

Cell-Specific Gene Signature for COVID-19 Infection Severity Using single-cell RNA-seq analysis

Mario Flores^{1,*}, Karla Paniagua¹, Wenjian Huang¹, Ricardo Ramirez², Lenardo Falcon¹, Andy Liu³, Yidong Chen^{4,5}, and Yufei Huang^{6,7}, Yu-Fang Jin^{1*}

¹Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA

²Department of Electrical Engineering and Cyber Engineering, the Houston Baptist University, Houston, TX 77074, USA

³Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712

⁴Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA

⁵Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA

⁶Department of Medicine, School of Medicine, University of Pittsburgh, PA 15232, USA

⁷UPMC Hillman Cancer Center, University of Pittsburgh, PA 15232, USA

*Correspondence should be addressed to Yu-Fang Jin (yufang.jin@utsa.edu); and Mario Flores (mario.flores@utsa.edu);

Citation: Lastname, F.; Lastname, F.; Lastname, F. Title. *Genes* **2022**, *13*, x. <https://doi.org/10.3390/xxxxx>

Academic Editor: Firstname Lastname

Received: date

Accepted: date

Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

The current global pandemic situation of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has affected the lives of billions. As a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease [1], SARS-CoV-2 virus is related to the original SARS-CoV which was highly lethal but faded out after intense public health mitigation measures [2]. One of the mysteries of COVID-19 is why some

people suffer severe symptoms, even life-threatening complications, while others suffer no symptoms or just mild ones.

Several studies have related the severity of COVID-19 infection to immune system features resulting in more vulnerable groups to this viral infection [3, 4]. Further, recent studies have illustrated the special roles of macrophages and monocytes in the inflammatory response to COVID-19 [5, 6]. It has also been shown that in severe cases of COVID-19, the virus promotes a cytokine storm with an uncontrolled massive release of pro-inflammatory cytokines leading to acute respiratory distress syndrome (ARDS) and acute heart failure, and these conditions are highly life-threatening and fraught with the acquisition of secondary bacterial infections [7]. The quantitative profiles of the immune cell subsets and molecular factors associated with protective or pathological immunity against severe COVID-19 can potentially help in gaining a molecular understanding of this pandemic disease and in the development of vaccines and therapeutics [8–11]. However, the lining of molecular signatures, significant cellular responses, and COVID-19 infection severity have not been well defined.

The investigation of cell-specific gene signatures in patients with different levels of COVID-19 severity can be accomplished using single-cell technologies. In particular, scRNA-Seq has become mature enough to provide answers to complex research questions found in the study of dysregulation of the immune systems observed in COVID-19 patients. Several studies on COVID-19 infection using scRNA-Seq technology have been reported recently [8–11], paving a foundation to explore gene signatures and specific cell types involved in COVID-19 infection severity.

The use of single-cell profiling led to a significant increase in the amount of data collected, which results in computational challenges in processing massive and complicated datasets. To address these challenges, deep learning (DL) is positioned as a competitive alternative for single-cell analyses besides the traditional machine learning approaches [12]. In this work, we applied two major computational analyses. First, we implemented a customized single-cell analysis pipeline that included normalization, batch correction, integration, dimensionality reduction, and cell-type prediction to determine the cellular profiles in healthy controls and patients with different severity of COVID-19 symptoms. We then developed deep learning models to predict COVID-19 severity using gene expression profiles of cells in a specific cell type, macrophages. The results of this work show significantly different cell compositions in mild (7,316 cells) and severe (37,197 cells) groups compared to normal (19,221 cells). Importantly, inflammatory responses were dramatically elevated in the group with severe symptoms as well as decreased populations of T cells.

2. Materials and Methods

scRNA-Seq datasets with thirteen patients were downloaded from NCBI GEO under the accession number GSE145926 [8]. A total of 12 BALF samples that include six patients with severe symptoms (S), three patients with mild symptoms (M), and three healthy control patients (N) were analyzed. In the original dataset, healthy control, patients with mild and severe symptoms were denoted as HC, O, and S/C, respectively. We excluded one healthy control sample from our study whose genomic data was originally collected in a different study and lacked detailed patient information as the other 12.

Data was pre-filtered to remove doublets or potential dead cells under the following criteria. 1) The number of genes detected in a cell is between 200 and 6,000. 2) The Unique Molecular Identifier (UMI) counts in a cell should be greater than 1,000. 3) The mitochondrial (MT) percentage is smaller than 10%. A total of 23,916 genes and 63,734 cells were obtained after the filtering process.

2.1. Normalization and batch effect correction

Cell-to-cell normalization of each patient by negative binomial regression was performed using scTransform from the Seurat v3 package in R [13–15]. The 12 samples (patients) were clinically pre-classified into three groups, N, M, and S. Batch effects correction was then performed for samples in each group to eliminate the technical noise, remove variations between cells, and align samples in the same group while avoiding removing biological relevant data. The “anchor” method from Seurat v3 was used for the batch effect correction [13].

2.2. Dimension reduction and clustering

Principal Component Analysis (PCA) was performed for dimensionality reduction over the first 30 components using Seurat. A total of 2,000 highly variable features (genes) were selected. Clusters were identified using the Leiden algorithm with a resolution of 1.21 from Seurat v3 [16].

2.3. Cell type identification

Cell types were assigned to each of the clusters obtained from 2.2 using the automated method from Ding et al. [17]. We calculated the affinity of a cell to a candidate cell type using the marker genes from the CellMatch and CellMarker databases of marker genes [18] as follows:

$$s_c^t = \log \left(\frac{\sum_c^{M_t} x_{y,c}}{K_c} 10^4 + 1 \right), \quad (1)$$

where s_c^t represents the score of a cell c belonging to a candidate cell type t . M_t represents marker genes for each candidate cell type t . The variable $x_{y,c}$ represents the UMI count of the marker gene y in a cell c . The variable K_c denotes the total UMI count in cell c . By calculating $\frac{\sum_c^{M_t} x_{y,c}}{K_c}$, the contribution of marker genes’ expressions to the overall gene expression in a cell c for a cell type t is evaluated. Scale factors, 10^4 and 1, are introduced to facilitate the logarithm calculation.

