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Dynamic Control of Soft Robotic Arm: An
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Abstract—The objective of this letter is to investigate the dynamic
control of a soft robotic arm. First, a modular soft robotic hardware
and an affordable actuator-space encoder were presented. We then
discussed the soft robot modeling, and adaptive passivity control
strategy with stability proof. The proposed controller was tested
in different operation scenarios, and compared to the standard
PD feedback linearization control and passivity control. In all
experimental settings, the adaptive passivity control scheme was
able to achieve superior performance, even with significant mod-
eling uncertainties and disturbances. The theoretical analysis and
experimental validations of the proposed controller will pave the
way toward the practical implementations of the soft robotic system
in the dynamic scenarios.

Index Terms—Soft robot, dynamics, adaptive control.

I. INTRODUCTION

S
OFT robots, inspired by nature, have been introduced to
the robotics community to provide abilities that can sur-

pass their rigid counterparts [1]. These robots are made from
inherently elastic materials such as silicone or rubber, emulating
biological structures while improving robot safety and compli-
ance [2]. They can be considered as the infinite degree of freedom
systems due to the elastic materials, which can present differ-
ent adaptive, agile motions ranging from elongation, twisting,
bending, etc. [3]. These behaviors make soft robots an ideal tool
for different applications, including grasping [4], [5], medical
procedures [6], [7], rehabilitation [8], agricultural harvesting [9],
snake locomotion [10], etc. Among them, manipulation has often
been considered one of the most important robotic applications.
Despite much progress have been made in the past 20 years, con-
trolling these soft robots to achieve desired tracking performance
in dynamic operation scenarios remains challenging [11].
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Generally, model-based control has been the predilection of
robotics researchers for dynamic control due to the availability of
stability proofs. However, the primary limitation is the require-
ment of accurate system model in order to cancel out the dy-
namics. Accurate modeling in soft robots can be achieved using
Cosserat rod theory [12], [13] and finite element methods [14],
but both have the limitation of real-time implementation in the
complicated soft robotic systems due to their computationally
expensive calculations [15]. Several groups have been address-
ing these problems by proposing modified approaches, but still,
their real-time implementations in complicated robotic systems
are understudied [16]. Another approach is to use simplified
assumptions, for example, lumped parameter models, derived
from the piece-wise constant curvature (PCC) assumption and
Euler-Lagrange formulations can be considered as suitable
candidates for real-time implementations [17], [18]. However,
lumped parameter models are susceptible to uncertainties that
limit accuracy and applicability. To resolve this issue, a robust
control algorithm that can address unknown factors is required
to achieve the desired performance.

There is an ongoing trend to explore advanced control strate-
gies for uncertainty compensation in soft robots. Azizkhani
et al. [19] considered the dynamics of a 1-DOF soft robot
actuator as a second-order model while the variation in sys-
tem parameters along with unknown dynamics and external
disturbances were compensated with a robust model reference
adaptive controller. Godage et al. [20] modeled the system
dynamics as a second-order system with hysteresis and used it
to cancel out the dynamics, while the remaining effects were
compensated by a PID controller. In another study [21], a
nonlinear controller with unscented Kalman filter and feedback
linearization was used to control a bending actuator. In our
previous study [22], we have shown that an adaptive passivity
control with sigma modification can handle parametric uncer-
tainty, external disturbances, payloads, sensor noise, and achieve
fast tracking with improved performance compared to the con-
ventional PD Feedback linearization [23], [24]. Other studies
have also demonstrated the use of adaptive controllers to address
the uncertainties and unknown dynamics in soft robotic arms,
such as implementing adaptive control [25] inspired by [26],
and adaptive terminal sliding mode control [27] to improve
convergence speed. However, fast and dynamic robot trajectory
tracking on physical hardware is still lacking. For example,
Falkenhahn et al. [24] focused on set-point tracking instead of
trajectory tracking. In [27], trapezoidal paths were used for robot
tracking with a maximum speed and acceleration of 0.11 m/sec
and 0.05 m/sec2, respectively.

