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ABSTRACT: The generalized quantum master equation
(GQME) approach provides a rigorous framework for deriving
the exact equation of motion for any subset of electronic reduced
density matrix elements (e.g., the diagonal elements). In the
context of electronic dynamics, the memory kernel and
inhomogeneous term of the GQME introduce the implicit coupling
to nuclear motion and dynamics of electronic density matrix
elements that are projected out (e.g., the off-diagonal elements), allowing for efficient quantum dynamics simulations. Here, we focus
on benchmark quantum simulations of electronic dynamics in a spin-boson model system described by various types of GQMEs.
Exact memory kernels and inhomogeneous terms are obtained from short-time quantum-mechanically exact tensor-train thermo-
field dynamics (TT-TFD) simulations and are compared with those obtained from an approximate linearized semiclassical method,
allowing for assessment of the accuracy of these approximate memory kernels and inhomogeneous terms. Moreover, we have
analyzed the computational cost of the full and reduced-dimensionality GQMEs. The scaling of the computational cost is dependent
on several factors, sometimes with opposite scaling trends. The TT-TFD memory kernels can provide insights on the main sources
of inaccuracies of GQME approaches when combined with approximate input methods and pave the road for the development of
quantum circuits that implement GQMEs on digital quantum computers.

1. INTRODUCTION
Quantum dynamics simulations are central to theoretical
studies of many areas of chemical and technological
applications, including charge and energy transfer in photo-
synthetic and photovoltaic systems and a wide range of
reactions with nonadiabatic dynamics and photochemical
processes, including spin and vibrational energy relaxation, as
well as polaritonic chemistry.1−12 Despite considerable
progress over the past few decades, the development of
efficient methods for simulations of quantum dynamics
remains an outstanding challenge for studies of complex
molecular systems at finite temperature.13−26 This is primarily
due to the computational cost of quantum-mechanically exact
simulations, which scales exponentially with the number of
degrees of freedom in the system, thereby making such
simulations intractable in most complex molecular systems of
practical interest. Thus, reduced-dimensionality approaches
that can offer more favorable scaling are highly desirable.
The Nakajima−Zwanzig generalized quantum master

equation (GQME)17,18 provides a formally exact general-
purpose framework for modeling quantum dynamics in
reduced dimensionality. It can be obtained for any subset of
reduced density matrix elements by using suitable projection
operators.19 When focusing on electronic dynamics, the effect
of projecting out nuclear degrees of freedoms (DOFs) and
electronic density matrix elements not included in the subset of
interest is accounted for by the memory kernel and the
inhomogeneous term of the GQME. The dimensionality of those

spatially and temporally compact quantities is typically much
lower than the dimensionality of the overall system since it is
determined by the number of reduced density matrix elements
included in the subset of interest, allowing for efficient
simulations.
Considerable progress has already been made toward

calculating the aforementioned memory kernels and inhomo-
geneous terms without resorting to perturbation theory.19,27−52

Much of that progress has been based on the strategy
introduced by Shi and Geva,27 which relies on formally exact
relationships between the memory kernel and the inhomoge-
neous term and projection-free inputs (PFIs) that are given in
terms of two-time correlation functions of the overall system.
These PFIs can be obtained from quantum-mechanically exact
or approximate (e.g., semiclassical or mixed quantum-classical)
input methods.19,27−50,52

In this paper, we introduce exact memory kernels and
inhomogeneous terms obtained from quantum-mechanically
exact tensor-train thermo-field dynamics (TT-TFD) simula-
tions.53,54 To the best of our knowledge, this is the first
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application of TT-TFD to calculate memory kernels and
inhomogeneous terms of GQMEs. Previously, exact memory
kernels have been obtained by the Geva,27 Shi,47−50 Makri,51

and Rabani31,33,34,36,55 groups. This paper extends the available
exact results to include the memory kernels and inhomoge-
neous terms of the modified GQME and reduced-dimension-
ality GQME approaches for the spin-boson model. We
demonstrate the capabilities of the GQMEs as applied to
benchmark simulations of electronic relaxation dynamics in a
spin-boson model system, including calculations based on
various types of reduced-dimensionality GQMEs. The spin-
boson model provides a useful framework for modeling
molecular systems with coupled electronic states. The resulting
quantum-mechanically exact memory kernels and inhomoge-
neous terms can serve as benchmarks for assessing the accuracy
of approximate memory kernels and inhomogeneous terms
obtained by approximate input methods. In addition, the
reported quantum-mechanically exact memory kernels and
inhomogeneous terms enables the development of quantum
circuits for the implementation of GQMEs on digital quantum
computers, which we report in the upcoming work.56

The paper is organized as follows. The objectives and scope
of our approach are presented in Section 2, the GQME
formalism is outlined in Section 3, and the protocol used for
calculating the PFIs via TT-TFD is described in Section 4. The
utility of combining the GQME and TT-TFD approaches is
demonstrated for the benchmark spin-boson model in Section
5. Also included in Section 5 is a comprehensive comparison
between the TT-TFD-based quantum-mechanically exact
results and the corresponding approximate results based on
PFIs obtained with an approximate linearized semiclassical
mapping Hamiltonian method.19 Concluding remarks are
provided in Section 6. Additional graphs and computational
details are included in the Supporting Information (SI).

2. MODEL SYSTEM
We focus on molecular systems exhibiting nonadiabatic
quantum dynamics such as photosynthetic and photovoltaic
molecular assemblies, commonly described by the following
model Hamiltonian:

= | | + | |
= =

H H j j V j k
j

N

j
j k

N

j k

jk
1 , 1

e e

(1)

Here, Hj is the nuclear Hamiltonian when the system is in

diabatic electronic state |j⟩ [Hj = + VP R/2 ( )j
2 ], with index j

running over the Ne electronic states (j = 1, 2, ..., Ne), while
= R RR ( , ..., )N1 n

and = P PP ( , ..., )N1 n
are the mass-weighted

position and momentum operators of the Nn ≫ 1 nuclear
DOF, and { | }V j kjk are coupling terms between electronic
states which can be either nuclear operators (non-Condon
case) or constants (Condon case). Throughout this paper, a
circumflex symbol over a variable (e.g., B) indicates an
operator quantity and a script font (e.g., ) indicates a
superoperator.
For simplicity, we assume that the initial state of the overall

system has the single-product form,

=(0) (0) (0)n (2)

Here, = { }(0) Tr (0)n e and = { }(0) Tr (0)n are the
reduced density operators that describe the initial states of
nuclear DOF and electronic DOF, respectively, while Tre{·}
and Trn{·} represent partial traces over the electronic and
nuclear Hilbert spaces, respectively. The methodology
presented in this paper is not limited to factorized initial
states, as introduced by eq 2, and can be applied to arbitrary
initial states.43

The time-dependent propagation of the initial state,
introduced by eq 2, according to the Hamiltonian introduced
by eq 1, yields the propagated state t( ) at time t, which is
described by the following density operator:

=t( ) e (0) (0)e e (0) (0)iHt
n

iHt i t
n

/ / /

(3)

Here, ·( ) is the overall Liouvillian superoperator
· = [ ·]H( ( ) , ). The reduced electronic density operator

t( ) at time t is obtained by tracing out the nuclear, as follows:

= { } = | |
=

t t t j k( ) Tr ( ) ( )n
j k

N

jk
, 1

e

(4)

The electronic populations and coherences are given by
{ = | | }t j t j( ) ( )jj and { = | | | }t j t k j k( ) ( )jk , respec-
tively. These quantities are of particular interest, because
their time evolution underlies electronic energy, charge, and
coherence transfer dynamics, as well as electronic decoherence.

3. GQMES IN REDUCED DIMENSIONALITY
The GQME formalism can be applied to derive exact
equations of motion for electronic observables while keeping
the input regarding other DOFs in the system to the minimum
necessary to account for their impact on dynamics. To this
end, we begin with the well-known Nakajima−Zwanzig
GQME (whose derivation is outlined in the SI),

=
t

t i t t

i

d
d

( ) ( )
1

d e ( )

e (0)

t
i

i t

2 0

/

/
(5)

where is a projection superoperator.17,18 Here, is the
projection superoperator complementary to ( = ),

is the identity superoperator, and is the Liouvillian
superoperator as in eq 3. Integrating eq 5, we obtain the time-
dependent projected state t( ). Importantly, there is a lot of
flexibility in the choice of to select the specific quantity of
interest.19

In this paper, we focus on quantities of interest
corresponding to a subset of electronic reduced density matrix
elements { }t( )ab . For example, { }t( )ab may include all Ne

2

electronic reduced density matrix elements (i.e., all populations
a n d c o h e r e n c e s ) , i n w h i c h c a s e { }t( )ab =
{ }t t t t( ), ..., ( ), ..., ( ), ..., ( )N N NN11 1 1e e e e

; or only the diagonal
electronic reduced density matrix elements (i.e., the
populations of the corresponding electronic states), in which
case { } = { }t t t( ) ( ), ..., ( )ab NN11 e e

; or just the single diagonal
term describing the time-dependent population of state |1⟩, in
which case {σab(t)} = {σ11(t)}. The GQME of an element
σjk(t) in a specific subset of electronic reduced density matrix
elements {σab(t)} is defined as
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Equation 6 is different for different subsets of electronic
reduced density matrix elements. It can be obtained by first
defining the projection superoperator

= { | | } | |
{ }

†A j k A j kTr ( 1 ) (0)
jk ab

n n
set

(7)

where A is a general overall system operator, {ab} are the
indices matching the subset of electronic reduced density
matrix elements { }t( )ab , and 1n is the unity operator in the
nuclear Hilbert space. Equation 6 can then be obtained by
substituting the projection superoperator set defined in eq 7
into eq 5, tracing over the nuclear Hilbert spaces, and applying
⟨j| from the left and |k⟩ from the right, with a detailed
derivation included in the SI (section S.I.2). Note that, because
the sum in eq 7 goes over the elements of the subset of
interest, set will be different for different subsets and,
therefore, the equation of motion in eq 6 will also be different,
even for the same element when it is in dif ferent subsets. For
example, if we are looking at one subset {σab(t)} = {σ11(t)} and
another subset {σab(t)} = {σ11(t), σ12(t)}, the equation of
motion for σ11(t) given in eq 6 will be different for the first
subset versus the second subset. These different equations of
motion are exact, so if exact input methods are used to obtain
the terms on the right-hand side (RHS) of eq 6 for σ11(t), the
results will be the same. However, if approximate input
methods are used, the results can differ.19

In eq 6, jk lm n,
0, ( )jk lm,

set , and I t( )jk
set

are the matrix
elements (jk, lm) of the projected Liouvillian superoperator,
memory kernel superoperator, and inhomogeneous term operator,
respectively, which are defined as follows:

= { | | | |}†j k l mTr ( 1 ) (0)jk lm n n n,
0

(8)

= { | | | |}†j k l m( )
1
Tr ( 1 ) e (0)jk lm n

i
n,

set
2

/ setset

(9)
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These quantities are subset-dependent, so they will differ
depending on the chosen subset of electronic density matrix
elements of interest. Given that Nset is the number of matrix
elements of interest included in {σab(t)} N N(1 )eset

2 , the
projected Liouvillian n

0 and memory kernel ( )set

superoperators can be represented by Nset × Nset matrices,
whereas the inhomogeneous term operator I t( )set

can be
represented by an Nset-dimensional vector in Liouville space.

