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AbstractÐSoft robotic snakes made of compliant materials
can continuously deform their bodies and, therefore, mimic the
biological snakes’ flexible and agile locomotion gaits better than
their rigid-bodied counterparts. Without wheel support, to date,
soft robotic snakes are limited to emulating planar locomotion
gaits, which are derived via kinematic modeling and tested on
robotic prototypes. Given that the snake locomotion results from
the reaction forces due to the distributed contact between their
skin and the ground, it is essential to investigate the locomotion
gaits through efficient dynamic models capable of accommodat-
ing distributed contact forces. We present a complete spatial
dynamic model that utilizes a floating-base kinematic model with
distributed contact dynamics for a pneumatically powered soft
robotic snake. We numerically evaluate the feasibility of the
planar and spatial rolling gaits utilizing the proposed model
and experimentally validate the corresponding locomotion gait
trajectories on a soft robotic snake prototype. We qualitatively
and quantitatively compare the numerical and experimental
results which confirm the validity of the proposed dynamic model.

Index TermsÐDynamic Modeling, Locomotion, Soft Robotic
Snakes.

I. INTRODUCTION

Snakes’ unique physical structure with spatial bending

capabilities enables them to overcome numerous challenges

in their habitats. They frequently use lateral undulation,

sidewinding, rectilinear, and concertina locomotion gaits to

navigate terrains. Additionally, snakes use rolling gaits for

multiple purposes such as climbing trees efficiently, moving

their bodies sideways quickly on uneven terrains and slopes,

crossing over obstacles, handling prey, fighting, etc. Over

the years, roboticists have developed various robotic snake

prototypes to harness these unique characteristics [1]. Com-

pared to traditional rigid-bodied robotic snakes, the continuous

bending capability of soft robotic snakes (SRSs) increases their

adaptability and flexibility with the environment.

This work is supported in part by the National Science Foundation (NSF)
Grants IIS-2008797, CMMI-2048142, CMMI-2133019, and CMMI-2132994.
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Fig. 1. Soft robotic snake prototype lying on a carpeted floor.

Snake locomotion results from differential friction reaction

forces between the skin and the contact surface (friction

anisotropy) [2]. Therefore, to accurately emulate snake loco-

motion, it is essential to study their locomotion gaits through

dynamic models that include anisotropic frictional forces.

Existing snake robots lack dynamic models that can accurately

and efficiently mimic seamless snake locomotion.

Generating dynamic models for continuum robots is difficult

due to the significant deformation they undergo [3]±[6]. Re-

searchers have proposed several dynamic modeling techniques

for continuum robots over the years [7]. Lumped parameter

models such as those reported in [8] used piecewise-constant

curvature approximation of robot shape. Those models did not

account for axial deformation and become invalid when the

robot is subjected to complex external loading. The discrete

Cosserat approach [9] and finite element methods [10] have

also been used to derive the dynamics of multisection con-

tinuum robots. Their use is limited in real-time applications

since they involve computationally expensive calculations.

To date, many dynamic models for rigid robotic snakes

have been proposed [11]. The rigid robotic snakes made of

discrete rigid units inherently lack continuous skin, hence their

dynamic models do not reflect organic snake locomotion.

Prior work on dynamic modeling of SRSs includes [12]±
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Fig. 2. (A) SRS prototype ± serially arranged soft bending section assembly
without rubber skin. (B) Silicone tubes of PMAs, (C) Adding Nylon braided
mesh on Silicone tubes to fabricate PMAs, (D) Constrainer plates to maintain
PMA spacing, (E) Mounting frames (end-plates).

[14]. Their work is limited to wheeled SRSs and present planar

locomotion dynamics of segmented SRSs. Compared to [12],

dynamic models in [13] and [14] incorporated anisotropic

friction forces acting on SRS wheels and described planar

locomotion. But, wheeled SRS dynamic models offer limited

utility when imitating spatial SRS locomotion gaits with

distributed skin-ground contact forces. However, no spatial

dynamic models for SRS that support distributed contact

models exist.

