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Abstract—Origami is known as a traditional art of paper
folding. It has attracted extensive attention due to its self-
folding mechanism, shape-morphing capability, and deployable
structures. This paper develops network-based methods for
designing and controlling a three-dimensional (3D) triangulated
origami tessellation to approximate multiple surfaces. The desired
surfaces are represented by sets of discrete nodes and the origami
tessellation to be designed is composed of triangles. Then, the
tessellation design problem is formulated as an optimization
problem of minimizing the distance between the origami triangle
vertices and the discrete nodes subject to developability and rigid-
foldability constraints. Solving the resulting optimization problem
leads to an origami tessellation with folding states associated with
each target surface. To achieve transformation between different
shapes, we first leverage graph rigidity theory to define every 3D
origami shape uniquely up to translations and rotations. Next, in
order to minimize the control efforts, the shape transformation
control problem is formulated as an optimal control problem
subject to the derived rigidity conditions, whose feasibility is
guaranteed by transformability of the origami and controllability
of dynamic vertices. Finally, simulation examples for surface
approximation are provided to verify the effectiveness of the
network-based design and control methods.

Index Terms—Origami tessellation, Network design, Rigidity
theory, Optimization

I. INTRODUCTION

ORIGAMI, the ancient art of folding flat paper into
diverse shapes, has attracted increasing attention from

researchers in both science and engineering [1], [2], [3], [4],
[5], [6]. Due to its advantages in reconfigurability and deploy-
ment capabilities, there exist many applications of origami-
inspired structures, including deployable space structures [7],
[8], biomedical devices [9], [10], architecture [11], robots [12]
and manipulators [13]. Most of these applications utilize a
customized crease pattern to form a desired shape with rigid
engineering sheet materials [14]. To design such a crease
pattern, kinematics of origami [15], [16], [17] and formulation
of crease pattern design problems [18], [19], [20], [21] are two
essential topics under investigation.

To analyze the kinematics of origami structures, assump-
tions on rigid folding motion and zero-thickness have been
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considered [15]. The rigid folding assumes that all the facets
separated by fold lines are rigid. Zero-thickness allows an
origami structure to fold along the creases with zeroth-order
geometric continuity. Based on these assumptions, rigid fold-
ing is defined as a process that folds the rigid facets con-
tinuously without deformation. Accordingly, rigid foldability
refers to the ability to fold an origami from an initial shape
to a target one while preserving the characteristics of a rigid
origami, such as distance and angle constraints.

Graph theory is a useful tool for the rigid origami configura-
tion representation and design [22]. It is natural to correspond
origami vertices and creases with graph elements. Typically,
an origami is modeled as a crease pattern graph where paper
creases are modeled as the edges, and intersections of creases
are considered as the vertices in a graph. Based on the crease
pattern graph, conditions for rigid foldability and the degrees
of freedom (DoF) of a single vertex origami have been inves-
tigated, including Huzita-Hatori axioms [23], the Maekawa’s
theorem (developability) [24], and Kawasaki’s theorems (flat
foldability) [25], [26]. With these rigidity conditions, Wu and
You [17] described the deformation model of rigid origami
using quaternions and dual quaternions. Xi and Lien [16]
simulated the folding process by modeling rigid origami as
a kinematic system with closure constraints. He and Guest
in [27] investigated the static rigidity, pre-stress stability,
and second-order rigidity of rigid origami structures. When
extending to a multi-vertex origami, it has been proven that
finding the overlap order for the facets and folding path of
a general origami is NP-hard and generally intractable [4],
[28]. Hence, most existing approaches for multi-vertex origami
have utilized the generalization of single-vertex through a
periodic crease pattern or ‘tiling’ of a flat sheet, known as
origami tessellations. The rational periodic design enables
a synchronized folding mechanism for a designed structure.
Among existing origami tessellation patterns, the Miura-ori
with four-crease pattern [29] and waterbombs with six- or
eight-crease pattern [30], [31], [32] are the major origami
tessellations that have been widely used in origami designs.

The origami design problem refers to the process of gener-
ating a crease pattern that has desired characteristics and can
be folded to achieve desired configurations in space [4], [33],
[34]. Considering the manufacturability or foldability criterion,
various approaches (e.g., [35], [36], [37], [21]) have been
proposed for symmetry origami design. However, few efforts
have been made to establish a design or control paradigm
that uses one designed origami tessellation to match multiple
three-dimensional (3D) surfaces by controlling the folding
process. Designing origami tessellations to approximate mul-
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tiple 3D surfaces is a challenging task that requires careful
consideration of how the folds interact with each other to
create a cohesive pattern. This becomes more difficult when
surfaces have different curvatures or shapes that are difficult
to represent with a single origami tessellation. Additionally,
the multiple surfaces must intersect smoothly to create a
seamless transition, and as the number of surfaces increases,
the complexity of the design increases, making it harder to
maintain the paper’s structural integrity. This paper proposes
a novel framework from the network perspective for origami
tessellation design and control to match multiple 3D surfaces.
The design problem is to minimize the distances between
the designed origami vertices and discrete nodes on target
surfaces. Solving the resulting problem via nonlinear program-
ming (NLP) leads to an optimal design result with vertices
locations and folding status associated with each target surface.

Achieving different target surfaces from a designed origami
tessellation relies on controlling the folding process, referred
to as transformation control here. This paper aims to minimize
the control efforts when transforming the designed origami
from one target surface to another. To guarantee the feasibility
of transforming between two target shapes, we introduce a
new notion of transformability. To allow flexibility while min-
imizing the control efforts with guaranteed transformability,
we leverage graph rigidity theory on triangulated frameworks
[38] to define a unique shape up to translations.

Overall, this paper develops a network-based systematic
approach to designing origami tessellation and controlling
the shape transformation to match multiple 3D surfaces. As
an emerging topic in the area of network-based design and
control, our main contributions can be summarized as fol-
lows: (i) modeling the origami design problem as a nonlinear
optimization problem to minimize the difference between
origami vertices and discrete nodes on the target surfaces
subject to distance constraints and angle constraints; (ii) em-
ploying a weak rigidity function containing information of
edge lengths and angle values to guarantee transformability in
the transformation process; and (iii) formulating the origami
transformation control problem as an optimally constrained
control problem to minimize the control efforts with local
shape preservation constraints.

Compared with state-of-the-art methods for origami design
and transformation control, the main features of our work
include the following three folds: (i) extending single-surface
approximation to multi-surface approximation using one de-
signed origami tessellation; (ii) introducing the concept of
transformability of origami and proposing a novel formulation
for seeking a transformation approach with minimum control
effort; (iii) leveraging graph rigidity theory to support the
feasibility of transformation control, which has not been estab-
lished in existing origami transformation control approaches.

This paper is organized as follows. Section II introduces
basic theorems for flat-foldable origami. Section III describes
the geometry of unit six-crease origami and tessellations.
Then, a framework for designing origami crease patterns to
approximate multiple surfaces is introduced in Section IV. To
examine the transformability of the designed origami, Section
V proposes a new rigidity function to uniquely define the

3D shape of a designed origami. Based on the developed
rigidity theory, modeling of the transformation control problem
is described in Section VI. Section VII presents an example to
validate the effectiveness of the proposed design and control
methods. Conclusions are addressed in Section VIII.