Calculating the projected Liouvillian is typically straightfor-
ward. The memory kernel and inhomogeneous term satisfy
Volterra integral equations, so they can be obtained from the
PFIs.19 The Volterra equation for the memory kernel is given
by

=

+

{ }

{ }

i

i

( ) ( )
1

( )

d ( ) ( )

jk lm jk lm
uv ab

jk uv uv lm n

uv ab
jk uv uv lm

,
set

, , ,
0

0
, ,

set

(11)

where the PFIs are given by

= { | | | |}

= { | | | |}

†

†

j k l m

i j k l m

( )
1
Tr ( 1 ) e (0)

( ) Tr ( 1 ) e (0)

jk lm n
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n

jk lm n
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n

,
/

, 2
/

(12)

The Volterra equation for the inhomogeneous term is given by

= +

+

{ }

{ }

I t Z t i t

i t I

( ) ( ) ( ) (0)

d ( ) ( )

jk jk
lm ab

jk lm lm

uv ab

t

jk uv uv

set
,

0
,

set

(13)

where the additional PFI Zjk(t) is given by

= { | | }†Z t i j k( ) Tr ( 1 ) e (0)jk n
i t/

(14)

Note that =Z t i t( ) ( )jk jk , when the overall initial state is
of the commonly encountered form (0) = | |(0)n
(where |α⟩ is one of the electronic basis states), as is the case
for the applications reported in this paper. A more-detailed
discussion of the derivation, properties, and significance of eqs
11−14) can be found in ref 19 and in the SI.
Most previous studies have been based on direct calculations

of the aforementioned PFIs.19,43,43−46 However, when using an
exact input method, the PFIs can also be accurately obtained as
derivatives of the propagator ( ) ≡ { }Tr e (0) 1n

i
n e

/

that evolves the electronic reduced density operator, as
follows:41,43

=( ) ( ) (0) (15)

with matrix elements,

= { | | | |}†j k l m( ) Tr ( 1 ) e (0)jk lm n
i

n,
/

(16)

Specifically, we obtain the PFIs { }( ), ( )jk lm jk lm, , from
{ }( )jk lm, , as follows:41,43

= =i i( ) ( ) ( )
..

( )jk lm jk lm jk lm jk lm, , , , (17)

PFIs { }( ), ( )jk lm jk lm, , calculated from ( ) generate
exact memory kernels and inhomogeneous terms when ( )
is obtained from exact inputs. Therefore, we can calculate them
in terms of numerical derivatives of ( ) obtained from
quantum-mechanically exact TT-TFD simulations, as de-
scribed in Section 4.
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4. TENSOR-TRAIN THERMO-FIELD DYNAMICS
4.1. Hamiltonian. The molecular Hamiltonian introduced

by eq 1 can also be written as the sum of a purely electronic
Hamiltonian H 1e n, plus a purely nuclear Hamiltonian

H1e n, and an interaction term between the electronic and
nuclear DOF, Hen:

= + +H H H H1 1e n e n en (18)

Note that this division is not unique, in the sense that different
choices of He, Hn, and Hen are possible.

43 However, the results
are invariant to those choices when a quantum-mechanically
exact method like TT-TFD is applied, since no physical or ad
hoc approximation is introduced.

4.2. Thermo-Field Dynamics Method. We start out by
noting that the dynamics of t( ), which is governed by a
Hamiltonian of the form of eq 18, is described by the quantum
Liouville equation,

= [ ]
t

t
i
H t

d
d

( ) , ( )
(19)

The TT-TFD method53,54,57,58 provides a general, numerically
exact approach to solve eq 19 that is particularly efficient when
t( ) can be represented as a low rank matrix product state. In

our simulations, the state is described by t( )1/2 [instead of
t( )], represented as a tensor-train vector in an extended

Hilbert space (the so-called double Hilbert space described
below). The Liouville equation given in eq 19 is replaced by an
equivalent equation of motion for t( )1/2 , which can be
written in the form of a Schrödinger-like equation in the
double Hilbert space. For a high-dimensional system,
computational efficiency is achieved by using a tensor-train
representation26,59−65 of the extended state vector t( )1/2 . The
remainder of this section outlines the TT-TFD methodology
used for calculating the PFIs needed to obtain the memory
kernel and inhomogeneous term of the GQMEs.
The initial density operator of the overall system is of the

form introduced by eq 2. The initial electronic density operator
is given by = | |(0) , where |γ⟩ is one of the electronic
basis states, while the initial nuclear density operator is

= Z(0) e / ( )n
H

n
n , where = { }Z ( ) Tr en n

Hn . Therefore,

= | |
Z

(0)
e
( )

H

n

n

(20)

However, we note that the TT-TFD method is not restricted
to initial states of this simple form and can be analogously
applied to propagate any arbitrary initial state.
The TFD representation is only applied to the nuclear

density operator of the system, since the same dynamics is
obtained for the initial state introduced by eq 20, regardless of
whether the electronic density operator is included or not in
the TFD representation.57 We let {|k⟩} be an orthonormal
basis that spans the physical nuclear Hilbert space n and {| }k
be an orthonormal basis that spans a f ictitious nuclear Hilbert
space (also known as the tilde space) n, which is an exact
replica of n. Next, we define the so-called nuclear thermal
vacuum state:

| = | |
=Z

k k0 ( )
e

( )
n

H

k k

/2n

(21)

where one should note that the sum includes only terms
| |k k w i t h =k k, s o t h a t

| | = | | + | |= k k 0 0 1 1k k + .... We note that
(0)n can be obtained from |0n(β)⟩, upon taking the outer

product with its dual and tracing out the fictional degrees of
freedom as follows:

{| |} =Tr 0 ( ) 0 ( ) (0)f n n n (22)

where Trf{·} is the partial trace over states |k in the tilde space

n.
Substituting eq 22 into eq 20, we obtain the initial density

operator of the overall system (0) represented in terms of the
ket vector |ψγ(β, 0)⟩ ≡ |γ⟩ ⊗ |0n(β)⟩, as follows:

= {| |}(0) Tr ( , 0) ( , 0)f (23)

Note that, in eq 23, only the initially thermalized nuclear
density operator is represented by a ket vector in the double
space n n, whereas the initial electronic density operator
|γ⟩⟨γ| corresponds to a pure state in the electronic Hilbert
space.
We define the overall system ket vector |ψγ(β, t)⟩, such that

= {| |}t t t( ) Tr ( , ) ( , )f (24)

where t( ) evolves according to the Liouville equation (eq
19). This can be fulfilled by evolving |ψγ(β, t)⟩ according to the
so-called TFD Schrödinger equation (as shown in the SI),

| = |
t

t
i
H t

d
d

( , ) ( , )
(25)

where =H H 1n, with = | |k k1n k being the identity
operator of the tilde space. Moreover, we note that the same
physical system dynamics can be obtained by defining H in eq
25, as follows:

=H H H1 1n n (26)

where =1 1 1n e. Remarkably, Hn can be any operator in the
nuclear tilde space since Hn does not impact kets in the
physical space and its effect on the dynamics vanishes upon
taking the partial trace over states in the tilde space.57

The preparation of the initial thermal wavepacket |ψγ(β,0)⟩,
according to eqs 21 and 22, requires the explicit evaluation of
the quantum Boltzmann operator, which can be computation-
ally challenging for systems with high dimensionality.
However, when the initial nuclear Hamiltonian is harmonic,
the initial thermal wavepacket can be obtained by taking
advantage of the thermal Bogoliubov transformation. Therefore,
we can generate the nuclear thermal vacuum state from the
double space ground state |0 , 0n n using the following unitary
transformation:

| = | |( , 0) e 0 , 0iG
n n (27)

where G is given by53,54,66

= † †G i a a a a( )
j

j j j j j
(28)
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with = arctanh(e )j
/2j , where { }†a a,j j and { }†a a,j j are the

creation and annihilation operators associated with the jth
nuclear DOF in the physical and tilde Hilbert spaces,
respectively.
Substituting eqs 27 and 28 into eq 25, we obtain

| = |
t

t
i
H t

d
d

( , ) ( , ), , (29)

with | = | |( , 0) 0, 0, , | = |t t( , ) e ( , )iG
, ,

and H is defined as

=H He eiG iG (30)

The time-dependent thermal state |ψθ,γ(β,t)⟩ is represented
as

| = | |t X t j j j j( , ) ( , ; , ..., ) ...
j j

n n

d d,
, ...,

, ...,

1 1
d

d

1

1

(31)

where d is the overall number of DOF (d = 1 + 2Nn) and {|jk⟩}
is the basis set with k = 1, ..., d. We determined the size of the
basis according to the convergence test, including two
electronic state eigenvectors and the 10 nuclear harmonic
eigenvectors for the nuclear DOF.
The time- and temperature-dependent expansion coeffi-

cients {X(β, t; j1, ..., jd)} correspond to an n1 × ··· × nd complex
array which requires storage space and computational effort
that grows exponentially with d. Thus, we avoid the curse of
dimensionality by implementing the TFD wavepacket in the
tensor-train (TT) format.26,59−65

4.3. TT Format. The TT format of ×···×X n nd1 involves
a trainlike product of d tensor cores, which are three-mode
tensors, × ×Xi

r n ri i i1 , with r0 = rd = 1. Any particular element
X(j1, ..., jd) can be evaluated by multiplication of the cores, as
follows:

= ···

···

= = =
X j j X a j a X a j a

X a j a

( , ..., ) ( , , ) ( , , )

( , , )

d
a

r

a

r

a

r

d d d d

1
1 1 1

1 0 1 1 2 1 2 2

1

d

d

0

0

1

1

(32)

This can also be written in compact matrix product notation,
as follows:

= ···X j j j j jX X X( , ..., ) ( ) ( ) ( )d d d1 1 1 2 2 (33)

with matrix ×jX ( )i i
r ri i1 defining the j thi slice of Xi.

