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Abstract: SARS-CoV-2, the etiological agent responsible for COVID-19, has affected the lives of bil- 19 
lions and killed millions of infected people. This virus has been demonstrated to have different out- 20 
comes among individuals, some of them presenting a mild infection, while others present severe 21 
symptoms or even death. The identification of the molecular states related to the severity of COVID- 22 
19 infection has become of utmost importance to understanding the critical immune response dif- 23 
ferences. In this study, we computationally processed a set of publicly available single-cell RNA- 24 
Seq (scRNA-Seq) data of 12 Bronchoalveolar Lavage Fluid (BALF) samples diagnosed as having 25 
mild, severe, or no infection, and generated a high-quality dataset that consists of 63,734 cells, each 26 
with 23,916 genes. We extended the cell-type and sub-type composition identification and our anal- 27 
ysis showed significant differences in cell type composition in mild and severe groups compared to 28 
the normal. Importantly, inflammatory responses were dramatically elevated in the severe group, 29 
which was evidenced by the significant increase of macrophages from 10.56% in the normal group 30 
to 20.97% in the mild group and 34.15% in the severe group. As an indicator of immune defense, 31 
populations of T cells counted for 24.76% in the mild group and decreased to 7.35% in the severe 32 
group. To verify these findings, we developed several artificial neural networks (ANNs) and graph 33 
convolutional neural network (GCNN) models. We showed that the GCNN models reach a predic- 34 
tion accuracy of the infection severity of 91.16% using data from subtypes of macrophages. Overall, 35 
our study indicates significant differences in the gene expression profiles of inflammatory response 36 
and immune cells of severely infected patients. 37 

Keywords: Deep learning; single-cell RNA-seq; gene signature, SARS-CoV-2; cell type identifica- 38 
tion; infection severity. 39 
 40 

1. Introduction 41 
The current global pandemic situation of coronavirus disease 2019 (COVID-19) due 42 

to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has affected the 43 
lives of billions. As a highly transmissible and pathogenic coronavirus that emerged in 44 
late 2019 and has caused a pandemic of acute respiratory disease [1], SARS-CoV-2 virus 45 
is related to the original SARS-CoV which was highly lethal but faded out after intense 46 
public health mitigation measures [2]. One of the mysteries of COVID-19 is why some 47 
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people suffer severe symptoms, even life-threatening complications, while others suffer 48 
no symptoms or just mild ones.  49 

Several studies have related the severity of COVID-19 infection to immune system 50 
features resulting in more vulnerable groups to this viral infection [3, 4]. Further, recent 51 
studies have illustrated the special roles of macrophages and monocytes in the inflamma- 52 
tory response to COVID-19 [5, 6]. It has also been shown that in severe cases of COVID- 53 
19, the virus promotes a cytokine storm with an uncontrolled massive release of pro-in- 54 
flammatory cytokines leading to acute respiratory distress syndrome (ARDS) and acute 55 
heart failure, and these conditions are highly life-threatening and fraught with the acqui- 56 
sition of secondary bacterial infections [7]. The quantitative profiles of the immune cell 57 
subsets and molecular factors associated with protective or pathological immunity against 58 
severe COVID-19 can potentially help in gaining a molecular understanding of this pan- 59 
demic disease and in the development of vaccines and therapeutics [8-11]. However, the 60 
lining of molecular signatures, significant cellular responses, and COVID-19 infection se- 61 
verity have not been well defined. 62 

The investigation of cell-specific gene signatures in patients with different levels of 63 
COVID-19 severity can be accomplished using single-cell technologies. In particular, 64 
scRNA-Seq has become mature enough to provide answers to complex research questions 65 
found in the study of dysregulation of the immune systems observed in COVID-19 pa- 66 
tients. Several studies on COVID-19 infection using scRNA-Seq technology have been re- 67 
ported recently [8-11], paving a foundation to explore gene signatures and specific cell 68 
types involved in COVID-19 infection severity.  69 

The use of single-cell profiling led to a significant increase in the amount of data col- 70 
lected, which results in computational challenges in processing massive and complicated 71 
datasets. To address these challenges, deep learning (DL) is positioned as a competitive 72 
alternative for single-cell analyses besides the traditional machine learning approaches 73 
[12]. In this work, we applied two major computational analyses. First, we implemented 74 
a customized single-cell analysis pipeline that included normalization, batch correction, 75 
integration, dimensionality reduction, and cell-type prediction to determine the cellular 76 
profiles in healthy controls and patients with different severity of COVID-19 symptoms. 77 
We then developed deep learning models to predict COVID-19 severity using gene ex- 78 
pression profiles of cells in a specific cell type, macrophages. The results of this work show 79 
significantly different cell compositions in mild (7,316 cells) and severe (37,197 cells) 80 
groups compared to normal (19,221 cells). Importantly, inflammatory responses were dra- 81 
matically elevated in the group with severe symptoms as well as decreased populations 82 
of T cells.   83 

2. Materials and Methods 84 
scRNA-Seq datasets with thirteen patients were downloaded from NCBI GEO under 85 

the accession number GSE145926 [8]. A total of 12 BALF samples that include six patients 86 
with severe symptoms (S), three patients with mild symptoms (M), and three healthy con- 87 
trol patients (N) were analyzed. In the original dataset, healthy control, patients with mild 88 
and severe symptoms were denoted as HC, O, and S/C, respectively. We excluded one 89 
healthy control sample from our study whose genomic data was originally collected in a 90 
different study and lacked detailed patient information as the other 12.  91 