In this letter, we build upon our prior work [22] by imple-
menting the proposed controller on a soft robotic arm, enabling
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Fig. 1. Exploded view of the soft robotic actuator.

tracking speeds and accelerations of up to 0.15 m/sec and
0.45 m/sec2, respectively. We provide four contributions in this
letter: (1) incorporation of an affordable actuator-space encoder,
eliminating the need for observer-based velocity measurements
in the actuator space, (2) derivation of the stability proof, in-
cluding signal boundedness and error convergence of the closed
system, (3) investigation of the dynamic tracking of the adaptive
passivity controller, and (4) compensation of disturbances and
uncertainties in challenging scenarios during trajectory tracking.
By investigating the advantages and limitations of the proposed
controller, we aim to pave the road for versatile soft robotic
manipulation in practical applications, such as harvesting or
food automation. The rest of the letter is organized as follows.
Section II presents the hardware design. Section III briefly
reviews the kinematic and dynamic model. Section IV briefly
reviews PD feedback linearizaton, and passivity control, and
primarily focuses on the controller derivation and stability proof
of the adaptive passivity controller. In Section V, the system
experimental results and discussions are provided. The letter is
concluded in Section VI.

II. HARDWARE DESIGN

In this section, we aim to provide a modular, affordable soft
robotic arm design by detailing the fabrication process and item
number for both the soft actuator and encoder unit, respectively.

A. Soft Actuator Design

The elongation actuator consists of a 15 cm silicone rubber
segment (4G-60518-latex tube, Feelers, USA) surrounded by
a 45 cm mesh (B00ZCNTIRQ, Electriduct, USA) (Fig. 1).
The silicone segment has an inner diameter of 12 mm and
an outer diameter of 17 mm. The mesh has a width (prior to
compression) of 5/8”. The length pair with these dimensions
results in a 65% potential elongation. The silicone segment
is cut using standard scissors; however, the mesh segment is
cut to length using a soldering station (5040-XR3, X-TRONIC,
USA) to prevent fraying at the mesh ends. A custom-designed
plug has been developed for both the distal and proximal end
of the actuator to provide a modular attachment method to
the base of the soft robot section. The plug is manufactured
using a stereolithography (SLA) printer (Form 3B, Formlabs,
USA) to provide an air-tight seal. Two clamps (B078BRJK8Z,
LOKMAN, China) are used at both ends to prevent air leakage.
Sacrificial tubing (Z20210816W25, VictorsHome, USA) is used
between the elongating mesh and the clamps to mitigate the risk
of tearing due to the metal clamps and large moments existing at
the base of the silicone rubber. Clamping nuts and washers are
used to connect the actuator to the main plates of the soft robot
section (Fig. 2).

Fig. 2. (a) 3-DoF soft robot prototype along with (b) the proposed string
encoders for actuator-space measurements.

To enhance the robot stiffness for high-payload applications,
two actuators have been placed in parallel to create a rein-
forced elongation actuator, a distinct difference from our prior
work [22]. The placement of each actuator pair is 120 degrees
apart around the central axis. Note that their inlets are connected
via a T-shape fitting. This enables identical joint elongation with
significantly increased stiffness, allowing for quick customiza-
tion for different application requirements. As can be seen in
Fig. 2, four intermediate plates have been used to constrain the
robot to allow applicability of the piece-wise constant curvature
(PCC) assumption.

B. Encoder Design

The kinematic variables of a soft robotic arm are defined
by the length change of each actuator. Measurement of the
actuator-space variables can be obtained using the string en-
coders [Fig. 2(b)]. In this letter, we present a custom-designed
string encoder developed based on the standard quadrature en-
coder (B07MX1SYXB, Taiss, China). Although off-the-shelf
string encoders exist, developing our own encoder improves
affordability and enables compact packaging with the proposed
soft robotic system. The quadrature encoder is attached to a
3-D printed housing that contains a 3-D printed spool with a
monofilament string (BGQS30C-15, Berkley, USA). The spool
is attached to the assembly in two ways: (i) directly attached
to the quadrature encoder via a keyed shaft, and (ii) to the
housing via a rotary spring (9293K112, McMaster, USA). Thus,
the spool directly drives the encoder when the monofilament
string is pulled, and the rotary spring returns the spool to the
starting position when the monofilament string is released. The
rotatory quadrature encoder provides a resolution of 600 pulses
per revolution, resulting in a 0.03 mm linear resolution when
coupled with the spool. Using basic geometry knowledge, the
relation between elongation and encoder output is described as
follows:

∆l =
2πre
4n

p (1)

where re is the radius of the encoder rotor, n is the number of
pulses per revolution, 4 is for quadrature reading of the encoder,
and p is the input pulse. Thus, the actuator elongation can be
obtained when the monofilament string is routed through holes
in the proximal, distal, and intermediate plates with a fixed offset
from the soft actuators.
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III. SYSTEM MODELING

A. Kinematic Modeling

In this section, we briefly review the kinematic modeling of
the soft robotic arm based on [22], [28]. To define the robot’s
position in 3D space, two mappings have been used: (i) actuator
space to configuration space, and (ii) configuration space to task
space.

1) Actuator Space to Configuration Space: To define the re-
lationship between actuator variables to configuration variables,
the length of actuators is considered as follows

Li(t) = L0 + li(t) (2)

where Li represents the ith actuator total length, L0 is the
initial length, and li is the ith actuator elongation. The actuator
variables vector is represented by q = [l1, l2, l3]

T and q ∈ R
3.

The mapping is derived based on the geometrical location of the
actuators (120 degrees apart with a constant radius from the base
center) and PCC assumption as follows

s =

√

l1
2 + l2

2 + l3
2 − l1l2 − l2l3 − l1l3, φ =

2 s

3rk

λ =
(3L0 + l1 + l2 + l3)rk

2 s
, θ = arctan

( √
3(l3 − l2)

l2 + l3 − 2l1

)

(3)

where φ ∈ [0, 2π) is the bending angle of the arc, λ ∈ (0,∞)
is the radius of the curvature, θ ∈ [−π, π] is the bending angle
with respect to the X-Axis, and rk is the distance of actuators
from the center of plate (46.32 mm in this work).

2) Configuration Space to Task Space: The homogeneous
transformation T ∈ SE(3) is defined as follows:

T (ξ, q) = Rotz(θ)Transx(λ)Roty(ξφ)Transx(−λ)Rotz(−θ)
(4)

where Rotγ and Transγ define a homogeneous transformation
in SE(3) for rotation around γ axis and translation along γ
axis, respectively. ξ ∈ [0, 1] is an auxiliary variable that defines
an imaginary disk between the proximal (ξ = 0) and distal end
(ξ = 1).

B. Dynamic Modeling

The dynamic model of the robot can be derived using the
Euler-Lagrange formulation [17], [22]

M q̈ + Cq̇ +Dq̇ +Kq +G+H = JTF ext + τ (5)

where M represents the inertia matrix, C represents centrifugal
and Coriolis force matrix, D represents the damping force
matrix, K represents the stiffness matrix of the system, G is the
gravitational force matrix, andH represents hysteresis behavior.
Fext represents external forces, J is the Jacobian of the system
with respect to the base frame, and τ is the resulting forces from
input pressure acting upon the actuators.

The inertia matrix is calculated as

M = Mw +Mv (6)

where Mw and Mv are generalized angular and linear inertia
matrices and are derived as follows

Mw[j, k] = Ixx

∫

ξ

T2

[(

∂R

∂q(j)

)(

∂R

∂q(k)

)]

Mv[j, k] = m

∫

ξ

(

∂P

∂q(j)

)(

∂P

∂q(k)

)

(7)

where R ∈ SO(3) represents the rotation matrix and P ∈ R
3 is

the position of the robot, which is a function of ξ that describes
all nodes from the proximal to the distal end of the robot. T2 is
an operator which sums the first two elements of the principal
diagonal R3×3 matrix. m is the mass of the continuum section
and Ixx is the moment of inertia and is derived as Ixx = 1

4
mr2k

[18].
The centrifugal and Coriolis matrix is defined as follows

C[k, j] =
3

∑

i=1

Γijk(M)q̇(i)

Γijk(M) =
1

2

(

∂M [k, j]

∂q(i)
+

∂M [k, i]

∂q(j)
− ∂M [i, j]

∂q(k)

)

(8)

where i, j, k ∈ {1, 2, 3} are placeholders that represent the index
for actuator variables.