For a cluster of cells, the scores for each cell belonging to a cell type t can be obtained using equation (1). For a given cluster and a given cell type t , a cell in that cluster is a true positive if the score s_c^t is above a given threshold and a false negative otherwise. On the other hand, a cell not in that cluster is a false positive if it has a score above the threshold and a true negative otherwise. A receiver operating characteristic curve was plotted to show the true positive rate against the false-positive rate at different thresholds. The Aera Under Curve (AUC) is 1.0 for perfectly assigning a cell type to a cluster and around 0.5 for randomly assigning a cell type to a cluster. Specifically, for each cluster, the cell type with the highest AUC was assigned to that cluster if the highest AUC score for a cell type is 5% larger than the 2nd highest AUC score. If AUC scores for different cell types are similar, a cell type with a larger number of gene markers enriched and a higher percentage of cells expressing the marker genes will be considered.

2.4. Deep learning models to predict COVID-19 infection severity with gene expressions

Two different DL models Artificial Neural Network and graphic convolutional neural network have been deployed to predict COVID-19 infection severity using gene expressions in assigned cell types.

We adopted the ANN model since it’s the easiest fully connected model to implement. GCNN models were also performed by integrating biological gene-gene interactions into the models, hoping for a better performance of the models. In this study, a GCNN model includes an input graph represented by an adjacency matrix, graph convolutional layers (coarsening and pooling), and a hidden layer connected to an output layer with three nodes representing N, M, and S groups.

The database-driven network graph is taken from the GeneMania database (<https://GeneMania.org/>) for the GCNN models [19]. GeneMania has a large number of

interactions and incorporates both gene-to-gene and protein-to-protein interactions. Since the input gene expression profiles for all models are consistent, the GeneMania graph does not change and is established once for all models. A p-value threshold was also established for the GeneMania graph to keep only interactions with the confidence of ($p < 3 \times 10^{-5}$) from the filtered genes obtained after dimensionality reduction in section 2.2. This threshold was chosen to get a sufficient number of connections while minimizing the number of singleton nodes. We have applied both ANN and GCNN models in other studies and the graph convolution algorithms and codes for GCNN are available at Github. The evolution algorithm of the GCN layer can be found in our previous research [20, 21].

We trained two sets of models. The first set of models includes both ANN and GCNN models using gene expressions from a cell as input while the output includes COVID-19 infection severity levels. We did not integrate cell-type information in this set of models. The second set of models only uses gene expression profiles from M1, M2, and macrophages identified in our study to predict the COVID-19 infection severity as the output. We termed this a macrophage-specific (M-specific) ANN model or a macrophage-specific GCNN model as shown in Figure 1.

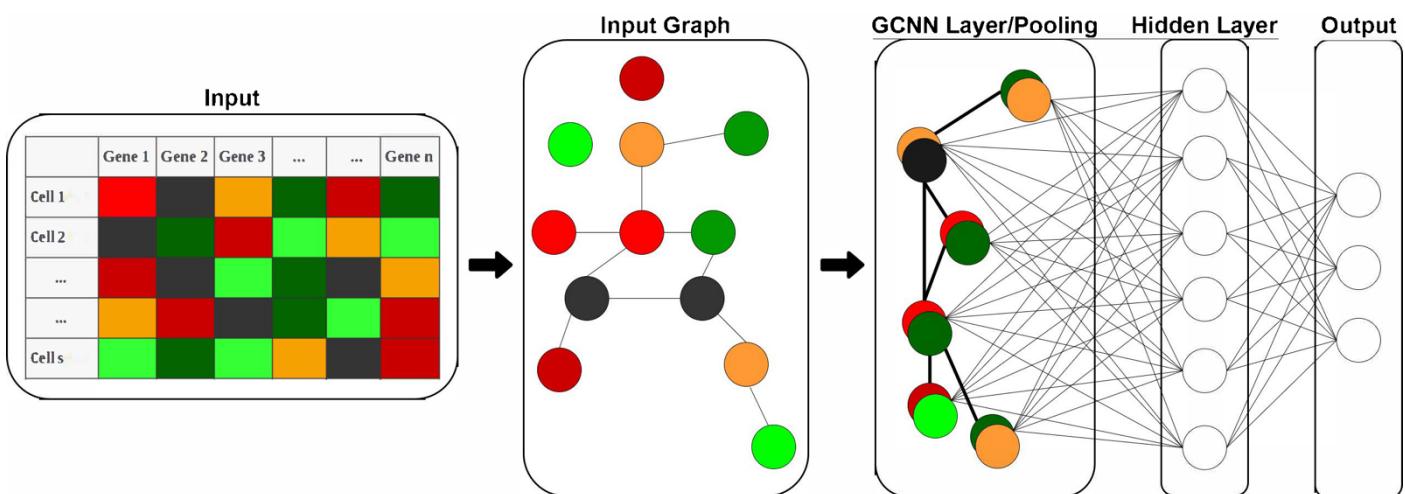


Figure 1. Structure of the developed GCNN model. The model includes a graph evolution layer and a fully connected output layer for classification. Inputs to the GCNN models are expression levels of 2,000 genes in each cell and an input graph. The input graph includes 2,000 genes as nodes and edges among nodes representing gene-to-gene interactions from the GeneMania database. The input graph is then pooled into a single GCNN layer which will be fed into the hidden and output layers.

2.5 Differential Gene Expression and Gene ontology analysis

Differential gene expression analysis was performed in R through a widely adopted package, Model-based Analysis of Single-cell Transcriptomics (MAST) [22]. We further filtered the genes considered as differentially expressed with a threshold of $p\text{-value} < 0.05$ and fold change (FC) > 2 (up-regulated) or $FC < 0.5$ (down-regulated) to keep only the significant differentially expressed genes (DEG) [23]. We analyzed the obtained genes with Database for Annotation, Visualization, and Integrated Discovery (DAVID) [24], a program that integrates functional and genomic annotations with intuitive graphical summaries, to obtain the gene ontology (GO) terms of the significantly differentially expressed genes.

3. Results

3.1 Integration of scRNA-Seq data of COVID-19 patients classified by severity produces a high-quality normalized dataset.

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184

To understand the cell type and molecular differences for COVID-19 patients with different degrees of severity we implemented a custom pipeline to re-process public scRNA-Seq datasets. After pre-processing we obtained 63,734 cells with 23,916 genes for the analysis. The distribution of the number of genes detected, the UMI, and the percentage of MT in cells are illustrated in Figure S1. The violin plots showed that most cells harbor a 2% MT content, less than 10,000 UMIs, and less than 2,000 genes, suggesting high-quality cells supported by a good number of UMI reads. Demographics of each patient in the study together with the number of cells detected for each patient were also included (Table 1). We observed high variations in the number of cells for each sample, reflecting variations in the quality of the samples that were corrected during the normalization and integration steps of our customized scRNA-Seq pipeline.