Data was pre-filtered to remove doublets or potential dead cells under the following 92 
criteria. 1) The number of genes detected in a cell is between 200 and 6,000. 2) The Unique 93 
Molecular Identifier (UMI) counts in a cell should be greater than 1,000. 3) The mitochon- 94 
drial (MT) percentage is smaller than 10%. A total of 23,916 genes and 63,734 cells were 95 
obtained after the filtering process.  96 

2.1. Normalization and batch effect correction 97 
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Cell-to-cell normalization of each patient by negative binomial regression was per- 98 
formed using scTransform from the Seurat v3 package in R [13-15]. The 12 samples (pa- 99 
tients) were clinically pre-classified into three groups, N, M, and S. Batch effects correction 100 
was then performed for samples in each group to eliminate the technical noise, remove 101 
variations between cells, and align samples in the same group while avoiding removing 102 
biological relevant data. The “anchor” method from Seurat v3 was used for the batch ef- 103 
fect correction [13]. 104 

2.2. Dimension reduction and clustering 105 
Principal Component Analysis (PCA) was performed for dimensionality reduction 106 

over the first 30 components using Seurat. A total of 2,000 highly variable features (genes) 107 
were selected. Clusters were identified using the Leiden algorithm with a resolution of 108 
1.21 from Seurat v3 [16].  109 

2.3. Cell type identification 110 
Cell types were assigned to each of the clusters obtained from 2.2 using the auto- 111 

mated method from Ding et al. [17]. We calculated the affinity of a cell to a candidate cell 112 
type using the marker genes from the CellMatch and CellMarker databases of marker 113 
genes [18] as follows: 114 

𝑠𝑠!" = log &
∑ $!,#
$%
#
%#

	10& + 1+,         (1) 115 
where 𝑠𝑠!" represents the score of a cell 𝑐𝑐 belonging to a candidate cell type 𝑡𝑡. 𝑀𝑀" represents 116 
marker genes for each candidate cell type 𝑡𝑡. The variable 𝑥𝑥',! represents the UMI count of 117 
the marker gene 𝑦𝑦 in a cell 𝑐𝑐.  The variable 𝐾𝐾! denotes the total UMI count in cell 𝑐𝑐.  By 118 

calculating 
∑ $!,#
$%
#
%#

	,		the contribution of marker genes’ expressions to the overall gene ex- 119 
pression in a cell 𝑐𝑐 for a cell type t is evaluated. Scale factors, 104 and 1, are introduced to 120 
facilitate the logarithm calculation. 121 

For a cluster of cells, the scores for each cell belonging to a cell type t can be obtained 122 
using equation (1).  For a given cluster and a given cell type t, a cell in that cluster is a true 123 
positive if the score 𝑠𝑠!" is above a given threshold and a false negative otherwise. On the 124 
other hand, a cell not in that cluster is a false positive if it has a score above the threshold 125 
and a true negative otherwise. A receiver operating characteristic curve was plotted to 126 
show the true positive rate against the false-positive rate at different thresholds. The Aera 127 
Under Curve (AUC) is 1.0 for perfectly assigning a cell type to a cluster and around 0.5 128 
for randomly assigning a cell type to a cluster. Specifically, for each cluster, the cell type 129 
with the highest AUC was assigned to that cluster if the highest AUC score for a cell type 130 
is 5% larger than the 2nd highest AUC score. If AUC scores for different cell types are sim- 131 
ilar, a cell type with a larger number of gene markers enriched and a higher percentage of 132 
cells expressing the marker genes will be considered. 133 

2.4. Deep learning models to predict COVID-19 infection severity with gene expressions 134 
Two different DL models Artificial Neural Network and graphic convolutional neu- 135 

ral network have been deployed to predict COVID-19 infection severity using gene ex- 136 
pressions in assigned cell types.  137 

We adopted the ANN model since it’s the easiest fully connected model to imple- 138 
ment. GCNN models were also performed by integrating biological gene-gene interac- 139 
tions into the models, hoping for a better performance of the models. In this study, a 140 
GCNN model includes an input graph represented by an adjacency matrix, graph convo- 141 
lutional layers (coarsening and pooling), and a hidden layer connected to an output layer 142 
with three nodes representing N, M, and S groups.  143 

The database-driven network graph is taken from the GeneMania database (https:// 144 
GeneMania.org/) for the GCNN models [19]. GeneMania has a large number of 145 
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interactions and incorporates both gene-to-gene and protein-to-protein interactions. Since 146 
the input gene expression profiles for all models are consistent, the GeneMania graph does 147 
not change and is established once for all models. A p-value threshold was also estab- 148 
lished for the GeneMania graph to keep only interactions with the confidence of (p < 3x10- 149 
5) from the filtered genes obtained after dimensionality reduction in section 2.2. This 150 
threshold was chosen to get a sufficient number of connections while minimizing the 151 
number of singleton nodes. We have applied both ANN and GCNN models in other stud- 152 
ies and the graph convolution algorithms and codes for GCNN are available at Github. 153 
The evolution algorithm of the GCN layer can be found in our previous research   [20, 21]. 154 

