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Abstract—A novel green granular neural network (GGNN)
with new fast software-FPGA co-designed learning is developed
to reduce both CO2 emissions and energy consumption more
effectively than popular neural networks with the traditional
software-CPU-GPU-based learning. Different from traditional
tedious CPU-GPU-based training algorithms using gradient de-
scent methods and other methods such as genetic algorithms , the
software-FPGA co-designed training algorithm may quickly solve
a system of linear equations to directly calculate optimal values
of hyperparameters of the GGNN. Initial simulation results
indicates that the FPGA equation solver code ran faster than
the Python equation solver code. Therefore, implementing the
GGNN with software-FPGA co-designed learning is feasible. In
addition, the shallow high-speed GGNN is explainable because
it can generate interpretable granular If-Then rules. In the
future, The GGNN will be evaluated by comparing with other
machine learning models with traditional software-based learning
in terms of speeds, model sizes, accuracy, CO2 emissions and
energy consumption by using popular datasets. New algorithms
will be created to divide the inputs to different input groups
that will be used to build different small-size GGNNs to solve
the curse of dimensionality. Additionally, the explainable green
granular convolutional neural network will be developed by using
the GGNNs as basic building blocks to efficiently solve image
recognition problems.

Index Terms—granular neural networks, FPGA, software-
hardware co-designed learning, green computing

I. INTRODUCTION

In recent years, deep neural networks have been effec-
tively used in computer vision applications. However, a major
problem is that traditional tedious CPU-GPU-based training
algorithms using gradient descent methods and other methods
such as genetic algorithms take huge amount of training time,
generate much CO2 emissions and waste a lot of energy.

In recent years, new green machine learning (ML) sys-
tems have been made to reduce both CO2 emissions and
computational energy consumption. For instance, the AutoML
framework for different methods such as neural architecture
search (NAS), and automated pruning and quantization is
used to build efficient on-device ML systems with low energy
consumption and low CO2 emissions by measuring GPU
hours and the estimated CO2 emission amount CO2e [5].
Since CO2e is proportional to the total computational power
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pt: CO2e = 0.954pt [6], effectively reducing training times
results in greatly reducing both energy consumption and CO2

emissions.
Currently, popular ML systems running on CPUs and GPUs

generate a lot of CO2 emissions and also waste much energy
because (1) tedious traditional training algorithms such as
gradient descent algorithms and genetic algorithms take huge
amount of time to optimize billions of hyperparameters, and
(2) CPUs and GPUs are not green effective and not energy
efficient. In summary, an urgent challenge is developing a
novel ML system with high-speed non-traditional training
algorithms running on the green and energy efficient hard-
ware to significantly reduce both CO2 emissions and energy
consumption.

We will develop the novel green granular neural network
(GGNN) with new fast FPGA-based training algorithm to ef-
fectively reduce both CO2 emissions and energy consumption
more effectively than the CPU-GPU-based training algorithms.
We will also develop a novel high-speed FPGA-based in-
cremental transfer learning algorithms to greatly reduce both
CO2 emissions and energy consumption for real-time green
computing applications.

Based on the successful implementation of the FPGA-based
direct linear equation solver [7], [8], [14], the high-speed
FPGA-based direct linear equation solver can be used to
quickly generate optimal hyperparameters in just one epoch
for the new GGNN in a real-time manner. For example, the
Questa*-Intel FPGA Edition Software provides the FPGA
design simulation that involves generating simulation files,
compiling simulation models, running the simulation, and
viewing the results. We will use FPGA software simulation
systems to implement the high-speed FPGA-based direct linear
equation solver. The goal is to develop more effective and
faster hardware-based hyperparameter optimization algorithms
with a fast direct linear equation solver for training a new
GGNN.

II. THE HIGHLY EFFICIENT FPGA-BASED GGNN

Two major ways of effectively reducing CO2 emissions
include (1) develop novel high-speed non-traditional training
algorithm to significantly reduce training times, and (2) use
novel computational hardware with low CO2 emissions.