II. PRELIMINARIES

An origami configuration can be modeled as a planar
straight-line graph that can be drawn so that the straight-line
edges only intersect at the vertex points. An origami diagram
that consists of all the creases, usually rendered into one
image, is called the crease pattern, denoted as C. A single
vertex origami only has one intersection of all creases. The
angle between two adjacent creases is named the sector angle.
For the single vertex crease pattern, the degree of the vertex is
the number of edges joining it, which also equals the number
of sector angles around the vertex.

1) Developability of origami: An origami object is usually
folded from a flat paper sheet to a specific 3D shape. Under
the flat sheet status, it is obvious that the sector angles around
a vertex sum to 2π [24]. In fact, this constraint, known as
Kawasaki’s theorem or developability of an origami, holds all
the time during the folding process. For a multi-vertex crease
pattern, the developability constraint is given by

n∑
i=1

φi,j = 2π, j ∈ Vin, (1)

where Vin is the set of the interior vertex, n is the degree
of the interior vertex, and φ1,j , φ2,j , . . . , φn,j are the sector
angles around the jth interior vertex, oriented clockwise.

2) Flat-foldability of origami: It has been proven that a
single-vertex crease pattern is flat-foldable if and only if the
vertex has an even degree and the sum of the odd angles is
equal to that of the even angles [24], i.e.,

n/2∑
i=1

φ2i−1,j =

n/2∑
i=1

φ2i,j = π, ∀φi,j ∈ (0, π) (2)

3) Mountain-Valley (MV) assignment: For an origami struc-
ture, a crease can be folded in two ways: mountain folding that
bends the crease in a convex direction, and valley folding that
bends the crease in a concave direction. An example of MV
assignment is shown in Fig. 1 (a), where the three red lines
represent the mountains, and the blue line denotes the valley.

Let M be the number of mountain folds and V be the
number of valley folds. A given crease pattern often has more
than one possible MV assignment combination that differs by
alternating the mountain or valley folds. Mathematically, an
MV assignment of a crease pattern can be considered as a
mapping function κ : C → {M,V }. For a single vertex crease
pattern, the following result holds for the MV assignment.

Theorem II.1. [Theorem 12.2.3 in [39]] For a flat-foldable
vertex with M mountain folds and V valley folds, the differ-
ence of M and V is always 2, i.e., |M − V | = 2.

Although the developability, the flat-foldability, and the MV
assignment theorem stated above are for an n-degree single
vertex origami, we will consider a periodic origami crease
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pattern or an origami tessellation, such that all these theorems
for a single vertex origami structure can be extended to a
multi-vertex origami structure.

III. SIX-CREASE ORIGAMI TESSELLATIONS

A. Generic Six-crease Origami Base

This paper focuses on the crease pattern design using
generic six-crease bases. Then, the origami tessellation is to
periodically tile the six-crease bases. A generic six-crease base
is shown in Fig. 1 (b), where the dash lines represent the
creases of the origami, the solid lines are the boundaries of
origami, the red point V0 is the interior vertex, V1, V2, · · · , V6

are the boundary vertices, Ai denotes the section facet between
two adjacent creases, φ1, φ2, . . . , φ6 are the sector angles
around the interior vertex V0, and θ1, θ2, . . . , θ6 denote the
folding angles along each crease. Typically, the dihedral angle
between two adjacent facets connected by the crease is utilized
to calculate the corresponding folding angle. To be specific,
the folding angle of the ith crease is computed by,

θi = τi cos
−1

(
(pi × pi−1) · (pi × pi+1)

∥pi × pi−1∥ · ∥pi × pi+1∥

)
(3)

where pi denotes the vector from V0 to Vi, and τi is defined
by

τi =

{
1, for mountain fold,
−1, for valley fold.

(4)

In other words, θi ∈ [−180◦, 0◦] is the folding angle range
for valley fold, while θi ∈ [0◦, 180◦] is the folding angle
range for mountain fold. When a generic six-crease base in
Fig. 1 (b) is rigidly flat-foldable, the sector angles around the
interior vertex must satisfy the flat-foldability constraint in (2)
for n = 6.

Fig. 1: (a) Mountain-Valley folding example of a degree-4
origami; (b) A generic six-crease base

B. Geometry of Six-crease Origami Tessellation

To generate the origami tessellation using six-crease bases,
the crease pattern base should be axis-symmetric such that
it can be periodically tiled using a paper sheet. Consider a
crease pattern made by tessellating a generic symmetric six-
crease base with col = 5 columns and row = 6 rows, shown
in Fig. 2 (a), then the origami tessellation contains multiple
triangles with n = 2 ∗ col ∗ row + col + 3 ∗ row + 1 vertices
and e = 6 ∗ col ∗ row + 5 ∗ row + col edges.

The six-crease origami tessellation in Fig. 2 (a) is made of
three types of interior vertices or bases, A, B, and C, which are
enlarged in Figs. 2 (b)-(d), respectively. Each of them contains

six triangles. Without loss of generality, let the creases VA0VA1

and VA0VA4 be collinear, and VA0VA4 be the axis of symmetry
for type A origami base in R2. Then, due to the line symmetry,
the sector angles φ1 = φ6 = αA, φ2 = φ5 = βA, and φ3 =
φ4 = γA. Moreover, combining with the developability and
flat-foldability of a rigid origami, we have

αA + βA + γA = π. (5)

Similarly, applying the symmetry conditions to the type B and
type C vertices leads to αB + βB + γB = π and αC + βC +
γC = π. In addition, it is straightforward that in the triangle
△VA0VA4VA5

, we have

αC + βB + γA = π. (6)

Due to the adjacency of unit origami bases of types A, B,
and C, the vertex VA0 in type A base is overlapping with the
vertex VB2 in type B. The same observations can be found for
the vertex pair {VA5, VB0}.

Fig. 2: (a) Crease pattern of six-crease origami tessellation;
(b) Type A base; (c) Type B base; (d) Type C base.

Furthermore, when the crease VA2VA3 is assumed to be
parallel to VA5VA6, we have αB = γA and αC = γB .
Note that we only have the symmetric constraints on the
geometric parameters, i.e., sector angles φi, without imposing
the symmetric folding constraints on θi. In addition, according
to Theorem II.1, a generic six-crease base has 2 mountain and
4 valley folds, or vice versa. For example, if we further assume
symmetric folding for type A, i.e., θ1 = θ4, θ2 = θ6, θ3 = θ5,
the folding states of type A with different MV assignments are
presented in Fig. 3 (a) and Fig. 3 (b), where the blue and red
lines represent the valley and mountain creases, respectively.

Fig. 3: 2-valley and 4-mountain assignments and the corre-
sponding folding state: (a) V0V1 and V0V4 are 2-valley creases
(b) V0V2 and V0V5 are 2-valley creases.

C. Kinematics of Origami Folding

For a rigid origami, facets and crease lines are treated
as rigid panels and revolute joints, respectively. Then, the
kinematics of a rigid single vertex origami is equivalent to the
kinematics of a spherical linkage loop with all rotation axes
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intersecting at one point [14]. Therefore, an origami rigidly
folding around the interior vertex V0 along the ith crease can
be expressed as a rotation matrix using the Denavit-Hartenberg
notation, written as

Ti,i+1(φi, θi)=

1 0 0
0 cosφi − sinφi

0 sinφi cosφi

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1

 .