Furthermore, the gravitational forces are derived as

G(i) = m

∫

ξ

JvT (i)RTGv (9)

where Gv = [0, 0, g]T , i ∈ {1, 2, 3}, and Jv is the Jacobian of
the moving frame.

It should be noted that the hysteresis behavior is an inherent
characteristic of soft robotic systems. In this study, we will use
the Bouc-Wen model [29] to describe the hysteresis as follows

ḣi = q(i) [αh − {βhsgn(q̇(i)hi) + γh} |hi|] (10)

where αh, βh, γh are the constant parameters of the model and
H = [h1, h2, h3]

T in (5).

IV. DYNAMIC CONTROLLER DESIGN

A. Proposed Control: Adaptive Passivity (AP) Control

To compensate for the modeling uncertainties and external
disturbances, we will propose the adaptive passivity controller
here [22], [30], as detailed below

v = q̇d − Λq̃,a = v̇ = q̈d − Λ ˙̃q, r = q̇ − v = ˙̃q + Λq̃

τ = M̂(q)a+ Ĉ(q, q̇)v + Ĝ(q)−KGr + K̂q + D̂v (11)

where [̂] parameters define the estimated values of the original
parameters in (5), and KG and Λ are R

3×3 positive definite
diagonal matrices where their elements are equal to kg andΛAP ,
respectively. As suggested previously [22], the most dominant
dynamic effects of the system are the stiffness and the damping.
Therefore, to compensate for those parameters, an adaptive term
is used to provide more robustness for the bound of uncertainties.
The uncertainties in the remaining dynamic terms, including
gravity, Coriolis, centrifugal and inertial effects, are compen-
sated using a robust term −KGr. The reason for using a robust
term instead of an adaptive term lies in the simplicity, reducing
complexity and eliminating a computationally expensive regres-
sor matrix for uncertainties in the less dominant G, M , and C
terms. In our previous letter [22], C, M , and G were assumed to
be accurate; however, in this study, due to the implementation of
actuator pairs, uncertainties could exist. In the following section,
we show that the proposed approach still maintains sufficient
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stability in this scenario and the error converges to a small
bound. To provide a better form for the stability proof, (11)
is reformulated as

τ = M̂(q)a+ Ĉ(q, q̇)v + Ĝ(q)−KGr + Yp(q, q̇,a,v)θ̂p
(12)

where Yp represents the regressor matrix for uncertain and

varying parameters θ̂p. Due to computational complexity and

low effect, the C matrix was assumed to be a R3×3 zero matrix,
and the M̂ and Ĝ are used in the control rule without any adap-
tation. The only parameters that will be updated are stiffness and
damping variables, which are the dominant effects on the system
dynamics. The regressor matrix and adaptable parameters are
described as follows

Yp = [diag([q(1), q(2), q(3)]), diag([v(1), v(2), v(3)])]

θ̂p =
[

K̂1, K̂2, K̂3, D̂1, D̂2, D̂3

]T

, (13)

B. Stability Proof

Derivation of the stability proof starts with implementing the
control rule (12) into (5) without considering the external forces,
and by adding and subtracting Ma, Cv and Dv in the left-hand
side, providing

M ṙ + (C +D +KG)r = M̃a+ C̃v + G̃+ Ypθ̃p (14)

where [̃] = [̂]− [], is the difference between the estimated pa-
rameter and its true value. Defining the Lyapunov function

V =
1

2

(

rTMr + θ̃p
T
Γθ̃p

)

