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Abstract: SARS-CoV-2, the etiological agent responsible for COVID-19, has affected the lives of bil-
lions and killed millions of infected people. This virus has been demonstrated to have different out-
comes among individuals, some of them presenting a mild infection, while others present severe
symptoms or even death. The identification of the molecular states related to the severity of COVID-
19 infection has become of utmost importance to understanding the critical immune response dif-
ferences. In this study, we computationally processed a set of publicly available single-cell RNA-
Seq (scRNA-Seq) data of 12 Bronchoalveolar Lavage Fluid (BALF) samples diagnosed as having
mild, severe, or no infection, and generated a high-quality dataset that consists of 63,734 cells, each
with 23,916 genes. We extended the cell-type and sub-type composition identification and our anal-
ysis showed significant differences in cell type composition in mild and severe groups compared to
the normal. Importantly, inflammatory responses were dramatically elevated in the severe group,
which was evidenced by the significant increase of macrophages from 10.56% in the normal group
t0 20.97% in the mild group and 34.15% in the severe group. As an indicator of immune defense,
populations of T cells counted for 24.76% in the mild group and decreased to 7.35% in the severe
group. To verify these findings, we developed several artificial neural networks (ANNs) and graph
convolutional neural network (GCNN) models. We showed that the GCNN models reach a predic-
tion accuracy of the infection severity of 91.16% using data from subtypes of macrophages. Overall,
our study indicates significant differences in the gene expression profiles of inflammatory response
and immune cells of severely infected patients.

Keywords: Deep learning; single-cell RNA-seq; gene signature, SARS-CoV-2; cell type identifica-
tion; infection severity.

1. Introduction

The current global pandemic situation of coronavirus disease 2019 (COVID-19) due
to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has affected the
lives of billions. As a highly transmissible and pathogenic coronavirus that emerged in
late 2019 and has caused a pandemic of acute respiratory disease [1], SARS-CoV-2 virus
is related to the original SARS-CoV which was highly lethal but faded out after intense
public health mitigation measures [2]. One of the mysteries of COVID-19 is why some
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people suffer severe symptoms, even life-threatening complications, while others suffer
no symptoms or just mild ones.

Several studies have related the severity of COVID-19 infection to immune system
features resulting in more vulnerable groups to this viral infection [3, 4]. Further, recent
studies have illustrated the special roles of macrophages and monocytes in the inflamma-
tory response to COVID-19 [5, 6]. It has also been shown that in severe cases of COVID-
19, the virus promotes a cytokine storm with an uncontrolled massive release of pro-in-
flammatory cytokines leading to acute respiratory distress syndrome (ARDS) and acute
heart failure, and these conditions are highly life-threatening and fraught with the acqui-
sition of secondary bacterial infections [7]. The quantitative profiles of the immune cell
subsets and molecular factors associated with protective or pathological immunity against
severe COVID-19 can potentially help in gaining a molecular understanding of this pan-
demic disease and in the development of vaccines and therapeutics [8-11]. However, the
lining of molecular signatures, significant cellular responses, and COVID-19 infection se-
verity have not been well defined.

The investigation of cell-specific gene signatures in patients with different levels of
COVID-19 severity can be accomplished using single-cell technologies. In particular,
scRNA-Seq has become mature enough to provide answers to complex research questions
found in the study of dysregulation of the immune systems observed in COVID-19 pa-
tients. Several studies on COVID-19 infection using scRNA-Seq technology have been re-
ported recently [8-11], paving a foundation to explore gene signatures and specific cell
types involved in COVID-19 infection severity.

The use of single-cell profiling led to a significant increase in the amount of data col-
lected, which results in computational challenges in processing massive and complicated
datasets. To address these challenges, deep learning (DL) is positioned as a competitive
alternative for single-cell analyses besides the traditional machine learning approaches
[12]. In this work, we applied two major computational analyses. First, we implemented
a customized single-cell analysis pipeline that included normalization, batch correction,
integration, dimensionality reduction, and cell-type prediction to determine the cellular
profiles in healthy controls and patients with different severity of COVID-19 symptoms.
We then developed deep learning models to predict COVID-19 severity using gene ex-
pression profiles of cells in a specific cell type, macrophages. The results of this work show
significantly different cell compositions in mild (7,316 cells) and severe (37,197 cells)
groups compared to normal (19,221 cells). Importantly, inflammatory responses were dra-
matically elevated in the group with severe symptoms as well as decreased populations
of T cells.

2. Materials and Methods

scRNA-Seq datasets with thirteen patients were downloaded from NCBI GEO under
the accession number GSE145926 [8]. A total of 12 BALF samples that include six patients
with severe symptoms (S), three patients with mild symptoms (M), and three healthy con-
trol patients (N) were analyzed. In the original dataset, healthy control, patients with mild
and severe symptoms were denoted as HC, O, and S/C, respectively. We excluded one
healthy control sample from our study whose genomic data was originally collected in a
different study and lacked detailed patient information as the other 12.

