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This paper proposes a systematic approach for automatic tasking and coordination of a heterogeneous
team of cooperative autonomous vehicles forming an intelligent vehicle. Each vehicle is equipped with
different resources, operating in a shared dynamic environment, and capable of executing a set of
specific tasks. To coordinate such a heterogeneous team of vehicles, we develop a hierarchical modular
coordination algorithm for generating local Behavior Trees (BTs) for tasking individual vehicles so
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to adjust the total operation cost and duration of the tasks. The details of the developed algorithms
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are illustrated through different case studies.
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1. Introduction

With advances in communication, computation, and control
technologies, it is now becoming possible to deploy intelligent
systems in the form of a heterogeneous team of autonomous
vehicles with different capabilities (sensors and actuators) to
collectively accomplish complex missions and tasks, which are
distributed in time and space and may not be possible to be
achieved individually [1-4]. A cooperative control strategy not
only can handle such complex scenarios, but also could sig-
nificantly reduce the cost, enhance the resilience of the over-
all system, and improve the team functionality through sharing
resources and distributing tasks and loads [5-8]. Nonetheless,
multi-agents cooperation introduces challenges and complexities
including but not limited to task decomposition, task assign-
ment, communication, task execution, and task monitoring [9].
A common method for tasking multi-agent systems is to employ
scheduling mechanisms [ 10]. For example, [ 11] provides a reliable
scheduling algorithm for a team of agents with the capability to
conduct dynamic rescheduling. However, cooperative tasking in
general is beyond simple scheduling and often involves depen-
dencies and join execution of actions. Heuristic methods [12,13]
and bio-inspired approaches [14-16] have been employed in the
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literature for more complex tasking scenarios. However, such
methods often lack proof of performance. Alternatively, one can
use consensus-based algorithms to minimize the cost or maxi-
mize the number of tasks assigned to an agent [17]. The challenge
is that generally tasks are sequences of actions that have to be
completed in a particular sequence and often in collaboration
with other agents, which is beyond the scheduling problem as it
requires a coordinator(s) to synthesize and execute a scheduling
and sequencing plan in a collaborative setting.

Another common approach to address tasking and coordina-
tion of multi-agent systems is to rely on group behaviors that
emerge from group interactions and individual decision-makings
based on local information. Threshold-based methods follow a
simple rule for decision making: if “decision criteria > threshold”,
then the agent picks the task. A decision to select a particular task
depends on an individual’s perception of a task and individual’s
response threshold for the task. The game theoretical approaches
formulate the tasking and coordination problem for multi-agent
systems to form a disjoint coalition as a hedonic formation game
between the agents and the tasks that are interacting [18,19]. The
advantage of these methods is that they rely less on the infor-
mation about modeling the environment, tasks, and individuals.
However, this makes it difficult to predict the exact behavior
of individuals, focus on single static global tasks, and formally
design, analyze and implement a cooperative strategy [18]. In
market-based methods [20,21], the task is decomposed into some
subtasks to be assigned through an auctioning process. For this
purpose, each individual agent offers its bid and then the auction-
eer collects the bids and decides which agent is more eligible to
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win the announced task. In [22], an optimal multi-robot tasking
framework is introduced by modeling each robot as a weighted
transition system and composing the model of the robots with the
mission requirement expressed as a linear temporal logic (LTL).
However, this framework is centralized and as the number of
participating robots increases, scalability becomes a bottleneck.
In [23], a decentralized multi-agent control strategy following a
bottom-up approach is presented, where each agent synthesizes
a local coordinator to ultimately meet a global mission. However,
since the agents have no prior knowledge about each local task,
conflicts among agents could arise which has to be resolved by a
centralized mission controller. In [24-26], an automated task de-
composition approach is introduced using the natural projection
to local sensing/actuation maps when the tasks are given in the
form of automata. In [27,28], an automated supervisory control
framework models the system and its corresponding specifica-
tions as a discrete event system (DES) where the developed
supervisor centrally coordinates the robots indirectly by enabling
or disabling the events. In turn, each robot chooses to execute or
not to execute the enabled events that are communicated back
to the supervisor to enforce a teaming behavior. These automata-
based approaches commonly face state explosion problem and
cannot be flexibly used/re-used with existing structures in a
modular way.

In [29], an autonomous task allocation mechanism is proposed
where agents initially split into groups to cover an area, and then,
the task allocation is conducted autonomously by negotiation
among agents. In [30], a task is distributed among agents by
considering the current state of the agents and adding a behavior
layer that takes into account the previous decisions of the agents
to improve collaboration among the agents. In [31], multiple
heuristic algorithms are used to come up with the best task
allocation plan for agents operating in a battle-field. Each agent
selects an algorithm based on the flight characteristics and the
environment they operate to maximize efficiency. These methods
are often computationally expensive, challenging their scalability
and the application to cases where the environment changes or
tasks are introduced on-the-fly.

In [32] a decentralized coordination architecture to allocate
and manage resources to meet the mission requirement has been
proposed, however the framework requires a global view of avail-
able resources to assign tasks. In [33], the problem of efficient
task allocation is addressed in a distributed manner by solv-
ing non-linear MILP formulation. The major issue in MILP-based
techniques is that the computation is done offline and as the envi-
ronment changes, an expensive computation has to be performed
again which is costly if the environment changes frequently. Like
MILP, a major challenge in almost all aforementioned techniques
is that with these techniques either the computation is done of-
fline or the agents have limited intelligence to coup with dynamic
environments and emergent scenarios.