(15)

where Γ is defined as a R
6×6 positive definite diagonal matrix

and the non-zero elements are defined asΓ(i, i) = Γk andΓ(i+
3, i+ 3) = ΓD.ΓK andΓD are adaptation gains for stiffness and
damping coefficients, respectively. By considering the modeling
error we define the KG(i, i) such that [31]

KG(i, i) ≥
∣

∣

∣

[

M̃a+ C̃v + G̃
]

i

∣

∣

∣
+ ηi (16)

where ηi is a strictly positive constant and i ∈ {1, 2, 3}. Now,
by differentiating the Lyapunov function we have

V̇ = rTM ṙ +
1

2
rT Ṁr + θ̃p

T
Γ ˙̃
θp (17)

By using (14), we obtain

V̇ =
1

2
rT

(

Ṁ − 2C
)

r − rT (D +KG)r + rTYpθ̃p

+ θ̃p
T
Γ ˙̃
θp + rT

(

M̃a+ C̃v + G̃
)

(18)

Knowing that Ṁ − 2C is skew-symmetric, the term rT (Ṁ −
2C)r will be zero. It is true that we are considering C as a zero
R

3×3 in the control rule, but the skew-symmetric property of

Ṁ − 2C in simple mechanical systems, similar to the dynamic
model under consideration, holds. The model uncertainty in

Ĉ has been considered in C̃ which due to its minimal effect,
relative to M̂ , will be compensated by the robust term. Using
the following adaptive rule

˙̂
θp = −Γ−1Y T

p (q, q̇,a,v)r (19)

and (16), we obtain the following equation

V̇ ≤ −rT (η +D)r (20)

where η is a R3×3 diagonal matrix with non-zero elements equal

to ηi for i ∈ {1, 2, 3}. Since V̇ is negative semi-definite and V

is positive definite, we can conclude that r and θ̃p are bounded.
The boundedness in r also guarantees the boundedness of q and

q̇ since r = ˙̃q + Λq̃ can be considered as a stable first-order
differential equation for q̃ with the input r. In addition, since
qd and q̇d are bounded, the boundedness of q and q̇ will be
guaranteed [31]. Now, by using Barbalat’s lemma, if we show

that V̈ is bounded we can conclude as t → ∞, V̇ → 0. which
will guarantee r → 0 as t → ∞. By differentiating V̇ we have

V̈ = −rT (η +D)ṙ (21)

Considering (14) and the positive definiteness of M , which
guarantees the existence of M−1, we can conclude that ṙ and

therefore V̈ is bounded [31]. Thus, we can say as t → ∞, r → 0,

which implies q̃, ˙̃q → 0 as t → ∞.
It should be noted that our main objective is to control the

system to track the desired trajectories while maintaining the
stability of the system, which is equivalent to the boundedness
of all the signals. The convergence of adaptable parameters to
their true value is out of the primary interest, and they only need
to remain bounded [26].

C. Benchmark Controllers: PD Feedback Linearization

(PDFL) and Passivity Control (PC)

To highlight the superiority of the proposed adaptive passivity
controller, two benchmark controllers are briefly introduced
here. We will first consider the widely used PD Feedback
linearization controller [22], [30], which is defined as follows

τ = M
(

q̈d −Kd
˙̃q −Kpq̃

)

+ Cq̇ +Dq̇ +Kq +G (22)

where Kp and Kd are R
3×3 positive definite diagonal matrices

where their elements are equal to kp and kd respectively. The
second controller is the passivity controller, where the control
rule is the same as (11) but without any adaptation and only
consists of constant gains [22].