Approach 1: Firstly, we will develop fast training al-
gorithms different from traditional tedious hyperparameter
optimization methods such as gradient decient methods and
genetic algorithms. To minimize Q = 1/2

∑︁N
k=1(yk − Yk)

2

where yk is an output of a ML model, and Yk is a correct out-
put for k = 1, 2, . . . , N , we have ∂Q

∂θi
= 0 for i = 1, 2, . . . , n

where θi is a parameter. If we cannot directly calculate θi, then
we have to use the tedious training algorithms such as gradient
descent algorithms and genetic algorithms. Differently, we will
develop the novel green granular neural network (GGNN)
with the fast training algorithm that can quickly calculate
parameters θi for ∂Q

∂θi
= 0 without slow training epoch by

epoch. Importantly, current θi(t) can be updated efficiently and
incrementally to generate θi(t+1) by only using new training
data (in other words, each training data is used only once
to calculate the parameters for really fast real-time training).
Such high-speed incremental transfer learning methods are
useful for real time ML applications such as smart apps on
mobile devices and federated edge learning systems with low
pollution, low energy consumption and high speed.

Approach 2: Secondly, we will develop the novel GGNN
with new fast FPGA-based training algorithm to reduce CO2

emissions more effectively than the CPU-GPU-based training
algorithms. Popular CPUs and GPUs generate much more
CO2 emissions and run less efficiently than the field pro-
grammable gate array (FPGA) [4, 5]. For instance, the new
FPGA-based massive parallel data processing system can
reduce CO2 emissions by around 50% [5]. FPGA is a light-
weight hardware with low CO2 emissions and low energy
consumption [6] for quickly solving a system of linear equa-
tions. For example, on a Xilinx Vertex 6 FPGA (200MHz), the
minimum latency of the FPGA-based direct linear equation
solver was lower than 5 microseconds for a linear system of
equations of order 32 [7]. Thus, it is feasible to use FPGA to
implement the new FPGA-based training algorithm.

III. A FAST GGNN WITH SOFTWARE-FPGA
CO-DESIGNED LEARNING

A. Granular Sets

Different sets dealing with uncertainty of data and infor-
mation, such as the fuzzy set [22], the neutrosophic fuzzy set
[25], the intuitionistic fuzzy set [23], and Pythagorean fuzzy
set [24], were defined. A new granular set is defined as follows
to be used to build a new granular neural network.

Definition 1. Let X be a nonempty set.
A granular set A in X is defined as A =
{⟨x, µA(x), νA(x), φA(x), ϕA(x), θA(x), ϑA(x)⟩ : x ∈ X},
where (1) µA(x) is degree of membership of x for
0 ≤ µA(x) ≤ 1, (2) νA(x) is degree of non-membership of
x for 0 ≤ νA(x) ≤ 1, (3) φA(x) is certain degree of µA(x)
for 0 ≤ φA(x) ≤ 1, (4) ϕA(x) is uncertain degree of µA(x)
for 0 ≤ ϕA(x) ≤ 1, (5) θA(x) is certain degree of νA(x)
for 0 ≤ θA(x) ≤ 1, and (6) ϑA(x) is uncertain degree of
νA(x) for 0 ≤ ϑA(x) ≤ 1, where 0 ≤ µA(x) + νA(x) ≤ 1,
0 ≤ φA(x) + ϕA(x) ≤ 1, and 0 ≤ θA(x) + ϑA(x) ≤ 1.

Meaningful linguistic values, such as very slow, about 25,
around 200, can be represented by the granular sets that are
used to build interpretable granular fuzzy If-Then rules. For
example, an explainable granular If-Then rule is If x1 is low
and x2 is around −1000, Then an output is high.

B. Software-FPGA Co-designed Learning

A new GGNN with software-FPGA co-designed learning
using training data is developed as shown in Fig. 1. It uses the
software-based learning system to compute the coefficients for
a linear system of hyperparameter equations, then uses the fast
FPGA-based learning system to optimize the hyperparameters,
and finally builds a GGNN model for prediction.

