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Abstract—Soft robotic snakes made of compliant materials
can continuously deform their bodies and, therefore, mimic the
biological snakes’ flexible and agile locomotion gaits better than
their rigid-bodied counterparts. Without wheel support, to date,
soft robotic snakes are limited to emulating planar locomotion
gaits, which are derived via kinematic modeling and tested on
robotic prototypes. Given that the snake locomotion results from
the reaction forces due to the distributed contact between their
skin and the ground, it is essential to investigate the locomotion
gaits through efficient dynamic models capable of accommodat-
ing distributed contact forces. We present a complete spatial
dynamic model that utilizes a floating-base kinematic model with
distributed contact dynamics for a pneumatically powered soft
robotic snake. We numerically evaluate the feasibility of the
planar and spatial rolling gaits utilizing the proposed model
and experimentally validate the corresponding locomotion gait
trajectories on a soft robotic snake prototype. We qualitatively
and quantitatively compare the numerical and experimental
results which confirm the validity of the proposed dynamic model.

Index Terms—Dynamic Modeling, Locomotion, Soft Robotic
Snakes.

I. INTRODUCTION

Snakes’ unique physical structure with spatial bending
capabilities enables them to overcome numerous challenges
in their habitats. They frequently use lateral undulation,
sidewinding, rectilinear, and concertina locomotion gaits to
navigate terrains. Additionally, snakes use rolling gaits for
multiple purposes such as climbing trees efficiently, moving
their bodies sideways quickly on uneven terrains and slopes,
crossing over obstacles, handling prey, fighting, etc. Over
the years, roboticists have developed various robotic snake
prototypes to harness these unique characteristics [1]. Com-
pared to traditional rigid-bodied robotic snakes, the continuous
bending capability of soft robotic snakes (SRSs) increases their
adaptability and flexibility with the environment.
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Snake locomotion results from differential friction reaction
forces between the skin and the contact surface (friction
anisotropy) [2]. Therefore, to accurately emulate snake loco-
motion, it is essential to study their locomotion gaits through
dynamic models that include anisotropic frictional forces.
Existing snake robots lack dynamic models that can accurately
and efficiently mimic seamless snake locomotion.

Generating dynamic models for continuum robots is difficult
due to the significant deformation they undergo [3]-[6]. Re-
searchers have proposed several dynamic modeling techniques
for continuum robots over the years [7]. Lumped parameter
models such as those reported in [8] used piecewise-constant
curvature approximation of robot shape. Those models did not
account for axial deformation and become invalid when the
robot is subjected to complex external loading. The discrete
Cosserat approach [9] and finite element methods [10] have
also been used to derive the dynamics of multisection con-
tinuum robots. Their use is limited in real-time applications
since they involve computationally expensive calculations.

To date, many dynamic models for rigid robotic snakes
have been proposed [11]. The rigid robotic snakes made of
discrete rigid units inherently lack continuous skin, hence their
dynamic models do not reflect organic snake locomotion.

Prior work on dynamic modeling of SRSs includes [12]—
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Fig. 2. (A) SRS prototype — serially arranged soft bending section assembly
without rubber skin. (B) Silicone tubes of PMAs, (C) Adding Nylon braided
mesh on Silicone tubes to fabricate PMAs, (D) Constrainer plates to maintain
PMA spacing, (E) Mounting frames (end-plates).

[14]. Their work is limited to wheeled SRSs and present planar
locomotion dynamics of segmented SRSs. Compared to [12],
dynamic models in [13] and [14] incorporated anisotropic
friction forces acting on SRS wheels and described planar
locomotion. But, wheeled SRS dynamic models offer limited
utility when imitating spatial SRS locomotion gaits with
distributed skin-ground contact forces. However, no spatial
dynamic models for SRS that support distributed contact
models exist.

In our previous work [15], we proposed a pneumatic muscle
actuator (PMA) powered SRS. We showed the utility of
spatial bending to derive SRS locomotion gaits without wheels
through planar rolling. Therein, the jointspace trajectories
(Iength variation of PMAs) for rolling locomotion derived via
the complete kinematic model were directly tested on the SRS
prototype on a trial-and-error basis. In this work, we extend
the proposed planar rolling approach to validate spatial rolling
gaits on SRSs. Hence, a spatial dynamic model of the SRS is
beneficial to validate the gait performance.