V. EXPERIMENTAL STUDY

A. Experimental Setup

The experimental setup consists of three proportional pres-
sure regulators (ITV 1031-21N2BL4, SMC Corporation) with
embedded pressure sensors for pressurizing the actuators. The
valves are connected to a compressor with an output pressure of
70 psi. The control algorithm was implemented on a Simulink
xPC target machine that is connected to an analog output board
(DAC6703, National Instrument) which provides 0-5 V signal
to control the pressure regulators. The encoders’ output was
measured with a 32-bit counter PCI (CNT32-8 M, Contec).
The algorithm, analog outputs, and measurements are executed
with a 1KHz sampling rate. An optical camera (MicronTracker,
Claronav, Toronto, Canada) was used to measure the robot tip
positions at 16 Hz.
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Fig. 3. The left image depicts the input pressure sent to the system. In the right
image, the blue shows the measured elongation from the robot and the red is the
output from the simulated model in MATLAB.

Fig. 4. (Left) End-effector position 3D space. Red indicates the measured
results, and black indicates the modeled results. (Right) The end-effector motion
error plot.

B. System Parameter Identification

System dynamic parameter identification was performed us-
ing a chirp signal applied to the regulator of one actuator pair as
shown in Fig. 3. Note that parameters may vary between actuator
pairs; however, the proposed adaptive control can compensate
for these uncertainties. The optimization algorithm is set to
constraint nonlinear least square with cost function of sum
squared error. The input pressure and system response in simu-
lation and robot hardware are depicted in Fig. 3.

The identified parameters are summarized as follows

D = 130.42I3×3, m = 1.17, αh = 4.78,

K = 538.18I3×3, βh = 17.67, γh = −68.95 (23)

where I is the Identity matrix. The variables m, K, and D have
units of kg, N/m, and N · s/m, respectively, and the rest of the
parameters are constants.

C. Kinematic Validation

In this section, we validate the kinematic mapping from
actuator-space to task-space. To perform this experiment, each
pneumatic muscle actuator is actuated based on a pre-defined
signal input. Using the encoder measurements, the task-space
end-effector position is calculated and the end-effector position
is measured via the stereo camera. The RMSE between the
measured value and the modeled value is then evaluated, as
shown in Fig. 4. The end-effector error is 5.06±3.25 mm,
which is approximately 3.4% of the robot length. This error is
expected to come from imperfect actuator length measurements.
However, the overall error is within an acceptable range.

D. Dynamic Trajectory Tracking

In this section, the dynamic trajectory tracking performance
is investigated. The robot is required to follow a circular path,
and the desired actuator variables are defined using closed-form
inverse kinematics. To achieve this, first, configuration variables

TABLE I
CONTROL PARAMETERS FOR AP AND PDFL

will be calculated based on the desired position [32].

θ = arctan2(Py, Px), λ =
Px

2 + Py
2 + Pz

2

2
√

Px
2 + Py

2

,

φ = arcsin

(

Pz

λ

)

(24)

Using (24) and the geometrical location of the actuators, the
actuator-space variables can be calculated as follows [28]

li =

[

λ − rk cos

(

2π

3
(i− 1)− θ

)]

φ− L0 (25)

where i ∈ {1, 2, 3}. To further highlight the performance of
the system, the system behavior will be examined with various
trajectory frequencies (1 rad/s, 3 rad/s), payloads (200 g and
500 g, and external disturbances. The system is required to
follow a circle with a 5 cm radius in the XY plane, written
as follows

X = 0.05 sin(ωt), Y = 0.05 cos(ωt), Z = 0.19 (26)

where X,Y , and Z units are in meters. The control parameters
are shown in Table I. It should be noted that all the following ex-
periments are implemented for 60 seconds. All the experiments
were recorded and submitted as supplementary materials.

1) Trajectory Tracking With ω = 1 rad/s and 3 rad/s Without
Load: First, the system was evaluated using the path (26) and
ω = 1 rad/s, where high-frequency dynamics do not signifi-
cantly impact the system. The results in both the actuator-space
and task-space are provided to highlight the system performance.
Due to camera sampling limitations (i.e. sampling speed and
visual obstructions), the robot end-effector position in the tra-
jectory tracking experiments are calculated based on encoder
measurements and forward kinematics.