3.2 Differences in the number of clusters across conditions suggest a correlation to COVID-19 infection severity.

To test if there were differences in the number of clusters across conditions, we processed samples from each condition using PCA. The top 2,000 highly variable genes were selected from the original 23,916 genes and the resulting data was processed. To further verify how the changes in clusters relate to COVID-19 infection severity, we performed batch effect correction and integration for all samples (12 patients).

Table 1. Demographics of patients and number of cells after filtering. The average age of 12 patients is 45.91 with a standard deviation of 16.1.

Sample	Number of cells	Gender	Age	Chronic disease
Normal1	8466	Female	38	-
Normal2	8189	Male	24	-
Normal3	2566	Male	22	-
Mild1	3542	Male	36	-
Mild2	3411	Female	37	-
Mild3	363	Male	35	-
Severe1	17340	Male	62	-
Severe2	1292	Male	66	Hypertension
Severe3	1718	Male	63	Sleep apnea
Severe4	2071	Female	65	Diabetes
Severe5	2904	Female	57	-
Severe6	11872	Male	46	-

We observed that in each group cells were distributed uniformly, suggesting the good performance of normalization and batch effect correction for the 3 groups (See Figure 2A). We found a total of 31 clusters assigned to 20 cell types (Figure 2B, 2C). In Figure 2D, a larger and darker dot represented that the percentage of cells in a cluster expressed the selected marker gene (expression level > 0). We noted that cell types should be determined by multiple markers and a full list of gene markers used was shown in Table S1. The gene marker NAPSA represents type II pneumocytes with a darker and larger dot compared with NAPSA expressions in other cell types in Figure 2D, correspondingly the AUC score for type II pneumocytes is very high (AUC = 0.95), suggesting higher confidence to assign type II pneumocytes to cluster 29. A cell type might be assigned to multiple clusters, for example, M1 macrophages were assigned to clusters 0, 15, 18, and 27 with different AUC scores (Figure 2E). As a marker gene for macrophages, CXCL10 was also highly expressed in other cell types, however, CXCL10 should not affect other cell type assignments if it was not one of the marker genes for the cell type under consideration.

The number of cells and percentage of cells in each cluster for 12 patients were shown in Table 2. A total of 20 clusters of cells were found across all 12 patients. We also found

differences in the percentage of cells from each condition (normal, mild, and severe) that composed the cluster, suggesting that these differences might be related to COVID-19 infection severity.

Table 2. The percentage of cells in each cluster for each patient. N, M, and S represent severity groups, respectively while the number after the group represents the patient ID in the corresponding group, for example, N1 represents patient 1 in the normal group. Note: the summation of percentage in each column is 1, representing cell composition of a sample.

3.3. Clustering with respect to COVID-19 severity levels suggest disease related cell activation

To further test if clusters of cells are related to severity levels, we calculated the percentage of clusters in each patient shown in Table 2. We applied a hierarchical clustering algorithm based on the percentage of cells in a cluster for a patient and the attribute of a patient's group (N, M, S) (Figure 3). The profiles of cell clusters successfully classified the N, M, and S groups, suggesting cellular activation profiles of patients representing the severity of COVID-19 infection.