In our previous work [15], we proposed a pneumatic muscle

actuator (PMA) powered SRS. We showed the utility of

spatial bending to derive SRS locomotion gaits without wheels

through planar rolling. Therein, the jointspace trajectories

(length variation of PMAs) for rolling locomotion derived via

the complete kinematic model were directly tested on the SRS

prototype on a trial-and-error basis. In this work, we extend

the proposed planar rolling approach to validate spatial rolling

gaits on SRSs. Hence, a spatial dynamic model of the SRS is

beneficial to validate the gait performance.

Godage et al. in [16]±[18] proposed dynamic modeling

for variable-length continuum arms based on an integral

Lagrangian approach. In [18], they proposed a new spa-

tial dynamic model for multi-section continuum arms and

validated using a pneumatically actuated prototype. Yet, it

did not include contact modeling. In this work, we modify

the dynamic model in [18] by adding contact dynamics to

accommodate SRS locomotion. Extending [18], in this work,

we, i) present a complete spatial dynamic model with contact

dynamics for SRSs, ii) evaluate the model in a simulation

environment, and iii) validate the model on an SRS prototype

for planar and spatial rolling gaits.

II. KINEMATIC MODELING

A. Prototype Description

The SRS prototype shown in Fig. 1 is assembled using three

serially attached soft bending units (i.e. sections) shown in

Fig. 2A. An SRS section is actuated by three McKibben-type

extension-mode PMAs [19], [20]. PMAs are fabricated using

commercially available Silicone tubes, pneumatic union con-

nectors, Nylon braided sleeves, and high strength Polyethylene

fasteners (Figs. 2B and 2C) [21]. Within bending sections,

PMAs are mounted tri-symmetrically at a π
3

angle from each
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Fig. 3. SRS schematics illustrating (A) PMA arrangement of a bending section
and (B) 3-section robot.
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Fig. 4. Gait visualization ± (A) Planar and (B) Spatial rolling.

other and 0.0125m radius from its centerline using 3D-printed

mounting frames at either end (Fig. 2D). A PMA axially

extends upon pressurizing and can sustain pressures up to

4 bars. The unactuated length of a PMA is 0.15 m and can

extend 50% at 4 bars. The 0.0025 m thick, laser-cut Delrin

constrainer plates (Fig. 2E) help maintain PMA clearance to

the central axis of a section as well as adjacent PMAs during

operation without torsion and buckling. Further, hollowed

symmetrical design of bending sections facilitates the routing

of pneumatic supply lines within the robot structure. When

pressurized, the pressure difference of PMAs generates a

torque imbalance at the mounting end plates (Fig. 2D). Based

on the induced pressure differential, this torque facilitates the

omnidirectional bending deformation of SRS bending units.

We assemble the SRS by serially connecting the bending

sections via mounting frames with a π
3

angular offset (enlarged

image in Fig. 2A). This angular offset allows the pneumatic

tube routing without impeding the functionality of adjacent

bending sections. We use a uniform rubber skin (Fig. 2A) to

wrap the outer surface of the SRS to form a continuous skin-

like layer for achieving uniform friction during operation. The

unactuated SRS prototype is 0.60 m in length and weighs

0.35 kg. As there are 9, independently controlled PMAs, the

SRS has 9 actuated degrees of freedom (DoF).

B. Robot Kinematic Model

In our previous work [15], we derived the model kinematics

of the 3-section SRS along its neutral axis. In this work,

we extend its results to kinematically represent the SRS skin

(i.e., robot boundaries where we implement contact points).

We parameterize the SRS skin at a radius, ri from the SRS

neutral axis with an angular offset σi ∈ [0, 2π] as shown in

Fig. 3B. Considering any ith section (i ∈ {1, 2, 3}) of the SRS

schematic shown in Fig. 3A, the homogeneous transformation

7
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Fig. 5. Trajectory curves of (A) planar & (B) spatial rolling gaits relative to
the robot origin. Jointspace trajectories of (C) planar & (D) spatial rolling
gaits during a gait cycle. In planar rolling, joint variables overlap each other.

matrix (HTM) at any point on the skin of an SRS section,

Ti ∈ SE (3) can be derived as

Ti (qi, ξi) =

[

Ri (qi, ξi) pi (qi, ξi)
0 1

]

· · ·

[

Rz (σi) 0

0 1

] [

1 px (ri)
0 1

]

(1)

where Ri ∈ SO (3) and pi∈ R
3 denote the rotational matrix

and the position vector, respectively. ξi ∈ [0, 1] is a scalar

that defines points along a section, where the values 0 and

1 correspond to the origin and tip of a section, respectively.