As can be seen in Fig. 5 first row, the AP and PC present a
smooth response with good accuracy. In the AP case, after a fast
transient response, where the adaptive parameters are updated,
the steady-state response accurately followed the desired trajec-
tory, while the PDFL presents overshoot, and lost performance at
different states. To further highlight the difference among these
controllers, only the time window between 15-30 seconds has
been depicted for actuator space tracking. The remaining figures
show the result with a duration of 60 seconds. Since we are using
the true parameters, as the results suggested in [22], PC should
perform close to AP results, which is proved to be true from
our experimental results. After increasing the frequency to ω =
3 rad/sec, as depicted in the second row of Fig. 5, the tracking er-
ror has increased due to the high-frequency dynamics. However,
even at higher speeds, the AP still outperforms the benchmark
controllers. In both experimental scenarios, the adaptive terms
were plotted in Fig. 5, showing the boundedness of these values
and highlighting the robustness of the closed-loop system.

2) Trajectory Tracking With ω = 1 rad/s and 3 rad/s Sub-
jected to a 200 g Payload and External Disturbances: In this
section, trajectory tracking was performed with an external load
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Fig. 5. Trajectory tracking in actuator space and task space along with the evolution of adaptive parameters through time. The AP is in red, PDFL in blue, PC in
green, and the desired trajectory in black. The first row represent the results for ω = 1 rad/s and second row for ω = 3 rad/s.

Fig. 6. Trajectory tracking in actuator space and task space along with the evolution of adaptive parameters through time. The AP is in red, PDFL in blue, PC in
green, and the desired trajectory in black. The first row represent the results for ω = 1 rad/s and second row for ω = 3 rad/s. The system is subjected to a moving
200 g load.

and unknown disturbance. A 200 g payload is loosely attached
to one of the holes on the end plate (refer to the supplementary
video). The loose connection style was intentionally chosen such
that the load will move in an unpredictable manner during opera-
tion, pushing the limit of the controllers by introducing external
unknown force with unpredictable directions. The results are
depicted in Fig. 6.

As can be seen, both AP and PC maintain their tracking
performance while the PDFL presented an oscillatory response,
which highlights its poor robustness. This experiment showed
the disturbance rejection ability of the proposed AP and PC. To
further explore the capability of the AP controller, the speed of
the desired path was increased to ω = 3 rad/s. The results are
shown in the second row of Fig. 6. As can be seen, similar to
the free-space tracking results, as the speed increases, the error
bound also increases. However, the AP and PC still retain their
stability. It should be noted that the AP controller outperforms
the PC which indicates that the AP can compensate for variations
in external disturbances. The adaptable parameters remained
bounded, which is a strong evidence that in the presence of exter-
nal disturbance the stability is maintained due to robust+adaptive
structure of the proposed AP controller.

3) Trajectory Tracking With the ω = 1 rad/s and 3 rad/s
Subjected to a 500 g Payload and External Disturbances: To
push the controller limit even further, we increase the 200 g
load to 500 g. As can be seen in first row of Fig. 7, the
disturbance effect is substantial to the system. However, even in

this situation, the soft robotic hardware, along with the AP con-
troller, maintained stability and outperforms the benchmarks,
despite the increased tracking error. It should be noted that lower
gains have been used for PDFL in this scenario (kp = 302 and
kd = 60) as the previous gains resulted in instability. To further
challenge the controllers, the tracking speed was increased to
ω =3 rad/sec. As can be seen in the second row of Fig. 7, the AP
controller achieved the best control performance. The adaptive
parameters are also remained bounded in both scenarios which
further highlights the robustness of the system.

4) Parametric Uncertainty: As we see in previous experi-
ments, the performance of the PC and AP controllers is not far
from each other. The reason lies in the accurate modeling and
system identification. To highlight the adaptive ability of the AP
controller, an additional experiment was been conducted where
it has been assumed that the parameters have 50 % inaccuracies.
As can be seen in Fig. 8, the AP exhibits superior tracking ac-
curacy with respect to the other controllers. In fact, the adaptive
passivity controller shows about 52.4 % improved performance
with respect to the passivity controller. The adaptive parameters
also remained bounded.