We trained two sets of models. The first set of models includes both ANN and GCNN 155 
models using gene expressions from a cell as input while the output includes COVID-19 156 
infection severity levels. We did not integrate cell-type information in this set of models. 157 
The second set of models only uses gene expression profiles from M1, M2, and macro- 158 
phages identified in our study to predict the COVID-19 infection severity as the output. 159 
We termed this a macrophage-specific (M-specific) ANN model or a macrophage-specific 160 
GCNN model as shown in Figure 1. 161 

 162 

 163 
Figure 1. Structure of the developed GCNN model. The model includes a graph evolution layer and 164 
a fully connected output layer for classification. Inputs to the GCNN models are expression levels 165 
of 2,000 genes in each cell and an input graph. The input graph includes 2,000 genes as nodes and 166 
edges among nodes representing gene-to-gene interactions from the GeneMania database. The in- 167 
put graph is then pooled into a single GCNN layer which will be fed into the hidden and output 168 
layers.     169 

 170 
2.5 Differential Gene Expression and Gene ontology analysis 171 

Differential gene expression analysis was performed in R through a widely adopted 172 
package, Model-based Analysis of Single-cell Transcriptomics (MAST) [22]. We further 173 
filtered the genes considered as differentially expressed with a threshold of p-value < 0.05 174 
and fold change (FC) > 2 (up-regulated) or FC<0.5 (down-regulated) to keep only the sig- 175 
nificant differentially expressed genes (DEG) [23]. We analyzed the obtained genes with 176 
Database for Annotation, Visualization, and Integrated Discovery (DAVID) [24], a pro- 177 
gram that integrates functional and genomic annotations with intuitive graphical sum- 178 
maries, to obtain the gene ontology (GO) terms of the significantly differentially expressed 179 
genes. 180 

 181 

3. Results 182 
 3.1 Integration of scRNA-Seq data of COVID-19 patients classified by severity produces a high- 183 
quality normalized dataset. 184 
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To understand the cell type and molecular differences for COVID-19 patients with 185 
different degrees of severity we implemented a custom pipeline to re-process public 186 
scRNA-Seq datasets. After pre-processing we obtained 63,734 cells with 23,916 genes for 187 
the analysis. The distribution of the number of genes detected, the UMI, and the percent- 188 
age of MT in cells are illustrated in Figure S1. The violin plots showed that most cells 189 
harbor a 2% MT content, less than 10,000 UMIs, and less than 2,000 genes, suggesting 190 
high-quality cells supported by a good number of UMI reads. Demographics of each pa- 191 
tient in the study together with the number of cells detected for each patient were also 192 
included (Table 1). We observed high variations in the number of cells for each sample, 193 
reflecting variations in the quality of the samples that were corrected during the normal- 194 
ization and integration steps of our customized scRNA-Seq pipeline. 195 

 196 

3.2 Differences in the number of clusters across conditions suggest a correlation to COVID-19 197 
infection severity. 198 

To test if there were differences in the number of clusters across conditions, we pro- 199 
cessed samples from each condition using PCA. The top 2,000 highly variable genes were 200 
selected from the original 23,916 genes and the resulting data was processed. To further 201 
verify how the changes in clusters relate to COVID-19 infection severity, we performed 202 
batch effect correction and integration for all samples (12 patients).  203 

 204 
 205 

Table 1. Demographics of patients and number of cells after filtering. The average age of 12 patients 206 
is 45.91 with a standard deviation of 16.1. 207 

 208 
We observed that in each group cells were distributed uniformly, suggesting the 209 

good performance of normalization and batch effect correction for the 3 groups (See Figure 210 
2A). We found a total of 31 clusters assigned to 20 cell types (Figure 2B, 2C). In Figure 2D, 211 
a larger and darker dot represented that the percentage of cells in a cluster expressed the 212 
selected marker gene (expression level > 0). We noted that cell types should be determined 213 
by multiple markers and a full list of gene markers used was shown in Table S1. The gene 214 
marker NAPSA represents type II pneumocytes with a darker and larger dot compared 215 
with NAPSA expressions in other cell types in Figure 2D, correspondingly the AUC score 216 
for type II pneumocytes is very high (AUC = 0.95), suggesting higher confidence to assign 217 
type II pneumocytes to cluster 29. A cell type might be assigned to multiple clusters, for 218 
example, M1 macrophages were assigned to clusters 0, 15, 18, and 27 with different AUC 219 
scores (Figure 2E). As a marker gene for macrophages, CXCL10 was also highly expressed 220 
in other cell types, however, CXCL10 should not affect other cell type assignments if it was 221 
not one of the marker genes for the cell type under consideration. 222 

The number of cells and percentage of cells in each cluster for 12 patients were shown 223 
in Table 2. A total of 20 clusters of cells were found across all 12 patients. We also found 224 

Sample Number of cells Gender Age Chronic disease 
Normal1 8466 Female 38 - 
Normal2 8189 Male 24 - 
Normal3 2566 Male 22 - 