Data was pre-filtered to remove doublets or potential dead cells under the following
criteria. 1) The number of genes detected in a cell is between 200 and 6,000. 2) The Unique
Molecular Identifier (UMI) counts in a cell should be greater than 1,000. 3) The mitochon-
drial (MT) percentage is smaller than 10%. A total of 23,916 genes and 63,734 cells were
obtained after the filtering process.

2.1. Normalization and batch effect correction
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Cell-to-cell normalization of each patient by negative binomial regression was per- 98
formed using scTransform from the Seurat v3 package in R [13-15]. The 12 samples (pa- 99
tients) were clinically pre-classified into three groups, N, M, and S. Batch effects correction 100
was then performed for samples in each group to eliminate the technical noise, remove 101
variations between cells, and align samples in the same group while avoiding removing 102
biological relevant data. The “anchor” method from Seurat v3 was used for the batch ef- 103
fect correction [13]. 104

2.2. Dimension reduction and clustering 105

Principal Component Analysis (PCA) was performed for dimensionality reduction 106
over the first 30 components using Seurat. A total of 2,000 highly variable features (genes) 107
were selected. Clusters were identified using the Leiden algorithm with a resolution of 108
1.21 from Seurat v3 [16]. 109

2.3. Cell type identification 110

Cell types were assigned to each of the clusters obtained from 2.2 using the auto- 111
mated method from Ding et al. [17]. We calculated the affinity of a cell to a candidate cell 112
type using the marker genes from the CellMatch and CellMarker databases of marker 113

genes [18] as follows: 114
Mg
st =log (% 10* + 1), 1) 115

where s{ represents the score of a cell ¢ belonging to a candidate cell type t. M, represents 116
marker genes for each candidate cell type t. The variable x,, . represents the UMI count of 117
the marker gene y in a cell c. The variable K, denotes the total UMI count in cell c. By 118

My
calculating Ze ny <, the contribution of marker genes’ expressions to the overall gene ex- 119
c
pression in a cell ¢ for a cell type t is evaluated. Scale factors, 10¢ and 1, are introduced to 120
facilitate the logarithm calculation. 121

For a cluster of cells, the scores for each cell belonging to a cell type ¢ can be obtained 122
using equation (1). For a given cluster and a given cell type ¢, a cell in that cluster is a true 123
positive if the score s{ is above a given threshold and a false negative otherwise. On the 124
other hand, a cell not in that cluster is a false positive if it has a score above the threshold 125
and a true negative otherwise. A receiver operating characteristic curve was plotted to 126
show the true positive rate against the false-positive rate at different thresholds. The Aera 127
Under Curve (AUC) is 1.0 for perfectly assigning a cell type to a cluster and around 0.5 128
for randomly assigning a cell type to a cluster. Specifically, for each cluster, the cell type 129
with the highest AUC was assigned to that cluster if the highest AUC score for a cell type 130
is 5% larger than the 2nd highest AUC score. If AUC scores for different cell types are sim- 131
ilar, a cell type with a larger number of gene markers enriched and a higher percentage of 132
cells expressing the marker genes will be considered. 133

2.4. Deep learning models to predict COVID-19 infection severity with gene expressions 134

Two different DL models Artificial Neural Network and graphic convolutional neu- 135
ral network have been deployed to predict COVID-19 infection severity using gene ex- 136
pressions in assigned cell types. 137

We adopted the ANN model since it’s the easiest fully connected model to imple- 138
ment. GCNN models were also performed by integrating biological gene-gene interac- 139
tions into the models, hoping for a better performance of the models. In this study, a 140
GCNN model includes an input graph represented by an adjacency matrix, graph convo- 141
lutional layers (coarsening and pooling), and a hidden layer connected to an output layer 142
with three nodes representing N, M, and S groups. 143

The database-driven network graph is taken from the GeneMania database (https:// 144
GeneMania.org/) for the GCNN models [19]. GeneMania has a large number of 145
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interactions and incorporates both gene-to-gene and protein-to-protein interactions. Since
the input gene expression profiles for all models are consistent, the GeneMania graph does
not change and is established once for all models. A p-value threshold was also estab-
lished for the GeneMania graph to keep only interactions with the confidence of (p <3x10-
%) from the filtered genes obtained after dimensionality reduction in section 2.2. This
threshold was chosen to get a sufficient number of connections while minimizing the
number of singleton nodes. We have applied both ANN and GCNN models in other stud-
ies and the graph convolution algorithms and codes for GCNN are available at Github.
The evolution algorithm of the GCN layer can be found in our previous research [20, 21].