Godage et al. in [16]-[18] proposed dynamic modeling
for variable-length continuum arms based on an integral
Lagrangian approach. In [18], they proposed a new spa-
tial dynamic model for multi-section continuum arms and
validated using a pneumatically actuated prototype. Yet, it
did not include contact modeling. In this work, we modify
the dynamic model in [18] by adding contact dynamics to
accommodate SRS locomotion. Extending [18], in this work,
we, 1) present a complete spatial dynamic model with contact
dynamics for SRSs, ii) evaluate the model in a simulation
environment, and iii) validate the model on an SRS prototype
for planar and spatial rolling gaits.

II. KINEMATIC MODELING
A. Prototype Description

The SRS prototype shown in Fig. 1 is assembled using three
serially attached soft bending units (i.e. sections) shown in
Fig. 2A. An SRS section is actuated by three McKibben-type
extension-mode PMAs [19], [20]. PMAs are fabricated using
commercially available Silicone tubes, pneumatic union con-
nectors, Nylon braided sleeves, and high strength Polyethylene
fasteners (Figs. 2B and 2C) [21]. Within bending sections,
PMAs are mounted tri-symmetrically at a % angle from each

Fig. 3. SRS schematics illustrating (A) PMA arrangement of a bending section
and (B) 3-section robot.

{0}

Fig. 4. Gait visualization — (A) Planar and (B) Spatial rolling.

other and 0.0125 m radius from its centerline using 3D-printed
mounting frames at either end (Fig. 2D). A PMA axially
extends upon pressurizing and can sustain pressures up to
4 bars. The unactuated length of a PMA is 0.15 m and can
extend 50% at 4 bars. The 0.0025 m thick, laser-cut Delrin
constrainer plates (Fig. 2E) help maintain PMA clearance to
the central axis of a section as well as adjacent PMAs during
operation without torsion and buckling. Further, hollowed
symmetrical design of bending sections facilitates the routing
of pneumatic supply lines within the robot structure. When
pressurized, the pressure difference of PMAs generates a
torque imbalance at the mounting end plates (Fig. 2D). Based
on the induced pressure differential, this torque facilitates the
omnidirectional bending deformation of SRS bending units.
We assemble the SRS by serially connecting the bending
sections via mounting frames with a % angular offset (enlarged
image in Fig. 2A). This angular offset allows the pneumatic
tube routing without impeding the functionality of adjacent
bending sections. We use a uniform rubber skin (Fig. 2A) to
wrap the outer surface of the SRS to form a continuous skin-
like layer for achieving uniform friction during operation. The
unactuated SRS prototype is 0.60 m in length and weighs
0.35 kg. As there are 9, independently controlled PMAs, the
SRS has 9 actuated degrees of freedom (DoF).

B. Robot Kinematic Model

In our previous work [15], we derived the model kinematics
of the 3-section SRS along its neutral axis. In this work,
we extend its results to kinematically represent the SRS skin
(i.e., robot boundaries where we implement contact points).
We parameterize the SRS skin at a radius, r; from the SRS
neutral axis with an angular offset o; € [0,27] as shown in
Fig. 3B. Considering any i section (i € {1,2,3}) of the SRS
schematic shown in Fig. 3A, the homogeneous transformation
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Fig. 5. Trajectory curves of (A) planar & (B) spatial rolling gaits relative to
the robot origin. Jointspace trajectories of (C) planar & (D) spatial rolling
gaits during a gait cycle. In planar rolling, joint variables overlap each other.

matrix (HTM) at any point on the skin of an SRS section,
T; € SE (3) can be derived as

T, (q,,6) = [ Ri(@:6) pidn6) ]

{ Rzé%) (1) ] [ (1) pzl(ri) ] )

where R; € SO (3) and p; € R3 denote the rotational matrix
and the position vector, respectively. & € [0,1] is a scalar
that defines points along a section, where the values 0 and
1 correspond to the origin and tip of a section, respectively.
R, € SO (3) is the rotation matrix about the +Z and p,. € R3
— translation matrix along the +X of {O}} is used to express
modal kinematics on the robot skin.