The transformation matrix Ti,i+1 transforms any vectors in
the ith coordinate system to the (i + 1)th coordinate system.
The inverse transformation matrix is denoted by Ti+1,i, and
Ti,i+1Ti+1,i = I3×3, where I3×3 is a 3-by-3 identity matrix.
Then, for the loop spherical linkages, there exists a closure
equation, expressed as

T1,2T2,3T3,4T4,5T5,6T6,1 = I3×3. (7)

Mathematically, (7) implies that after applying the six se-
quential transformations, it always leads to an identity matrix.
When applying (7) to origami folding, it prevents the crease
paper from being physically torn by the folding motion.
Equivalently, (7) can be rewritten as

Tdiff = T1,2T2,3T3,4 −T1,6T6,5T5,4 = 03×3. (8)

When the origami tessellation is given, all the sector angles
and lengths of edges are fixed and given. Thus, (8) contains
nine equations on the six folding angles, θi, i = 1, . . . , 6. Since
the elements of a rotation matrix are coupled, (8) reduces to
three independent constraints on the folding angles. In other
words, only three of the six folding angles are independent,
which is consistent with the rigidity analysis of the triangulated
framework based on the vertex coordinates in subsection V-C.
As a result, the matrix equality constraint in (8) reduces to
three scalar equations by letting three matrix elements equal
to zero, i.e.,

Tdiff(1, 2) = 0, Tdiff(2, 3) = 0, Tdiff(3, 3) = 0. (9)

The solutions to (9) define the configuration space of an
interior origami, which is described by the folding angles.

Obviously, since the rotation matrix Ti,i+1 also includes the
sector angles, the solutions to (9) vary with different sector
angles. In other words, an origami tessellation is capable of
forming different desired 3D shapes by assigning the sector
angles and setting the crease folding angles subject to (5) and
(6). For example, when αA = γA, αC = αB , γB > 90◦, and
αC > 90◦, the crease pattern becomes a symmetric water-
bomb origami tessellation, which is shown in Fig. 4.

Fig. 4: (a) Symmetric water-bomb tessellation; (b) Water-bomb
crease bases

IV. TRIANGULATED ORIGAMI DESIGN FOR
APPROXIMATING MULTIPLE TARGET SURFACES

This section presents the design framework for approximat-
ing multiple target surfaces based on the six-crease origami
tessellation. Due to symmetry, we only consider the vertices on
one side of the origami when approximating a given surface.
The goal of the origami design is to approximate multiple
target surfaces as closely as possible by designing both origami
tessellation and the corresponding folding states for each target
surface.

The optimal design framework with detailed steps is illus-
trated in Fig. 5. Firstly, a target surface, denoted by S , is
discretized via triangular meshes. Then, the target surface can
be represented by intersection points of triangular meshes,
denoted by NS . If there exists a set of vertices VT on one
side of a partially folded origami such that they coincide
with or are close to the discrete nodes in NS , the target
surface is considered to be approximated by the 3D origami.
Thus, |VT | = |NS |, where | · | denotes the cardinality of the
set ‘·’. For each target surface, such discretization approach
will be applied to find its corresponding nodes for surface
approximation. Next, an optimization problem is formulated
to design the crease pattern and folding angles associated with
each target surface such that the distances between VT of the
designed origami and NS on all target surfaces are minimized
while satisfying a set of equality constraints, including de-
velopability, rigid-foldability, and inequality constraints (e.g.,
box constraints on crease lengths). The design problem is then
classified as a nonlinear optimization problem. Solving the
formulated optimization problem via an NLP solver leads to
the optimal design result in the form of an origami tessellation
and folding states associated with each target surface. The
following subsections describe the detailed steps in the design
framework.

Fig. 5: Framework for origami design

A. Discretization of Target Surfaces
In order to represent a target surface by a set of dis-

crete nodes, the target surface is discretized by triangular
meshes. Using the surface in Fig. 6 (a) as an example, the
discretized surface is shown in Fig. 6 (b) when discretized
by the triangular meshes. The intersection points of the
triangular meshes are collected as a set of discrete nodes,
NS = {p1,p2, . . . ,p|NS |}, where pi, i = 1, . . . , |NS |,
denotes coordinates of an intersection point. As mentioned
above, |VT | vertices will be assigned to approximate these
discrete nodes. Thus, the total number of vertices, n, in the
origami tessellation should be larger than |VT |. Moreover, to
ensure the origami is capable of approximating these discrete
nodes, the degree of freedom (DoF) of tessellation should
satisfy that DoF − 6 > 3|NS |, where 6 refers to the DoF
of three rigid translations and three rigid rotations. The DoF
analysis of origami tessellations will be further explained in
Section V-C.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3303260

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on September 03,2023 at 22:28:50 UTC from IEEE Xplore.  Restrictions apply. 



JING et al.: 5

(a) An arbitrary surface (b) Triangular meshes

Fig. 6: Discretization of an arbitrary target surface

B. Formulation of Origami Design Problem
In order to approximate multiple target surfaces, an opti-

mization problem will be formulated in this subsection. The
design variables, objective function, and equality and inequal-
ity constraints of the optimal design problem are discussed
below, respectively.

1) Objective function and design variables: To evaluate the
precision of approximating a target surface S using an origami
tessellation, the distance between the discrete nodes on the
target surface and the corresponding vertices of the designed
origami is referred as a performance index, defined as

dH(NS ,VT ) =

|NS |∑
i=1

wi∥pi − xi(VT )∥, (10)

where xi(VT ) ∈ R3 denotes the position vector of the
ith vertex in VT of a partially folded origami, and wi is
the weighting factor. As xi(VT ), i = 1, 2, · · · , |NS |, have
varying magnitudes, ∥pi − xi(VT )∥ will also have different
magnitudes. By introducing the weighting factor wi associ-
ated with ∥pi − xi(VT )∥, adjustments can be made to the
approximate shape, resulting in an improved approximation
accuracy. Then, in the optimal design problem, the objective
is to minimize dH(NS ,VT ) by finding vertex locations of
the designed origami. To approximate multiple surfaces, the
objective function is formulated as

min dmax =
q

max
i=1

dH(NSi,NTi) (11)

where q is the number of target surfaces. When approximating
multiple surfaces using one designed origami tessellation,
the vertex sets VT1, . . . ,VTq can be different. Therefore, the
corresponding coordinate sets x1,x2, · · · ,xq ∈ R|V|×3 for all
vertices may also be different. In addition to the coordinates of
all vertices, the sector angles φ are required to determine the
entire origami tessellation. With a designed origami tessella-
tion, matching every target surface is realized by changing
the folding angles. Therefore, the sector angles φ, folding
angles θ, and the coordinates of vertices x1,x2, · · · ,xq are
considered as designed variables.