Rz ∈ SO (3) is the rotation matrix about the +Z and px ∈ R
3

± translation matrix along the +X of {O′
i} is used to express

modal kinematics on the robot skin.

By integrating a floating-base coordinate frame, Tb ∈
SE (3) with (1), the complete kinematic model of the 3-section

SRS was derived as

T (qb, qr, ξ) = Tb (qb)
3
∏

i=1

Ti (qi, ξi)

=

[

R (qb, qr, ξ) p (qb, qr, ξ)
0 1

]

(2)

where qb = [xb, yb, zb, α, β, γ] ∈ R
6 denotes the floating-base

coordinate system parameters with [xb, yb, zb] and [α, β, γ]
defining the linear and angular displacement of {Ob} relative

to {O} (Fig. 3B). The vector qr = [q1, q2, q3] ∈ R
9 defines

the actuated jointspace of the SRS with ξ = [0, 3] ∈ R is a

scalar that represents points along the SRS neutral axis. By

combining qb and qr, we define the complete floating-base

jointspace vector, q = [qb, qr] ∈ R
15.

C. Review of Trajectory Generation

The SRS kinematic model is given in Sec. II-B is used to

derive the following locomotion trajectories. We consider two

trajectories. First is planar rolling where SRS sections share

their bending on the same plane. The second is spatial rolling.

Ground

Robot Skin

𝐹𝑗𝑘 |𝑧𝑍 𝑌𝑋 𝜇𝑥𝐹𝑗𝑘 |𝑧𝜇𝑦𝐹𝑗𝑘 |𝑧𝑧
Fig. 6. Contact dynamic model (Condition for the ground contact: z < 0).
The displacements are exaggerated for visualization.

In this work, we extend the planar rolling reported in [15] to

introduce this new locomotion gait where each SRS section

bends on separate bending planes (relative to {Ob}) creating

a spatial bending pattern similar to a helix. It is achieved by

applying the jointspace trajectories computed for the planar

rolling and actuating the adjacent SRS bending sections with

an added constant angular phase shift, ϕ = π
3

. Figs. 4A and 4B

visualize these rolling patterns relative to SRS origin. The

trajectory generation procedure includes the following steps;

i) identifying desired locomotion gait trajectory with respect

to the global coordinate frame, ii) discretizing a gait trajectory

cycle, iii) projecting the gait curve at discretized locations

to the robot coordinate system, and finally, iv) employing

an optimization-based inverse kinematic approach to obtain

a joint space trajectory. Readers are referred to our previous

work [15] for more details pertaining to these steps.

Following the same steps, derived trajectory curves of planar

and spatial rolling gaits relative to the robot coordinate frame

are shown in Figs. 5A and 5B, respectively. Therein, thin red

lines show projected trajectory curves onto the robot origin

and thick multi-color lines show matched SRS shapes (Refer

to Sec III in [15] for more details). Correspondingly, obtained

jointspace trajectories for planar and spatial rolling gaits for a

period of 4 s are shown in Figs. 5C and 5D, respectively. They

are applied to validate the dynamic model in Sec. IV. Note

that, in planar rolling, all sections operate without a phase

shift (ϕ = 0). Hence, joint variables in each section overlap

each other as visualized in Fig. 5C. On the other hand, joint

variables in spatial rolling operate with a phase shift (ϕ = π
3

)

as visualized in Fig. 5D.

III. DYNAMIC MODELING

The SRS dynamic modeling includes two components;

robot-ground contact dynamics which includes the distributed

contact dynamics along the robot snakeskin and complete SRS

dynamics which presents the equations of motion (EoM) of the

SRS.

A. Robot-Ground Contact Dynamics

We extend the dynamic model derived for variable±length

multisection continuum robotic manipulators reported in [18]

to model the SRS considered here. However, the dynamic

model cannot be directly utilized for modeling the SRS.

Because, therein, the continuum manipulator has a fixed base

whereas SRS achieves locomotion via different gaits. In addi-

tion, the model does not handle external forces. But, similar to

snakes, the SRS achieves locomotion when its skin-like outer

layer makes distributed contact with a surface and generates

reaction forces via friction.