The central idea of the TT format is to generalize the
concept of factorization. Each physical dimension i is factorized
as an individual core (i.e., Xi). Entanglement with other
physical dimensions is established through the auxiliary indices
ai−1 and ai. The TT-ranks r0, ..., rd introduced by eq 32 remain
small for a low level of entanglement and when they are r0 = ···
= rd = 1, the TT format of X is a factorizable product.
Equation 32 shows that the TT format allows for

compressed representations of X, since it requires storage of
X1, ..., Xd, with dnr

2 elements when r1 = ··· = rd−1 =r and n1 = ···
= nd = n. For small r , such a representation bypasses the need
to explicitly store all nd elements of X, thus offering an
exponential advantage in storage and computational effort.
In TT-TFD, the initial state | = | |( , 0) 0, 0,

takes an initial single-product form and is prepared as a rank-1

tensor train. The transformed TFD Schrödinger equation is
then solved with the TT-KSL method.67,68 The TT-KSL
propagator evolves the wavepacket according to the time-
dependent variational principle (TDVP) by evolving the time-
dependent state on a fixed-rank TT manifold. Comparisons to
other TT propagators have shown that TT-KSL is quite
accurate and efficient.63,69

4.4. Projection-Free Inputs from TT-TFD. The PFIs
required for calculating the memory kernel and inhomoge-
neous term of the GQME are computed by using the TT-TFD
methodology. According to eq 16, the matrix elements

( )jk lm, are obtained, as follows:

= { | | | | }l m k j( ) Tr e (0) e ( 1 )jk lm e n
iH

n
iH

n, ,
/ /

(34)

Since TT-TFD requires an initial electronic state that is in a
pure state |γ⟩, in the following, we write |l⟩⟨m| as |γ⟩⟨γ|;
however, we note that all ( ) elements with off-diagonal
initial electronic density matrices can be expressed as linear
combinations of pure-state populations (see the SI).
We use |k⟩⟨j|j⟩⟨j| = |k⟩⟨j| to rewrite ( )jk , as

= { | | | | }

= { | | | | | | }

k j

k j j j

( ) Tr e (0) e ( 1 )

Tr e (0) e ( 1 )( 1

jk e n
iH

n
iH

n

e n
iH

n
iH

n n

, ,
/ /

,
/ /

(35)

From this equation, noting that {| |}Tr ( , ) ( , )f =

| |e (0) eiH
n

iH/ / , we perform a cyclic permutation to
obtain

= { { | | | | | | }}j j t k j( ) Tr Tr ( 1 ) ( , ) ( , ) ( 1 )jk e n f n n, ,

(36)

From here, we use | ( )jk , = | | |k j( 1 ) ( , )n and

| ( )jk, = |e ( )iG
jk , = | | |k j( 1 ) ( , )n , to obtain

= {| |}

= |

= |

( ) Tr ( , ) ( , )

( ) ( )

( ) ( )

jk e n f jj jk

jj jk

jj jk

, , , , ,

, ,

, , (37)

which provides the elements of ( ) after obtaining
|ψγ,θ(β, τ)⟩ by integrating eq 29.

5. APPLICATIONS
In this section, we report simulations of electronic population
dynamics based on four types of GQMEs. The GQMEs
correspond to different subsets of electronic reduced density
matrix elements used to describe the underlying dynamics (see
Section 3). As described in Section 4, the memory kernels and
inhomogeneous terms are calculated from PFIs obtained via
the quantum-mechanically exact TT-TFD method as applied
to five different realizations of a benchmark spin-boson model
Hamiltonian. We also compare the quantum-mechanically
exact memory kernels and inhomogeneous terms obtained
with TT-TFD inputs to calculations based on an approximate
linearized semiclassical (LSC) method.19

The reduced electronic density matrix for the spin-boson
model, introduced in Section 5.1, consists of four matrix
elements: {σDD, σDA, σAD, σAA}, where |D⟩ and |A⟩ correspond
to the donor and acceptor electronic states, respectively. We
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consider GQMEs for the following four subsets of matrix
elements: (1) {σDD, σDA, σAD, σAA} (the full density matrix);
(2) {σDD, σAA} (the populations-only subset); (3) {σDD} (the
donor single-population subset); and (4) {σAA} (the acceptor
single-population subset). The TT-TFD-based PFIs, obtained
by taking numerical derivatives of the time evolution operator
( ) [see eq 16], are compared to PFIs obtained via an LSC-

based method denoted LSCII [also referred to as the LSC
initial value representation (LSC-IVR) method70]. Reference
44 provides a detailed discussion of the protocols used for
calculating PFIs via LSCII.

5.1. Spin-Boson Models. The spin-boson model provides
a useful framework for studying molecular systems where the
dynamics involves two coupled electronic states. In the
simplest form, the electronic coupling is independent of the
nuclear coordinates (the so-called “Condon approximation”).
The nuclear motion in each electronic state is described by
harmonic potential energy surfaces (PESs) with distinct
equilibrium energies and equilibrium positions. As such, the
spin-boson model has been widely used for describing a wide
range of chemical dynamical processes, including charge and
energy transfer (e.g., Marcus theory), nonadiabatic dynamics,
photochemistry, spin energy relaxation and dephasing, vibra-
tional energy relaxation, and, more recently, polaritonic
chemistry where the photonic DOF can be described as
harmonic oscillators and therefore grouped with the nuclear
DOF.13−16,71

The spin-boson Hamiltonian is defined according to eq 1
with { }Hj and { }V Vjk jk , which are defined as follows:

= + +

= + + +

= =

=

=

H H
P

R c R

H H
P

R c R

V V V V

2
1
2

2
1
2

k

N
k

k k k k

k

N
k

k k k k

1 D
1

2
2 2

2 A
1

2
2 2

12 DA 21 AD

n

n

(38)

Here, 2ϵ is the energy difference between the donor (D) and
acceptor (A) states with nuclear coordinates at equilibrium,
and the electronic coupling between donor and acceptor states
is defined by the positive constant Γ (the Condon
approximation).
The discrete set of Nn frequencies {ωk} and electron−

phonon coupling coefficients {ck} of the nuclear modes are
sampled from an Ohmic spectral density with an exponential
cutoff:

=
=

J
c N

( )
2

( )
2

e
k

N
k

k
k

n

1

2
/

n
c

(39)

Here, ξ is the Kondo parameter, which determines the
electron−phonon coupling strength, and ωc is the cutoff
frequency, which determines the characteristic vibrational
frequency.43

The Hamiltonian introduced by eqs 1 and 38 can be
rewritten in terms of the harmonic oscillator raising and
lowering operators, as follows:

= + + +
=

† †H a a
c

a a
2

( )z x
k

N

k k k z
k

k
k k

1

n

(40)

where x and z are the x- and z-Pauli matrices. The
corresponding rotated double space Hamiltonian H intro-
duced by eq 30 can then be obtained in closed form, as
follows:54,72

= + +

+ + +

=

† †

† †

H a a a a

c
a a a a

( )

2
(( ) cosh( ) ( ) sinh( ))

z x
k

N

k k k k k

z k

k
k k k k k k

1

n

(41)

Using eq 41 in place of the mathematically equivalent eq 30
facilitates the implementation of TT-TFD by avoiding the
need to calculate eiG and e iG numerically.
The initial state is defined according to eq 2 with the initial

electronic state (0) = |D⟩⟨D| and the initial nuclear state:

=
{ }

+

+
(0)

e

Tr e
n

H H

n
H H

( )/2

( )/2

D A

D A (42)

Five different models are analyzed, as defined by the sets of
parameters listed in Table 1, corresponding to models 1, 2, 3,
4, and 6 of refs 43, 44, and 19. Model 5 was not included
because the reference exact results are known only for short
final times, compared to the lifetime of the electronic
relaxation dynamics. Models 1−3 correspond to systems with
a finite energy bias between the donor and acceptor states (ϵ =
1.0), differing with respect to the value of ωc. Model 4
corresponds to a biased system (ϵ = 1.0) with a higher Kondo
parameter (ξ = 0.4) relative to models 1−3 (ξ = 0.1). Model 6
corresponds to an unbiased system (ϵ = 0.0). All results are
obtained using an integration time step Δt = 1.50083 × 10−3

Γ−1 except for Model 4, which required a smaller time step of
Δt = 7.50415 × 10−4 Γ−1 to fully converge. Quantum-
mechanically exact QuAPI results for models 1−4 are taken
from ref 39 and results for model 6 are taken from ref 35.