2) Equality constraints: To satisfy the general properties
of origami, several sets of equality constraints, including the
developability and the rigid foldability, are considered in the
design problem formulation, expressed as

hdevelop,j(φ) =2π −
6∑

i=1

φi,j = 0, j ∈ Vin,

hflatfold,j(φ) =π −
3∑

i=1

φ2i−1,j = π −
3∑

i=1

φ2i,j = 0, j ∈ Vin,

where φi,j denotes the ith sector angle of the jth interior
vertex, and Vin is the index set of all interior vertices. More-
over, the equality constraint on each sector angle φi,j and
the corresponding vertices’ coordinates are considered. For
example, for the kth target surface, this type of constraint for
i = 1, 2, · · · , 6, j ∈ Vin, k = 1, . . . , q, is written as

cosφi,j =
(xk

(i,j) − xk
(0,j))

T · (xk
(i+1,j) − xk

(0,j))

∥xk
(i,j) − xk

(0,j)∥ · ∥x
k
(i+1,j) − xk

(0,j)∥
, (13)

where xk
(0,j) denotes the coordinates of the jth interior vertex

to approximate the kth target surface.
When matching different shapes with one designed origami

tessellation, all the triangles in the crease pattern are preserved,
which indicates that the lengths of all creases for j ∈ Vin, k =
1, 2, ..., q − 1 are constant during the transformation process,
written as

hlength(x
k,xk+1) = ∥xk

(0,j) − xk
(i,j)∥ − ∥xk+1

(0,j) − xk+1
(i,j)∥ = 0.

(14)

Meanwhile, for each approximate surface, the corresponding
folding angles, denoted by θk, k = 1, . . . , q, that represent the
folding states, are different. These folding angles are required
to satisfy the kinematics equation expressed in (8).

3) Inequality constraints: Several inequality constraints
need to be considered when designing origami. Firstly, to
guarantee that all creases can be easily folded, each sector
angle should be placed in a specific range, i.e.,

gL(φ) = φi,j ≤ φmax, i = 1, 2, . . . , 6, j ∈ Vin (15a)
gU (φ) = φi,j ≥ φmin, i = 1, 2, . . . , 6, j ∈ Vin. (15b)

In addition, as we mentioned above, only the vertices on one
side of a partially folded origami are used to approximate
a target surface. Therefore, the vertices on the other side of
the origami, denoted as x(V′), should locate on one side of
the target surface. Mathematically, it can be expressed as an
inequality:

fk(x(V
′)) ≤ 0, k = 1, . . . , q, (16)

where fk(x) is the function of the kth target surface in
R3. These inequalities, in conjunction with the target shape’s
symmetric nature, restrict any deviation of these vertices from
the target surface.

Combining the objective function and all constraints de-
scribed above, the origami design problem is summarized as

min
x1,...,xq,φ,θ1,...,θq

max {dH(NS1,VT1), . . . , dH(NSq,VTq)}

subject to hdevelop, j,(φj) = 0, j ∈ Vin (17)
hflatfold,j(φj) = 0, j ∈ Vin

Tdiff,j(θ
k
j ,φj) = 03, j ∈ Vin, k = 1, . . . , q.

(13) & (14) & (15) & (16).

The developability and rigid flat-foldability constraints are
linear functions on the sector angles and the folding angles.
The objective function in (11) is a convex function on the
coordinates of vertices. However, the kinematics constraints
are nonlinear constraints. Solving the optimization problem in
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(17) via an NLP solver, we can obtain the sector angles φi,j for
each interior vertex, the optimal folding angles θk of creases,
and the coordinates of vertices xk for the kth target surface,
k = 1, . . . , q, from which we can calculate the edge lengths
and generate the corresponding crease pattern in a paper sheet.
Moreover, the 3D origami configuration can be retrieved from
the vertices’ coordinates, x1,x2, . . . ,xq .

The solution to (17) only reveals the terminal folded states
of each designed origami in 3D space, whereas the transfor-
mation process is yet to be investigated. In real-world applica-
tions, the shape of the origami is the goal that really matters to
the stakeholder instead of their specific locations. Therefore,
in the next section, we will utilize graph rigidity theory to
provide local constraints that determine the desired origami
shape uniquely up to translations and rotations. With the help
of these rigidity constraints, it is more flexible to search for
the optimal transformation control results when guiding the
transformation process. Employing rigidity constraints instead
of terminal position constraints has at least three advantages:
(i) the motion during the transformation process can be further
constrained; (ii) the folding path and control efforts can be
further optimized since the feasible set is extended; (iii) the
orientation and the location of the origami at the steady
state can be artificially specified by assigning partial vertices’
terminal positions.

V. RIGIDITY-BASED TRIANGULATED ORIGAMI SHAPE
DETERMINATION AND TRANSFORMABILITY

In this section, to achieve transformation of the origami
between different shapes, a graph rigidity-based approach will
be proposed to characterize the target shape of a 3D origami
structure with associated folding states. We will introduce a
class of frameworks, namely, triangulated frameworks, which
are always contained in the crease pattern of a six-crease-based
origami tessellation. Shape determination and transformability
will be studied by focusing on the triangulated frameworks.

A. Introduction of Graph Rigidity Theory

In this subsection, we will briefly review the traditional
graph rigidity theory [40] and propose an extended result
regarding the rigidity of frameworks across different dimen-
sional spaces. An undirected graph is denoted by G = (V, E),
where V = {1, ..., n} is the set of vertices, and E ⊂ V2 is the
set of edges. For each vertex i in G, we assign it a position
vector xi in Rd. The vector stacking up all vertices’ positions,
i.e., x = (xT

1 , ..., x
T
n )

T ∈ Rnd is called a configuration. The
pair (G,x) is called a framework. Let

rG(x) = (..., ||xi − xj ||2, ...)T ∈ Rm, (i, j) ∈ E (18)

denote the rigidity function, where m = |E|. The matrix

Rd(G,x) =
∂rG(x)

∂x
∈ Rm×nd (19)

is call the rigidity matrix in Rd. A framework (G,x) is
infinitesimally rigid in Rd if every infinitesimal motion ẋ (a
motion maintaining ṙG(x) = 0) is trivial (i.e., a translation
or rotation). In other words, rank(Rd(G,x)) = S(d) =

nd − d(d+1)
2 , where d(d + 1)/2 is obtained by counting d-

dimensional translations and d(d−1)/2-dimensional rotations.
Let rank(Rd(G)) = maxx∈Rd rank(Rd(G,x)), the follow-

ing lemma shows a property of rank(Rd(G)).

Lemma V.1. Given graph G, the following holds:

rank(Rd−1(G)) ≤ rank(Rd(G)) ≤ min{S(d),m}. (20)

Proof. The first inequality can be obtained by noting that a
configuration x in Rd−1 can always be trivially extended to a
configuration in Rd, i.e., x′ = (xT

1 , 0, ..., x
T
n , 0)

T . The second
inequality is obtained by the definition of Rd(G,x).

Another important concept we will use in this paper is
global rigidity. A framework is globally rigid if r−1

G (rG(x)) =
r−1
K (rK(x)), where K is a complete graph.

In this paper, we will construct a new rigidity function
by adding extra entries into rG(x). So the concepts of in-
finitesimal rigidity and global rigidity will be generalized by
replacing rG in the definitions with the newly constructed
rigidity function.

B. Triangulated Frameworks

Consider a triangulated framework (T ,x) with n ≥ 3
nodes, where T = (V , E) is a triangulated graph defined as
follows: start with a triangle composed of nodes 1, 2, and 3, at
each step, add one vertex k and two edges connecting k and
two vertices i, j ∈ {1, ..., k−1}, respectively, such that i and j
are connected in the current graph. Each triangle composed of
nodes i, j, k is denoted by ∆ijk = (i, j, k). One can observe
that the crease pattern of six-crease based origami tessellation
contains a triangulated framework as a subframework. We
make the following assumption for the considered triangulated
framework:

Assumption 1. Each triangle ∆ijk is non-degenerate, i.e.,
xi, xj , and xk are not collinear. Moreover, there are no
overlapping vertices.