8
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Hence, we modify the model reported in [18] to include

a floating coordinate frame to support locomotion modeling

and distributed contact dynamics and use it as a snake.

The utility of moving coordinate systems on soft locomoting

robots has been explored in [22], [23]. However, implementing

continuous contact dynamics is computationally inefficient.

We use a discrete model with an array of finely distributed

contact points defined along the periphery of the SRS by

introducing two parameters, ξ ∈ [0, 3] and σi ∈ [0, 2π] which

discretize the SRS surface into 31 points axially and 10 points

radially as shown in (1) and (2). This results in 310 contact

points on the outer layer of the SRS. We compute the reaction

forces of those points when contact conditions are met using

a spring-damper ground model (Fig. 6). We define a ground

contact condition as when the z coordinate of a contact point

with respect to {O} is negative, i.e., z < 0, [24]. As long

as this condition is met, the reaction forces are continuously

computed and added to the SRS dynamic model as follows.

Without losing generality, let the z component of the ground

reaction force at any contact point (defined by ξj and σk), be

Fjk|z and given by

Fjk|z = −
1

2
(1− sign (z)) (Kgz +Bg ż) (3)

where Kg and Bg are the ground stiffness and damping

coefficients, respectively.

Here, we assume that the ground stiffness is sufficiently

large (i.e., high Kg) and thus z is negligible such that our

point-contact model is valid. To achieve locomotion, there

must be net reaction forces on the X − Y plane (Fig. 6).

From standard ground friction models, we can compute the

complete reaction force Fjk as

Fjk = Fjk|z

[

µxsign (ẋ) µysign (ẏ) 1
]T

(4)

where µx and µy are the static reaction coefficients in the X

and Y directions respectively.

B. Complete Soft Robotic Snake Dynamics

We assume that an SRS section is made of a set of

infinitesimally thin slices with constant mass and uniform

linear density. Using the floating base kinematics derived

in (2), we calculate the kinetic and potential energies of a

thin slice and integrate them to find the total energies of

bending sections. We then apply the Lagrangian mechanics-

based recursive computation scheme proposed in [18] to derive

the EoM of the SRS as
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Mq̈ + (C+D) q̇ +G =

[

0
τ e

]

+
∑

j∈ξ,k∈σ

JT
jkFjk (5)

where M ∈ R
15×15 is the generalized inertia matrix, C ∈

R
15×15 is the centrifugal and Coriolis force matrix, D ∈

R
15×15 is the damping force matrix, and G ∈ R

15 is the

conservative force vector. Here, τ e ∈ R
9 defines the pressure

force vector and Jjk defines the Jacobian, which maps Fjk

into jointspace q. Note that, this dynamic model does not

consider the hysteretic effects as it is negligible compared to

the damping effect [18].

In the recursive formulation employed here, the terms in (5)

can be separated into contributions from each ith SRS bending

section. For instance, the generalized inertia matrix can be

written as M =
∑3

i=1
Mi where Mi is the inertia matrix of

the ith SRS bending section given by

[Mi]uv = mi

∫

ξi

∂pT
i

∂qu

∂pi

∂qv

(6)

where mi is the mass of the ith section, and {u, v} ∈ Z
+ ∧

[1, · · · , 15] denotes the matrix element index.

For any ith SRS section, the elements of the centrifugal and

Coriolis force matrix, Ci ∈ R
15×15 can be derived from the

partial derivatives of Mi as reported in [18],

[Ci]vu =
15
∑

h=1

Γvuh (Mi) q̇h, and (7)

Γvuh(Mi) =
1

2

(

∂[Mi]vu
∂qh

+
∂[Mi]vh
∂qu

−
∂[Mi]hu

∂qv

)

(8)

Recursively, C =
∑3

i=1
Ci gives the complete centrifugal

and Coriolis force matrix.

Damping force matrix, Di for any ith SRS section

can be written as a diagonal matrix such that, Di =

9
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diag([Di1, Di2, Di3]) ∈ R
3×3. Then, D =

∑3

i=1
Di gives

the complete damping force matrix.