We trained two sets of models. The first set of models includes both ANN and GCNN
models using gene expressions from a cell as input while the output includes COVID-19
infection severity levels. We did not integrate cell-type information in this set of models.
The second set of models only uses gene expression profiles from M1, M2, and macro-
phages identified in our study to predict the COVID-19 infection severity as the output.
We termed this a macrophage-specific (M-specific) ANN model or a macrophage-specific
GCNN model as shown in Figure 1.

Input Graph GCNN Layer/Pooling Hidden Layer Output
r N A

e ) [ )

Gene 1 [Gene 2 | Gene 3

/O
5
DO

—
Figure 1. Structure of the developed GCNN model. The model includes a graph evolution layer and

a fully connected output layer for classification. Inputs to the GCNN models are expression levels
of 2,000 genes in each cell and an input graph. The input graph includes 2,000 genes as nodes and
edges among nodes representing gene-to-gene interactions from the GeneMania database. The in-
put graph is then pooled into a single GCNN layer which will be fed into the hidden and output
layers.

2.5 Differential Gene Expression and Gene ontology analysis

Differential gene expression analysis was performed in R through a widely adopted
package, Model-based Analysis of Single-cell Transcriptomics (MAST) [22]. We further
filtered the genes considered as differentially expressed with a threshold of p-value <0.05
and fold change (FC) > 2 (up-regulated) or FC<0.5 (down-regulated) to keep only the sig-
nificant differentially expressed genes (DEG) [23]. We analyzed the obtained genes with
Database for Annotation, Visualization, and Integrated Discovery (DAVID) [24], a pro-
gram that integrates functional and genomic annotations with intuitive graphical sum-
maries, to obtain the gene ontology (GO) terms of the significantly differentially expressed
genes.

3. Results

3.1 Integration of scRNA-Seq data of COVID-19 patients classified by severity produces a high-
quality normalized dataset.
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To understand the cell type and molecular differences for COVID-19 patients with 185
different degrees of severity we implemented a custom pipeline to re-process public 186
scRNA-Seq datasets. After pre-processing we obtained 63,734 cells with 23,916 genes for 187
the analysis. The distribution of the number of genes detected, the UMI, and the percent- 188
age of MT in cells are illustrated in Figure S1. The violin plots showed that most cells 189
harbor a 2% MT content, less than 10,000 UMIs, and less than 2,000 genes, suggesting 190
high-quality cells supported by a good number of UMI reads. Demographics of each pa- 191
tient in the study together with the number of cells detected for each patient were also 192
included (Table 1). We observed high variations in the number of cells for each sample, 193
reflecting variations in the quality of the samples that were corrected during the normal- 194

ization and integration steps of our customized scRNA-Seq pipeline. 195

196
3.2 Differences in the number of clusters across conditions suggest a correlation to COVID-19 197
infection severity. 198

To test if there were differences in the number of clusters across conditions, we pro- 199
cessed samples from each condition using PCA. The top 2,000 highly variable genes were 200
selected from the original 23,916 genes and the resulting data was processed. To further 201
verify how the changes in clusters relate to COVID-19 infection severity, we performed 202
batch effect correction and integration for all samples (12 patients). 203

204
205

Table 1. Demographics of patients and number of cells after filtering. The average age of 12 patients 206

is 45.91 with a standard deviation of 16.1. 207
Sample Number of cells Gender Age Chronic disease
Normall 8466 Female 38 -
Normal2 8189 Male 24 -
Normal3 2566 Male 22 -
Mild1 3542 Male 36 -
Mild2 3411 Female 37 -
Mild3 363 Male 35 -
Severel 17340 Male 62 -
Severe2 1292 Male 66 Hypertension
Severe3 1718 Male 63 Sleep apnea
Severe4 2071 Female 65 Diabetes
Severeb 2904 Female 57 -
Severe6 11872 Male 46 -
208

We observed that in each group cells were distributed uniformly, suggesting the 209
good performance of normalization and batch effect correction for the 3 groups (See Figure 210
2A). We found a total of 31 clusters assigned to 20 cell types (Figure 2B, 2C). In Figure 2D, 211
a larger and darker dot represented that the percentage of cells in a cluster expressed the 212
selected marker gene (expression level >0). We noted that cell types should be determined 213
by multiple markers and a full list of gene markers used was shown in Table S1. The gene 214
marker NAPSA represents type II pneumocytes with a darker and larger dot compared 215
with NAPSA expressions in other cell types in Figure 2D, correspondingly the AUC score 216
for type II pneumocytes is very high (AUC = 0.95), suggesting higher confidence to assign 217
type II pneumocytes to cluster 29. A cell type might be assigned to multiple clusters, for 218
example, M1 macrophages were assigned to clusters 0, 15, 18, and 27 with different AUC 219
scores (Figure 2E). As a marker gene for macrophages, CXCL10 was also highly expressed = 220
in other cell types, however, CXCL10 should not affect other cell type assignments if it was 221
not one of the marker genes for the cell type under consideration. 222

The number of cells and percentage of cells in each cluster for 12 patients were shown 223
in Table 2. A total of 20 clusters of cells were found across all 12 patients. We also found 224



Genes 2022, 13, x FOR PEER REVIEW

6 of 16

232

differences in the percentage of cells from each condition (normal, mild, and severe) that
composed the cluster, suggesting that these differences might be related to COVID-19 in-
fection severity.