5.2. GQMEs. The following subsections outline four types
of GQMEs examined by our simulations, corresponding to the
analysis of quantum dynamics for different subsets of
electronic reduced density matrix elements.
5.2.1. Full GQME for All Electronic Density Matrix

Elements. Here, we consider the GQME where the quantity

Table 1. Spin-Boson Model and Simulation Parameters

model parameters numerical parameters

model ϵ Γ β ξ ωc ωmax Nn Δt
1 1.0 1.0 5.0 0.1 1.0 5 60 1.50083 × 10−3

2 1.0 1.0 5.0 0.1 2.0 10 60 1.50083 × 10−3

3 1.0 1.0 5.0 0.1 7.5 36 60 1.50083 × 10−3

4 1.0 1.0 5.0 0.4 2.0 10 60 7.50415 × 10−4

6 0.0 1.0 5.0 0.2 2.5 12 60 1.50083 × 10−3
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of interest includes all four reduced electronic density matrix
elements, {σab(t)} = {σDD(t), σDA(t), σAD(t), σAA(t)}:

=
=

=

=

=

t
t i t

t

d
d

( ) ( )

d ( ) ( )

jk
l m

N

jk lm n lm

l m

N t

jk lm lm

, 1

2

,
0

, 1

2

0
,

full

e

e

(43)

where jk ∈ {DD, DA, AD, AA}. The memory kernel
s u p e r o p e r a t o r ( )full i s r e p r e s e n t e d b y a n

× = ×N N 4 4e e
2 2 time-dependent matrix whose matrix

elements are obtained by solving the following Volterra
equation:

=

+

=

=

=

=
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i

( ) ( )
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,
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,
, 1

2
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, 1

2

0
, ,

full

e

e

(44)

where the PFIs { }( )jk lm, and { }( )jk lm, are introduced by
eq 12.
5.2.2. Populations-Only GQME for Diagonal Elements of

the Reduced Electronic Density Matrix. Here, we consider the
GQME for the quantity of interest that includes only the
diagonal matrix elements of the reduced electronic density
matrix (i.e., the populations-only GQME), such that {σab(t)} =
{σDD(t), σAA(t)}:

=
=

=

t
t td

d
( ) d ( ) ( )jj

k

N t

jj kk kk
1

2

0
,

pop
e

(45)

where j ∈ {D,A}. The memory kernel superoperator ( )pop

is represented by an Ne × Ne = 2 × 2 time-dependent matrix,
with individual matrix elements obtained by solving the
following Volterra equation:

= +
=

i i( ) ( ) d ( ) ( )jj kk jj kk

N

jj kk,
pop

,
1 0

, ,
pop

e

(46)

where the PFIs { }( )jj kk, and { }( )jj kk, are introduced by eq
12.
5.2.3. Single-Population Scalar GQMEs for One Diagonal

Element of the Reduced Electronic Density Matrix. Finally,
we consider the two single-population scalar GQMEs for the
case where the subset includes either only the population of
the donor state (σDD) or only the population of the acceptor
state (σAA), such that {σab(t)} = {σDD(t)} or {σab(t)} =
{σAA(t)}, respectively:

=
t

t td
d

( ) d ( ) ( )
t

DD
0

DD,DD
donor

DD (47)

= +
t

t t I td
d

( ) d ( ) ( ) ( )
t

AA
0

AA,AA
acceptor

AA AA
acceptor

(48)

Note that the inhomogeneous term does not vanish in the case
where {σab(t)} = {σAA(t)}. Also note that the memory kernels

( )DD,DD
donor and ( )AA,AA

acceptor , as well the inhomogeneous term

I t( )AA
acceptor , are scalar in this case and can be obtained by
solving the following Volterra equations:

= +i i( ) ( ) d ( ) ( )DD,DD
donor

DD,DD
0

DD,DD DD,DD
donor

(49)

= +i i( ) ( ) d ( ) ( )AA ,AA
acceptor

AA,AA
0

AA,AA AA,AA
acceptor

(50)

= +I t i t i t I( ) ( ) d ( ) ( )
t

AA
acceptor

AA,DD
0

AA,AA AA
acceptor

(51)

where the PFIs DD,DD, AA,AA , DD,DD, DD,DD, and
( )AA,DD are defined by eq 12.

5.3. Input Methods. It is important to note that the four
types of GQMEs, outlined in the previous subsections, call for
the same input of PFIs defined by eq 12. The different types of
GQMEs differ only with respect to the specific matrix elements
of ( ) and ( ) that are required to calculate the memory
kernel and inhomogeneous term. For example, calculating the
memory kernel for evolving the full set of reduced density
matrix elements according to eq 43 requires calculation of all
16 matrix elements of ( ) and ( ). In contrast, calculating
the memory kernel of the donor single-population GQME (eq
47) requires only a single matrix element of each of the
matrices representing ( ) and ( ).
The matrix elements of ( ) and ( ) can be determined

using a wide range of numerically exact or approximate
propagation methods. Since the matrix elements of ( ) and
( ) are given in terms of two-time correlation functions of

the overall system,19 the only requirement for a propagation
method is that it should be able to calculate such quantities,
either exactly or approximately.
In this paper, we compare and contrast two input methods:

the quantum-mechanically exact TT-TFD method described in
Section 4 and the approximate semiclassical LSCII method,
previously described in ref 19. The inclusion of the LSCII
input method is done for the sake of comparison between the
memory kernels and inhomogeneous terms as obtained from
an approximate input method with those obtained via an exact
input method, with the intent of exploring the main sources of
inaccuracy when approximate input methods are used.
For the LSCII method, we calculate ( )jk lm, and ( )jk lm,

directly as described in ref 19. For the TT-TFD method, we
calculate the ×N Ne e

2 2 elements of the time evolution operator
of the electronic reduced density matrix ( ) introduced by
eq 16. Then, ( )jk lm, and ( )jk lm, are obtained from
numerical derivatives according to eq 17. For the results
given in this paper, the numerical derivatives were calculated
using the second-order finite central difference method
available in the NumPy Python library. The same time step
is used for both LSCII and TT-TFD (see Table 1) and 106
trajectories were used for LSCII.
Once the PFIs have been obtained with either TT-TFD or

LSCII propagation, the memory kernels and inhomogeneous
terms of the GQMEs are calculated via an iterative algorithm
that solves the corresponding Volterra equation (see eqs 44,
46, 49, 50, and 51).19,43 The different types of GQMEs (see
eqs 43, 45, 47, and 48) are then solved numerically for the
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electronic density matrix elements via a Runge−Kutta fourth-
order (RK4) algorithm.

5.4. Results. Figure 1 compares the time-dependent σz(t) =
σDD(t) − σAA(t), showing the differences of electronic
populations for the five realizations of the spin-boson model
outlined in Section 5.1 (see Table 1). These results are
obtained by using the four different types of GQMEs outlined
in Section 5.2, with PFIs computed with the TT-TFD method
as described in Section 4. These results provide a clear
demonstration of the rather remarkable fact that all four
GQMEs correspond to exact equations of motion for the electronic
populations and thereby reproduce the same exact population
dynamics when a quantum-mechanically exact input method
like TT-TFD is used, even though they are quite different in
form and dimensionality.
Next, we focus on model 4 for a more-detailed analysis, with

the analogous analysis for the other models provided in the SI.
Figure 2 compares the population relaxation dynamics for
model 4 (see Table 1), obtained with different types of
GQMEs and memory kernels calculated by TT-TFD and
LSCII input methods. The population relaxation dynamics
generated via the LSCII-based populations-only GQME is in
excellent agreement with the exact results. At the same time,
the population relaxation dynamics generated via the LSCII-
based single-population GQMEs is inaccurate. The origin of
this discrepancy can be traced back to the fact that the LSCII-
based single-population GQMEs do not conserve population
(i.e., σDD(t) + σAA(t) ≠ 1).
Figures 3 and 4 show the real and imaginary parts of the TT-

TFD full memory kernels for model 4, as compared to the real
and imaginary parts of the LSCII memory kernels for the same
model.19 Each figure includes 16 graphs, corresponding to the
elements of the 4 × 4 memory kernel matrix. Since the
memory kernel for the full electronic density matrix GQME is
represented by a 4 × 4 matrix, it has elements in all 16 graphs

in Figures 3 and 4. In contrast, the memory kernel of the
populations-only GQME is represented by a 2 × 2 matrix (see
eqs 45 and 46). The real and imaginary parts of the four
elements of the populations-only memory kernel are shown in
Figures 5 and 6. The memory kernels of the two single-
population GQMEs are scalar (see eqs 47−50) and their real
and imaginary parts are each therefore shown in one graph
(the top left corner for the donor single-population GQME
and the bottom right corner for the acceptor single-population
GQME in Figures 5 and 6, respectively).
We start the analysis with the memory kernel in the case of

the GQME for the full electronic density matrix, ( )full . In
this case, it can be shown analytically that the quantum-
mechanically exact memory kernel matrix elements, whose real
and imaginary values are given in the top and bottom rows of
Figures 3 and 4, respectively, should vanish [i.e., DDDD

full =
( )DDDA

full = ( )DDAD
full = ( )DDAA

full = ( )AADD
full =

( )AADA
full = ( )AAAD

full = ( )AAAA
full = 0]. This can be seen

by casting the memory kernel in the following alternative form
that was derived in ref 43:

= {| | | |}b a c d( )
1
Tr e (0)ab cd

i
n,

full
2 zero

/
zero

(52)

where · = | | · = [ ·]= H j j H( ) , ,j
N

jzero 1 zero
e

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ . For any sys-

tem satisfying the Condon approximation, V Vjk jk (such as
the spin-boson model under consideration in this paper), eq 52
is equivalent to eq 44, with the proof given in Appendix A of
ref 43. The fact that

| | = | | | | = | | | | =
=

a a a a H j j a a H H a a, 0
j

N

j a j a a j azero
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Figure 1. Electronic population difference σz(t) = σDD(t) − σAA(t), as a function of time for all models in Table 1. Shown are exact QuAPI results
(black circles) and results obtained based on the following: direct application of TT-TFD (solid cyan line); the full density matrix GQME of the
form of eq 43 with TT-TFD-based PFIs (dashed magenta line); a populations-only GQME of the form of eq 45 with TT-TFD-based PFIs (dashed-
dotted red line); and a combination of the two single-population scalar GQMEs of the form of eqs 47 and 48 for σDD(t) and σAA(t), respectively,
with TT-TFD-based PFIs (dotted blue line).
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then implies that =( ) 0aa cd,
full .