The conservative force vector for any ith SRS section, Gi

can be written as

Gi = Kiqi +mi

∫

ξi

∂pT
i

∂qi
g (9)

where Ki is the elastic stiffness coefficient matrix of any ith

SRS section. It can be written as a diagonal matrix such that,

Ki = diag([Ki1,Ki2,Ki3]) ∈ R
3×3. g = [0, 0, g]T is the

gravitational acceleration vector.

Employing the recursive approach, the complete conserva-

tive force vector can be written as G =
∑3

i=1
Gi. The readers

are referred to [18] for a detailed derivation of the EoM.

IV. DYNAMIC MODEL VALIDATION

We carry out the dynamic model validation in three steps. In

the first step, we implement the dynamic model as a numerical

model and apply locomotion trajectories derived in Sec. II-C

and simulate them in a contact-enabled simulation environ-

ment. The second step involes the application of the same

locomotion trajectories tested in the first step to the actual SRS

hardware and experimentally evaluated for gait replications.

In the last step, we qualitatively and quantitatively compare

the numerical model outputs with experimental results and

validate the dynamic model.

A. Dynamic Model Simulation

We implemented the SRS dynamic model derived in

Sec. III-B as a numerical model and provided jointspace

trajectories (Figs. 5C and 5D) as inputs to test for gait

simulations. The numerical model was implemented in the

MATLAB 2021a programming environment, and simulations

were recorded. MATLAB’s ODE15 solver is selected for

solving the (5) due to the stiff nature of the complex, high-

DoF dynamic systems such as the one presented here. Herein,

jointspace trajectories (i.e., length changes) are converted into

pressure trajectories and then applied as force inputs (=
pressure× sectional area of PMAs) (see Sec. IV-D). We

approximated PMA elastic stiffness limiting values as Ki1 =
1900 Nm−1 ∀i ∈ {1, 2, 3} (rounded to the nearest 100) and

the damping coefficients as Di1 = 90 Nm−1s ∀i ∈ {1, 2, 3}
(rounded to the nearest 10) following an experimental proce-

dure similar to the one proposed in [18]. We assumed that the

robot is actuating on a carpeted floor (Fig. 1) that has uniform

friction. We experimentally approximated the ground stiffness

as Kg = 1000 Nm−1, damping as Bg = 130 Nm−1s and,

static frictional coefficients as µx = 0.6, µy = 0.2. The

gravitational acceleration was set as 9.81 ms−2.

B. Experimental Setup

The experimental setup prepared for the SRS testing is

shown in Fig. 7. We use a constant pressure source (a compres-

sor with 8 bar) to supply air pressure to digital proportional

pressure regulators (SMC ITV3050) and then regulate pressure

to individual PMAs of the SRS ± nine regulators are used for

nine PMAs in three robot bending sections. Each regulator

is independently controlled by a 0 − 10 V analog input

voltage signal provided through a data acquisition (DAQ) card

(National Instruments PCI-6221). The DAQ card is installed

in a host computer, and control signals are generated using a

MATLAB Simulink Desktop Real-Time model.

C. Numerical Testing

In the simulation, first, we dropped the robot from a

known height (0.6 m) and then engaged the SRS in rolling

trajectories. The dropping test was carried out to evaluate the

contact dynamic model as explained in the subsequent text.

The displacement of the origin of {Ob} is depicted in Figs. 8A

and 8B. The figures visualize position (x, y, z) and orientation

(α, β, γ) changes of the robot coordinate system origin (i.e.,

floating-base parameter changes) during a simulation period of

15 s with respect to spatial rolling. The joint variable output

(lij) is presented in Fig. 8C. It closely resembles the trajectory

input shown in Fig. 5D. Initial drop (0 − 2 s in Fig. 8A)

helps us examine the validity of the contact dynamic model

stated in Sec. III-A as follows. After the drop, it is clear

that z stops at z = 0, assuring ground contact conditions.

Additionally, Fig. 8A proves that, throughout the simulation,

the robot stays above the ground. We recorded simulation data

at 30 Hz sampling rate to ensure a smooth approximation of

jointspace variable changes in simulation videos. Two separate

movie frames of planar and spatial rolling simulations are
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Fig. 10. The SRS pose progression for (A) Planar and (B) Spatial rolling gaits at 3 bar − 0.50 Hz.
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Fig. 11. Ground contacts in dynamic model and SRS prototype. Contact points
in the numerical model are shown by red color dots.

presented in Fig. 9. Readers are referred to the accompanying

multimedia file (https://youtu.be/V_RNFEiVXlw) to see the

complete simulations. The simulation outputs show that the

dynamic model replicates the desired gaits well, demonstrating

the intended operation of ground contact dynamics.