Table 2. The percentage of cells in each cluster for each patient. N, M, and S represent severity
groups, respectively while the number after the group represents the patient ID in the correspond-

ing group, for example, N1 represents patient 1 in the normal group. Note: the summation of per-
g group p p p group p

centage in each column is 1, representing cell composition of a sample.

Cluster # Cell type N1 N2 N3 Ml M2 M3 S1 s2 S3 S4 S5 S6
Cluster 0 Ml 093 053 362 282 334 248 1882 1546 10.06 2311 1275 84
macrophage
Cluster1  Fibroblast  0.85 031 168 443 396 275 1412 1717 681 1048 1294 10.78
Cluster2  Monocyte 2195 1559 20.81 9.01 1196 165 126 338 147 134 106 055
Cluster 3 Basalcell  20.67 22.65 885 799 665 248 027 126 054 07 034 072
Cluster4 ~ TProPlast ) o 1 4g 327 342 566 275 936 1421 348 384 449 389
and M1
Cluster 5 M2 493 559 468 579 513 386 45 88 472 757 473 141
macrophage
Cluster 6  Secretory cell 13.13 10.58 9.9 531 715 386 206 153 155 279 043 241
Cluster7  Macrophage 298 287 351 615 504 689 477 911 511 53 454 31
Clusters P8 El;r and o0 1683 783 217 164 22 021 014 07 041 053  0.62
Cluster 9  Monocyte 087 059 168 065 073 11 1116 28 635 198 217 1.03
Cluster 10 T cell 083 005 444 878 985 1157 518 202 062 285 19.17 2.48
Cluster 11 Derc‘grlmc 202 167 222 429 311 248 344 393 379 355 425 42
Cluster 12 Plasmacell  0.01 0 0 008 021 028 531 503 2252 367 212 0.9
Cluster 13 T cell 064 004 717 1214 1181 1653 096 177 232 256 56  4.68
Anterior
Cluster 14 _Loregut 216 158 409 604 384 165 201 168 232 052 338 231
Endoderm
cell
Cluster 15 Ml 008 001 29 514 539 909 304 211 054 14 473 1.62
macrophage
Cluster 16 ~Secretorycell 1.1 021 058 144 193 193 409 143 015 017 414 217
Cluster 17 mDC 424 675 214 229 167 11 018 066 023 023 0 0.1
Cluster 18 Ml 13 039 062 119 117 386 335 122 054 14 072 661
macrophage
Epithelial
Cluster 19 progenitor 004 011 0.09 099 094 854 092 136 387 1688 642 4.06
cell
Cluster20  Basal cell 167 697 027 042 047 055 014 019 008 006 01 623
Epithelial
Cluster 21 progenitor 0.21 0.39 2.38 1.55 2.05 3.03 0.87 1.95 9.67 4.95 1.93 2.58
cell
Cluster 22 B cell 259 048 359 248 158 35 04 089 008 081 058 024
Cluster23 CD4+Tcell 038 002 175 316 314 303 097 073 139 18 183 0.9
Cluster 24 B cell 129 425 047 048 038 028 017 011 008 006 092 3.93
Cluster 25 Typel 0 0 004 014 003 028 08 019 023 064 0 1563
pneumocytes
Epithelial
Cluster 26 progenitor 0 0 0 0.03 0 0 039 0.08 1053 047 0.63 4.72
cell
M1
Cluster 27 0 0 0 017  0.03 0 094 022 008 017 0 1.89
macrophage
Cluster 28 B cell 004 007 023 09 064 083 018 031 0 0.06 0.5 0
Cluster 29 Typell 006 0 031 054 047 138 005 023 015 023 043 0.14
pneumocytes
Cluster 30 Ciliated cell 0 0 0 0 0 0 0 0 0 0 0 1.55

225
226
227

228
229
230
231



Genes 2022, 13, x FOR PEER REVIEW

7 0f16

3.3. Clustering with respect to COVID-19 severity levels suggest disease related cell activation

To further test if clusters of cells are related to severity levels, we calculated the per-
centage of clusters in each patient shown in Table 2. We applied a hierarchical clustering
algorithm based on the percentage of cells in a cluster for a patient and the attribute of a
patient’s group (N, M, S) (Figure 3). The profiles of cell clusters successfully classified the
N, M, and S groups, suggesting cellular activation profiles of patients representing the
severity of COVID-19 infection.