While the real and imaginary parts of the TT-TFD-based
memory kernel matrix elements in the first and fourth rows of
Figures 3 and 4 are nonzero, they are much smaller than the
matrix elements in the second and third rows. This behavior is
consistent with the above-mentioned analytical result, with the
small nonzero values attributable to numerical noise.
Note that n

0 can also couple density matrix elements (see
eq 43). For the spin-boson model under consideration here,

=

0 0
2 0
0 2

0 0

n
0

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz (53)

Importantly, while the DDAD, DDDA, AADA, and AAAD
elements of n

0 are nonzero, the DDAA, DDDD, AADD, and
AAAA elements of n

0 vanish. This implies that, in the case of
the full GQME for the spin-boson model, population transfer
from the donor (σDD) to the acceptor (σAA) corresponds to a

two-step process. It starts with population-to-coherence
transfer induced by coupling between σDD and σDA or σAD
via the Liouvillian term and then proceeds to coherence-to-
population transfer induced by coupling between σDA or σAD
and σAA via the Liouvillian term and the memory kernel term.
Comparison of the eight matrix elements of the memory

kernel that couple populations and coherences, namely,
{ DDDA

full , DDAD
full , DADD

full , DAAA
full , ADDD

full , ADAA
full , AADA

full ,
}AAAD

full , reveals several trends:

• The agreement between TT-TFD and LSCII is
significantly better for the matrix elements { DADD

full ,

DAAA
full , ADDD

full , }ADAA
full than for the matrix elements

{ DDDA
full , DDAD

full , AADA
full , }AAAD

full . At the same time,
the four matrix elements { DDDA

full , DDAD
full , AADA

full ,
}AAAD

full are significantly smaller than the remaining four
matrix elements { DADD

full , DAAA
full , ADDD

full , }ADAA
full .

Thus, LSCII appears to capture the larger-amplitude
matrix elements better than the smaller ones. Given the
expectation that the larger-amplitude matrix elements
would play a more significant role in the dynamics, this
observation is consistent with the relative accuracy of the
LSCII-based GQME.

• Whereas the real parts of the larger matrix elements
{ DADD

full , DAAA
full , ADDD

full , }ADAA
full are seen to be

relatively short-lived (compared to the population
relaxation time scale, see Figure 1) and exhibit a
monotonic decay, the imaginary parts are seen to be
oscillatory and do not appear to decay. Note that the
oscillatory behavior of the imaginary parts obtained via
LSCII is damped, compared to exact results obtained via
TT-TFD. The observed damping is likely a manifes-
tation of the quasiclassical nature of LSCII, which limits
its ability to accurately capture coherent quantum
dynamics. Since one expects the real parts to dominate
population relaxation rates, the relative accuracy of the
LSCII-based GQME can be attributed to the ability of
LSCII to capture the real parts rather well.

Examination of the remaining nonvanishing matrix elements,
{ DADA

full , DAAD
full , ADDA

full , }ADAD
full , reveals the following

trends:

• The real parts of DADA
full and ADAD

full are significantly
larger and less oscillatory than the real parts of DAAD

full

and ADDA
full . This implies that the dynamics of the

coherences σDA and σAD is dominated by dephasing
(with rates dictated by DADA

full and ADAD
full ) and that

coherence-to-coherence transfer (with rates dictated by

DAAD
full and ADDA

full ) is significantly slower than
dephasing. This is consistent with the secular approx-
imation (also called the rotating wave approximation),
which is often invoked to eliminate coherence transfer
terms from perturbative quantum master equations.73

• LSCII appears to capture the real parts of
{ }, , ,DADA

full
ADAD
full

DAAD
full

ADDA
full rather accurately.

LSCII also appears to be less accurate when it comes
to capturing the corresponding imaginary parts, with the
inaccuracy manifested by an overdamping of the
oscillatory behavior. This behavior is similar to that

Figure 2. Electronic population difference σz(t) = σDD(t) − σAA(t), as
a function of time for model 4 in Table 1. Shown are exact QuAPI
(black circles) and TT-TFD (cyan lines) results; LSCII result (purple
lines); and full GQME (upper plot), populations-only GQME
(middle plot) and combination of two single-population scalar
GQMEs (lower plot) results obtained with TT-TFD-based PFIs (blue
line) and LSCII-based PFIs (red line).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00892
J. Chem. Theory Comput. 2023, 19, 1111−1129

1119

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00892?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00892?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00892?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00892?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


noted above, regarding other matrix elements, and is
consistent with the quasiclassical nature of the
approximations on which LSCII is based.

Given that population transfer is mediated by the coherences
in the case of the full density matrix GQME, the accuracy
o f t h e r e a l p a r t s o f t h e L S C I I - b a s e d
{ }, , ,DADA

full
DAAD
full

ADDA
full

ADAD
full likely plays an important

Figure 3. Real parts of the matrix elements of the memory kernel of the GQME for the full electronic density matrix [ ( )full in eq 44] for model
4, as obtained from TT-TFD-based PFIs (solid blue lines) and LSCII-based PFIs (dashed red lines). Similar graphs for the other four models are
provided in the SI.

Figure 4. Imaginary parts of the matrix elements of the memory kernel of the GQME for the full electronic density matrix [ ( )full in eq 44] for
model 4, as obtained from TT-TFD-based PFIs (solid blue lines) and LSCII-based PFIs (dashed red lines). Similar graphs for the other four
models are provided in the SI.
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role in the ability of the LSCII-based GQME to accurately
predict the population relaxation dynamics (see Figure 2).
Next, we consider the memory kernel in the case of the

GQME for the electronic populations, ( )pop (see eqs 45
and 46). In this case, the memory kernel is given in terms of a
2 × 2 matrix that consists of the memory kernel elements in
Figures 5 and 6: { }, , ,DDDD

pop
DDAA
pop

AADD
pop

AAAA
pop . The

dimensionality of ( )pop should be contrasted with the
( )full , for which the same four matrix elements vanish. Since

the coherences have been projected out for this GQME, the
memory kernel gives rise to direct coupling between
populations, as opposed to population transfer being mediated
by the coherences. As a result, donor-to-acceptor population
transfer corresponds to a one-step process.
Comparison of the TT-TFD-based and LSCII-based real

and imaginary parts of { }, , ,DDDD
pop

DDAA
pop

AADD
pop

AAAA
pop

reveals the following notable trends:

• The real parts of those four memory kernel matrix
elements are comparable in size and exhibit a damped
oscillatory behavior that is longer-lived than the
nonvanishing matrix elements of ( )full . This behavior
is consistent with previous studies19,38 and can be traced
back to the fact that, in this case, the memory kernel also

must account for the impact of the projected-out
electronic coherences on the electronic populations.

• LSCII is highly accurate when it comes to reproducing
the real parts of the exact TT-TFD-based
{ }, , ,DDDD

pop
DDAA
pop

AADD
pop

AAAA
pop . Given that the real

parts of the ( )pop matrix elements dominate the
population transfer kinetics, this observation is con-
sistent with the previously made observation that the
LSCII-based populations-only GQME can reproduce
the population relaxation rather well.19

• W h e r e a s t h e i m a g i n a r y p a r t s o f
{ }, , ,DDDD

pop
DDAA
pop

AADD
pop

AAAA
pop computed with

TT-TFD vanish, the corresponding LSCII values do
not. The discrepancy is due to errors in the calculation
of ( )jj mm, elements with LSCII, which generates a

small real part for the ( )jj mm, elements, which should
be purely imaginary. However, the failure of LSCII to
accurately predict the imaginary parts does not appear to
impact the accuracy of the population transfer kinetics,
since the imaginary parts are 2 orders of magnitude
smaller than the real parts.

Finally, we consider the scalar memory kernels in the donor
and acceptor single-population GQMEs, ( )DDDD

donor and

Figure 5. Real parts of the matrix elements of the memory kernels for the populations-only and single-population GQMEs for model 4, as obtained
from TT-TFD-based PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels: (1) The memory kernel of the
populations-only GQME [ ( )pop in eq 46], which has four elements (DDDD, DDAA, AADD, and AAAA) and is depicted with solid cyan lines
for the results from TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and (3) The single-element memory
kernels of the scalar single-population GQMEs [ ( )DD,DD

donor and ( )AA,AA
acceptor , in eqs 49 and 50, respectively], which are depicted in the DDDD and

AAAA panels, respectively, with solid green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from LSCII-based
PFIs. Graphs with the results for the other four models are provided in the SI.
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( )AAAA
acceptor , respectively (see eqs 47−50). In this case,

( )DDDD
donor is given by the top-left corner element and

( )AAAA
acceptor is given by the bottom-right corner element in

Figures 5 and 6. Comparison of the real and imaginary parts of
( )DDDD

donor and ( )AAAA
acceptor computed with TT-TFD and

LSCII reveals the following notable trends:

• The real parts of ( )DDDD
donor and ( )AAAA

acceptor are
comparable in size and exhibit a damped oscillatory
behavior with a lifetime similar to that of the
populations-only memory kernel elements.

• LSCII is highly accurate for reproducing the real part of
the exact TT-TFD-based ( )DDDD

donor . The accuracy is
somewhat lower for reproducing the real part of

( )AAAA
acceptor .

• While the imaginary parts of ( )DDDD
donor and ( )AAAA

acceptor

computed with TT-TFD vanish, the corresponding
LSCII values do not. However, the failure of LSCII to
accurately predict the imaginary parts does not appear to
impact the accuracy of the population transfer kinetics,
since the imaginary parts are 2 orders of magnitude
smaller than the real parts.

In Figure 7, we show the real part of the inhomogeneous

term of the acceptor single-population GQME, I t( )AA , which is

the only GQME with an inhomogeneous term considered in

Figure 6. Imaginary parts of the matrix elements of the memory kernels for the populations-only and single-population GQMEs for model 4, as
obtained from TT-TFD-based PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels: (1) The memory
kernel of the populations-only GQME [ ( )pop in eq 46], which has four elements (DDDD, DDAA, AADD, and AAAA) and is depicted with
solid cyan lines for the results from TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2 and 3) the single-
element memory kernels of the scalar single-population GQMEs [ ( )DD,DD

donor and ( )AA,AA
acceptor , in eqs 49 and 50, respectively], which are depicted

in the DDDD and AAAA panels, respectively, with solid green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results
from LSCII-based PFIs. Graphs with the results for the other four models are provided in the SI.