Mild1 3542 Male 36 - 
Mild2 3411 Female 37 - 
Mild3 363 Male 35 - 

Severe1 17340 Male 62 - 
Severe2 1292 Male 66 Hypertension 
Severe3 1718 Male 63 Sleep apnea 
Severe4 2071 Female 65 Diabetes 
Severe5 2904 Female 57 - 
Severe6 11872 Male 46 - 
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differences in the percentage of cells from each condition (normal, mild, and severe) that 225 
composed the cluster, suggesting that these differences might be related to COVID-19 in- 226 
fection severity.  227 

Table 2. The percentage of cells in each cluster for each patient. N, M, and S represent severity 228 
groups, respectively while the number after the group represents the patient ID in the correspond- 229 
ing group, for example, N1 represents patient 1 in the normal group. Note: the summation of per- 230 
centage in each column is 1, representing cell composition of a sample.  231 

  232 
Cluster # Cell type N1 N2 N3 M1 M2 M3 S1 S2 S3 S4 S5 S6 

Cluster 0 M1 
macrophage 0.93 0.53 3.62 2.82 3.34 2.48 18.82 15.46 10.06 23.11 12.75 8.4 

Cluster 1 Fibroblast 0.85 0.31 1.68 4.43 3.96 2.75 14.12 17.17 6.81 10.48 12.94 10.78 
Cluster 2 Monocyte 21.95 15.59 20.81 9.01 11.96 1.65 1.26 3.38 1.47 1.34 1.06 0.55 
Cluster 3 Basal cell 20.67 22.65 8.85 7.99 6.65 2.48 0.27 1.26 0.54 0.7 0.34 0.72 

Cluster 4 Fibroblast 
and M1 2.45 1.48 3.27 3.42 5.66 2.75 9.36 14.21 3.48 3.84 4.49 3.89 

Cluster 5 M2 
macrophage 4.93 5.59 4.68 5.79 5.13 3.86 4.5 8.8 4.72 7.57 4.73 1.41 

Cluster 6 Secretory cell 13.13 10.58 9.9 5.31 7.15 3.86 2.06 1.53 1.55 2.79 0.43 2.41 
Cluster 7 Macrophage 2.98 2.87 3.51 6.15 5.04 6.89 4.77 9.11 5.11 5.3 4.54 3.1 

Cluster 8 CD8 + T and 
EP 12.6 16.83 7.83 2.17 1.64 2.2 0.21 0.14 0.7 0.41 0.53 0.62 

Cluster 9 Monocyte 0.87 0.59 1.68 0.65 0.73 1.1 11.16 2.8 6.35 1.98 2.17 1.03 
Cluster 10 T cell 0.83 0.05 4.44 8.78 9.85 11.57 5.18 2.02 0.62 2.85 19.17 2.48 

Cluster 11 Dendritic 
cell 2.02 1.67 2.22 4.29 3.11 2.48 3.44 3.93 3.79 3.55 4.25 4.2 

Cluster 12 Plasma cell 0.01 0 0 0.08 0.21 0.28 5.31 5.03 22.52 3.67 2.12 0.96 
Cluster 13 T cell 0.64 0.04 7.17 12.14 11.81 16.53 0.96 1.77 2.32 2.56 5.6 4.68 

Cluster 14 

Anterior 
Foregut 

Endoderm 
cell 

2.16 1.58 4.09 6.04 3.84 1.65 2.01 1.68 2.32 0.52 3.38 2.31 

Cluster 15 M1 
macrophage 0.08 0.01 2.96 5.14 5.39 9.09 3.04 2.11 0.54 1.4 4.73 1.62 

Cluster 16 Secretory cell 1.1 0.21 0.58 1.44 1.93 1.93 4.09 1.43 0.15 0.17 4.14 2.17 
Cluster 17 mDC 4.24 6.75 2.14 2.29 1.67 1.1 0.18 0.66 0.23 0.23 0 0.1 

Cluster 18 M1 
macrophage 1.3 0.39 0.62 1.19 1.17 3.86 3.35 1.22 0.54 1.4 0.72 6.61 

Cluster 19 
Epithelial 
progenitor 

cell 
0.04 0.11 0.09 0.99 0.94 8.54 0.92 1.36 3.87 16.88 6.42 4.06 

Cluster 20 Basal cell 1.67 6.97 0.27 0.42 0.47 0.55 0.14 0.19 0.08 0.06 0.1 6.23 

Cluster 21 
Epithelial 
progenitor 

cell 
0.21 0.39 2.38 1.55 2.05 3.03 0.87 1.95 9.67 4.95 1.93 2.58 

Cluster 22 B cell 2.59 0.48 3.59 2.48 1.58 3.5 0.4 0.89 0.08 0.81 0.58 0.24 
Cluster 23 CD4+ T cell 0.38 0.02 1.75 3.16 3.14 3.03 0.97 0.73 1.39 1.8 1.83 0.96 
Cluster 24 B cell 1.29 4.25 0.47 0.48 0.38 0.28 0.17 0.11 0.08 0.06 0.92 3.93 

Cluster 25 Type I 
pneumocytes 0 0 0.04 0.14 0.03 0.28 0.88 0.19 0.23 0.64 0 15.63 