As shown in [41], Assumption 1 implies that (T , x) is in-
finitesimally rigid in R2. Now we put a triangulated framework
into R3. Then (T ,x) is no longer infinitesimally rigid because
m = |E| = 2n − 3 ≤ 3n − 6 = S(3). From Lemma V.1, we
have R2(T ) = R3(T ) = 2n− 3 ≤ S(3).

C. Degree-of-Freedom of Origami

For a given six-crease base, there exist n = 7 vertices in a
unit origami. When lengths of boundary lines and creases are
known and fixed, mathematically, there exist twelve equality
distance constraints for the corresponding framework of this
origami. Therefore, we have rank(R2(T )) = 2n− 3 = 11 <
12, which means the degree-6 vertex in a flat sheet will be
infinitesimally rigid in R2. However, in R3, it is no longer
infinitesimally rigid since rank(R3(T )) = 12 < 15 = 3n− 6.
In other words, the DoF of a unit origami is DoF = 3n−6−
rank(R3(T )) = 3. Then, the DoF of the six-crease origami
tessellation in Fig. 2 can be calculated using the number of
columns and rows. DoF = 3n−6−e = 2∗ col+4∗row−3.
Note that, based on the DoF analysis above, the minimum
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number of total vertices n can be determined when designing
an origami tessellation using the design framework described
in Section IV. To be specific, at least n total vertices are
needed, such that DoF − 3|NS |+ 6 > 0, to approach all the
discrete nodes in NS , which enables the origami transforming
from an initially flat surface to a specified shape.

D. Local Constraints for Shape Determination

To describe the desired shape of a triangulated framework
in R3, the edge length constraints are not enough because
the DoF of the constrained shape is 3n − rank(R3(T )) =
n + 3, which is greater than the dimension of trivial motion
space, i.e., 6, when n > 3. Hence, we further introduce n −
3 angle constraints into the rigidity function rT (x), so that
rank(∂rT (x)

∂x ) reaches its maximum value, i.e., 3n− 6 in R3,
which renders the DoF of the formation minimum. Note that
a constraint on the angle between two edges (i, j) and (i, k) is
equivalent to a constraint on the inner product (xi−xj)

T (xi−
xk) if both ||xi−xj || and ||xi−xk|| are fixed. Hence, similar
to [42], we have constraint on (xi − xj)

T (xi − xk) directly.
Next we explain which angle we want to constrain. For each

vertex k > 3, we can specify an edge (ik, jk) based on which
k is inserted, i.e., (ik, jk) ∈ ∆ and ik < jk < k. Then we find
another vertex l such that (lk, ik, jk) ∈ ∆ and lk < k. Note
that lk must exist because the framework is triangulated before
vertex k is inserted. Then we can determine a quaternion
corresponding to two triangles with one common edge for
each k > 3, and we denote it by Q(k) = {lk, ik, jk, k}. Note
that here ik and jk are uniquely determined, but there may
be multiple choices for lk such that (lk, ik, jk) ∈ ∆. In our
work, without loss of generality1, we choose lk = min{l ∈
V : (l, ik, jk) ∈ ∆}. Then Q(k) is uniquely determined for
each vertex k > 3. As a result, we can uniquely determine
a function A(k) = (jk, lk, k). Now we are able to specify
the angles we want to constrain. Define the angle index set
as A = {A(k) : k = 4, ..., n}. It can be observed that
|A| = n−3. Figure 7 (a) shows a non-degenerate triangulated
framework. In this example, we have Q(4) = {1, 2, 3, 4},
Q(5) = {3, 2, 4, 5}, A = {(3, 1, 4), (4, 3, 5)}.

Accordingly, we define a new rigidity function containing
the inner products corresponding to all the angles under
constraints, written as

rA(x) = (..., (xi − xj)
T (xi − xk), ...)

T , (i, j, k) ∈ A. (21)

Let r(x) = (rTT (x), r
T
A(x))

T be the new rigidity function
containing both distance and angle, and R(x) = ∂r(x)

∂x
be the new rigidity matrix. Let P = {k ∈ {4, ..., n} :
xlk , xik , xjk , xk are coplanar} be the set of vertices k corre-
sponding to which the two triangles determined by Q(k) are
coplanar. Then we have the following lemma.

Lemma V.2. Under Assumption 1, rank(R(x)) = 3n−6−|P|.

Proof. Based on rA(x), we construct another rigidity function

rD(x) = (..., ||xj − xk||2, ...)T , (i, j, k) ∈ A. (22)

1In practice, lk can be chosen as any l < k such that (l, ik, jk) ∈ ∆.

1 2
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(a) (c)

(d)

1 2

3 4

5









(b)

Fig. 7: (a) A triangulated framework with 5 vertices in R2, (b)
An illustration for Qk, (c) and (d) are two possible realizations
in R3 given distance constraints and two angle constraints. In
(c), both vertices 1 and 5 are above the plane. In (d), vertex 1
is located above the plane, while vertex 5 is below the plane
[38]

.

Let r′(x) = (rTT (x), r
T
D(x))T and R′(x) = ∂r′(x)

∂x . Note that
for any (i, j, k) ∈ A, we have (i, j), (i, k) ∈ E . Moreover, for
any i, j, k ∈ V , it holds that

||xj−xk||2 = ||xi−xj ||2+||xi−xk||2−2(xi−xj)
T (xi−xk).

This implies that r(x) = (rTT (x), r
T
A(x))

T and r′(x) can be
linearly denoted by each other. As a result, rank(R′(x)) =
rank(R(x)). Next we show rank(R′(x)) = 3n− 6− |P|.

For n = 3, under Assumption 1, rank(R′(x)) =
rank(R(x)) = rank(R(T ,x)) = 3 = 3× 3− 6− 0.

For n = k − 1, x ∈ R3(k−1), we add one ver-
tex xk, and two edges (k, ik) and (k, jk) into the frame-
work. Let x′ = (xT , xT

k )
T ∈ R3k, there must exist lk

such that lk is connected to ik and jk, and r′(x′) =
(r′

T
(x), ||ekik ||2, ||ekjk ||2, ||eklk ||2)T , where eks = xk −

xs. Then rank(R′(x′)) =

(
∂r′(x)
∂x 0(3(k−1)−6)×3

S1 S2

)
, where

S2 = (ekik , ekjk , eklk)
T . Note that Under Assumption 1,

rank(S2) = 2 if k ∈ P and rank(S2) = 3 otherwise.
Together with rank(R′(x′)) = rank(R′(x)) + rank(S2), we
have rank(R(x)) = 3n− 6− |P| for a general n.

In fact, even when |P| = 0, r(x) is still not able to uniquely
determine the formation shape, because an infinitesimally rigid
framework may not be globally rigid. For example, in Fig. 7
(a), there are n = 5 agents, 2n−3 = 7 edge length constraints,
and n − 3 = 2 angle constraints. Although rank(R(x)) =

rank(∂r(x)∂x ) = 3n − 6 = 9, there are two possible shapes
shown in (c) and (d). On the other hand, global rigidity does
not imply infinitesimal rigidity. A simple example for this fact
is a framework (K,x) with configuration x being degenerate.