Figure 7. Real part of I ( )AA (see eq 51) for model 4, as obtained
from TT-TFD-based PFIs (solid blue lines) and LSCII-based PFIs
(dashed red lines). Similar graphs for the other four models are
included in the SI.
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this paper. The imaginary component is not shown, because it
is zero for the results from both TT-TFD-based and LSCII-
based PFIs. In the figure, we see that the inhomogeneous term
from LSCII-based PFIs is slightly overdamped, compared to
the inhomogeneous term from the TT-TFD-based PFIs.
To understand the origin of the inaccuracies in the LSCII-

based single-population GQMEs relative to the populations-
only GQME, we note that any such inaccuracies must come
from inaccuracies in ( ) and ( ), as the subsequent steps of
the GQME approach are exact. To this end, in Figure 8, we
show the imaginary components of the matrix elements of
( ), in Figures 9 and 10, the real and imaginary components

of the matrix elements of ( ) that are used as PFIs to obtain
the memory kernels for the single-population and populations-
only GQMEs. The real parts of ( ) are not shown, because
they are zero for these elements from both LSCII and TT-
TFD. These figures clearly show that, although the LSCII-
based ( ) and ( ) matrix elements can be rather accurate,
there are significant deviations from the exact ones. The
deviations are the origin of any inaccuracies in the memory
kernels obtained from them.
We now show that, although the errors in ( ) affect the

memory kernels of both single-population and populations-
only GQMEs, the effect is weaker on the latter because of error
cancellation. To see this difference in effect, we note that

( )DD,DD
pop and ( )DD,DD

donor are obtained from the PFIs via eq
46 and 49:

= + [

+ ]

i i( ) ( ) d ( ) ( )

( ) ( )

DD,DD
pop

DD,DD
0

DD,DD DD,DD
pop

DD,AA AA,DD
pop (54)

=

+

i

i

( ) ( )

d ( ) ( )

DD,DD
donor

DD,DD

0
DD,DD DD,DD

donor

(55)

Importantly, the integrand on the right-hand side of eq 54
gives rise to inherent error cancellation, since ( )DD,DD

pop and
( )AA,DD

pop are of opposite sign, which causes the errors in
( ) to cancel when they are correlated. Such correlation is

observed for all of the models that we studied, e.g., in Figure 8,
most evidently at t = 1.9 Γ, the approximate method
significantly overestimated both ( )DD,DD and ( )DD,AA .
On the other hand, eq 55 does not allow for such error
cancellation, thereby making the single-population GQMEs
less accurate than the populations-only GQME.

5.5. Computational Cost. In this section, we examine the
scaling of the computational cost of the GQME approach with
TT-TFD as the input method, with respect to GQME type.
We begin by considering the time step used to calculate the

TT-TFD-based PFIs to obtain the converged memory kernel
and the inhomogeneous term. In contrast to LSCII, which
required a similar time step for all GQMEs,19 the time step
needed for convergence is found to decrease with decreasing
dimensionality. More specifically, although the results shown
above are all for a time step of Δt = 0.00150083 Γ−1 (except
for model 4, see Table 1), the time step needed for
convergence for the full density matrix GQME is in the

Figure 8. Imaginary parts of the DDDD, DDAA, AADD, and AAAA matrix elements of ( ) [see eq 12] for model 4, as obtained via TT-TFD
(solid blue lines) and LSCII (dashed red lines). Similar graphs for the other four models are included in the SI.
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range of Δt = 0.00300166−0.00450249 Γ−1, in contrast to the
time step of Δt = 0.00150083 Γ−1 that was required in the case
of the populations-only and single-population GQMEs (except
for the populations-only GQME of model 4, which required a
time step of Δt = 0.000750415 Γ−1).
In ref 19, we noted that the direct calculation of ( )jk lm,

given in eq 12 required calculation of the dynamics for more
electronic initial conditions than only |j⟩⟨k| due to terms
involving off-diagonal components of the Hamiltonian in the
initial state. However, although direct calculation of ( )jk lm, is
necessary when using approximate input methods, when using
exact input methods, we can obtain ( )jk lm, from ( )jk lm, as
described in eq 17. Therefore, we only need to calculate the
dynamics for the initial electronic state |j⟩⟨k| to obtain

( )jk lm, and, subsequently, ( )jk lm, and ( )jk lm, through
eq 17. As a result, there is a significant reduction in the number
of initial electronic states necessary to calculate the PFIs
needed for the reduced-dimensionality GQMEs compared to
the full GQME. More specifically, although the full GQME
approach requires simulating the dynamics for four initial
electronic states in the case of a two-state system, the
populations-only GQME requires only two initial electronic
states, the acceptor single-population GQME approach
requires two initial electronic states (with one of them due
to the inhomogeneous term), and the donor single-population
GQME requires only one initial electronic state. Thus,
reduced-dimensionality GQMEs significantly enhance compu-
tational efficiency with regard to the number of initial states

that must be simulated when exact input methods such as TT-
TFD are used.
Next, we consider the cost of obtaining the memory kernels

from the PFIs. The computational complexity of each iteration
in the Volterra algorithm for the memory kernel is expected to
be O N( )mat

3 , where Nmat is the number of matrix elements in a
row of the memory kernel matrix (e.g., =N Nemat

2 for the full
GQME, Nmat = Ne for the populations-only GQME, and Nmat =
1 for the single-population GQMEs). This is true regardless of
the input method used and, therefore, the cost of each iteration
of the Volterra algorithm increases dramatically with memory
kernel size. The computational complexity of each iteration in
the Volterra algorithm for the inhomogeneous term scales
more favorably atO N( )mat

2 but may still become restrictive with
increasing dimensionality. However, note that the inhomoge-
neous term often is not needed for the larger-dimensional full
and populations-only GQME approaches.
The number of iterations required for the iterative Volterra

algorithm for the memory kernel to converge is also rather
sensitive to the type of GQME and the dimensionality of the
electronic observable of interest. More specifically, whereas 2
iterations are required for calculating the single-population
memory kernels and 2−3 iterations are needed in the case of
the populations-only memory kernel for all the models, 5−7
iterations are required for the full GQME approach.
An inhomogeneous term is only required for the acceptor

single-population GQME approach and would be required for
any GQME approach where the set of electronic states that it
projects onto does not include the initial electronic state.
Because of the scaling of the Volterra algorithm for the

Figure 9. Real parts of the DDDD, DDAA, AADD, and AAAA matrix elements of ( ) (see eq 12) for model 4, as obtained via TT-TFD (solid
blue lines) and LSCII (dashed red lines). Similar graphs for the other four models are included in the SI.
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inhomogeneous term, it is generally only favorable to use a
GQME approach that requires an inhomogeneous term when
the dimensionality of the set of electronic states projected onto
is small.
The converged memory time for each of the models and

GQME types is found using the algorithm outlined in the SI of
ref 19. The basic premise of the algorithm is to first calculate
the dynamics at the highest possible memory time, tmem,max,
based on the maximum time of the PFI dynamics and then
proceed backward in memory time to find the shortest
memory time that keeps each element and time step of the
electronic density matrix within a convergence parameter when
compared to the same element and time step of the dynamics

with the highest possible memory time. For the models studied
in this paper, the highest possible memory time was tmem,max =
15 Γ−1. The converged memory time for each model and
GQME approach is given in Table 2. In agreement with the
results for LSCII in ref 19, the full GQME typically
corresponds to the shortest memory time and the reduced-
dimensionality GQMEs require significantly longer memory
times, particularly the single-population GQMEs. Whereas the
RK4 algorithm is expected to have computational complexity
O(tmem), the cost of a single iteration of the Volterra algorithm
for the memory kernel has quadratic computational complexity
O t( )mem

2 . Thus, situations where the reduced dimensionality of

Figure 10. Imaginary parts of the DDDD, DDAA, AADD, and AAAA matrix elements of ( ) (see eq 12) for model 4, as obtained via TT-TFD
(solid blue lines) and LSCII (dashed red lines). Similar graphs for the other four models are included in the SI.

Table 2. Memory Time of Each GQME Approach for Each Modela

aIn this table, the colors are to provide a visual aid, with red indicating a memory time above 12 Γ−1, yellow indicating a memory time from 9−12
Γ−1, and green indicating a memory time below 9Γ−1.
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the electronic observable of interest leads to longer memory
time increase the computational cost.
The computational cost of the GQME approaches, with

respect to dimensionality, is therefore dependent on several
factors with different and, at times, opposing scaling trends.
Thus, the computational cost benefits of reduced-dimension-
ality GQMEs are dependent on the balance between these
trends, and further work is needed to determine whether using
a reduced-dimensionality GQME provides a way to signifi-
cantly reduce computational cost.

6. CONCLUDING REMARKS
We have implemented the TT-TFD method to obtain
quantum-mechanically exact memory kernels and inhomoge-
neous terms for different types of GQMEs that describe the
dynamics of electronic DOF for the spin-boson model. We
have analyzed a GQME for the four-element full electronic
reduced density matrix, a populations-only GQME for the two
diagonal elements, and single-population scalar GQMEs for
single diagonal elements. We have also demonstrated that all
four GQMEs are exact equations of motion and thus
reproduce the same exact population dynamics when para-
metrized by a quantum-mechanically exact input method such
as TT-TFD, although the four GQMEs are different in form
and dimensionality.
Advancing the capability to calculate quantum-mechanically

exact memory kernels and inhomogeneous terms for different
types of GQMEs is highly desirable for multiple reasons:

• First, note that the memory kernels and inhomogeneous
terms in the case of quantum open systems serve a
similar role to that of the Hamiltonian in the case of
closed quantum systems. More specifically, similar to
how analyzing the properties of the Hamiltonian is often
used to shed light on the closed quantum system
dynamics it gives rise to, one expects that knowing what
the quantum-mechanically exact memory kernel and
inhomogeneous term look like and how they depend on
various parameters and different choices of projections
could shed light on the open quantum system dynamics
they give rise to.

• Second, quantum-mechanically exact memory kernels
and inhomogeneous terms are particularly valuable to
evaluate the capabilities of PFIs obtained with
approximate input methods, as shown in our compar-
isons of memory kernels and inhomogeneous terms
obtained with exact TT-TFD and approximate LSCII
simulation methods.