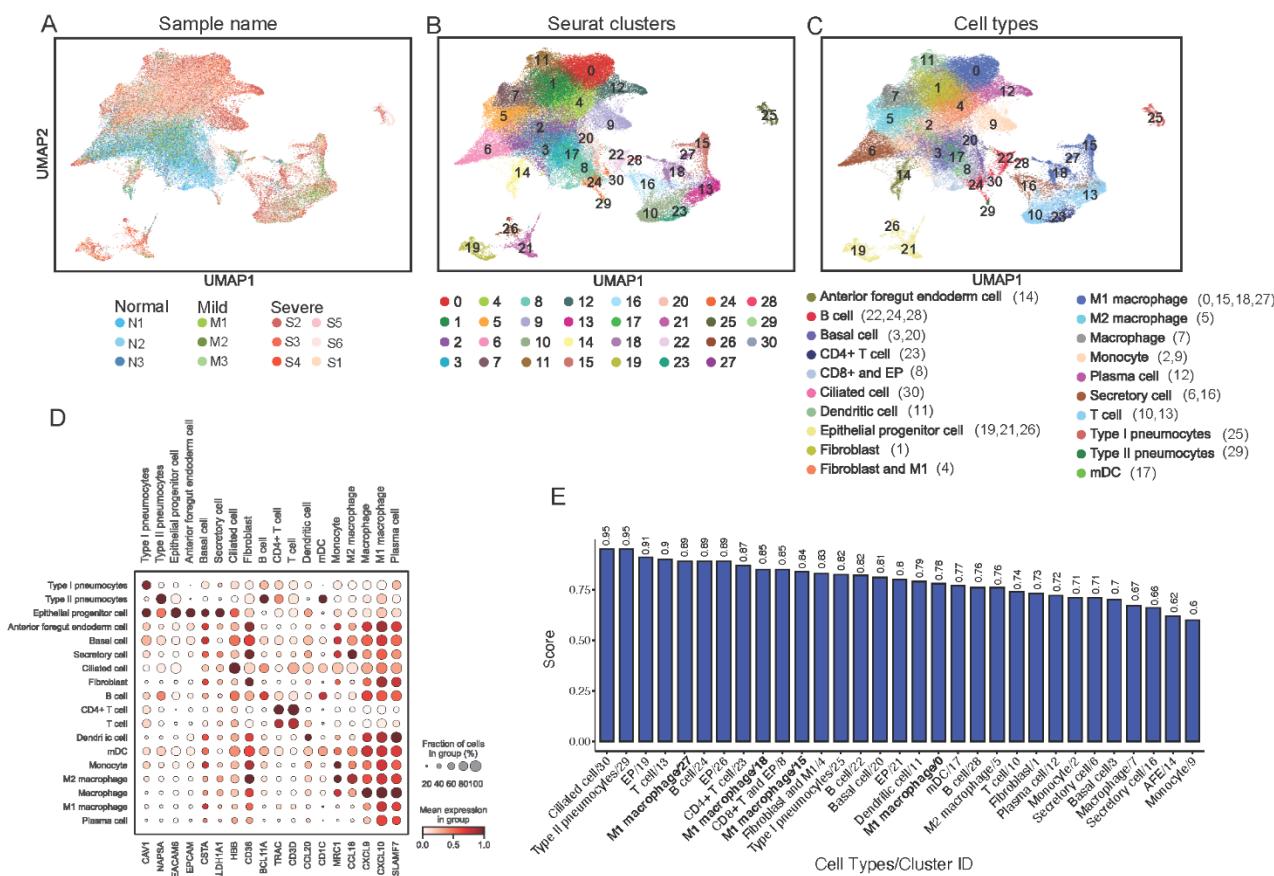


Figure 2. Alignment and clustering of gene expression from 12 patients after normalization and batch effect correction. (A) Cells from all 12 patients in N, M, and S groups were visualized using UMAP; (B) A total of 31 clusters were identified for potential cell-type assignments; (C) Cell types assigned to each cluster were visualized using UMAP; (D) Dot-plot of cell types assigned with selected gene markers. Each gene marker listed at the bottom is a selected marker for a specific cell type listed on top of the subfigure. (E) The AUC scores for cell type assignment to each cluster illustrated the confidence of cell type identification.

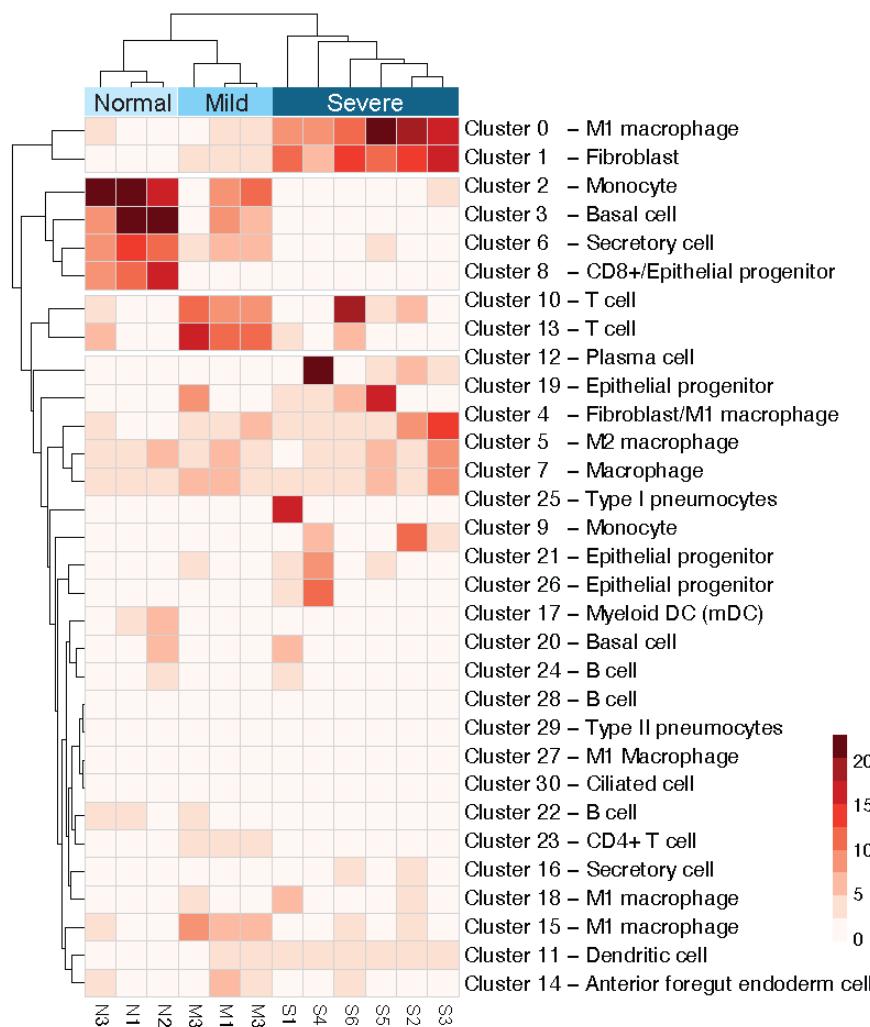


Figure 3. Clustergram of the percentage of cells in each cluster from each patient and their COVID-19 infection severity. The X-axis displays the patients where normal, mild, and severe symptoms patients are clustered together. The Y-axis shows the 31 clusters numbered from 0 to 30 and the corresponding cell types assigned. Clusters get darker red in the heatmap where there is a higher percentage of cells that belong to a specific patient.

3.4. Cell type assignment

Liao et al.'s paper presented an excellent preliminary study to identify 11 cell types (Ciliated, Secretory, Macrophages, Neutrophil, mDC, pDC, Mast cell, T cell, NK, B cell, and Plasma cell) and others with a total of 12 gene markers listed (TPPP3, KRT18, CD68, FCGR3B, CD1C, CLEC9A, LILRA4, TPSB2, CD3D, KLRD1, MS4A1, IGHG4) as shown in Extended Data Fig 1 b [8]. Noticed that two major cell types, alveoli and fibroblasts, were not reported and one cluster in Liao et al.'s study was not assigned for any cell type (denoted as others), which is the other reason that motivated us to perform cell-type identification aiming for a more complete catalog of cell types and subtypes.

Our study has assigned all 63,734 cells to one of the 20 cell types (See Table 3). Specifically, we identified more subtypes of cells, for example, Liao et al.'s results only showed

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

macrophage clusters, while we have identified three subtypes including macrophages, M1 macrophages, and M2 macrophages (87.1% overlapping with Liao's macrophage cell type). Identification of subtypes of macrophages is important since M1 macrophages and M2 macrophages have different regulatory roles in inflammatory responses. Also, 98.8% of the epithelial subtypes including secretory, ciliated, basal, or epithelial progenitor (EP) cells that we identified were identified only as epithelial cells. About 68% of the cells we identified as subtypes of T cells (T cell and CD4+ T cell) were previously identified only as T cells.

Table 3. Percentage of a cell type assigned to cells in N, M, and S groups.