Cluster 26 
Epithelial 
progenitor 

cell 
0 0 0 0.03 0 0 0.39 0.08 10.53 0.47 0.63 4.72 

Cluster 27 M1 
macrophage 0 0 0 0.17 0.03 0 0.94 0.22 0.08 0.17 0 1.89 

Cluster 28 B cell 0.04 0.07 0.23 0.9 0.64 0.83 0.18 0.31 0 0.06 0.05 0 

Cluster 29 Type II 
pneumocytes 0.06 0 0.31 0.54 0.47 1.38 0.05 0.23 0.15 0.23 0.43 0.14 

Cluster 30 Ciliated cell 0 0 0 0 0 0 0 0 0 0 0 1.55 
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3.3. Clustering with respect to COVID-19 severity levels suggest disease related cell activation 233 
To further test if clusters of cells are related to severity levels, we calculated the per- 234 

centage of clusters in each patient shown in Table 2. We applied a hierarchical clustering 235 
algorithm based on the percentage of cells in a cluster for a patient and the attribute of a 236 
patient’s group (N, M, S) (Figure 3). The profiles of cell clusters successfully classified the 237 
N, M, and S groups, suggesting cellular activation profiles of patients representing the 238 
severity of COVID-19 infection. 239 

 240 

 241 
Figure 2. Alignment and clustering of gene expression from 12 patients after normalization and batch 242 
effect correction. (A) Cells from all 12 patients in N, M, and S groups were visualized using UMAP; 243 
(B) A total of 31 clusters were identified for potential cell-type assignments; (C) Cell types assigned 244 
to each cluster were visualized using UMAP; (D) Dot-plot of cell types assigned with selected gene 245 
markers. Each gene marker listed at the bottom is a selected marker for a specific cell type listed on 246 
top of the subfigure. (E) The AUC scores for cell type assignment to each cluster illustrated the 247 
confidence of cell type identification.  248 
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 249 
Figure 3. Clustergram of the percentage of cells in each cluster from each patient and their COVID- 250 
19 infection severity. The X-axis displays the patients where normal, mild, and severe symptoms 251 
patients are clustered together. The Y-axis shows the 31 clusters numbered from 0 to 30 and the 252 
corresponding cell types assigned. Clusters get darker red in the heatmap where there is a higher 253 
percentage of cells that belong to a specific patient. 254 

3.4. Cell type assignment 255 
Liao et al.’s paper presented an excellent preliminary study to identify 11 cell types 256 

(Ciliated, Secretory, Macrophages, Neutrophil, mDC, pDC, Mast cell, T cell, NK, B cell, 257 
and Plasma cell) and others with a total of 12 gene markers listed (TPPP3, KRT18, CD68, 258 
FCGR3B, CD1C, CLEC9A, LILRA4, TPSB2, CD3D, KLRD1, MS4A1, IGHG4) as shown in 259 
Extended Data Fig 1 b [8]. Noticed that two major cell types, alveoli and fibroblasts, were 260 
not reported and one cluster in Liao et al.’s study was not assigned for any cell type (de- 261 
noted as others), which is the other reason that motivated us to perform cell-type identi- 262 
fication aiming for a more complete catalog of cell types and subtypes. 263 

Our study has assigned all 63,734 cells to one of the 20 cell types (See Table 3). Spe- 264 
cifically, we identified more subtypes of cells, for example, Liao et al.’s results only showed 265 
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macrophage clusters, while we have identified three subtypes including macrophages, M1 266 
macrophages, and M2 macrophages (87.1% overlapping with Liao’s macrophage cell 267 
type). Identification of subtypes of macrophages is important since M1 macrophages and 268 
M2 macrophages have different regulatory roles in inflammatory responses. Also, 98.8% 269 
of the epithelial subtypes including secretory, ciliated, basal, or epithelial progenitor (EP) 270 
cells that we identified were identified only as epithelial cells. About 68% of the cells we 271 
identified as subtypes of T cells (T cell and CD4+ T cell) were previously identified only as 272 
T cells.  273 

 274 

Table 3. Percentage of a cell type assigned to cells in N, M, and S groups. 275 

Cellular function Cell type 
Normal 

(%) 
Mild Severe   

 (%) (%) 

Lung structure 

Type II pneumocytes 0.068 0.55 0.15 
Type I pneumocytes 0.0052 0.1 1.73 
Secretory cell 12.26 7.79 4.57 
Basal cell 23.68 7.55 1.28 
Anterior foregut endoderm 
cell 2.17 4.8 1.95 

Epithelial progenitor cell 0.76 3.2 5.34 
Fibroblast 0.73 4.13 14.35 
Ciliated cell 0 0 0.12 