D. Prototype Testing

The locomotion gaits are tested on the SRS prototype

to compare and validate the results obtained in numerical

testing. We tested the SRS prototype for planar and spatial

rolling gaits on a carpeted floor with uniform friction. The

jointspace trajectories are length changes of PMAs, and they

must be actuated in order to obtain locomotion from the SRS

prototype. The length changes of PMAs are a function of input

pressures. Therefore, we adopted the approach used in [15] to

establish the length-to-pressure mapping and supply pressure

inputs accordingly. We applied the same jointspace trajectories

used in dynamic model simulations (i.e., length parameters in

Figs. 5C and 5D) to obtain pressure trajectories and actuate

the SRS prototype. The locomotion trajectories were tested for

15 s at a maximum supply pressure of 3 bar and frequency

0.50 Hz, which are consistent with the simulation inputs. A

3 bar pressure ceiling was used based on PMAs’ ability to

achieve the required SRS deformation. The frequency range

was chosen based on the operational bandwidth of PMAs to

obtain meaningful locomotion. The SRS testing was video

captured using a fixed camera station. The locomotion pro-

gression of the SRS during planar and spatial rolling gaits is

shown in Figs. 10A and 10B respectively. Our multimedia file

(https://youtu.be/V_RNFEiVXlw) shows the complete results

of these experiments. The results show that similar to the

numerical testing, the SRS prototype replicated the desired

locomotion trajectories well on the carpeted floor.

E. Discussion

The Figs. 11A and 11B show respective contact point map-

ping between dynamic model simulations and SRS prototype

testing. Similar to the dynamic model simulations, we ob-

served that the SRS prototype could successfully replicate two

rolling gaits. Note that, here we applied the same jointspace

trajectories (in Figs. 5C and 5D) to the numerical model

and the SRS prototype. Hence, the replication of closely

resembled locomotion patterns with contact points in both

models qualitatively confirms the validity of the proposed

dynamic model.

We tracked numerical and experimental model outputs to

quantify and compare the dynamic model performance. Refer

to Figs. 12A and 12B show the captured X−Y displacement

of the SRS during planar and spatial rolling gait replications.

The left in each figure shows the X − Y displacement of

the numerical model. The experimental displacement data

shown on the right were captured using the image perspective

projection method reported in [15]. Based on displacement

data, the calculated linear velocity components are presented

in Table I. Results in Table I show that the velocity components

of the SRS numerical model closely follow (Error, < 09 %)

its counterpart, i.e., the SRS prototype, thereby quantitatively

verifying the proposed dynamic model.

TABLE I. numerical and experimental model outputs.

Model

Travelling velocity

(cms−1)
Planar rolling Spatial rolling
Vx Vy Vx Vy

SRS Numerical Model ± VN 3.51 9.39 0.67 7.77

SRS Prototype ± VP 3.31 9.01 0.61 7.12

Error [%] =
VN−VP

VN

× 100 % 5.70 4.05 8.96 8.37
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Fig. 12. Locomotion tracking of numerical model vs SRS prototype. Herein, the SRS neutral axis has been projected to X − Y plane of O.

V. CONCLUSIONS

The SRSs lack spatial dynamic models that support dis-

tributed contact dynamics. We proposed a dynamic model

with simplified point-based contact dynamics for a 3-section

SRS in this work. The proposed dynamic model is capable of

replicating spatial locomotion gaits. We presented a kinematic

model of the SRS and used it to obtain jointspace trajectories

for two types of locomotion gaits known as planar and spatial

rolling. First, we implemented the SRS dynamic model as

a numerical model and applied jointspace trajectories in a

simulation environment. Next, we applied the same jointspace

trajectories to the SRS prototype and experimentally tested

the SRS’s ability to replicate the intended two gaits. The SRS

dynamic model and the prototype replicated gaits well. Both

tests gave qualitatively and quantitatively consistent results,

thus validating the proposed dynamic model. We intend to ex-

tend the dynamic model validation into other snake locomotion

gaits in our future work.
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