Cellular function	Cell type	Normal (%)	Mild (%)	Severe (%)
Lung structure	Type II pneumocytes	0.068	0.55	0.15
	Type I pneumocytes	0.0052	0.1	1.73
	Secretory cell	12.26	7.79	4.57
	Basal cell	23.68	7.55	1.28
	Anterior foregut endoderm cell	2.17	4.8	1.95
	Epithelial progenitor cell	0.76	3.2	5.34
	Fibroblast	0.73	4.13	14.35
Inflammatory	Ciliated cell	0	0	0.12
	Macrophage	3	5.67	6.05
	M2 macrophage	5.18	5.39	5.79
	M1 macrophage	2.38	9.91	22.31
	Monocyte	19.94	10.72	8.49
	mDC	5.03	1.94	0.32
Immune	B cell	4.34	3.32	1.23
	T cell	2.23	21.62	6.36
	Dendritic cell	1.9	3.65	3.72
	CD4+ T cell	0.41	3.14	0.99
Blood	Plasma cell	0.0052	0.15	5.22
Undetermined	Fibroblast / M1	2.14	4.43	9.75
	CD8+ / EP	13.77	1.93	0.26

To confirm our cell type assignment, we also compared the cell composition of the normal group with other studies and our results agreed with the reported cell compositions [25-30]. In Table 3, about 20.97% (5.67% macrophages, 5.39% M2 macrophages, and 9.91% M1 macrophages) and 34.11% (6.01% macrophages, 5.79 M2 macrophages, and 22.31 M1 macrophages) of cells identified were macrophages from samples with mild and severe symptoms, respectively, suggesting elevated inflammatory responses in mild and severe groups. Fibroblasts accounted for 0.73%, 4.13%, and 14.35% of cells identified from samples as no, mild, and severe symptoms, respectively, indicating possible structural changes in the infected lungs. Interestingly, it's reported that proportions of macrophages significantly increased from 12% in normal (with single-nucleus RNA seq data) to 20% in lung tissue with COVID-19 infection, as well as fibroblasts from 7% in normal to 23% in infected lungs [31]. The identified sub-types of cells in our study provide a more detailed picture of the cell-type composition and its dysregulation related to COVID-19 infection severity.

Table 3 lists the percentage of cell types in each group where we can observe trends of populations of 13 cells-types including Type II pneumocytes, anterior foregut endoderm (AFE) cell, T cell, dendritic cell, Macrophage, fibroblast/M1 macrophage, fibroblast, M1 macrophage, B cell, mDC, CD8+/EP, monocytes, and basal cells, identified in N, M, and S groups (See Figure 4). T cells and AFE cells demonstrated a "Λ" shape, with an increased percentage in the mild group and a decreased percentage in the severe group compared to the normal group (Figure 4A). As an indicator of immune defense, populations of T cells (T cells and CD4+ T cells) counted for 24.76% in the mild group and decreased to 7.35% in the severe group. Cell proportions of monocytes, basal cells, and mDC in the mild and severe groups significantly decreased compared to the normal group (Figure 4C). Since macrophages were differentiated from monocytes, decreased monocyte populations (Figure 4C) were observed with the increased populations of macrophages (Figure 4B)

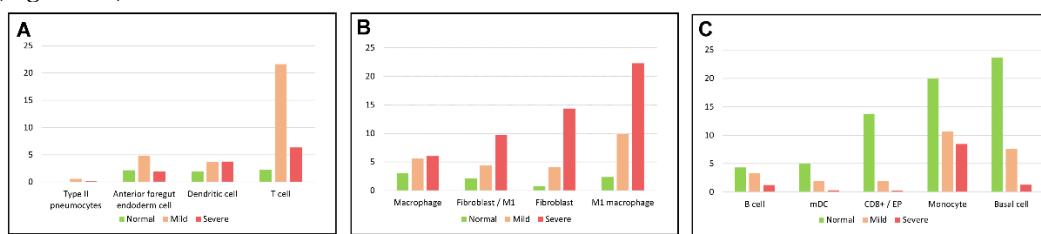


Figure 4 Trends of cell population changes in 13 cell types shared in the normal, mild, and severe groups with the y-axis representing the percentage of cells in N, M, and S. (A) The proportion of cell types demonstrated a "Λ" shape in normal, mild, and severe groups.; (B) The proportion of cell types increased in the mild and severe groups. (C) The proportion of cell types decreased in mild and severe groups.

3.5. Deep learning models for COVID-19 infection severity prediction supported by significant differences in the gene expression profiles of subtypes of immune cells

One ANN model and one GCNN model were trained with 80% of cells from each patient without consideration of cell types while M-specific ANN and M-specific GCNN models were trained with cells identified as M1, M2, and macrophage in section 3.4.

ANN models include 1 input layer with 2,000 nodes for gene expressions, 1 hidden layer with 32 nodes, and 1 output layer with 3 nodes representing the normal, mild, and severe levels of infection. The model was trained with the dropout rate as 0.5, the learning rate as 0.0006, batch size as 128, softmax activation, adam optimizer, and sparse-categorical cross-entropy loss function using the Keras package.

GCNN models were also developed for all cell types and macrophages specifically with the model structure. The GCNN models include one graph with 2,000 nodes (genes) and 199,900 edges. After the input graph, a hidden layer with 128 nodes with softmax activation was introduced and a fully connected output layer with three nodes representing the normal, mild, and severe infection levels. The parameters for GCNN models were chosen as follows: dropout rate is 0.5, the learning rate is 0.0005, and the batch size is 128.

A total of 15 data partitions were established with 80%, 10%, and 10% of cell types extracted from each patient to train, validate, and test the models. Both ANN and GCNN models were developed, trained, and tested with the same data partitions. All ANN and GCNN models have comparable training losses. Average and the best performances of ANN and GCNN models with 15 partitions were presented in Table 4. The best performance of the M-specific GCNN model has a testing performance of 91.48% and beats all other models. Prediction accuracy generated from an M-specific GCNN model was shown in Table 5. The prediction accuracy for the mild group was the worst due to a smaller sample size compared with severe and normal groups as shown in Table 1.

	Average performance 15 partitions			Best performance		
	Train	Validate	Test	Train	Validate	Test
ANN	84.09%	82.62%	82.73%	84.28%	82.97%	83.02%
GCNN	77.09%	76.49%	76.59%	88.61%	88.64%	88.14%
M-specific ANN	87.64%	84.99%	84.86%	88.13%	86.19%	85.86%
M-Specific GCNN	91.16%	89.13%	89.23%	91.48%	90.04%	90.25%

Table 4. Performance of ANN and GCNN models using all cell types and macrophage-specific ANN and GCNN models for COVID-19 infection severity prediction.