In order to uniquely determine the origami shape in R3,
we aim to design a rigidity function such that the framework
is globally rigid. To this end, we further add n − 3 sign
constraints, which determine the relative position between any
two triangles with a common edge. Such an addition is to
further reduce the DOF of the current distance-constrained
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framework, so that all the infinitesimal motions become trivial.
For each k = 4, ..., n, we define

σk(x) = sign(
∣∣xk − xik xjk − xik xlk − xik

∣∣), (23)

which determines which side of the plane (denoted by ∆lkikjk )
vertex k is located in. σk is actually determined by the sign of
the cosine value of the angle between xk−xik and the normal
vector of the ∆lkikjk plane.

We define the shape formed by a configuration x as follows:

Sx = {y ∈ R3n :y=(In⊗R)x+1n ⊗ ξ,R ∈ SO(3), ξ ∈ R3}.

Here Sx ⫋ r−1
K (rK(x)) if x is non-degenerate because

r−1
K (rK(x)) contains reflections of the configuration x, while

Sx does not.
The following theorem shows that regardless of |P|, the

rigidity function r(x), together with σk(x), k = 4, ..., n,
determine the formation shape uniquely.

Theorem V.1. Under Assumption 1, the rigidity function r(x),
together with {σk(x), k = 4, ..., n} determine the shape of
(T ,x) uniquely. That is,

r−1(r(x)) ∩ (∩n
k=4σ

−1
k (σk(x))) = Sx. (24)

Proof. Let U = r−1(r(x)) ∩ (∩n
k=4σ

−1
k (σk(x))). Note that

it must hold U ⊇ Sx because r(x) and σk(x) are invariant
under rotations and translations. Next, we prove U ⊆ Sx by
induction.

For n = 3, since the reflection of a triangle in R3 can be
achieved by rotations, we have Sx = r−1

K (rK(x)). Hence, the
statement is true.

Suppose that U ⊆ Sx holds for n = k − 1 ≥ 3. Now
we add vertex k and edges (k, ik) and (k, jk). As explained
in the first paragraph of the proof of Lemma V.2, if r(x) is
known, r′(x) is known as well. Hence, it suffices to show that
given x ∈ R3(k−1), the location of the newly added vertex
k can be uniquely determined by r′(x) and σk. Note that
r′(x) contains the distance between any two pairs of vertices
in Q(k). That is, we have a distance rigidity function rK(k)

(which is a subvector of r′(x)) corresponding to a complete
graph with vertices in Q(k).

If k ∈ P , then σk = 0, xk can be uniquely determined
in the plane determined by vertices lk, ik and jk, because
Assumption 1 implies that any two of edges (k, lk), (k, jk) and
(k, lk) cannot be collinear. If k /∈ P , the vertices in Q(k) form
a tetrahedron in R3. Although a tetrahedron is globally rigid,
there are two possible positions for k on the two different sides
of the plane determined by vertices lk, ik, and jk, because
global rigidity allows reflections. With σk(x) at hand, xk is
uniquely determined.

E. Transformability

In this subsection, we will show the feasibility of the trans-
formation between two shapes while preserving the physical
edge length of the origami.

Let x(t) be the configuration, i.e., the vector composed
of vertex positions of the origami at time t. Define a set
XT (x(0)) = {x ∈ R3n : rT (x) = rT (x(0))} =
r−1
T (rT (x(0))). The following lemma shows that x(0) can

be continuously transformed to x(t) within XT (x(0)) for any
x(t) ∈ XT (x(0)).

Lemma V.3. (Transformability) There exists a continuous
path in XT (x(0)) between any two distinct configurations
x(0),x(t) ∈ XT (x(0)).

Proof. Given two distinct configurations x(0),x(t) ∈
XT (x(0)). We consider two cases as follows.

Case 1. x(t) ∈ r−1
K (rK(x(0))). Then x(t) can be trans-

formed from x(0) by continuous uniform rotations and trans-
lations of the whole configuration.

Case 2. x(t) ∈ XT (x(0))\r−1
K (rK(x(0))). Note that (T ,x)

is not rigid. According to [40, Proposition 1], (T ,x) is flexible.
That is, there exists a continuous path from x to any x(t) ∈
XT (x(0)) \ r−1

K (rK(x)).

VI. OPTIMAL TRANSFORMATION CONTROL

For the designed origami tessellation, each target 3D surface
has associated folding angles, which indicates that by control-
ling the folding angles during the transformation process, the
tessellation will transform into the desired 3D shape. However,
there may exist many feasible folding paths that guide the
origami from an initial crease pattern to a 3D target shape. To
reduce the control efforts during the transformation process
while guaranteeing controllability, the origami folding motion
control problem is formulated as a constrained optimal control
problem to minimize the control efforts subject to system
dynamics, local shape-preserving constraints, and initial and
terminal boundary conditions.

A. Transformation Control with Triangulated Constraints

Consider a multi-agent system with n ≥ 4 agents, each
agent has the following dynamics,

ẋi(t) = fi(xi, ui, t), (25)

where xi(t) ∈ R3 and ui(t) ∈ R3 denote the position state
vector and control input vector of agent i at time t, respec-
tively. By modeling each agent i as a vertex of the framework
(G,x), the 3D shape of an origami can be described by a
rigid framework, where each edge of G represents a distance
constraint. Moreover, each agent with ẋi(t) = fi(xi, ui, t) is
assumed to be controllable.

We first consider a triangulated configuration (T ,x) in R2

as the initial states of the origami in a 2D plane. Then the
transformation control problem in this paper is to drive a
multi-agent system from a triangulated configuration contin-
uously from R2 to a desired shape in R3 while maintain-
ing the local shape of each cluster of agents by preserving
the distance of each pair of adjacent agents. By denoting
x(t) = (xT

1 (t), ..., x
T
n (t))

T , and u(t) = (uT
1 (t), ..., u

T
n (t))

T ,
the transformation control problem is stated as follows.

Problem 1. Given two frameworks (T ,x∗) with x∗ ∈
XT (x(0)) and (T ,x(0)) describing the desired shape and
the initial shape of a multi-agent system, respectively. Find
a control strategy u(t), t ∈ [0, tf ] such that the multi-agent
system (25) achieves a target shape with the same shape as
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that of (T ,x∗) at time t = tf , while maintaining the distance
constraints in (T ,x(0)).

In this paper, we say two frameworks (G,x) and (G,y) have
the same shape if x can be transformed from y by translations
and rotations. The feasibility of Problem 1 is guaranteed by
combining the transformability of (T ,x∗) and the controlla-
bility of dynamic vertices. Specifically, the transformability
condition ensures that there exists a continuous path between
the initial shape and the desired shape, which is proven in
Lemma V.3. In addition, each agent in the system is supposed
to be controllable.

B. Optimal Transformation Control with Constant Constraints

Problem 1 is to search for a feasible control maneuver to
reach the target shape while satisfying local shape constraints.
However, there may exist many feasible control strategies to
steer all agents to the target formation. Among all the feasible
solutions, our goal is to find the optimal control maneuver
to drive the system from the initial 2D configuration to the
target 3D shape with minimum control efforts. Accordingly,
this optimal control problem can be formally stated as follow.