A Sample name B Seurat clusters C Cell types
&
<
=
>
UMAP1 UMAP1 UMAP1
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Normal  Mid  Severe S0 o4 28 a1z o o0 Wk @2 e Mmoo Qis182D)
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Figure 2. Alignment and clustering of gene expression from 12 patients after normalization and batch
effect correction. (A) Cells from all 12 patients in N, M, and S groups were visualized using UMAP;

(B) A total of 31 clusters were identified for potential cell-type assignments; (C) Cell types assigned
to each cluster were visualized using UMAP; (D) Dot-plot of cell types assigned with selected gene
markers. Each gene marker listed at the bottom is a selected marker for a specific cell type listed on
top of the subfigure. (E) The AUC scores for cell type assignment to each cluster illustrated the
confidence of cell type identification.
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Figure 3. Clustergram of the percentage of cells in each cluster from each patient and their COVID- 250
19 infection severity. The X-axis displays the patients where normal, mild, and severe symptoms 251
patients are clustered together. The Y-axis shows the 31 clusters numbered from 0 to 30 and the 252
corresponding cell types assigned. Clusters get darker red in the heatmap where there is a higher 253
percentage of cells that belong to a specific patient. 254

3.4. Cell type assignment 255

Liao et al.’s paper presented an excellent preliminary study to identify 11 cell types 256
(Ciliated, Secretory, Macrophages, Neutrophil, mDC, pDC, Mast cell, T cell, NK, B cell, 257
and Plasma cell) and others with a total of 12 gene markers listed (TPPP3, KRT18, CD68, 258
FCGR3B, CD1C, CLEC9A, LILRA4, TPSB2, CD3D, KLRD1, MS4A1, IGHG4) as shown in 259
Extended Data Fig 1 b [8]. Noticed that two major cell types, alveoli and fibroblasts, were 260
not reported and one cluster in Liao et al.’s study was not assigned for any cell type (de- 261
noted as others), which is the other reason that motivated us to perform cell-type identi- 262
fication aiming for a more complete catalog of cell types and subtypes. 263

Our study has assigned all 63,734 cells to one of the 20 cell types (See Table 3). Spe- 264

cifically, we identified more subtypes of cells, for example, Liao et al.’s results only showed 265
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macrophage clusters, while we have identified three subtypes including macrophages, M1 266
macrophages, and M2 macrophages (87.1% overlapping with Liao’s macrophage cell 267
type). Identification of subtypes of macrophages is important since M1 macrophages and 268
M2 macrophages have different regulatory roles in inflammatory responses. Also, 98.8% 269
of the epithelial subtypes including secretory, ciliated, basal, or epithelial progenitor (EP) 270
cells that we identified were identified only as epithelial cells. About 68% of the cells we 271
identified as subtypes of T cells (T cell and CD4+ T cell) were previously identified only as 272

T cells. 273
274
Table 3. Percentage of a cell type assigned to cells in N, M, and S groups. 275

Mild Severe
Cellular function  Cell type Normal

(%) (%) (%)
Type II pneumocytes 0.068 0.55 0.15
Type I pneumocytes 0.0052 0.1 1.73
Secretory cell 12.26 7.79 4.57
Basal cell 23.68 7.55 1.28
Lung structure CAe1;1lterior foregut endoderm 217 48 195
Epithelial progenitor cell 0.76 3.2 5.34
Fibroblast 0.73 4.13 14.35
Ciliated cell 0 0 0.12
Macrophage 3 5.67 6.05
Inflammatory M2 macrophage 5.18 5.39 5.79
M1 macrophage 2.38 9.91 22.31
Monocyte 19.94 10.72 8.49
mDC 5.03 1.94 0.32
Immune B cell 4.34 3.32 1.23
T cell 2.23 21.62 6.36
Dendritic cell 19 3.65 3.72
CD4+ T cell 0.41 3.14 0.99
Blood Plasma cell 0.0052 0.15 5.22
Fibroblast / M1 2.14 443 9.75
Undetermined
CD8+/EP 13.77 1.93 0.26