Fig. 1. A GGNN with Software-FPGA Co-Designed Learning

For convenience, an N -record relational database has n
numerical input fields xi for i = 1, 2, ..., n, and one numerical
output field y. Now the problem is how to build a GGNN using
given N records in the relational database. Here, granular
sets are used as basic granules in granular partitions of the
input variables xi for i = 1, 2, ..., n and the output variable y.
The interval [ai, bi] of xi are partitioned into mi − 1 intervals
(ai1 ≤ xi ≤ ai2, ai2 ≤ xi ≤ ai3, ..., ai(mi−1) ≤ xi ≤ aimi

).
So mi granules Aij are used to cover the mi− 1 intervals for
i = 1, 2, ..., n, j = 1, 2, ...,mi. The granules Aij are defined
by granular sets such as a fuzzy set [22]. After the above
granulation of xi for i = 1, 2, ..., n, there are G data base
granules for G =

∏︁n
i=1(mi − 1). For each data base granule,

a GGNN with an output g(x1, x1, ..., xn) is constructed by
using two input granular sets covering one interval of xi and
2n output granular sets of y. So y has 2n granular sets Bk for
k = 1, 2, ..., 2n.

The granular rule base has 2n granular IF-
THEN rules for one database granule such that
IF x1 is A1j1 and ... xn is Anjn THEN y is Bk

for ji ∈ 1, 2, i = 1, 2, ..., n, and k = 1, 2, ..., 2n.
A database granule has K =

∏︁n
i=1 ki records totally if an

input xi has ki values for i = 1, 2, ..., n in the database gran-
ule, and an output y has K corresponding values yk for k =
1, 2, ...,K. The optimization function for the database granule
is to minimize Q = 1

2

∑︁K
k=1[yk−g(x1k , x2k , ..., xnk

)]2. Based



on ∂Q
∂pj

= 0 for the GGNN, we can get a linear system of M -
hyperparameter equations for k = 1, 2, ...,M for M = 2n+1:

T k
1 q1 + T k

1 q2 + ...+ T k
MqM = ψk (1)

Now we can solve the linear system of M -hyperparameter
equations to directly get optimal M hyperparameters qk of
the GGNN for k = 1, 2, ...,M .

Based on the successful design of the FPGA-based linear
equation solver [7], [8], [14], it is feasible to use the same
architecture of the FPGA-based linear equation solver to solve
equation (1) to get optimized hyperparameters qk for k =
1, 2, ...,M .

The major merits of the granular constructive learning
method are (1) quickly optimize parameters using predefined
formulas, and (2) discover meaningful granular rules from
training data.

The direct hyperparameter optimization algorithm for a
highly efficient GGNN with the efficient granular knowledge
transfer learning and incremental learning is given below.

FPGA-based Training Algorithm with Direct
Hyperparameter Optimization
Begin
Input: N training data.
Output: A GGNN with discovered granular knowledge with
optimized hyperparameters.

Step 1 (Using Software to Pre-calculate Coefficients for a
Linear System of Hyperparameter Equations): use software to
calculate coefficients such as T k

1 , T k
2 , ..., T k

M of a linear system
of hyperparameter equations based on given N training data.

Step 2 (Using FPGA to Solve the Linear System of Hy-
perparameter Equations): Input the coefficients to a pre-
designed FPGA, then use FPGA-based linear equation solver
to calculate optimal hyperparameters qk for k = 1, 2, ...,M of
the linear system of hyperparameter equations. The optimized
hyperparameters are used to build a granular knowledge base
with meaningful granular If-Then rules.

Step 3 (Using a FPGA-based GGNN with Newly Discovered
Granular Knowledge for an Application): Use the newly
discovered granular knowledge to build a FPGA-based
GGNN, then use the FPGA-based GGNN for an application.
End

The FPGA-based direct hyperparameter optimization algo-
rithm for a GGNN is highly efficient because of its four
high-speed hybrid software-hardware-based steps. Step 1 uses
software to calculate coefficients only one time based on all
available training data. Step 2 uses fast hardware-based linear
equation solver to quickly get optimal hyperparameters that
are used to make granular knowledge. Step 3 uses the fast
FPGA-based GGNN for a real-time ML application.