337
338

339

Table 5. Confusion matrix for the M-specific GCNN predictions. Rows show the N, M, and S groups, while columns show the number of cells predicted for each group.

True class	Predicted class		
	Normal	Mild	Severe
	Normal	145	12
Mild	22	64	66
Severe	15	21	1,231

We also performed classification using logistic regression in scikit-learn by using a 5-fold cross-validated grid parameter search. The best parameters across all searched parameters are inverse regularization of 10 and L₁ penalty using linear optimizer. The logistic regression model has achieved the best score of 82.9%, and the testing set has the best score of 82.9%. The average prediction accuracy of ANN and GCN modes using all cell types reached similar performance as the logistic regression approach and did not show significant improvement. However, gene expression profiles in identified macrophages significantly improved the prediction accuracy, suggesting M-specific gene signatures might be related to COVID-19 infection severity.

342
343
344
345
346
347
348
349
350
351
352

3.6 A subtype of M1 macrophages is associated with severe COVID-19 cases

353

With the cell type identified, we further examined if cells in a cluster are observed in samples from unique group (See Table 6). In cluster 0 which is assigned as M1 macrophages, 93.2% of cells belong to severe samples, 3.45% to mild samples, and 3.35% to normal samples (See Table 6). Similarly, cells from clusters 5, 7, 15, and 18 belong to samples from N, M, and S groups. Cells from cluster 27 (M1 macrophages) are only observed in samples from M and S groups.

354
355
356
357
358
359

Since multiple clusters have been assigned to M1 macrophages, we further examined the DEG in these clusters to see if we can assign subtype to a cluster. A total of 142 genes were found to be differentially expressed (90 for up-regulated, and 52 for down-regulated) in cluster 0 compared to the other M1 macrophage clusters (15, 18 and 27). Interestingly, all the 90 up-regulated DEG and 51 down-regulated DEG were only found in cluster 0 and not in the other clusters (See Table 7 as unique DEG). The number of DEG and unique DEG in cluster 0 is significantly higher than the other clusters assigned as M1 macrophages, suggesting a possible subtype of M1 macrophages.

360
361
362
363
364
365
366
367
368
369

To further investigate if this is a subtype of the M1 macrophages, we examined the biological processes enriched by the DEG with larger FC (See Table S2 for up-regulated genes and S4 for down-regulated genes). The enriched biological processes of up-

370

regulated genes include chemotaxis, inflammatory response, cytokines, immunity, inflammatory response, antiviral defense, and apoptosis (Table S3) which are strongly associated to the infection of COVID-19. The DEG with larger FC include the alarmins S100A8, and S100A9, CXCL10 and CCL2. S100A8, and S100A9 are endogenous molecules released in response to environmental triggers and cellular damage. They are constitutively expressed in immune cells and their expression is upregulated under inflammatory conditions [32] (See Table 7). CXCL10 and CCL2, have been reported as key players for the onset and maintenance of cytokine-storm in severe cases of COVID-19 [33]. Besides, the expression levels of GNLY, GSZMB, CCL5 were significantly down-regulated (See Table 8). It is known that GNLY functions as an antimicrobial peptide [34]. GSZMB deficiency exacerbates lung inflammation in mice after acute lung injury [35]. Also, low levels of CCL5 have been associated with the severity of COVID-19 [36]. Based on these results we speculate that this subtype of M1 macrophages in cluster 0 is an intermediate subtype related to immunity, inflammatory responses, and cytokine-storm in COVID-19 infection.

In particular, we identified two genes (APOBEC3A and IDO1) that are unique to this cluster and that may also be considered as gene-markers for M1 subtype. APOBEC3A have a key role in cytidine deaminase in transcriptomic and functional polarization of M1 macrophages [37] while IDO1 play potential roles in macrophage differentiation where the expression levels of this gene modulate macrophages differentiation. Previous findings support the role for IDO1 with regarding to the polarization of macrophages to restrain excessive or inappropriate immune activation in inflammatory or tumor microenvironment [38].

Table 6. Percentage of cells from normal, mild, and severe groups in the clusters assigned as Macrophage subtypes

Cluster/subtype	Number of cells	Percentage of Normal cells	Percentage of Mild cells	Percentage of Severe cells
0/M1	6572	3.33%	3.45%	93.20%
5/M2	3544	29.00%	11.40%	59.50%
7/Macrophage	3241	18.30%	13.19%	68.40%
15/M1	1436	5.90%	28.03%	66.05%
18/M1	1218	13.90%	7.95%	78.90%
27/M1	255	0%	2.76%	97.20%

Table 7. Up-regulated DEG in clusters identified as M1 macrophages

Cluster	Total DEG*	Number of unique DEG genes**	Top 5 up regulated(FC)
0	90	90	S100A8 (15.1), S100A9 (14.3), CCL2 (9.3), CXCL10 (8.3), IL1RN (8.1)
15	29	15	CST7 (3.5), RPS27(3.1), RPS19(2.6), ALOX5AP(2.5), XCL2(2.5)
18	40	29	IL32 (6.9), CD3E (3.7), CD2 (3.6), CORO1A(3.5), CD3D(3.3)
27	23	2	ZNF683 (2.0), BGLAP (2.1)

* Differentially expressed genes of one cluster compared to the rest of the clusters identified as M1 macrophages.