Inflammatory 

Macrophage 3 5.67 6.05 

M2 macrophage 5.18 5.39 5.79 

M1 macrophage 2.38 9.91 22.31 

Immune 

Monocyte 19.94 10.72 8.49 

mDC 5.03 1.94 0.32 

B cell 4.34 3.32 1.23 

T cell 2.23 21.62 6.36 

Dendritic cell 1.9 3.65 3.72 

CD4+ T cell 0.41 3.14 0.99 

Blood Plasma cell 0.0052 0.15 5.22 

Undetermined 
Fibroblast / M1 2.14 4.43 9.75 

CD8+ / EP 13.77 1.93 0.26 
To confirm our cell type assignment, we also compared the cell composition of the 276 

normal group with other studies and our results agreed with the reported cell composi- 277 
tions [25-30]. In Table 3, about 20.97% (5.67% macrophages, 5.39% M2 macrophages, and 278 
9.91% M1 macrophages) and 34.11% (6.01% macrophages, 5,79 M2 macrophages, and 279 
22.31 M1 macrophages) of cells identified were macrophages from samples with mild and 280 
severe symptoms, respectively, suggesting elevated inflammatory responses in mild and 281 
severe groups. Fibroblasts accounted for 0.73%, 4.13%, and 14.35% of cells identified from 282 
samples as no, mild, and severe symptoms, respectively, indicating possible structural 283 
changes in the infected lungs. Interestingly, it’s reported that proportions of macrophages 284 
significantly increased from 12% in normal (with single-nucleus RNA seq data) to 20% in 285 
lung tissue with COVID-19 infection, as well as fibroblasts from 7% in normal to 23% in 286 
infected lungs [31]. The identified sub-types of cells in our study provide a more detailed 287 
picture of the cell-type composition and its dysregulation related to COVID-19 infection 288 
severity. 289 
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Table 3 lists the percentage of cell types in each group where we can observe trends 290 
of populations of 13 cells-types including Type II pneumocytes, anterior foregut endo- 291 
derm (AFE) cell, T cell, dendritic cell, Macrophage, fibroblast/M1 macrophage, fibroblast, 292 
M1 macrophage, B cell, mDC, CD8+/EP, monocytes, and basal cells, identified in N, M, 293 
and S groups (See Figure 4). T cells and AFE cells demonstrated a “Λ" shape, with an in- 294 
creased percentage in the mild group and a decreased percentage in the severe group 295 
compared to the normal group (Figure 4A). As an indicator of immune defense, popula- 296 
tions of T cells (T cells and CD4+ T cells) counted for 24.76% in the mild group and de- 297 
creased to 7.35% in the severe group. Cell proportions of monocytes, basal cells, and mDC 298 
in the mild and severe groups significantly decreased compared to the normal group (Fig- 299 
ure 4C). Since macrophages were differentiated from monocytes, decreased monocyte 300 
populations (Figure 4C) were observed with the increased populations of macrophages 301 
(Figure 4B) 302 

 303 
 304 
Figure 4 Trends of cell population changes in 13 cell types shared in the normal, mild, and severe 305 
groups with the y-axis representing the percentage of cells in N, M, and S. (A) The proportion of cell 306 
types demonstrated a “Λ" shape in normal, mild, and severe groups.; (B) The proportion of cell types 307 
increased in the mild and severe groups. (C) The proportion of cell types decreased in mild and 308 
severe groups. 309 

 310 

3.5. Deep learning models for COVID-19 infection severity prediction supported by significant 311 
differences in the gene expression profiles of subtypes of immune cells 312 

One ANN model and one GCNN model were trained with 80% of cells from each 313 
patient without consideration of cell types while M-specific ANN and M-specific GCNN 314 
models were trained with cells identified as M1, M2, and macrophage in section 3.4. 315 

ANN models include 1 input layer with 2,000 nodes for gene expressions, 1 hidden 316 
layer with 32 nodes, and 1 output layer with 3 nodes representing the normal, mild, and 317 
severe levels of infection. The model was trained with the dropout rate as 0.5, the learning 318 
rate as 0.0006, batch size as 128, softmax activation, adam optimizer, and sparse-categori- 319 
cal cross-entropy loss function using the Keras package.  320 

GCNN models were also developed for all cell types and macrophages specifically 321 
with the model structure. The GCNN models include one graph with 2,000 nodes (genes) 322 
and 199,900 edges. After the input graph, a hidden layer with 128 nodes with softmax 323 
activation was introduced and a fully connected output layer with three nodes represent- 324 
ing the normal, mild, and severe infection levels. The parameters for GCNN models were 325 
chosen as follows: dropout rate is 0.5, the learning rate is 0.0005, and the batch size is 128. 326 

A total of 15 data partitions were established with 80%, 10%, and 10% of cell types 327 
extracted from each patient to train, validate, and test the models. Both ANN and GCNN 328 
models were developed, trained, and tested with the same data partitions. All ANN and 329 
GCNN models have comparable training losses. Average and the best performances of 330 
ANN and GCNN models with 15 partitions were presented in Table 4. The best perfor- 331 
mance of the M-specific GCNN model has a testing performance of 91.48% and beats all 332 
other models. Prediction accuracy generated from an M-specific GCNN model was shown 333 
in Table 5. The prediction accuracy for the mild group was the worst due to a smaller 334 
sample size compared with severe and normal groups as shown in Table 1. 335 



Genes 2022, 13, x FOR PEER REVIEW 11 of 16 
 

 

 

 336 

Table 4. Performance of ANN and GCNN models using all cell types and macrophage-specific 337 
ANN and GCNN models for COVID-19 infection severity prediction. 338 

 339 

Table 5. Confusion matrix for the M-specific GCNN predictions. Rows show the N, M, and S groups, 340 
while columns show the number of cells predicted for each group. 341 