To confirm our cell type assignment, we also compared the cell composition of the 276
normal group with other studies and our results agreed with the reported cell composi- 277
tions [25-30]. In Table 3, about 20.97% (5.67% macrophages, 5.39% M2 macrophages, and 278
9.91% M1 macrophages) and 34.11% (6.01% macrophages, 5,79 M2 macrophages, and 279
22.31 M1 macrophages) of cells identified were macrophages from samples with mild and 280
severe symptoms, respectively, suggesting elevated inflammatory responses in mild and 281
severe groups. Fibroblasts accounted for 0.73%, 4.13%, and 14.35% of cells identified from 282
samples as no, mild, and severe symptoms, respectively, indicating possible structural 283
changes in the infected lungs. Interestingly, it’s reported that proportions of macrophages 284
significantly increased from 12% in normal (with single-nucleus RNA seq data) to 20% in 285
lung tissue with COVID-19 infection, as well as fibroblasts from 7% in normal to 23% in 286
infected lungs [31]. The identified sub-types of cells in our study provide a more detailed 287
picture of the cell-type composition and its dysregulation related to COVID-19 infection 288
severity. 289
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Table 3 lists the percentage of cell types in each group where we can observe trends 290
of populations of 13 cells-types including Type II pneumocytes, anterior foregut endo- 291
derm (AFE) cell, T cell, dendritic cell, Macrophage, fibroblast/M1 macrophage, fibroblast, 292
M1 macrophage, B cell, mDC, CD8+/EP, monocytes, and basal cells, identified in N, M, 293
and S groups (See Figure 4). T cells and AFE cells demonstrated a “A" shape, with an in- 294
creased percentage in the mild group and a decreased percentage in the severe group 295
compared to the normal group (Figure 4A). As an indicator of immune defense, popula- 29
tions of T cells (T cells and CD4+ T cells) counted for 24.76% in the mild group and de- 297
creased to 7.35% in the severe group. Cell proportions of monocytes, basal cells, and mDC 298
in the mild and severe groups significantly decreased compared to the normal group (Fig- 299
ure 4C). Since macrophages were differentiated from monocytes, decreased monocyte 300
populations (Figure 4C) were observed with the increased populations of macrophages 301
(Figure 4B) 302
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Figure 4 Trends of cell population changes in 13 cell types shared in the normal, mild, and severe 305
groups with the y-axis representing the percentage of cells in N, M, and S. (A) The proportion of cell 306
types demonstrated a “A" shape in normal, mild, and severe groups.; (B) The proportion of cell types 307
increased in the mild and severe groups. (C) The proportion of cell types decreased in mild and 308
severe groups. 309

310

3.5. Deep learning models for COVID-19 infection severity prediction supported by significant 311
differences in the gene expression profiles of subtypes of immune cells 312

One ANN model and one GCNN model were trained with 80% of cells from each 313
patient without consideration of cell types while M-specific ANN and M-specific GCNN 314
models were trained with cells identified as M1, M2, and macrophage in section 3.4. 315

ANN models include 1 input layer with 2,000 nodes for gene expressions, 1 hidden 316
layer with 32 nodes, and 1 output layer with 3 nodes representing the normal, mild, and 317
severe levels of infection. The model was trained with the dropout rate as 0.5, the learning 318
rate as 0.0006, batch size as 128, softmax activation, adam optimizer, and sparse-categori- 319
cal cross-entropy loss function using the Keras package. 320

GCNN models were also developed for all cell types and macrophages specifically 321
with the model structure. The GCNN models include one graph with 2,000 nodes (genes) 322
and 199,900 edges. After the input graph, a hidden layer with 128 nodes with softmax 323
activation was introduced and a fully connected output layer with three nodes represent- 324
ing the normal, mild, and severe infection levels. The parameters for GCNN models were 325
chosen as follows: dropout rate is 0.5, the learning rate is 0.0005, and the batch size is 128. 326

A total of 15 data partitions were established with 80%, 10%, and 10% of cell types 327
extracted from each patient to train, validate, and test the models. Both ANN and GCNN 328
models were developed, trained, and tested with the same data partitions. Al ANN and 329
GCNN models have comparable training losses. Average and the best performances of 330
ANN and GCNN models with 15 partitions were presented in Table 4. The best perfor- 331
mance of the M-specific GCNN model has a testing performance of 91.48% and beats all 332
other models. Prediction accuracy generated from an M-specific GCNN model was shown 333
in Table 5. The prediction accuracy for the mild group was the worst due to a smaller 334
sample size compared with severe and normal groups as shown in Table 1. 335
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336
Average performance 15 partitions Best performance
Train Validate Test Train Validate Test
ANN 84.09% 82.62% 82.73% 84.28% 82.97% 83.02%
GCNN 77.09% 76.49% 76.59% 88.61% 88.64% 88.14%
M-specific ANN 87.64% 84.99% 84.86% 88.13% 86.19% 85.86%
M-Specific GCNN  91.16% 89.13% 89.23% 91.48% 90.04% 90.25%

Table 4. Performance of ANN and GCNN models using all cell types and macrophage-specific 337
ANN and GCNN models for COVID-19 infection severity prediction. 338

339

Table 5. Confusion matrix for the M-specific GCNN predictions. Rows show the N, M, and S groups, ~ 340
while columns show the number of cells predicted for each group. 341

