Since all b 2 B are !5-typical, we have lAABB ' !5n3. Consider the set of triples
E ¼

S
b2V 0\B L

AAB
B . Since jV 0j' 50, we have jEj' 50!5n3 and, thus, by Corollary

2.10, there exists an ð!1; !2; !3Þ-typical triple fa1; a01; b1g such that a1a01b1 62 E and
a1; a01; b1 62 V 0. Let w1 2 NBða1; a01; b1Þ; the existence of w1 follows from (2.1). By
the definition of E, w1 62 V 0. So we get a seed ða1; a01; b1;w1Þ. Assume that we have
produced i! 1 seeds, ðaj; a0j; bj;wjÞ, for j ¼ 1; . . .; i! 1. Set

Ei!1 ¼ E [ ðLAABb1 [ LAABw1
Þ ( ( ( [ ðLAABbi!1

[ LAABwi!1
Þ

and note that jEi!1j' 100!5n3 if i' 15. Similarly as before, we can find an
ð!1; !2; !3Þ-typical triple fai; a0i; b0ig such that aia0ibi 62 Ei!1 and
ai; a0i; bi 62 V 0 [ fa1; a01; b1;w1g [ ( ( ( [ fai!1; a0i!1; bi!1;wi!1g. We can also find
wi 2 NBðai; a0i; biÞ such that ai; a0i; b

0
i;wi is a seed. So there are at least fourteen

pairwise disjoint seeds and, applying Claim 4.6, we can form seven pairwise disjoint
ð!1; !2; !3Þ-switchers with odd differences. For any a 2 f0; 1; 2; . . .; 7g, we can find
some numbers from those seven odd differences such that the summation of them is a
(mod 8). In particular, for the case a ¼ 0, we do not use any switchers. Let V 00 denote
the set of all vertices of these seven switchers. Then V 0 [ V 00 and a small number of
!5-typical vertices, which are used to connect bridges and switchers, form a good set
in H.

Case 2. There exists an !5-anarchist in H.
By Claim 2.3, all vertices in one side are 3!5-typical. Then a similar proof
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argument as in Case 1 completes this case.
Case 3. There exists an !5-medium vertices in H and H doesn’t contain any !5-

anarchist.
We may assume there are at least two !5-medium vertices, otherwise we get back

to Case 1. If there are at least 28 pairwise disjoint seeds in H that are also disjoint
from V 0 ¼ V ðM1 [M2Þ, then there exist at least 14 pairwise disjoint seeds of the
same type. Then we can find a good set X by Claim 4.6 and the argument in Case 1.
So we may assume that the number of pairwise disjoint seeds is less than 28. Let Vs

denote a maximal set of vertices containing pairwise disjoint seeds in H! V 0 and let
Vm denote the set of !5-typical vertices in V 0. Then all vertices in V :¼ Vs [ Vm are
!5-typical. Let VA ¼ V \ A and VB ¼ V \ B. Then jVAj' 2 ( 25þ 2 ( 28 ¼ 106 and
jVBj' 2 ( 25þ 2 ( 28 ¼ 106 (by jMij' 25 for i ¼ 1; 2 and the fact that each seed
forms an AABB edge).

Let EA ¼
S

a2VA
LABBA , EB ¼

S
b2VB

LAABB . Then jEAj' 106!5n3 and jEBj' 106!5n3

since all vertices in V are !5-typical. Let T be a set of quadruples ðai; aj; bk ; blÞ such
that both fai; aj; bkg and faj; bk ; blg are ð!1; !2; !3Þ-typical triples, aiajbk 62 EB,
ajbkbl 62 EA and ai; aj; bk ; bl 62 V , where ai 6¼ aj 2 A and bk 6¼ bl 2 B. By Corol-

lary 2.10, H contains at most !4n3 ð!1; !2; !3Þ-atypical triples. So jT j& n2ðn! 1Þ2 !
2 ( !4n3 ( ðn! 1Þ ! 2 ( 2( 106!5n3 ( ðn! 1Þ ! 2 ( 106 ( nðn! 1Þ2 [ n4