5) Disturbance Rejection: To validate the robot’s stability,
the robot was commanded to follow a desired circular tra-
jectory with ω =1 rad/sec while an external disturbance with
high force in different directions was been exerted onto the
system (i.e. prodding the robot). The results are depicted in
Fig. 9. As can be seen, all controllers have maintained their
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Fig. 7. Trajectory tracking in actuator space and task space along with the evolution of adaptive parameters through time. The AP is in red, PDFL in blue, PC in
green, and the desired trajectory in black. The first row represent the results for ω = 1 rad/s and second row for ω = 3 rad/s. The system is subjected to a moving
500 g load.

Fig. 8. Trajectory tracking in actuator space and task space along with the
evolution of adaptive parameters through time with 50 % uncertainty in stiffness
and damping parameters. The AP is in red, PDFL in blue, PC in green, and the
desired trajectory in black for ω = 1 rad/s.

stability while the AP controller showed superior performance
with respect to others by returning to the desired path faster
after the disturbance was removed. As we expected, the PC has
outperformed the PDFL algorithm, and adaptable parameters
remained bounded.

E. Discussion

To provide a comprehensive overview of the proposed con-
troller in different experimental scenarios described above, we
summarize the L2 norm of the error in task-space of the above
experiments in Fig. 10 and Table II.

1) Path Speed Effect on Tracking Performance: Based on
Fig. 10, it can be seen that the speed will result in reduced
tracking accuracy in all the controllers. This can be further high-
lighted by comparing the mean of the L2 norm error according
to Table II. It is obvious that the AP maintained its stability and
performance despite the increase of the error, which highlights
the robustness and adaptation capabilities. For manipulation pur-
poses, accuracy and consistency are the most important factors,
and both can be achieved using our proposed method. It can be
argued that tracking accuracy in AP can be potentially improved

Fig. 9. Trajectory tracking in actuator space and task space along with the
evolution of adaptive parameters through time in the presence of constant
disturbance with different magnitudes and directions. The AP is in red, PDFL
in blue, PC in green, and the desired trajectory in black for ω = 1 rad/s.

Fig. 10. Boxplot for highlighting the results in different scenarios for AP,
PC, and PDFL. The code for the X-Axis from left to right is as follows:
[Control Type]-[Free(F) or Loaded (L)][m*100 g payload]-[Speed of the path in
rad/s][W= wrong stiffness and damping parameters, D = Disturbance rejection
scenario][Data ID].
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TABLE II
MEAN L2 ERROR OF TRACKING IN TASK SPACE [MM] AND IS HIGHLIGHTED

BY WHITE ROWS

with high gain, but it will inevitably increase the chattering
and non-smooth behavior of the robot, leading the system to
instability due to increasing the aggressiveness of the controller.
Alternative strategies for high-speed effects compensation are
discussed in Section VI.

2) Disturbance/Payload Effect on Tracking Performance:
According to Table II, the mean L2 error for PDFL approach
has increased after introducing external load/disturbances into
the system. However, the AP and PC, retained their performance
and stability, and the results also indicated that the variation was
minimal, which highlighted their robustness. It should be men-
tioned that in all scenarios AP outperformed the PC controller
in terms of accuracy.

VI. CONCLUSION

In this letter, we present the soft robot hardware and encoder
design to investigate the control strategy for different operation
scenarios. The letter is an extension of our prior theoretical
work [22], with new efforts focused on controller stability
proof and experimental validations. With the robust hardware
prototype, we have experimentally shown that the proposed
AP control scheme can maintain its tracking performance in
challenging operation scenarios where the classic PDFL or PC
strategies typically fail. In our future studies, we plan to address
the dynamic control of a multi-section soft robotic arm by
designing a controller which can adapt to uncertainties and the
probabilistic behavior of the robot. Implementing the probabilis-
tic methods along with adaptive ability could compensate for the
uncertainties in a fast and smooth manner, which can result in a
more robust and consistent performance at higher speeds that can
be crucial for certain industrial applications, such as pick-place
tasks.
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