Problem 2. Find a control strategy u(t), t ∈ [0, tf ] to
minimize the control efforts

∫ tf
0

||u(t)||dt of the multi-agent
system (25) in solving Problem 1.

Mathematically, Problem 2 can be formulated as

min
u

(t)

∫ tf

0

||u(t)||dt (26)

s.t. ẋ(t) = f(x,u, t), t ∈ [0, tf ],

rT (x(t)) = rT (x(0)), t ∈ [0, tf ],

rA(x(tf )) = rA(x
∗),

σk(x(tf )) = σk(x
∗), k = 4, ..., n

where rT (x(0)) defines the initial configuration in R2,
T (x(0)), together with rA(x

∗) and σk(x
∗) determinate the

target formation uniquely in R3, and tf is given. Similar to
Problem 1, Problem 2 is feasible due to the transformability
of the triangulated origami and the controllability of agents
(25).

Remark 1. According to Theorem V.1, the origami shape
in R3 can be uniquely determined by assigning the rigidity
function r(x) associated with σk(x). Specifically, during the
origami folding motion, the lengths of all edges are constant,
which are constrained in rT (x(t)) = rT (x(0)), t ∈ [0, tf ].
Meanwhile, rA(x(tf )) = rA(x

∗) and σk(x(tf )) = σk(x
∗)

constrain n − 3 terminal folding angles of origami creases.
Thus, once the origami shape is designed from (17), the
corresponding rigidity function r(x) and sign function σk(x)
can be obtained, and then the folding trajectories will be
determined from the flat sheet to the desired 3D origami shape.
The initial state x(0) corresponds to either a 2D shape or a 3D
shape, but the terminal state always determines a 3D shape. As
a result, Problem 2 can represent the transformation process
of an origami from a 2D shape to a 3D shape or between two
3D shapes.

Based on the definitions of rigidity function for distance-
based and angle-based constraints in (18) and (21), both rT
and rA are quadratic equality constraints on state variables x.
In addition, σ is a binary variable with a nonlinear constraint
on x. Therefore, (26) is classified as a nonlinear optimal
control problem. The existence of constant constraints on the
local shape of configuration restricts the freedom of transition
and makes the transformation control more challenging. By
discretizing all agents’ trajectories from initial time t0 to
terminal time tf into a group of discrete nodes represented
by states and control variables at each node, Problem 2 is
transformed into an NLP problem via collocation method and
solved using a sparse sequential quadratic programming (SQP)
algorithm [43] embedded in Tomlab/SNOPT solver [44].

VII. SIMULATION EXAMPLE

In this section, we will present an example to illustrate
the origami design framework for approximating two different
3D surfaces, and then simulate the folding process of the
designed origami using the optimal transformation control
strategy discussed in Section VI. All the simulations are
executed in Matlab environment on a laptop with Intel(R)
Core(TM) i7-6700 (8 cores, 3.41Gz).

A. Target 3D Surfaces and Discretization

In this example, we consider two target surfaces in Fig. 8.
One is an elliptical surface, and the other one is a hyperbolic
surface. The expressions of these two target surfaces can be
written as

x2

a2
+

y2

b2
+

z2

c2
= 1, (27a)

x2

a2
+

y2

b2
− z2

c2
= 1, (27b)

where a =
√
2/2, b =

√
2/2, c = 1 are the constant

coefficients. Obviously, both of these two target surfaces are
rotationally symmetric and can be discretized into N equal
sections, respectively. Here, N denotes the order of rotational
symmetry and is set as 12 in this example. For every 1/N
part, 9 discrete nodes are selected to represent the section of
each target surface. In addition, the two target surfaces are
also symmetric about the x− y plane. Therefore, only half of
these nine nodes are needed to represent these two surfaces.
The intersections are denoted as NS1 = {p1

1,p
1
2, · · · ,p1

5} and
NS2 = {p2

1,p
2
2, · · · ,p2

5}. Specifically, the coordinates of the
five nodes are listed in Table. I.

TABLE I: Discrete nodes on the two target surfaces.

NS1 NS2

p1
1 [0,−0.354, 0.87]T p2

1 [0;−1; 1]T

p1
2 [0,−0.612, 0.5]T p2

2 [0;−0.819; 0.583]T

p1
3 [−0.179,−0.660, 0.259]T p2

3 [−0.189;−0.704; 0.259]T

p1
4 [0.179,−0.660, 0.259]T p2

4 [0.189;−0.704; 0.259]T

p1
5 [0,−0.707, 0]T p2

5 [0;−0.707; 0]T

To approximate the five discrete nodes, pk
1 , · · · ,pk

5 , k =
1, 2 of the 1/N part section, five interior vertices of the origami
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to be designed are used. Thus, DoF−(3|NS |−6) = 2 ≥ 1. Let
vi, i = 1, 2, 3, ..., 19, denote the vertices of the crease pattern
and x1

i , x2
i be the corresponding points in the 3D space for

approximating the two target surfaces, respectively. Note that,
each unit origami in a tessellation has seven vertices, but at
most three of them can be assigned to approach the discrete
nodes, such that the DoF of each unit origami will be larger
than 1. Specifically, in this case, VT1 and VT2 are selected as
{x1

1,x
1
7,x

1
11,x

1
12,x

1
16} and {x2

1,x
2
7,x

2
11,x

2
12,x

2
16} to approx-

imate the 1/N part of two target surfaces, respectively.

(a) (b)

Fig. 8: Discretization of two target surfaces: (a) Hyperbolic
surface; (b) Elliptical surface.

B. Optimal Design Results of Origami Tessellation

After discretizaiton of target surfaces, the optimization prob-
lem in (17) can be organized via combining all equality and
inequality constraints. The design variables are collected as
x = [x1

1, · · · ,x1
19,x

2
1, · · · ,x2

19, φ(1,1), · · · , φ(1,6), φ(2,1), · · · ,
φ(5,6), θ

1
4,1, · · · , θ1i,j , · · · , θ116,6, θ24,1, · · · , θ2i,j , · · · , θ216,6]T .

where i = 4, 7, 10, 13, 16 and j = 1, · · · , 6. In
addition, let w1 = w2 = w3 = w4 = 1, w5 = 100,
φmin = 20◦, φmax = 140◦, and

f1(xVT1
) =

x2

a2
+

y2

b2
+

z2

c2
− 1 ≤ 0,

f2(xVT2
) =

x2

a2
+

y2

b2
− z2

c2
− 1 ≤ 0.

Solving the resulting optimization problem via an NLP
solver (e.g., the interior point method of ‘fmincon’ in Mat-
lab), we can obtain the optimal design results of the half of
1/N part crease pattern. After the half 1/N part of the crease
pattern is determined, the other 1/N part crease pattern can be
obtained by creating its symmetric part about the x-y plane,
as shown in Fig. 9 (a) and (b). The developability and flat-
foldability at the interior vertices are guaranteed when NLP
obtains a converged result.

In addition, for the designed 1/N origami shown in Fig.
9 (c) and (d), the folding angles at the desired states can be
obtained from the solution to problem (17), which are listed
in Table II, where θi,:, i = 4, 7, 10, 13, 16, denote the folding
angles along the six creases for the ith interior vertex. Note
that, due to geometry continuity, we have θ7,1 = θ4,4, θ10,1 =
θ7,4, θ13,1 = θ10,4 and θ16,1 = θ13,4.