2 .
For any ðai; aj; bk ; blÞ 2 T, ai; aj; bk ; bl 62 V 0 [ Vs (by the definition of T) and

aiajbkbl 62 H (by the maximality of Vs). Since aiajbkbl 62 H, it follows from the proof
of Lemma 3.3 that jNðaj; bk ; blÞ \ Nðai; aj; bkÞj& 2. Now we claim that for each
vertex v 2 Nðaj; bk ; blÞ \ Nðai; aj; bkÞ, either v 2 V 0 [ Vs or v is !5-medium. Suppose
v 62 V 0 [ Vs and v is not !5-medium. Then v is !5-typical, and hence, if v 2 B then
ðai; aj; bk ; vÞ is a seed disjoint from V 0 [ Vs, and if v 2 A then ðbk ; bl; aj; vÞ is a seed
disjoint from V 0 [ Vs. This contradicts the maximality of Vs. Since the number of !5-
medium vertices in H is at most 8!0=!5n and jV 0 [ Vsj' 2 ( 25þ 28 ( 4 ¼ 162, the
number of all possible vertices in Nðaj; bk ; blÞ \ Nðai; aj; bkÞ for all ðai; aj; bk ; blÞ 2
T is at most 8!0=!5nþ 162\ !3n

10 . Therefore, we can find a vertex u, such that at least
n4
2 =

!3n
10 ¼ 5n3

!3 quadruples ðai; aj; bk ; blÞ satisfy u 2 Nðai; aj; bkÞ \ Nðaj; bk ; blÞ. Since
jNðaj; bk ; blÞ \ Nðai; aj; bkÞj& 2, we can find two such vertices u, v by applying
Pigeonhole principle twice.

Next, we claim that for each integer i 2 I ¼ f0; 3; 6; 7g, u is contained in a bridge
Ui with difference i, and v is contained in a bridge Vi with difference i. Moreover,
ð[i2IV ðUiÞÞ \ ð[i2IV ðViÞÞ ¼ ;:

Without loss of generality, we may assume u 2 B. (The proof for the case when
u 2 A is analogous.) Construct an auxiliary bipartite graph G with partition classes
Y, Z, where Y ¼ fðai; ajÞ : ai; aj 2 A; ai 6¼ ajg and
Z ¼ fðbk ; blÞ : bk ; bl 2 B; bk 6¼ blg, and ðai; ajÞ0 ðbk ; blÞ if and only if

ðai; aj; bk ; blÞ 2 T and u 2 Nðai; aj; bkÞ \ Nðaj; bk ; blÞ. Then jEðGÞj& 5n3
!3 [ 8n3 and

the average degree of G is at least 8n.
Note that every graph H contains a subgraph D, of which the minimum degree is

at least half of the average degree of H. Hence there exists G0 ) G such that
dðG0Þ& 4n. In G0, dG0ðða1; a2ÞÞ& 4n for ða1; a2Þ 2 V ðG0Þ \ Y. There exist
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ðb1; b3Þ; ðb2; b3Þ 2 V ðG0Þ \ Z such that ða1; a2Þðb1; b3Þ; ða1; a2Þðb2; b3Þ 2 EðG0Þ
with b1 6¼ b2; otherwise dG0ðða1; a2ÞÞ' n. Since dG0ððb2; b3ÞÞ& 4n, there exists
ða3; a4Þ 2 V ðG0Þ \ Y such that ða3; a4Þ 2 NG0ððb2; b3ÞÞ and a3; a4 62 fa1; a2g. Hence,
we have

u 2 Nða1; a2; b1Þ \ Nða2; b1; b3Þ \ Nða1; a2; b2Þ \ Nða2; b2; b3Þ \ Nða3; a4; b2Þ
\ Nða4; b2; b3Þ:

Now the path a1b1a2ub3b2a4 can be extended to a bridge with difference 0 by Claim
2.11. Similarly, the path b1a1a2ub2b3a4 gives a bridge with difference 3 and the path
a3a4b2ub3a2b1 gives a bridge with difference 6.