By integrating a floating-base coordinate frame, T}, €
SE (3) with (1), the complete kinematic model of the 3-section
SRS was derived as

3
T (qb7qr7€) =T, (qb) HTZ (qwg?)

i=1

_ | R(@p a5 P(aya.¢)
— |: bO b1 (2)

where q, = [y, Yp, 26, @, 3,7] € R® denotes the floating-base
coordinate system parameters with [xy,yp, 2p] and [a, 3, 7]
defining the linear and angular displacement of {O;} relative
to {O} (Fig. 3B). The vector q, = [q;, g5, q5] € R defines
the actuated jointspace of the SRS with £ = [0,3] € R is a
scalar that represents points along the SRS neutral axis. By
combining g, and gq,, we define the complete floating-base
jointspace vector, ¢ = [q;,q,] € R'5.

C. Review of Trajectory Generation

The SRS kinematic model is given in Sec. II-B is used to
derive the following locomotion trajectories. We consider two
trajectories. First is planar rolling where SRS sections share
their bending on the same plane. The second is spatial rolling.

Y Eik |2

Ground

Robot Skin

Fig. 6. Contact dynamic model (Condition for the ground contact: z < 0).
The displacements are exaggerated for visualization.

In this work, we extend the planar rolling reported in [15] to
introduce this new locomotion gait where each SRS section
bends on separate bending planes (relative to {O;}) creating
a spatial bending pattern similar to a helix. It is achieved by
applying the jointspace trajectories computed for the planar
rolling and actuating the adjacent SRS bending sections with
an added constant angular phase shift, » = 3. Figs. 4A and 4B
visualize these rolling patterns relative to SRS origin. The
trajectory generation procedure includes the following steps;
1) identifying desired locomotion gait trajectory with respect
to the global coordinate frame, ii) discretizing a gait trajectory
cycle, iii) projecting the gait curve at discretized locations
to the robot coordinate system, and finally, iv) employing
an optimization-based inverse kinematic approach to obtain
a joint space trajectory. Readers are referred to our previous
work [15] for more details pertaining to these steps.

Following the same steps, derived trajectory curves of planar
and spatial rolling gaits relative to the robot coordinate frame
are shown in Figs. 5A and 5B, respectively. Therein, thin red
lines show projected trajectory curves onto the robot origin
and thick multi-color lines show matched SRS shapes (Refer
to Sec III in [15] for more details). Correspondingly, obtained
jointspace trajectories for planar and spatial rolling gaits for a
period of 4 s are shown in Figs. 5C and 5D, respectively. They
are applied to validate the dynamic model in Sec. IV. Note
that, in planar rolling, all sections operate without a phase
shift (¢ = 0). Hence, joint variables in each section overlap
each other as visualized in Fig. 5C. On the other hand, joint
variables in spatial rolling operate with a phase shift (p = %)
as visualized in Fig. 5D.

III. DYNAMIC MODELING

The SRS dynamic modeling includes two components;
robot-ground contact dynamics which includes the distributed
contact dynamics along the robot snakeskin and complete SRS
dynamics which presents the equations of motion (EoM) of the
SRS.

A. Robot-Ground Contact Dynamics

We extend the dynamic model derived for variable-length
multisection continuum robotic manipulators reported in [18]
to model the SRS considered here. However, the dynamic
model cannot be directly utilized for modeling the SRS.
Because, therein, the continuum manipulator has a fixed base
whereas SRS achieves locomotion via different gaits. In addi-
tion, the model does not handle external forces. But, similar to
snakes, the SRS achieves locomotion when its skin-like outer
layer makes distributed contact with a surface and generates
reaction forces via friction.
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Fig. 7. Robot experimental setup.