• Third, quantum-mechanically exact memory kernels can
be used as benchmarks to assess the accuracy of various
types of perturbative quantum master equations
(QMEs).73−84 More specifically, while the GQMEs
correspond to the exact equations of motion of the
subset of dynamical quantities of interest, the derivation
of perturbative QMEs relies on approximate expressions
for the memory kernels that are based on treating
various terms in the Hamiltonian, such as the system-
bath coupling or electronic coupling, as small
perturbations. Thus, comparisons of the perturbative
memory kernels to the exact kernels can provide a better
understanding of the accuracy of perturbative methods
and their range of validity.

• Fourth, in certain situations, simulating the quantum
dynamics via a GQME may be more cost-effective than
the direct use of the numerically exact quantum
dynamics method. More specifically, restricting the use
of a quantum-mechanically exact method with regard to
calculating the PFIs can provide a more efficient route to
obtain the dynamics of the quantity of interest,
compared to extracting it from the overall system
dynamics. The computational cost analysis of the TT-
TFD-based GQME approach provided in this paper
constitutes an important step toward understanding
when and how simulating the quantum dynamics via a
GQME approach is advantageous, compared to the
direct use of the numerically exact quantum dynamics
method.

Various extensions of this study would be highly desirable,
including combining the GQME approach with other
quantum-mechanically exact and approximate input methods,
calculating memory kernels and inhomogeneous terms for
other types of dynamical quantities of interest, and exploring
the capabilities of the GQMEs on other benchmark models.
Work on such extensions is currently underway and will be
reported in future publications.

■ ASSOCIATED CONTENT
Data Availability Statement
The code for the TT-TFD + GQME simulation of Model 1 is
available at https://github.com/NingyiLyu/TT-TFD-GQME.
The data that supports the findings of this study are available
within the article and SI.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00892.

Thorough derivation of the GQME reduced-dimension-
ality approach and a description of the linear
combinations used within the TT-TFD approach to
obtain elements of the time evolution operator of the
reduced electronic density operator, t( ), for off-
diagonal initial states, along with graphs of the PFIs,
memory kernels, and inhomogeneous terms (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Eitan Geva − Department of Chemistry, University of
Michigan, Ann Arbor, Michigan 48109, United States;
orcid.org/0000-0002-7935-4586; Email: eitan@

umich.edu
Victor S. Batista − Department of Chemistry, Yale University,
New Haven, Connecticut 06520, United States; Yale
Quantum Institute, Yale University, New Haven, Connecticut
06511, United States; orcid.org/0000-0002-3262-1237;
Email: victor.batista@yale.edu

Authors
Ningyi Lyu − Department of Chemistry, Yale University, New
Haven, Connecticut 06520, United States; orcid.org/
0000-0001-9239-9925

Ellen Mulvihill − Department of Chemistry, Yale University,
New Haven, Connecticut 06520, United States; orcid.org/
0000-0002-4233-2869

Micheline B. Soley − Department of Chemistry, Yale
University, New Haven, Connecticut 06520, United States;

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00892
J. Chem. Theory Comput. 2023, 19, 1111−1129

1126

https://github.com/NingyiLyu/TT-TFD-GQME
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00892/suppl_file/ct2c00892_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00892?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00892/suppl_file/ct2c00892_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eitan+Geva"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7935-4586
https://orcid.org/0000-0002-7935-4586
mailto:eitan@umich.edu
mailto:eitan@umich.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Victor+S.+Batista"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3262-1237
mailto:victor.batista@yale.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ningyi+Lyu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9239-9925
https://orcid.org/0000-0001-9239-9925
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ellen+Mulvihill"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4233-2869
https://orcid.org/0000-0002-4233-2869
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Micheline+B.+Soley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Yale Quantum Institute, Yale University, New Haven,
Connecticut 06511, United States; Department of Chemistry,
University of Wisconsin−Madison, Madison, Wisconsin
53706, United States; orcid.org/0000-0001-7973-2842

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.2c00892

Author Contributions
∇These authors contributed equally.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
E.G. and V.S.B. acknowledge support from the NSF Grant No.
2124511 [CCI Phase I: NSF Center for Quantum Dynamics
on Modular Quantum Devices (CQD-MQD)]. M.B.S.
acknowledges support from the Yale Quantum Institute
Postdoctoral Fellowship. Also acknowledged are computa-
tional resources and services provided by the Advanced
Research Computing at the University of Michigan (Ann
Arbor, MI). We thank Paul Bergold for stimulating discussions.

■ REFERENCES
(1) Xu, D.; Schulten, K. Coupling of protein motion to electron
transfer in a photosynthetic reaction center: investigating the low
temperature behavior in the framework of the spin−boson model.
Chem. Phys. 1994, 182, 91−117.
(2) Ishizaki, A.; Fleming, G. R. Quantum Coherence in Photo-
synthetic Light Harvesting. Annu. Rev. Condens. Matter Phys. 2012, 3,
333−361.
(3) Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen,
D.; Moore, A. L.; Moore, T. A.; Gust, D. Photoinduced charge
separation and charge recombination to a triplet state in a carotene-
porphyrin-fullerene triad. J. Am. Chem. Soc. 1997, 119, 1400−1405.
(4) Liddell, P. A.; Kodis, G.; Moore, A. L.; Moore, T. A.; Gust, D.
Photo switching of photoinduced electron transfer in a dithienyle-
thene-porphyrin-fullerene triad molecule. J. Am. Chem. Soc. 2002, 124,
7668−7669.
(5) Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-
Transfer and Energy-Transfer Processes in π-Conjugated Oligomers
and Polymers: A Molecular Picture. Chem. Rev. 2004, 104, 4971−
5004.
(6) Rizzi, A. C.; van Gastel, M.; Liddell, P. A.; Palacios, R. E.; Moore,
G. F.; Kodis, G.; Moore, A. L.; Moore, T. A.; Gust, D.; Braslavsky, S.
E. Entropic changes control the charge separation process in triads
mimicking photosynthetic charge separation. J. Phys. Chem. A 2008,
112, 4215−4223.
(7) Tian, H.; Yu, Z.; Hagfeldt, A.; Kloo, L.; Sun, L. Organic Redox
Couples and Organic Counter Electrode for Efficient Organic Dye-
Sensitized Solar Cells. J. Am. Chem. Soc. 2011, 133, 9413−9422.
(8) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Metal-Free Organic
Dyes for Dye-Sensitized Solar Cells: From Structure: Property
Relationships to Design Rules. Angew. Chem., Int. Ed. 2009, 48,
2474−2499.
(9) Feldt, S. M.; Gibson, E. A.; Gabrielsson, E.; Sun, L.; Boschloo,
G.; Hagfeldt, A. Design of Organic Dyes and Cobalt Polypyridine
Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. J.
Am. Chem. Soc. 2010, 132, 16714−16724.
(10) Zhao, Y.; Liang, W. Charge transfer in organic molecules for
solar cells: Theoretical perspective. Chem. Soc. Rev. 2012, 41, 1075−
1087.
(11) Lee, M. H.; Dunietz, B. D.; Geva, E. Calculation From First
Principles of Intramolecular Golden-Rule Rate Constants for Photo-
Induced Electron Transfer in Molecular Donor-Acceptor Systems. J.
Phys. Chem. C 2013, 117, 23391−23401.

(12) Lee, M. H.; Dunietz, B. D.; Geva, E. Donor-to-Donor vs.
Donor-to-Acceptor Interfacial Charge Transfer States in the
Phthalocyanine-Fullerene Organic Photovoltaic System. J. Phys.
Chem. Lett. 2014, 5, 3810−3816.
(13) Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.;
Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system.
Rev. Mod. Phys. 1987, 59, 1−85.
(14) Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum
Systems; Oxford Press: Oxford, U.K., 2002.
(15) Nitzan, A. Chemical Dynamics in Condensed Phases; Oxford
University Press: New York, 2006.
(16) Weiss, U. Quantum Dissipative Systems, 4th Edition; World
Scientific, 2012.
(17) Nakajima, S. On the quantum theory of transport phenomena.
Prog. Theor. Phys. 1958, 20, 948−959.
(18) Zwanzig, R. Ensemble method in the theory of irreversibility. J.
Chem. Phys. 1960, 33, 1338−1341.
(19) Mulvihill, E.; Geva, E. Simulating the dynamics of electronic
observables via reduced-dimensionality generalized quantum master
equations. J. Chem. Phys. 2022, 156, 044119.
(20) Meyer, H.-D.; Gatti, F.; Worth, G. A. Multidimensional
Quantum Dynamics; MCTDH Theory and Applications; John Wiley
& Sons, 2009.
(21) Makri, N. Time-dependent quantum methods for large systems.
Annu. Rev. Phys. Chem. 1999, 50, 167.
(22) Jin, J.; Zheng, X.; Yan, Y. Exact dynamics of dissipative
electronic systems and quantum transport: Hierarchical equations of
motion approach. J. Chem. Phys. 2008, 128, 234703−16.
(23) Tanimura, Y.; Kubo, R. Time evolution of a quantum system in
contact with a nearly Gaussian-Markoffian noise bath. J. Phys. Soc. Jpn.
1989, 58, 101.
(24) Tanimura, Y. Nonperturbative expansion method for a
quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A
1990, 41, 6676−6687.
(25) Tanimura, Y. Stochastic Liouville, Langevin, Fokker−Planck,
and Master Equation Approaches to Quantum Dissipative Systems. J.
Phys. Soc. Jpn. 2006, 75, 082001.
(26) Greene, S. M.; Batista, V. S. Tensor-Train Split-Operator
Fourier Transform (TT-SOFT) Method: Multidimensional Non-
adiabatic Quantum Dynamics. J. Chem. Theory Comput. 2017, 13,
4034−4042.
(27) Shi, Q.; Geva, E. A new approach to calculating the memory
kernel of the generalized quantum master equation for an arbitrary
system-bath coupling. J. Chem. Phys. 2003, 119, 12063−12076.
(28) Shi, Q.; Geva, E. A semiclassical generalized quantum master
equation for an arbitrary system-bath coupling. J. Chem. Phys. 2004,
120, 10647−10658.
(29) Zhang, M.-L.; Ka, B. J.; Geva, E. Nonequilibrium quantum
dynamics in the condensed phase via the generalized quantum master
equation. J. Chem. Phys. 2006, 125, 044106−12.
(30) Ka, B. J.; Zhang, M.-L.; Geva, E. Homogeneity and Markovity
of electronic dephasing in liquid solutions. J. Chem. Phys. 2006, 125,
124509.
(31) Cohen, G.; Rabani, E. Memory effects in nonequilibrium
quantum impurity models. Phys. Rev. B 2011, 84, 075150.
(32) Wilner, E. Y.; Wang, H.; Cohen, G.; Thoss, M.; Rabani, E.
Bistability in a nonequilibrium quantum system with electron-phonon
interactions. Phys. Rev. B 2013, 88, 045137.
(33) Cohen, G.; Wilner, E. Y.; Rabani, E. Generalized projected
dynamics for non-system observables of non-equilibrium quantum
impurity models. New J. Phys. 2013, 15, 073018.
(34) Cohen, G.; Gull, E.; Reichman, D. R.; Millis, A. J.; Rabani, E.
Numerically exact long-time magnetization dynamics at the non-
equilibrium Kondo crossover of the Anderson impurity model. Phys.
Rev. B 2013, 87, 195108.
(35) Kelly, A.; Markland, T. E. Efficient and accurate surface
hopping for long time nonadiabatic quantum dynamics. J. Chem. Phys.
2013, 139, 014104−10.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00892
J. Chem. Theory Comput. 2023, 19, 1111−1129