IV. SIMULATIONS FOR SOFTWARE-BASED LEARNING
METHODS

To compare an artificial neural network (ANN) and the
GGNN using a fuzzy set (a special granular set), simulations

using two different functions are done. The first 3-input-1-
output benchmark function f1k [18]–[21] is given below:

f1k = (1 + x0.5k + y−1
k + z−1.5

k )2. (2)

The training data set with 8, 000 training data is generated
by f1k shown in equation (2) such that xtrk = 1.0 + ⌊ k

400⌋,
ytrk = 1.0 + ⌊ k

20⌋, ztrk = 1.0 + k mod20, where the operator
mod is used, f1k ∈ [4.248, 55.833], and k = 0, 1, ..., 7, 999.
A testing data set with 6, 859 testing data is generated by f1k
such that xtej = 1.5 + ⌊ j

361⌋, ytej = 1.5 + ⌊ j
19⌋, ztej = 1.5 + j

mod19, where the operator mod is used, j = 0, 1, ..., 6, 858.
8, 000 training data are distributed in 27 subspaces, but data
in 16 subspaces are used to train both ANNs and GGNN
(i.e., no training data in 11 other subspaces like missing data
in the subspaces). 6, 858 testing data are distributed in all the
27 subspaces to compare ANNs and GGNN .

Tables 1 to 3 show that GGNN outperforms both 10-Layer
ANN and 20-Layer ANN in terms of the prediction Mean
Square Error (MSE), and the prediction Root Mean Square
Error (RMSE) for 100, 500, and 1, 000 training epochs.

TABLE I
FUNCTION PREDICTION PERFORMANCE COMPARISON BETWEEN ANNS

AND THE GGNN FOR f1 FOR 100 TRAINING EPOCHS.

Neural Network MSE RMSE
10-Layer ANN 58.22 7.63
20-Layer ANN 63.44 6.88

GGNN 47.31 6.88

TABLE II
FUNCTION PREDICTION PERFORMANCE COMPARISON BETWEEN ANNS

AND THE GGNN FOR f1 FOR 500 TRAINING EPOCHS.

Neural Network MSE RMSE
10-Layer ANN 55.68 7.46
20-Layer ANN 76.99 8.77

GGNN 46.38 6.81

TABLE III
FUNCTION PREDICTION PERFORMANCE COMPARISON BETWEEN ANNS

AND THE GGNN FOR f1 FOR 1, 000 TRAINING EPOCHS.

Neural Network MSE RMSE
10-Layer ANN 51.16 7.15
20-Layer ANN 53.66 7.33

GGNN 46.71 6.83

V. SIMULATIONS FOR FPGA-BASED LEARNING
METHODS

Once we calculated coefficients as T k
1 , T k

2 , ..., T k
M , we can

solve equation (1) by simply using matrix inversion method.
However, matrix inversion is, by its nature, not hardware-
friendly. Many algorithms rely on division which requires huge
resources on FPGA. Also, we usually need to fix the matrix
size in prior to feeding numbers to the hardware. The first
problem has been a hot topic in the FPGA community, and the



second problem can be solved by HLS (High-Level Synthesis)
[9].

Based on previous sections, if we have n input parameters,
T k
1 , ..., T k

M will form a square matrix with 2n+1 × 2n+1.
There have been some researches focusing on FPGA-based
matrix inversion for the past decades [14]–[16], such as
steepest descent method [11], QR decomposition [12] and
Gauss Jordan method [13], etc. The current method we use
is LUP (LU factorization with partial pivoting). Fig. 2 shows
an example for a 4 × 4 matrix. Following the color order,
we can easily decompose a given matrix in A = LU . And
the inverse of an upper or lower triangular matrix is easy to
compute, since U−1 is also an upper triangular matrix [17].

Fig. 2. LU factorization on a 4× 4 matrix [10]

If we have 2 input parameters, we will form an 8×8 square
matrix. We generate a random matrix A and an 8 × 1 vector
b, then we want to solve the linear equation Ax = b. For
example, We used the code of MATLAB and the FPGA code
[8] to generate the same solution: (-0.5830, -0.7406, 0.8177,
-0.0643, 0.5189, -0.0649, 0.5263, 0.4562) for the following
equation:

1.4432 1.2248 -2.7408 4.0488 1.0284 -4.1448 -2.6272 1.7914 -4.0129
-1.2139 0.8704 -3.2929 4.7975 2.1122 -2.3752 -0.4115 -1.0448 -2.3813
3.1158 -2.9226 -2.7234 -0.6113 -2.7825 3.0101 4.6309 -1.3256 -1.6464
0.3283 -1.9875 -0.6430 -3.8888 -3.8258 -4.7078 0.4681 4.8798 1.7973
-1.4927 -0.2908 -1.8890 -2.4194 -2.0332 4.2885 0.2114 -4.6226 -3.6345
4.3900 -2.6951 4.2338 -0.9128 -1.8122 2.3033 -2.6841 3.8517 2.2123
3.7594 3.4431 -0.6979 0.9490 -0.7583 -0.1139 -0.1110 4.1329 -3.9324
0.5016 -3.0524 -3.1518 -2.3779 0.0786 0.7853 1.2406 2.9618 1.5376

Furthermore, we used a MATLAB code, a FPGA code and
a Python code to test their running times on for the matrix
inversion with different linear systems of hyperparameter
equations of different orders (i.e., 8, 16, 32, 64, and 100). For
each case, we create 20 complex square matrices of different
orders. Table 1 shows running times that are measured in
10−4s. All the tests are running on the same computer. The
FPGA code ran faster than the Python code. The FPGA code
ran faster than the MATLAB code except for a case of order
of 16.

In addition, the FPGA code is effective to reduce both
energy consumption and CO2 emissions because the short exe-
cution time of the FPGA code results in a small computational
power consumption pt for CO2e = 0.954pt [6] . Importantly,
a FPGA hardware will be much faster than a software-based
equation solver to reduce both energy consumption and CO2

emissions more effectively.

TABLE IV
RUNNING TIMES OF THE THREE CODES

Method 8 16 32 64 100
MATLAB 0.689 1.232 3.989 17.298 62.410

Python 1.139 1.581 7.057 30.147 76.581
FPGA 0.638 1.313 2.803 6.207 12.284

Based on LUP, we can write the corresponding C program.
To generate feasible Verilog scripts, we can use Vivado HLS to
transform the C program to Verilog code and simulate it in the
software. Therefore, the new software-FPGA-based learning
method is feasible and useful for implementing the new fast
FPGA-based GGNNs.

VI. CONCLUSIONS

Initial simulation results indicates that the FPGA equation
solver code ran faster than the Python equation solver code.
In additon, the GGNN may perform more accurately than a
traditional neural network. Therefore, it is feasible to make
a novel software-FPGA co-designed GGNN to reduce both
CO2 emissions and energy consumption more effectively than
the CPU-GPU-based neural networks. Since FPGA is a high-
speed light-weight hardware with low CO2 emissions and low
energy consumption, the FPGA is used to quickly solve a
system of linear equations to directly calculate optimal values
of hyperparameters of the shallow GGNN.

VII. FUTURE WORKS

In the future, the GGNN with the software-FPGA co-
designed learning will be evaluated by comparing with other
machine learning models with traditional software-CPU-GPU
co-designed learning in terms of speeds, model sizes, accuracy,
CO2 emissions and energy consumption by using popular
datasets. New intelligent algorithms will be developed to find
out optimal or near optimal sub-spaces on which accurate
GGNN models will be built.

A GGNN with a large number of inputs has the curse of
dimensionality. New algorithms will be created to divide the
inputs to different input groups that will be used to build
different small-size GGNNs to solve the problem.

The explainable green granular convoluational neural net-
work (GGCNN) will be devleoped by using the GGNNs as
basic building blocks to efficiently solve image recognition
problems. The new GGCNN consists of convolutional layers,
activation layers, pooling layers, and the fast GGNN with the
software-FPGA co-designed learning.

The shallow high-speed GGNN is explainable because it
can generate interpretable granular If-Then rules. In the future,
we will use different granular sets with different nonlinear
membership functions, and then select the best one to improve
performance (accuracy, AUC, F1-score, etc.) of the GGNN.

After this FPGA-based learning software is successful, a
high-speed FPGA hardware based direct linear equation solver
will be implemented for building an efficient GGNN and an
efficient GGNN to significantly reduce both CO2 emissions
and energy consumption.
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