Predicted class

Normal Mild Severe
2 Normal 145 12 44
; Mild 2 64 66
= Severe 15 21 1,231

342

We also performed classification using logistic regression in scikit-learn by using a 343
5-fold cross-validated grid parameter search. The best parameters across all searched pa- 344
rameters are inverse regularization of 10 and L: penalty using linear optimizer. The lo- 345
gistic regression model has achieved the best score of 82.9%, and the testing set has the 346
best score of 82.9%. The average prediction accuracy of ANN and GCN modes using all 347
cell types reached similar performance as the logistic regression approach and did not 348
show significant improvement. However, gene expression profiles in identified macro- 349
phages significantly improved the prediction accuracy, suggesting M-specific gene signa- 350

tures might be related to COVID-19 infection severity. 351
352
3.6 A subtype of M1 macrophages is associated with severe COVID-19 cases 353

With the cell type identified, we further examined if cells in a cluster are observed 354
in samples from unique group (See Table 6). In cluster 0 which is assigned as M1 macro- 355
phages, 93.2% of cells belong to severe samples, 3.45% to mild samples, and 3.35% to nor- 356
mal samples (See Table 6). Similarly, cells from clusters 5, 7, 15, and 18 belong to samples 357
from N, M, and S groups. Cells from cluster 27 (M1 macrophages) are only observed in 358
samples from M and S groups. 359

Since multiple clusters have been assigned to M1 macrophages, we further exam- 360
ined the DEG in these clusters to see if we can assign subtype to a cluster. A total of 142 361
genes were found to be differentially expressed (90 for up-regulated, and 52 for down- 362
regulated) in cluster 0 compared to the other M1 macrophage clusters (15, 18 and 27). 363
Interestingly, all the 90 up-regulated DEG and 51 down-regulated DEG were only found 364
in cluster 0 and not in the other clusters (See Table 7 as unique DEG). The number of DEG 365
and unique DEG in cluster 0 is significantly higher than the other clusters assigned as M1 366
macrophages, suggesting a possible subtype of M1 macrophages. 367

To further investigate if this is a subtype of the M1 macrophages, we examined the 368
biological processes enriched by the DEG with larger FC (See Table S2 for up-regulated 369
genes and S4 for down-regulated genes). The enriched biological processes of up- 370
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regulated genes include chemotaxis, inflammatory response, cytokines, immunity, in- 371
flammatory response, antiviral defense, and apoptosis (Table S3) which are strongly asso- 372
ciated to the infection of COVID-19. The DEG with larger FC include the alarmins S1I00AS8, 373
and S100A9, CXCL10 and CCL2. S100A8, and S100A9 are endogenous molecules released 374
in response to environmental triggers and cellular damage. They are constitutively ex- 375
pressed in immune cells and their expression is upregulated under inflammatory condi- 376
tions [32] (See Table 7). CXCL10 and CCL2, have been reported as key players for the onset 377
and maintenance of cytokine-storm in severe cases of COVID-19 [33]. Besides, the expres- 378
sion levels of GNLY, GSZMB, CCL5 were significantly down-regulated (See Table 8). Itis 379
known that GNLY functions as an antimicrobial peptide [34]. GSZMB deficiency exacer- 380
bates lung inflammation in mice after acute lung injury [35]. Also, low levels of CCL5 have 381
been associated with the severity of COVID-19 [36]. Based on these results we speculate 382
that this subtype of M1 macrophages in cluster 0 is an intermediate subtype related to 383
immunity, inflammatory responses, and cytokine-storm in COVID-19 infection. 384
In particular, we identified two genes (APOBEC3A and IDO1) that are unique to this 385
cluster and that may also be consider as gene-markers for M1 subtype. APOBEC3A have 386
a key role in cytidine deaminase in transcriptomic and functional polarization of M1 mac- 387
rophages [37] while IDO1 play potential roles in macrophage differentiation where the 388
expression levels of this gene modulate macrophages differentiation. Previous findings 389
support the role for IDO1 with regarding to the polarization of macrophages to restrain 390
excessive or inappropriate immune activation in inflammatory or tumor microenviron- 391
ment [38]. 392
393
Table 6. Percentage of cells from normal, mild, and severe groups in the clusters assigned 394
as Macrophage subtypes 395
Percentage of Percentage of Percentage of
Cluster/subtype  Number of cells Normal cgells Mild celﬁ Severe ceglls
o/M1 6572 3.33% 3.45% 93.20%
5/M2 3544 29.00% 11.40% 59.50%
7/Macropahge 3241 18.30% 13.19% 68.40%
15/M1 1436 5.90% 28.03% 66.05%
18/M1 1218 13.90% 7.95% 78.90%
27/M1 255 0% 2.76% 97.20%
396
Table 7. Up-regulated DEG in clusters identified as M1 macrophages 397
Total Number of
Cluster unique DEG Top 5 up regulated(FC)
DEG* e
genes
0 90 90 S100A8 (15.1), SI00A9 (14.3), CCL2 (9.3), CXCL10 (8.3), ILIRN (8.1)
15 29 15 CST7 (3.5), RPS27(3.1), RPS19(2.6), ALOX5AP(2.5), XCL2(2.5)
18 40 29 IL32 (6.9), CD3E (3.7), CD2 (3.6), CORO1A(3.5), CD3D(3.3)
27 23 2 ZNF683 (2.0), BGLAP (2.1)
398
* Differentially expressed genes of one cluster compared to the rest of the clusters 399
identified as M1 macrophages. 400
** Differentially expressed genes found only in one cluster. 401
402
Table 8. Down-regulated DEG in clusters identified as M1 macrophages 403