Hence, we modify the model reported in [18] to include
a floating coordinate frame to support locomotion modeling
and distributed contact dynamics and use it as a snake.
The utility of moving coordinate systems on soft locomoting
robots has been explored in [22], [23]. However, implementing
continuous contact dynamics is computationally inefficient.
We use a discrete model with an array of finely distributed
contact points defined along the periphery of the SRS by
introducing two parameters, £ € [0,3] and o; € [0, 27| which
discretize the SRS surface into 31 points axially and 10 points
radially as shown in (1) and (2). This results in 310 contact
points on the outer layer of the SRS. We compute the reaction
forces of those points when contact conditions are met using
a spring-damper ground model (Fig. 6). We define a ground
contact condition as when the z coordinate of a contact point
with respect to {O} is negative, ie., z < 0, [24]. As long
as this condition is met, the reaction forces are continuously
computed and added to the SRS dynamic model as follows.
Without losing generality, let the z component of the ground
reaction force at any contact point (defined by &; and o), be
Fj). and given by
= (s () (K2 +B,2) O
where K, and B, are the ground stiffness and damping
coefficients, respectively.

Here, we assume that the ground stiffness is sufficiently
large (i.e., high K) and thus z is negligible such that our
point-contact model is valid. To achieve locomotion, there
must be net reaction forces on the X — Y plane (Fig. 6).
From standard ground friction models, we can compute the
complete reaction force F; as

. . . . T
Fik = Fjp. | pnosign () pysign(y) 1] )

where i, and p, are the static reaction coefficients in the X
and Y directions respectively.

Fig=

B. Complete Soft Robotic Snake Dynamics

We assume that an SRS section is made of a set of
infinitesimally thin slices with constant mass and uniform
linear density. Using the floating base kinematics derived
in (2), we calculate the kinetic and potential energies of a
thin slice and integrate them to find the total energies of
bending sections. We then apply the Lagrangian mechanics-
based recursive computation scheme proposed in [18] to derive
the EoM of the SRS as

o
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Fig. 8. Dynamic model simulation outputs for spatial rolling — (A) Position &
(B) Orientation changes of SRS origin. C) Joint variables of complete SRS.

) : 0
Mq+(C+D)q+G:{T ]+ S ILFn 9
¢ jet keo

where M € R'®%!5 ig the generalized inertia matrix, C €
R'5*15 g the centrifugal and Coriolis force matrix, D €
R15%15 js the damping force matrix, and G € R'5 is the
conservative force vector. Here, 7. € R defines the pressure
force vector and J;; defines the Jacobian, which maps F;;
into jointspace g. Note that, this dynamic model does not
consider the hysteretic effects as it is negligible compared to
the damping effect [18].

In the recursive formulation employed here, the terms in (5)
can be separated into contributions from each i*” SRS bending
section. For instance, the generalized inertia matrix can be
written as M = Z?:1 M,; where M; is the inertia matrix of
the i** SRS bending section given by

) ap! op;

Mi = my;

uv

(6)

where m; is the mass of the ' section, and {u,v} € ZT A
[1,---,15] denotes the matrix element index.

For any i*" SRS section, the elements of the centrifugal and
Coriolis force matrix, C; € R'®*15 can be derived from the
partial derivatives of M, as reported in [18],

15
[Ci]vu = Z Tyun (Mz) dn,and (7)
h=1
N\ 1 a[Mz]vu 8[Mi]vh _ 8[Mz]hu
Loun(Mi) = 3 ( i + 90, 90, > (8)

Recursively, C = Z§=1 C, gives the complete centrifugal
and Coriolis force matrix.

Damping force matrix, D; for any i** SRS section
can be written as a diagonal matrix such that, D, =
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Fig. 9. Dynamic model implementation in an SRS numerical model and simulated locomotion gaits — (A) Planar rolling, (B) Spatial rolling.

diag([D;1, Dia, Di3]) € R3%3. Then, D = Z?:l D; gives
the complete damping force matrix.