** Differentially expressed genes found only in one cluster.

Table 8. Down-regulated DEG in clusters identified as M1 macrophages

Cluster	Total DEG*	Number of unique	Top 5 down regulated (FC)
---------	------------	------------------	---------------------------

404		DEG genes**	
0	52	51	GNLY (0.03), GZMB (0.05), CCL5 (0.09), NKG7 (0.10), IL32 (0.11)
15	72	9	MT2A(0.4), ACTB (0.44), CSTB (0.44), S100A4 (0.46), HLA-DRA (0.47)
18	73	27	FOS (0.30), SRGN (0.36), NEAT1 (0.39), CCL4 (0.39), TNFSF10 (0.42)
27	66	0	N/A

4. Discussion

This is the first study to line up M-specific gene signatures to the severity of COVID-19 infections using single-cell RNA Seq analysis. A total of 31 cell clusters were found in a previously published dataset and the percentages of the cell clusters from 12 samples were used to successfully predict the severity of the COVID-19 infections. To gain a better understanding of the specific cellular responses to COVID-19 infections, these 31 cell clusters were further mapped into 20 cell types with well-defined gene markers in the lungs. Trends of the cell profiles in the normal, mild, and severe groups were then compared. The most significant changes were found in macrophages, monocytes, and T cells, for the immune system and inflammatory responses while fibroblasts, EP, and basal cells for lung function and structures. Different cell proportions identified in the normal, mild, and severe groups triggered a further exploration of gene signatures in specific cell types. ANN and GCNN models were developed to predict COVID-19 infection severity with gene expressions in all cell types and with gene expressions from M1+M2+macrophages considering macrophages are the most significant cell type changes among the normal, mild, and severe groups. Our results showed that the macrophage-specific GCNN model had the highest prediction accuracy, confirming the significant role of macrophages in predicting the severity of COVID-19.

The novelty of this study lies in the fact of integrating single-cell RNA seq analysis with DL models to predict the severity of COVID-19 infection. Due to the complexity of single-cell data, a significant research effort was allocated at the early stage for normalization and batch effect correction to reduce technical experimental variations and individual differences among batches and cells while keeping meaningful biological information. Though multiple scRNA-seq pipelines such as Seurat [13] and Scanpy [39] are available for users to perform the analysis, the rationale for selecting special thresholds during the analysis should be carefully examined by the users with a good understanding of both statistical analysis and biological processes. Overwhelming batch correction may lead to the loss of biological information for scRNA-Seq analysis.

With the availability of DL modeling tools such as Keras, training of DL models is getting easier while the interpretation of DL is still premature. We adopted a feature selection searching approach in this study. The completeness and soundness of the model should be further investigated in our future studies. There are other approaches to establishing a GCNN graph for scRNA-seq data including using a cell-cell graph or a gene-to-cell graph [40, 41]. Since the goal of this study was to line up gene expression profiles to cell types and then infection severity, we first established a data-driven graph from genes to cell clusters, borrowing the idea reported in [41]. However, the performance of the GCNN with gene-to-cell cluster graph was not as good as the GCNN models presented here. We examined the edges in the data-driven gene-to-cell cluster graph and found the number of edges was much smaller than that in other graphs we used before. In addition, since there is no backward proration to refine the weights of the edges in the gene to cell cluster graph, any error introduced in the graph will stay there and affect the prediction accuracy. On the other hand, the adopted gene-to-gene interaction graph is a pure knowledge-driven graph. Thus, the errors introduced to the graph are controllable based on prior knowledge. One possible way to improve the performance of the GCNN model

is to establish a pure biology-driven graph combining gene-gene interactions and links from marker genes to specific cells for GCNN models in the future. 449
450

Our study indicates significant differences in the gene expression profiles of subtypes 451
of immune cells of COVID-19-infected patients. The molecular components of these 452
profiles deserve further research and experimentation as potential therapeutical factors. 453

Supplementary Materials: The supporting information can be downloaded at: 454
<https://github.com/Karladanielap/GeneSignaturesCOVID19>, 455

Author Contributions: YFJ and MF conceived the study. KP and WH performed the analysis, 456
YFJ, 457
MF, YC, and YH summarized resources, wrote, and approved the final version of the paper.

Funding: This article's publication costs were supported partially by the National Institutes of 458
Health (CTSA 1UL1RR025767-01 to YC, R01GM113245 to YH, NCI Cancer Center Shared Resources 459
P30CA54174 to YC); National Science Foundation (2051113 to YFJ); Department of Transportation 460
(TranSET Program 21ITS034 and 21UTSA049); Cancer Prevention and Research Institute of Texas 461
(RP160732 to YC, RP190346 to YC and YH); and the Fund for Innovation in Cancer Informatics (ICI 462
Fund to YC). 463

Data Availability Statement: The source code and data can be downloaded from 464
<https://github.com/Karladanielap/GeneSignaturesCOVID19> 465

Acknowledgments: N/A 466

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 467
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; 468
or in the decision to publish the results. 469

References

1. Hu B, Guo H, Zhou P, Shi ZL: **Characteristics of SARS-CoV-2 and COVID-19.** *Nat Rev Microbiol* 2020. 471
2. Standl F, Jockel KH, Brune B, Schmidt B, Stang A: **Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics.** 472
Lancet Infect Dis 2020. 473
3. Brodin P: **Immune determinants of COVID-19 disease presentation and severity.** *Nat Med* 2021, **27**(1):28-33. 474
4. Gu W, Gan H, Ma Y, Xu L, Cheng ZJ, Li B, Zhang X, Jiang W, Sun J, Sun B *et al*: **The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity.** *Virology Journal* 2022, **19**(1):49. 475
476
5. Junqueira C, Crespo Â, Ranjbar S, de Lacerda LB, Lewandrowski M, Ingber J, Parry B, Ravid S, Clark S, Schrimpf MR *et al*: 477
FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. *Nature* 2022. 478
6. Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B *et al*: **Inflammasome** 479
activation in infected macrophages drives COVID-19 pathology. *bioRxiv* 2022:2021.2009.2027.461948. 480
7. Kosyreva A, Dzhalilova D, Lohkonina A, Vishnyakova P, Fatkhudinov T: **The Role of Macrophages in the Pathogenesis** 481
of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. *Front Immunol* 2021, **12**:682871. 482
8. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F *et al*: **Single-cell landscape of bronchoalveolar** 483
immune cells in patients with COVID-19. *Nature Medicine* 2020, **26**(6):842-844. 484
9. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, Li J, Liu Y, Tang F, Zhang F *et al*: **COVID-19 immune features revealed by a** 485
large-scale single-cell transcriptome atlas. *Cell* 2021, **184**(7):1895-1913.e1819. 486
10. Tian Y, Carpp LN, Miller HER, Zager M, Newell EW, Gottardo R: **Single-cell immunology of SARS-CoV-2 infection.** *Nat* 487
Biotechnol 2022, **40**(1):30-41. 488
11. Vaka R, Khan S, Ye B, Risha Y, Parent S, Courtman D, Stewart DJ, Davis DR: **Direct comparison of different therapeutic** 489
cell types susceptibility to inflammatory cytokines associated with COVID-19 acute lung injury. *Stem Cell Research &* 490
Therapy 2022, **13**(1):20. 491