TABLE II: Folding angles of creases for two designed origami
structures.

θ∗
S1 /rad

θ14,: [0.38,−0.97, 0.16,−0.52, 0.16,−0.97]T

θ17,: [−0.52, 0.042,−0.012,−0.51, 0.033,−0.019]T

θ110,: [−0.51, 0.14,−1.38, 0.39,−1.38, 0.14]T

θ113,: [0.39,−1.44,−0.13, 0.88,−0.13,−1.44]T

θ116,: [0.88,−1.16,−1.14, 0.86,−1.14,−1.16, 0.88]T

θ∗
S2 /rad

θ24,: [−0.17,−0.98, 0.55,−0.93, 0.55,−0.98]T

θ27,: [−0.93, 1.37, 0.24, 0.52, 0.24, 1.37]T

θ210,: [0.52,−0.23,−0.30, 0.32,−0.30,−0.23]T

θ213,: [0.32,−0.48,−0.24,−0.17,−0.24,−0.48]T

θ216,: [−0.17, 0.24, 0.24,−0.17, 0.24, 0.24]T

Furthermore, the position vectors x1 and x2 of each vertex
are obtained from the design results, which is then used to
shape the folded origami for approximating the two target
surfaces, shown in Figs. 9 (c)-(d). The entire crease pattern
can be generated by periodically repeating the 1/N part
N times. Moreover, according to the signs and values of
folding angles, the MV assignments for the two surfaces are
demonstrated in Figs. 10 (a) and (c), where the blue and red
lines denote the mountain and valley folding, respectively,
and the transparency of creases are determined by the ratio
φi,j/π. The tessellation designs in Figs. 10 (a) and (c) are the
same. The only difference is the MV assignments for the two
surfaces. The corresponding 3D structures of the optimally
designed origami are shown in Figs. 10 (b) and (d), where the
dash lines represent the target surfaces. The designed results
verify that the two target shapes are approximated by the 3D
origami structures. Although the vertices VT1 and VT2 are
not exactly coincided with intersections in NT1 and NT2,
the summation of distances between assigned vertices and
target points, denoted by

∑|NS |
i=1 ∥pi − xi(VT )∥, are 0.905

and 1.427 for the two 3D surfaces, respectively, which are
relatively small. The result indicates that with the limited DoF,
the two desired shapes are closely approximated. The design
results verify the effectiveness of the proposed framework
for designing a crease pattern to approximate multiple 3D
surfaces.

C. Transformation Control of Origami Folding Process

In this section, we demonstrate that the formulation of
the optimal control problem in (26) is efficient to guide the
origami designed in Fig. 10 from a 2D flat surface to a 3D
target shape. Due to the rotational symmetric structures of the
designed 3D origami, only half of 1/N parts will be consid-
ered here. Each agent/vertex of the origami is characterized
with single integrator dynamics of the form ẋi(t) = ui(t).
As a result, minimizing the objective function is to find the
shortest path from the initial configuration in Fig. 10 (a) and
(c) to the corresponding target 3D surface in Fig. 10 (b) and
(d). Moreover, based on the analysis in Section V, n−3 = 16
folding angles and the corresponding sign function σk(x) are
needed to uniquely determine the origami shape in R3, where
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(a) (b) (c) (d)

Fig. 9: Optimal design of origami: (a) Half of 1/N part;
(b) 1/N part by reflection; (c) the optimal folded status for
1/N elliptical surface; (d) the optimal folded status for 1/N
hyperbolic surface.

(a) (b)

(c) (d)

Fig. 10: The optimized crease-pattern: (a) MV assignment
of the elliptical surface; (b) 3D elliptical surface; (c) MV
assignment of the hyperbolic surface; (d) The 3D hyperbolic
surface.

n = 19 is the total number of vertices in the 1/N part of
origami tessellation. From the kinematic equation in (8), we
know that at most three of the six folding angles for each unit
origami are independent. Then, without loss of generality, in
this case, θ4,1:3, θ7,2:4, θ10,2:4, θ13,2:4 and θ16,2:5 in Table II are
selected as the boundary conditions for the formation control
problem, i.e., rA(x∗) and σk(x

∗) in Problem (26) to uniquely
determine the terminal 3D shape of origami.

Solving the resulting optimal control problems in (26) will
guide the designed origami to realize the folding status of the
two approximated shapes with corresponding folding angles,

respectively. The optimal control results in Figs. 11 (a)-(b)
demonstrate the minimum-cost paths for all agents in both
cases, where the blue dash lines represent the initial 2D crease
pattern, the black solid lines stand for the 3D structures, and
the red curves are the optimal trajectories. The optimal control
efforts

∫ tf
0

∥u(t)∥dt for the solutions in Figs. 11 (a) and (b)
are 15.07 and 7.11, respectively. Additionally, to demonstrate
the significant reduction in the control efforts using the opti-
mal control approach, we solve the corresponding feasibility
problems by setting the objective as 0 for Problem 2. The
corresponding control efforts from the feasibility solutions are
69.65 and 34.41, respectively, which are much higher than the
optimal control efforts. The corresponding trajectories from
the feasible solutions are shown in Figs. 11 (c) and (d).

(a) (b)

(c) (d)

Fig. 11: Optimal and feasible trajectories of each vertex
from 2D crease pattern to 3D origami structures: (a) optimal
trajectories to elliptical surface; (b) optimal trajectories to
hyperbolic surface; (c) feasible trajectories to elliptical surface;
(d) feasible trajectories to hyperbolic surface.

Furthermore, to validate the triangular shape-preserving
during the folding process in the formation maneuver, we
define the maximum error of the distance constraints as

∆Ei(t) = {|ei(t)− ei,0|, i ∈ E} (28)

where ei,0 denotes the lengths of edges in the crease pattern.
In the problem, there are forty distance constraints to be
preserved. Figures 12 (a)-(b) present the time histories of
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mean value and deviation of ∆ei(t) during the folding process
to the two 3D approximate shapes, respectively. Obviously,
during the maneuver process, the maximum errors of the
distance constraints for the two target shapes are smaller than
4e− 13 and 6e− 13, which are sufficiently close to zero. The
simulation results verify that the triangular shape-preserving
constraints are satisfied during the folding process.

(a) (b)

Fig. 12: Maximum errors ∆emax(t) of distance constraints
during the folding process: (a) for the elliptical surface; (b)
for the hyperbolic surface.

VIII. CONCLUSION

This paper develops a systematic approach to origami
tessellation design for approximating 3D surfaces, and the
transformation process control of the origami. The design
framework can find an origami tessellation with associated
folding status to match each target surface as close as possible.
By introducing a rigidity function combining distance con-
straints and angle constraints, a target shape can be uniquely
determined up to translations and rotations. Then the trans-
formation process between two target shapes is formulated as
an optimal control problem subject to system dynamics and
local shape preservation constraints. An example of design-
ing an origami tessellation and controlling its transformation
process to approximate both elliptical and hyperbolic surfaces
is presented, which verifies the effectiveness of the design
framework and the optimal transformation control strategy. In
our future work, we will extend our transformation control
approach to a distributed control framework to further improve
control efficiency.
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