T Number
Cluster of Top 5 down regulated (FC)




Genes 2022, 13, x FOR PEER REVIEW 13 of 16

404 DEG

genes**
0 52 51 GNLY (0.03), GZMB (0.05), CCL5 (0.09), NKG7 (0.10), IL32 (0.11)
15 72 9 MT2A(0.4), ACTB (0.44), CSTB (0.44), S100A4 (0.46), HLA-DRA (0.47)
18 73 27 FOS (0.30), SRGN (0.36), NEAT1 (0.39), CCL4 (0.39), TNFSF10 (0.42)
27 66 0 N/A
4. Discussion 405

This is the first study to line up M-specific gene signatures to the severity of COVID- 406
19 infections using single-cell RNA Seq analysis. A total of 31 cell clusters were found in 407
a previously published dataset and the percentages of the cell clusters from 12 samples 408
were used to successfully predict the severity of the COVID-19 infections. To gain a better 409
understanding of the specific cellular responses to COVID-19 infections, these 31 cell clus- 410
ters were further mapped into 20 cell types with well-defined gene markers in the lungs. 411
Trends of the cell profiles in the normal, mild, and severe groups were then compared. 412
The most significant changes were found in macrophages, monocytes, and T cells, for the 413
immune system and inflammatory responses while fibroblasts, EP, and basal cells for lung 414
function and structures. Different cell proportions identified in the normal, mild, and se- 415
vere groups triggered a further exploration of gene signatures in specific cell types. ANN 416
and GCNN models were developed to predict COVID-19 infection severity with gene ex- 417
pressions in all cell types and with gene expressions from M1+M2+macrophages consid- 418
ering macrophages are the most significant cell type changes among the normal, mild, 419
and severe groups. Our results showed that the macrophage-specific GCNN model had 420
the highest prediction accuracy, confirming the significant role of macrophages in predict- 421
ing the severity of COVID-19. 422

The novelty of this study lies in the fact of integrating single-cell RNA seq analysis 423
with DL models to predict the severity of COVID-19 infection. Due to the complexity of 424
single-cell data, a significant research effort was allocated at the early stage for normali- 425
zation and batch effect correction to reduce technical experimental variations and individ- 426
ual differences among batches and cells while keeping meaningful biological information. = 427
Though multiple scRNA-seq pipelines such as Seurat [13] and Scanpy [39] are available 428
for users to perform the analysis, the rationale for selecting special thresholds during the 429
analysis should be carefully examined by the users with a good understanding of both 430
statistical analysis and biological processes. Overwhelming batch correction may lead to 431
the loss of biological information for scRNA-Seq analysis. 432

With the availability of DL modeling tools such as Keras, training of DL models is 433
getting easier while the interpretation of DL is still premature. We adopted a feature se- 434
lection searching approach in this study. The completeness and soundness of the model 435
should be further investigated in our future studies. There are other approaches to estab- 436
lishing a GCNN graph for scRNA-seq data including using a cell-cell graph or a gene-to- 437
cell graph [40, 41]. Since the goal of this study was to line up gene expression profiles to 438
cell types and then infection severity, we first established a data-driven graph from genes 439
to cell clusters, borrowing the idea reported in [41]. However, the performance of the 440
GCNN with gene-to-cell cluster graph was not as good as the GCNN models presented 441
here. We examined the edges in the data-driven gene-to-cell cluster graph and found the 442
number of edges was much smaller than that in other graphs we used before. In addition, 443
since there is no backward prorogation to refine the weights of the edges in the gene to 444
cell cluster graph, any error introduced in the graph will stay there and affect the predic- 445
tion accuracy. On the other hand, the adopted gene-to-gene interaction graph is a pure 446
knowledge-driven graph. Thus, the errors introduced to the graph are controllable based 447
on prior knowledge. One possible way to improve the performance of the GCNN model 448
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is to establish a pure biology-driven graph combining gene-gene interactions and links
from marker genes to specific cells for GCNN models in the future.

Our study indicates significant differences in the gene expression profiles of subtypes
of immune cells of COVID-19-infected patients. The molecular components of these pro-
files deserve further research and experimentation as potential therapeutical factors.
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