1127

https://orcid.org/0000-0001-7973-2842
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00892?ref=pdf
https://doi.org/10.1016/0301-0104(94)00016-6
https://doi.org/10.1016/0301-0104(94)00016-6
https://doi.org/10.1016/0301-0104(94)00016-6
https://doi.org/10.1146/annurev-conmatphys-020911-125126
https://doi.org/10.1146/annurev-conmatphys-020911-125126
https://doi.org/10.1021/ja9631054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9631054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9631054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja026327c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja026327c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040084k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040084k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040084k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp712008b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp712008b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja2030933?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja2030933?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja2030933?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.200804709
https://doi.org/10.1002/anie.200804709
https://doi.org/10.1002/anie.200804709
https://doi.org/10.1021/ja1088869?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja1088869?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C1CS15207F
https://doi.org/10.1039/C1CS15207F
https://doi.org/10.1021/jp4081417?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp4081417?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp4081417?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz5017203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz5017203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz5017203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1143/PTP.20.948
https://doi.org/10.1063/1.1731409
https://doi.org/10.1063/5.0078040
https://doi.org/10.1063/5.0078040
https://doi.org/10.1063/5.0078040
https://doi.org/10.1146/annurev.physchem.50.1.167
https://doi.org/10.1063/1.2938087
https://doi.org/10.1063/1.2938087
https://doi.org/10.1063/1.2938087
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1103/PhysRevA.41.6676
https://doi.org/10.1103/PhysRevA.41.6676
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1143/JPSJ.75.082001
https://doi.org/10.1021/acs.jctc.7b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1624830
https://doi.org/10.1063/1.1624830
https://doi.org/10.1063/1.1624830
https://doi.org/10.1063/1.1738109
https://doi.org/10.1063/1.1738109
https://doi.org/10.1063/1.2218342
https://doi.org/10.1063/1.2218342
https://doi.org/10.1063/1.2218342
https://doi.org/10.1063/1.2354155
https://doi.org/10.1063/1.2354155
https://doi.org/10.1103/PhysRevB.84.075150
https://doi.org/10.1103/PhysRevB.84.075150
https://doi.org/10.1103/PhysRevB.88.045137
https://doi.org/10.1103/PhysRevB.88.045137
https://doi.org/10.1088/1367-2630/15/7/073018
https://doi.org/10.1088/1367-2630/15/7/073018
https://doi.org/10.1088/1367-2630/15/7/073018
https://doi.org/10.1103/PhysRevB.87.195108
https://doi.org/10.1103/PhysRevB.87.195108
https://doi.org/10.1063/1.4812355
https://doi.org/10.1063/1.4812355
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00892?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(36) Kidon, L.; Wilner, E. Y.; Rabani, E. Exact calculation of the time
convolutionless master equation generator: Application to the
nonequilibrium resonant level model. J. Chem. Phys. 2015, 143,
234110−9.
(37) Pfalzgraff, W. C.; Kelly, A.; Markland, T. E. Nonadiabatic
Dynamics in Atomistic Environments: Harnessing Quantum-Classical
Theory with Generalized Quantum Master Equations. J. Phys. Chem.
Lett. 2015, 6, 4743−4748.
(38) Montoya-Castillo, A.; Reichman, D. R. Approximate but
accurate quantum dynamics from the Mori formalism: I. Non-
equilibrium dynamics. J. Chem. Phys. 2016, 144, 184104−16.
(39) Kelly, A.; Brackbill, N.; Markland, T. E. Accurate nonadiabatic
quantum dynamics on the cheap: Making the most of mean field
theory with master equations. J. Chem. Phys. 2015, 142, 094110−9.
(40) Kelly, A.; Montoya-Castillo, A.; Wang, L.; Markland, T. E.
Generalized quantum master equations in and out of equilibrium:
When can one win? J. Chem. Phys. 2016, 144, 184105.
(41) Kidon, L.; Wang, H.; Thoss, M.; Rabani, E. On the memory
kernel and the reduced system propagator. J. Chem. Phys. 2018, 149,
104105.
(42) Pfalzgraff, W.; Montoya-Castillo, A.; Kelly, A.; Markland, T.
Efficient construction of generalized master equation memory kernels
for multi-state systems from nonadiabatic quantum-classical dynamics.
J. Chem. Phys. 2019, 150, 244109.
(43) Mulvihill, E.; Schubert, A.; Sun, X.; Dunietz, B. D.; Geva, E. A
modified approach for simulating electronically nonadiabatic dynam-
ics via the generalized quantum master equation. J. Chem. Phys. 2019,
150, 034101.
(44) Mulvihill, E.; Gao, X.; Liu, Y.; Schubert, A.; Dunietz, B. D.;
Geva, E. Combining the mapping Hamiltonian linearized semiclassical
approach with the generalized quantum master equation to simulate
electronically nonadiabatic molecular dynamics. J. Chem. Phys. 2019,
151, 074103.
(45) Mulvihill, E.; Lenn, K. M.; Gao, X.; Schubert, A.; Dunietz, B.
D.; Geva, E. Simulating energy transfer dynamics in the Fenna-
Matthews-Olson complex via the modified generalized quantum
master equation. J. Chem. Phys. 2021, 154, 204109.
(46) Mulvihill, E.; Geva, E. A Road Map to Various Pathways for
Calculating the Memory Kernel of the Generalized Quantum Master
Equation. J. Phys. Chem. B 2021, 125, 9834−9852.
(47) Xu, M.; Yan, Y.; Liu, Y.; Shi, Q. Convergence of high order
memory kernels in the Nakajima−Zwanzig generalized master
equation and rate constants: Case study of the spin-boson model. J.
Chem. Phys. 2018, 148, 164101.
(48) Liu, Y.-y.; Yan, Y.-m.; Xu, M.; Song, K.; Shi, Q. Exact generator
and its high order expansions in time-convolutionless generalized
master equation: Applications to spin-boson model and excitation
energy transfer. Chin. J. Chem. Phys. 2018, 31, 575−583.
(49) Yan, Y.; Xu, M.; Liu, Y.; Shi, Q. Theoretical study of charge
carrier transport in organic molecular crystals using the Nakajima-
Zwanzig-Mori generalized master equation. J. Chem. Phys. 2019, 150,
234101.
(50) Dan, X.; Xu, M.; Yan, Y.; Shi, Q. Generalized master equation
for charge transport in a molecular junction: Exact memory kernels
and their high order expansion. J. Chem. Phys. 2022, 156, 134114.
(51) Chatterjee, S.; Makri, N. Real-Time Path Integral Methods,
Quantum Master Equations, and Classical vs Quantum Memory. J.
Phys. Chem. B 2019, 123, 10470−10482.
(52) Brian, D.; Sun, X. Generalized quantum master equation: A
tutorial review and recent advances. Chin. J. Chem. Phys. 2021, 34,
497−524.
(53) Gelin, M. F.; Borrelli, R. Thermal Schrödinger Equation:
Efficient Tool for Simulation of Many-Body Quantum Dynamics at
Finite Temperature. Ann. Phys. 2017, 529, 1700200.
(54) Borrelli, R.; Gelin, M. F. Finite temperature quantum dynamics
of complex systems: Integrating thermo-field theories and tensor-train
methods. WIREs Comput. Mol. Sci. 2021, 11, No. e1539.

(55) Ng, N.; Limmer, D. T.; Rabani, E. Nonuniqueness of
generalized quantum master equations for a single observable. J.
Chem. Phys. 2021, 155, 156101.
(56) Wang, Y.; Mulvihill, E.; Hu, Z.; Lyu, N.; Shivpuje, S.; Liu, Y.;
Soley, M. B.; Geva, E.; Batista, V. S.; Kais, S. Submitted. https://arxiv.
org/abs/2209.04956
(57) Borrelli, R.; Gelin, M. F. Quantum electron-vibrational
dynamics at finite temperature: Thermo field dynamics approach. J.
Chem. Phys. 2016, 145, 224101.
(58) Borrelli, R.; Gelin, M. F. Simulation of Quantum Dynamics of
Excitonic Systems at Finite Temperature: An efficient method based
on Thermo Field Dynamics. Sci. Rep. 2017, 7, DOI: 10.1038/s41598-
017-08901-2.
(59) Oseledets, I. V. Tensor-train decomposition. SIAM J. Sci.
Comput. 2011, 33, 2295−2317.
(60) Oseledets, I.; Tyrtyshnikov, E. TT-cross approximation for
multidimensional arrays. Linear Algebra Appl. 2010, 432, 70−88.
(61) Grasedyck, L. Hierarchical singular value decomposition of
tensors. SIAM J. Matrix Anal. Appl. 2010, 31, 2029−2054.
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