To obtain a bridge with difference 7, we consider another bipartite graph H with
partition classes U, W, where U ¼ fðai; bkÞ : ai 2 A; bk 2 Bg and
W ¼ fðaj; blÞ : aj 2 A; bl 2 Bg, and ðai; bkÞ0 ðaj; blÞ if and only if ðai; aj; bk ; blÞ 2
T and u 2 Nðai; aj; bkÞ \ Nðaj; bk ; blÞ. Then jEðHÞj& 5n3

!3 [ 8n3 and the average
degree of H is at least 8n. Similarly, for some ða1; b1Þ 2 U , there exists
ða2; b2Þ; ða3; b3Þ 2 W such that a2 6¼ a3; dHðða2; b2ÞÞ& 4n and
ða1; b1Þða2; b2Þ; ða1; b1Þða3; b3Þ 2 EðHÞ. Since dH ðða2; b2ÞÞ& 4n, there exists
ða4; b4Þ 2 U such that ða4; b4Þ 2 NHðða2; b2ÞÞ and b4 6¼ b1. Hence, we have

u 2 Nða1; a2; b1Þ \ Nða2; b1; b2Þ \ Nða1; a3; b1Þ \ Nða2; b4; b2Þ:

The path a3a1b1ua2b2b4 results in a bridge with difference 7.
To summarize, we found four bridges with difference 0, 3, 6, 7 respectively, and

all contain u. Let V 0
1 be the set of vertices of these four bridges. Since each bridge is

obtained by extending a path with 7 vertices and both end triples ð!1; !2; !3Þ-typical
by the application of Claim 2.11, it has at most 7þ 2 ( ð12! 3Þ ¼ 25 vertices. Then
jV 0

1j' 4 ( 25 ¼ 100. Repeat the same argument for v, we find four bridges with
difference 0, 3, 6, 7 respectively, and all are disjoint from V 0

1 and contain v. We
complete the proof of this claim.

Now we find a good set X. Let V 0
2 be the set of vertices of such four bridges

containing v. We can choose one bridge M1 containing u and one bridge M2 con-

taining v to make 3n01!n02þ6
8 an integer where n01 ¼ jAnV ðM1 [M2Þj and

n02 ¼ jBnV ðM1 [M2Þj, since

0þ 0 / 0ðmod 8Þ; 3þ 6 / 1ðmod 8Þ; 3þ 7 / 2ðmod 8Þ; 0þ 3 / 3ðmod 8Þ;
6þ 6 / 4ðmod 8Þ; 6þ 7 / 5ðmod 8Þ; 0þ 6 / 6ðmod 8Þ; 0þ 7 / 7ðmod 8Þ:

Therefore, X ¼ V 0
1 [ V 0

2 is a good set in H. h

5 Concluding Remarks

For the case when jV ðHÞj ¼ 2nþ 1, choose a partition A, B of V ðHÞ with jAj ¼
nþ 1 and jBj ¼ n and, subject to this, jHðA;A;B;BÞj is minimal. The proof is almost
exactly the same as that of Theorems 3.1 and 4.1, since one extra vertex almost does
not make any difference here. Theorem 1.3 will become the following
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Theorem 5.1 There exists !0 [ 0 such that, for sufficiently large n and any 4-graph
H on 2nþ 1 vertices with bðHÞ\!0n4, the following hold.

(i) If d3ðHÞ & n! 1, then H has a Hamiltonian path;
(ii) If d3ðHÞ & n, then H has a Hamiltonian cycle.

Thus, if a 4-graph H with n vertices is close to extremal graph H0 and its
minimum co-degree is at least bn!1

2 c, then H must contain a Hamiltonian cycle. It
remains to consider the other case, that is, when H is far from H0.

Conjecture 5.2 For all c[ 0 there exists c1 [ 0 such that, for sufficiently large n
and a 4-graph on n vertices, if bðHÞ & cn4 and d3ðHÞ & ð1! c1Þ n2 then H has a
Hamiltonian cycle.

Conjecture 5.2 is equivalent to Conjecture 1.1 for k ¼ 4. It is likely that this case
requires the use of absorption technique that Rödl, Ruciński and Szemerédi [15] used
to prove the case of 3-graphs.

On the other hand, using the tools in this paper, one might ask if Theorem 1.3
holds for k-graphs with k& 5.

Conjecture 5.3 There exists !0 [ 0 such that, for sufficiently large n and any k-
graph H on n vertices with bðHÞ\!0nk the following holds: If dk!1ðHÞ& bn!kþ3

2 c,
then H has a Hamiltonian cycle.
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