  Predicted class 

  Normal Mild Severe 

Tr
ue

 c
la

ss
 Normal 145 12 44 

Mild 22 64 66 

Severe 15 21 1,231 

 342 
We also performed classification using logistic regression in scikit-learn by using a 343 

5-fold cross-validated grid parameter search. The best parameters across all searched pa- 344 
rameters are inverse regularization of 10 and L1 penalty using linear optimizer. The lo- 345 
gistic regression model has achieved the best score of 82.9%, and the testing set has the 346 
best score of 82.9%. The average prediction accuracy of ANN and GCN modes using all 347 
cell types reached similar performance as the logistic regression approach and did not 348 
show significant improvement. However, gene expression profiles in identified macro- 349 
phages significantly improved the prediction accuracy, suggesting M-specific gene signa- 350 
tures might be related to COVID-19 infection severity. 351 

 352 
3.6 A subtype of M1 macrophages is associated with severe COVID-19 cases 353 

With the cell type identified, we further examined if cells in a cluster are observed 354 
in samples from unique group (See Table 6). In cluster 0 which is assigned as M1 macro- 355 
phages, 93.2% of cells belong to severe samples, 3.45% to mild samples, and 3.35% to nor- 356 
mal samples (See Table 6). Similarly, cells from clusters 5, 7, 15, and 18 belong to samples 357 
from N, M, and S groups. Cells from cluster 27 (M1 macrophages) are only observed in 358 
samples from M and S groups. 359 

Since multiple clusters have been assigned to M1 macrophages, we further exam- 360 
ined the DEG in these clusters to see if we can assign subtype to a cluster. A total of 142 361 
genes were found to be differentially expressed (90 for up-regulated, and 52 for down- 362 
regulated) in cluster 0 compared to the other M1 macrophage clusters (15, 18 and 27). 363 
Interestingly, all the 90 up-regulated DEG and 51 down-regulated DEG were only found 364 
in cluster 0 and not in the other clusters (See Table 7 as unique DEG). The number of DEG 365 
and unique DEG in cluster 0 is significantly higher than the other clusters assigned as M1 366 
macrophages, suggesting a possible subtype of M1 macrophages.  367 

To further investigate if this is a subtype of the M1 macrophages, we examined the 368 
biological processes enriched by the DEG with larger FC (See Table S2 for up-regulated 369 
genes and S4 for down-regulated genes). The enriched biological processes of up- 370 

 Average performance 15 partitions Best performance 
  Train Validate Test Train Validate Test 
ANN 84.09% 82.62% 82.73% 84.28% 82.97% 83.02% 
GCNN 77.09% 76.49% 76.59% 88.61% 88.64% 88.14% 
M-specific ANN 87.64% 84.99% 84.86% 88.13% 86.19% 85.86% 
M-Specific GCNN 91.16% 89.13% 89.23% 91.48% 90.04% 90.25% 
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regulated genes include chemotaxis, inflammatory response, cytokines, immunity, in- 371 
flammatory response, antiviral defense, and apoptosis (Table S3) which are strongly asso- 372 
ciated to the infection of COVID-19.  The DEG with larger FC include the alarmins S100A8, 373 
and S100A9, CXCL10 and CCL2. S100A8, and S100A9 are endogenous molecules released 374 
in response to environmental triggers and cellular damage. They are constitutively ex- 375 
pressed in immune cells and their expression is upregulated under inflammatory condi- 376 
tions [32] (See Table 7). CXCL10 and CCL2, have been reported as key players for the onset 377 
and maintenance of cytokine-storm in severe cases of COVID-19 [33]. Besides, the expres- 378 
sion levels of GNLY, GSZMB, CCL5 were significantly down-regulated (See Table 8). It is 379 
known that GNLY functions as an antimicrobial peptide [34]. GSZMB deficiency exacer- 380 
bates lung inflammation in mice after acute lung injury [35]. Also, low levels of CCL5 have 381 
been associated with the severity of COVID-19 [36]. Based on these results we speculate 382 
that this subtype of M1 macrophages in cluster 0 is an intermediate subtype related to 383 
immunity, inflammatory responses, and cytokine-storm in COVID-19 infection.  384 

In particular, we identified two genes (APOBEC3A and IDO1) that are unique to this 385 
cluster and that may also be consider as gene-markers for M1 subtype. APOBEC3A have 386 
a key role in cytidine deaminase in transcriptomic and functional polarization of M1 mac- 387 
rophages [37] while IDO1 play potential roles in macrophage differentiation where the 388 
expression levels of this gene modulate macrophages differentiation. Previous findings 389 
support the role for IDO1 with regarding to the polarization of macrophages to restrain 390 
excessive or inappropriate immune activation in inflammatory or tumor microenviron- 391 
ment [38]. 392 

 393 
Table 6. Percentage of cells from normal, mild, and severe groups in the clusters assigned 394 
as Macrophage subtypes  395 

Cluster/subtype Number of cells  Percentage of 
Normal cells 

Percentage of 
Mild cells 

Percentage of 
Severe cells 

0/M1 6572 3.33% 3.45% 93.20% 
5/M2 3544 29.00% 11.40% 59.50% 
7/Macropahge 3241 18.30% 13.19% 68.40% 
15/M1 1436 5.90% 28.03% 66.05% 
18/M1 1218 13.90% 7.95% 78.90% 
27/M1 255 0% 2.76% 97.20% 