The conservative force vector for any i** SRS section, G;
can be written as

T
G, = Kigi + m, / op; ©)

& 0q;

where K; is the elastic stiffness coefficient matrix of any i*"
SRS section. It can be written as a diagonal matrix such that,
K, = dmg([Kzl,KZg,Kw]) € R3%3, g = [O,O,Q]T is the
gravitational acceleration vector.

Employing the recursive approach, the complete conserva-
tive force vector can be written as G = Zle G;. The readers
are referred to [18] for a detailed derivation of the EoM.

IV. DYNAMIC MODEL VALIDATION

We carry out the dynamic model validation in three steps. In
the first step, we implement the dynamic model as a numerical
model and apply locomotion trajectories derived in Sec. II-C
and simulate them in a contact-enabled simulation environ-
ment. The second step involes the application of the same
locomotion trajectories tested in the first step to the actual SRS
hardware and experimentally evaluated for gait replications.
In the last step, we qualitatively and quantitatively compare
the numerical model outputs with experimental results and
validate the dynamic model.

A. Dynamic Model Simulation

We implemented the SRS dynamic model derived in
Sec. III-B as a numerical model and provided jointspace
trajectories (Figs. 5C and 5D) as inputs to test for gait
simulations. The numerical model was implemented in the
MATLAB 2021a programming environment, and simulations
were recorded. MATLAB’s ODEIS solver is selected for
solving the (5) due to the stiff nature of the complex, high-
DoF dynamic systems such as the one presented here. Herein,
jointspace trajectories (i.e., length changes) are converted into
pressure trajectories and then applied as force inputs (=
pressure X sectional area of PM As) (see Sec. IV-D). We
approximated PMA elastic stiffness limiting values as K;; =
1900 Nm~1Vi € {1,2,3} (rounded to the nearest 100) and

the damping coefficients as D;; = 90 Nm~1sVi € {1,2,3}
(rounded to the nearest 10) following an experimental proce-
dure similar to the one proposed in [18]. We assumed that the
robot is actuating on a carpeted floor (Fig. 1) that has uniform
friction. We experimentally approximated the ground stiffness
as K, = 1000 Nm~!, damping as B, = 130 Nm~'s and,
static frictional coefficients as p, = 0.6, p, = 0.2. The
gravitational acceleration was set as 9.81 ms~2.

B. Experimental Setup

The experimental setup prepared for the SRS testing is
shown in Fig. 7. We use a constant pressure source (a compres-
sor with 8 bar) to supply air pressure to digital proportional
pressure regulators (SMC ITV3050) and then regulate pressure
to individual PMAs of the SRS — nine regulators are used for
nine PMAs in three robot bending sections. Each regulator
is independently controlled by a 0 — 10 V analog input
voltage signal provided through a data acquisition (DAQ) card
(National Instruments PCI-6221). The DAQ card is installed
in a host computer, and control signals are generated using a
MATLAB Simulink Desktop Real-Time model.

C. Numerical Testing

In the simulation, first, we dropped the robot from a
known height (0.6 m) and then engaged the SRS in rolling
trajectories. The dropping test was carried out to evaluate the
contact dynamic model as explained in the subsequent text.
The displacement of the origin of {O} is depicted in Figs. 8A
and 8B. The figures visualize position (z, y, z) and orientation
(a, B,7) changes of the robot coordinate system origin (i.e.,
floating-base parameter changes) during a simulation period of
15 s with respect to spatial rolling. The joint variable output
(l3;) is presented in Fig. 8C. It closely resembles the trajectory
input shown in Fig. 5D. Initial drop (0 — 2 s in Fig. 8A)
helps us examine the validity of the contact dynamic model
stated in Sec. III-A as follows. After the drop, it is clear
that z stops at z = 0, assuring ground contact conditions.
Additionally, Fig. 8A proves that, throughout the simulation,
the robot stays above the ground. We recorded simulation data
at 30 Hz sampling rate to ensure a smooth approximation of
jointspace variable changes in simulation videos. Two separate
movie frames of planar and spatial rolling simulations are

0
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Fig. 11. Ground contacts in dynamic model and SRS prototype. Contact points
in the numerical model are shown by red color dots.

presented in Fig. 9. Readers are referred to the accompanying
multimedia file (https://youtu.be/V_RNFEiVXIw) to see the
complete simulations. The simulation outputs show that the
dynamic model replicates the desired gaits well, demonstrating
the intended operation of ground contact dynamics.