12. Flores M, Liu Z, Zhang T, Hasib MM, Chiu YC, Ye Z, Paniagua K, Jo S, Zhang J, Gao SJ *et al*: **Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis.** *Brief Bioinform* 2022, **23**(1). 492
493

13. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, Smibert P, Satija R: **Comprehensive Integration of Single-Cell Data.** *Cell* 2019, **177**(7):1888-1902 e1821. 494
495

14. Hafemeister C, Satija R: **Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression.** *Genome Biol* 2019, **20**(1):296. 496
497

15. Lun AT, Bach K, Marioni JC: **Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.** *Genome Biol* 2016, **17**:75. 498
499

16. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM *et al*: **Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.** *Cell* 2015, **161**(5):1202-1214. 500
501
502

17. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, Hughes TK, Wadsworth MH, Burks T, Nguyen LT *et al*: **Systematic comparison of single-cell and single-nucleus RNA-sequencing methods.** *Nature Biotechnology* 2020, **38**(6):737-746. 503
504
505

18. Shao X, Liao J, Lu X, Xue R, Ai N, Fan X: **scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data.** *iScience* 2020, **23**(3):100882. 506
507

19. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT *et al*: **The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.** *Nucleic Acids Research* 2010, **38**(suppl_2):W214-W220. 508
509
510

20. Ramirez R, Chiu Y-C, Hererra A, Mostavi M, Ramirez J, Chen Y, Huang Y, Jin Y-F: **Classification of Cancer Types Using Graph Convolutional Neural Networks.** *Frontiers in Physics* 2020, **8**. 511
512

21. Ramirez R, Chiu Y-C, Zhang S, Ramirez J, Chen Y, Huang Y, Jin Y-F: **Prediction and interpretation of cancer survival using graph convolution neural networks.** *Methods* 2021, **192**:120-130. 513
514

22. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M *et al*: **MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.** *Genome Biol* 2015, **16**:278. 515
516
517

23. Overholt KJ, Krog JR, Zanoni I, Bryson BD: **Dissecting the common and compartment-specific features of COVID-19 severity in the lung and periphery with single-cell resolution.** *iScience* 2021, **24**(7):102738. 518
519

24. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: **DAVID: Database for Annotation, Visualization, and Integrated Discovery.** *Genome Biol* 2003, **4**(5):P3. 520
521

25. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER: **Cell number and cell characteristics of the normal human lung.** *Am Rev Respir Dis* 1982, **126**(2):332-337. 522
523

26. Reid L, Meyrick B, Antony VB, Chang L-Y, Crapo JD, Reynolds HY: **The mysterious pulmonary brush cell: a cell in search of a function.** *Am J Respir Crit Care Med* 2005, **172**(1):136-139. 524
525

27. Green MD, Chen A, Nostro M-C, d'Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck H-W: **Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells.** *Nature Biotechnology* 2011, **29**(3):267-272. 526
527
528

28. Chen K, Kolls JK: **T cell-mediated host immune defenses in the lung.** *Annu Rev Immunol* 2013, **31**:605-633. 529

29. Whitsett JA, Alenghat T: **Respiratory epithelial cells orchestrate pulmonary innate immunity.** *Nat Immunol* 2015, **16**(1):27-35. 530
531

30. Trombetta AC, Soldano S, Contini P, Tomatis V, Ruaro B, Paolino S, Brizzolara R, Montagna P, Sulli A, Pizzorni C: **A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement.** *Respiratory research* 2018, **19**(1):1-12. 532
533

31. Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT *et al*: **COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.** *Nature* 2021, **595**(7865):107-113. 535
536
537

32. Crowe LAN, McLean M, Kitson SM, Melchor EG, Patommel K, Cao HM, Reilly JH, Leach WJ, Rooney BP, Spencer SJ *et al*: **S100A8 & S100A9: Alarmin mediated inflammation in tendinopathy.** *Sci Rep* 2019, **9**(1):1463. 538
539

33. Coperchini F, Chiovato L, Rotondi M: **Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine Storm: Not One for All But All for One!** *Front Immunol* 2021, **12**:668507. 540
541

34. Dotiwala F, Lieberman J: **Granulysin: killer lymphocyte safeguard against microbes.** *Curr Opin Immunol* 2019, **60**:19-29. 542

35. Hirota JA, Hiebert PR, Gold M, Wu D, Graydon C, Smith JA, Ask K, McNagny K, Granville DJ, Knight DA: **Granzyme B deficiency exacerbates lung inflammation in mice after acute lung injury.** *Am J Respir Cell Mol Biol* 2013, **49**(3):453-462. 543
544

36. Perez-Garcia F, Martin-Vicente M, Rojas-Garcia RL, Castilla-Garcia L, Munoz-Gomez MJ, Hervas Fernandez I, Gonzalez Ventosa V, Vidal-Alcantara EJ, Cuadros-Gonzalez J, Bermejo-Martin JF *et al*: **High SARS-CoV-2 Viral Load and Low CCL5 Expression Levels in the Upper Respiratory Tract Are Associated With COVID-19 Severity.** *J Infect Dis* 2022, **225**(6):977-982. 545
546
547

37. Alqassim EY, Sharma S, Khan A, Emmons TR, Cortes Gomez E, Alahmari A, Singel KL, Mark J, Davidson BA, Robert McGay AJ *et al*: **RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization.** *Commun Biol* 2021, **4**(1):102. 549
550
551

38. Wang XF, Wang HS, Wang H, Zhang F, Wang KF, Guo Q, Zhang G, Cai SH, Du J: **The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: focus on macrophage polarization of THP-1 cells.** *Cell Immunol* 2014, **289**(1-2):42-48. 552
553

39. Wolf FA, Angerer P, Theis FJ: **SCANPY: large-scale single-cell gene expression data analysis.** *Genome Biol* 2018, **19**(1):15. 554

40. Wang J, Ma A, Chang Y, Gong J, Jiang Y, Qi R, Wang C, Fu H, Ma Q, Xu D: **scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses.** *Nature Communications* 2021, **12**(1):1882. 555
556

41. Ciortan M, Defrance M: **GNN-based embedding for clustering scRNA-seq data.** *Bioinformatics* 2021, **38**(4):1037-1044. 557
558