 396 
 Table 7. Up-regulated DEG in clusters identified as M1 macrophages 397 

 398 
* Differentially expressed genes of one cluster compared to the rest of the clusters 399 
identified as M1 macrophages. 400 
** Differentially expressed genes found only in one cluster. 401 
 402 

Table 8. Down-regulated DEG in clusters identified as M1 macrophages 403 

Cluster 
Total 
DEG* 

Number of 
unique DEG 
genes** 

Top 5 up regulated(FC) 

0 90 90 S100A8 (15.1), S100A9 (14.3), CCL2 (9.3), CXCL10 (8.3), IL1RN (8.1) 
15 29 15 CST7 (3.5), RPS27(3.1), RPS19(2.6), ALOX5AP(2.5), XCL2(2.5) 
18 40 29 IL32 (6.9), CD3E (3.7), CD2 (3.6), CORO1A(3.5), CD3D(3.3) 
27 23 2 ZNF683 (2.0), BGLAP (2.1) 

Cluster Total 
DEG* 

Number 
of 
unique 

Top 5 down regulated (FC) 
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 404 

4. Discussion  405 
This is the first study to line up M-specific gene signatures to the severity of COVID- 406 

19 infections using single-cell RNA Seq analysis. A total of 31 cell clusters were found in 407 
a previously published dataset and the percentages of the cell clusters from 12 samples 408 
were used to successfully predict the severity of the COVID-19 infections. To gain a better 409 
understanding of the specific cellular responses to COVID-19 infections, these 31 cell clus- 410 
ters were further mapped into 20 cell types with well-defined gene markers in the lungs. 411 
Trends of the cell profiles in the normal, mild, and severe groups were then compared. 412 
The most significant changes were found in macrophages, monocytes, and T cells, for the 413 
immune system and inflammatory responses while fibroblasts, EP, and basal cells for lung 414 
function and structures. Different cell proportions identified in the normal, mild, and se- 415 
vere groups triggered a further exploration of gene signatures in specific cell types. ANN 416 
and GCNN models were developed to predict COVID-19 infection severity with gene ex- 417 
pressions in all cell types and with gene expressions from M1+M2+macrophages consid- 418 
ering macrophages are the most significant cell type changes among the normal, mild, 419 
and severe groups. Our results showed that the macrophage-specific GCNN model had 420 
the highest prediction accuracy, confirming the significant role of macrophages in predict- 421 
ing the severity of COVID-19.  422 

The novelty of this study lies in the fact of integrating single-cell RNA seq analysis 423 
with DL models to predict the severity of COVID-19 infection. Due to the complexity of 424 
single-cell data, a significant research effort was allocated at the early stage for normali- 425 
zation and batch effect correction to reduce technical experimental variations and individ- 426 
ual differences among batches and cells while keeping meaningful biological information. 427 
Though multiple scRNA-seq pipelines such as Seurat [13] and Scanpy [39] are available 428 
for users to perform the analysis, the rationale for selecting special thresholds during the 429 
analysis should be carefully examined by the users with a good understanding of both 430 
statistical analysis and biological processes. Overwhelming batch correction may lead to 431 
the loss of biological information for scRNA-Seq analysis. 432 

With the availability of DL modeling tools such as Keras, training of DL models is 433 
getting easier while the interpretation of DL is still premature. We adopted a feature se- 434 
lection searching approach in this study. The completeness and soundness of the model 435 
should be further investigated in our future studies. There are other approaches to estab- 436 
lishing a GCNN graph for scRNA-seq data including using a cell-cell graph or a gene-to- 437 
cell graph [40, 41]. Since the goal of this study was to line up gene expression profiles to 438 
cell types and then infection severity, we first established a data-driven graph from genes 439 
to cell clusters, borrowing the idea reported in [41]. However, the performance of the 440 
GCNN with gene-to-cell cluster graph was not as good as the GCNN models presented 441 
here. We examined the edges in the data-driven gene-to-cell cluster graph and found the 442 
number of edges was much smaller than that in other graphs we used before. In addition, 443 
since there is no backward prorogation to refine the weights of the edges in the gene to 444 
cell cluster graph, any error introduced in the graph will stay there and affect the predic- 445 
tion accuracy. On the other hand, the adopted gene-to-gene interaction graph is a pure 446 
knowledge-driven graph. Thus, the errors introduced to the graph are controllable based 447 
on prior knowledge. One possible way to improve the performance of the GCNN model 448 

DEG 
genes** 

0 52 51 GNLY (0.03), GZMB (0.05), CCL5 (0.09), NKG7 (0.10), IL32 (0.11) 
15 72 9 MT2A(0.4), ACTB (0.44), CSTB (0.44), S100A4 (0.46), HLA-DRA (0.47) 
18 73 27 FOS (0.30), SRGN (0.36), NEAT1 (0.39), CCL4 (0.39), TNFSF10 (0.42) 
27 66 0 N/A 
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is to establish a pure biology-driven graph combining gene-gene interactions and links 449 
from marker genes to specific cells for GCNN models in the future.  450 

Our study indicates significant differences in the gene expression profiles of subtypes 451 
of immune cells of COVID-19-infected patients. The molecular components of these pro- 452 
files deserve further research and experimentation as potential therapeutical factors. 453 
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