D. Prototype Testing

The locomotion gaits are tested on the SRS prototype
to compare and validate the results obtained in numerical
testing. We tested the SRS prototype for planar and spatial
rolling gaits on a carpeted floor with uniform friction. The
jointspace trajectories are length changes of PMAs, and they
must be actuated in order to obtain locomotion from the SRS
prototype. The length changes of PMAs are a function of input
pressures. Therefore, we adopted the approach used in [15] to
establish the length-to-pressure mapping and supply pressure
inputs accordingly. We applied the same jointspace trajectories
used in dynamic model simulations (i.e., length parameters in
Figs. 5C and 5D) to obtain pressure trajectories and actuate
the SRS prototype. The locomotion trajectories were tested for
15 s at a maximum supply pressure of 3 bar and frequency
0.50 Hz, which are consistent with the simulation inputs. A
3 bar pressure ceiling was used based on PMAs’ ability to
achieve the required SRS deformation. The frequency range
was chosen based on the operational bandwidth of PMAs to
obtain meaningful locomotion. The SRS testing was video

captured using a fixed camera station. The locomotion pro-
gression of the SRS during planar and spatial rolling gaits is
shown in Figs. 10A and 10B respectively. Our multimedia file
(https://youtu.be/V_RNFEiVXlw) shows the complete results
of these experiments. The results show that similar to the
numerical testing, the SRS prototype replicated the desired
locomotion trajectories well on the carpeted floor.

E. Discussion

The Figs. 11A and 11B show respective contact point map-
ping between dynamic model simulations and SRS prototype
testing. Similar to the dynamic model simulations, we ob-
served that the SRS prototype could successfully replicate two
rolling gaits. Note that, here we applied the same jointspace
trajectories (in Figs. 5C and 5D) to the numerical model
and the SRS prototype. Hence, the replication of closely
resembled locomotion patterns with contact points in both
models qualitatively confirms the validity of the proposed
dynamic model.

We tracked numerical and experimental model outputs to
quantify and compare the dynamic model performance. Refer
to Figs. 12A and 12B show the captured X — Y displacement
of the SRS during planar and spatial rolling gait replications.
The left in each figure shows the X — Y displacement of
the numerical model. The experimental displacement data
shown on the right were captured using the image perspective
projection method reported in [15]. Based on displacement
data, the calculated linear velocity components are presented
in Table I. Results in Table I show that the velocity components
of the SRS numerical model closely follow (Error, < 09 %)
its counterpart, i.e., the SRS prototype, thereby quantitatively
verifying the proposed dynamic model.

TABLE I. numerical and experimental model outputs.

Travelling velocity
(ems™1)
Planar rolling | Spatial rolling

Model

Vs V., | Va v,
SRS Numerical Model — Vi 3.51 9.39 | 0.67 7.77
SRS Prototype — Vp 331 | 901 | 061 | 7.12
Error [%] = % x 100 % | 5.70 | 4.05 | 8.96 | 8.37

1
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V. CONCLUSIONS

The SRSs lack spatial dynamic models that support dis-
tributed contact dynamics. We proposed a dynamic model
with simplified point-based contact dynamics for a 3-section
SRS in this work. The proposed dynamic model is capable of
replicating spatial locomotion gaits. We presented a kinematic
model of the SRS and used it to obtain jointspace trajectories
for two types of locomotion gaits known as planar and spatial
rolling. First, we implemented the SRS dynamic model as
a numerical model and applied jointspace trajectories in a
simulation environment. Next, we applied the same jointspace
trajectories to the SRS prototype and experimentally tested

the

SRS’s ability to replicate the intended two gaits. The SRS

dynamic model and the prototype replicated gaits well. Both
tests gave qualitatively and quantitatively consistent results,
thus validating the proposed dynamic model. We intend to ex-
tend the dynamic model validation into other snake locomotion
gaits in our future work.
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