An alternative planning solution is to employ Behavior Trees
(BTs) [34-37]. BTs are graphical mathematical models for the
execution of tasks with inherent hierarchical, modular, and reac-
tive properties. With BTs it is fairly more convenient to manage,
modify, and add tasks or subtasks due to the modular and scalable
structure of BTs. Further to incorporate safety, in [38,39] a safe BT
synthesis method for a single agent has been proposed. In [40]
BTs are used to address a logistic/load-delivery problem that
utilizes a predefined BT. In [41], given a global BT controller and
assuming that the tasks are decomposable, a heuristic approach
is employed to create local BTs for each agent. However, the
question of how to determine the global BT is left unanswered. To
extend this framework to multi-agent systems, one way is to use
the method in [42] to develop a global BT and then decompose
the global BT to local BTs using the method in [41]. However, this

Knowledge-Based Systems 260 (2023) 110181

v v

‘ Action 1 ‘ ’ Action 2 ‘ ’ Action n
(a) (b)
2 v ¥ ¥ v
’ Action 1 ‘ ’ Action 2 ‘ e ‘ Action n ‘ Action 1 H Action 2 ‘
(©) (d)

Fig. 1. Building blocks of Behavior Trees: (a) A sequence node, (b) Execution of
Action 1 based on Condition C1, (c) A selector node, (d) A parallel node.

approach is not computationally efficient and may end up with
the state explosion problem for larger systems.

To address the challenges on the coordination of multi-agent
systems, in this paper, we distributively and reactively synthesize
the local BTs on-the-fly for a set of streamed tasks, so that
each agent is responsible for synthesizing its own BT. Moreover,
our proposed technique incorporates a tasking mechanism by
assigning the tasks via a market-based auctioning algorithm to
minimize the cost. In the proposed framework, collaboration
among agents is needed if and only if a single robot cannot do
the task alone, thus resource utilization is improved leaving other
robots for new tasks. In summary, the contributions of the paper
include:

e developing a hierarchical modular coordination algorithm
for automatically generating local BTs on-the-fly for tasking
individual vehicles so that they, as a team, can collectively
and reactively achieve a global mission,

e incorporating a market-based auctioning algorithm to for
assigning the tasks and actions while minimizing the overall
operation and duration cost.

e deriving the sufficient conditions and formally proving the
correctness of the proposed method in the sense that the
assigned mission can be always completed.

e analyzing the computation cost and investigating the scal-
ability of the method by applying the method to scenarios
with large numbers of tasks and agents.

e applying the proposed method to several case studies,
demonstrating the effectiveness of the proposed approach.

The rest of the paper is organized as follows. The background
and necessary preliminaries on behavior trees are provided in
Section 2, followed by problem formulation for the decentral-
ized coordination of multi-agent systems. Section 3 describes our
proposed approach for synthesizing decentralized BTs in detail.
Section 5 applies the proposed method to several case studies
to illustrate the implementation of the developed algorithms.
Finally, Section 6 concludes the paper. The terms being used in
this paper along with their explanation are provided in Table 8 at
the end of the paper.

2. Problem description
2.1. Behavior Tree structure

Formally BTs are defined as a directed acyclic graph with three
types of nodes: Root node, Leaf node (condition and action), and
Composite node (selector, sequence, parallel). Root node is the
starting vertex in the BT graph. Leaf nodes are terminal nodes in
a BT’s branch in the form of an action or a condition. Composite
nodes are used to compose leaf nodes in the form of selection,
serial (sequence), or parallel. Fig. 1 shows different composite
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nodes. In the hierarchical architecture of a BT graph, the nodes on
the higher layers are called parent nodes, whereas linked nodes
in their subtrees are called children. A node in a BT’s hierarchical
structure could return to its parent with success, running, or
failure, if it completes its job or satisfies a condition, if it is in the
process of completing its job or checking the condition, and if the
job cannot be completed or the condition is violated, respectively.
Generally, the execution of a task is initiated by the root node
which sends a tick (enabling signal) with a certain frequency to
its children. Then, the enabled child activates another child or
returns its execution status as running, failure, or success to its im-
mediate parent. In this way, the actions are executed from bottom
left of the BT, returning success/failure/running to their parents.
By systematically composing leaf nodes (actions and condition
nodes), using one of the composite nodes (sequence, selector or
parallel nodes) a complex BT with a modular architecture can be
designed.

2.2. Preliminaries and notations

We use BTs to formulate the coordination and tasking for
multi-agent systems over the following components:

(1) The set R = {Ry, ..., Ry}, which includes a team of robots,
where M € N is the number of agents. We also define a set
Pr = {(x1,¥1), .-+, (Xm,ym)} and a set V. = {vy, ..., vy}
which represent the position and velocity of the agents,
respectively. In this paper, the terms agents, robots, and
vehicles are used interchangeably. For each robot, any com-
ponent in its operating space other than the robot itself is
considered to be the environment.

(2) The set A is the global action bank, which contains a set of
actions Ay, k =1, ..., L, where L € Nis the total number of
actions. We define a set of action capability indicators dj,
i=1,...,M,k=1,...,L, for which ay = 1 if the robot
R; can accomplish Action Ay, otherwise d; = 0. Here, the
robots are assumed to perform a single action at a time.

(3) The set T which includes a set of complex tasks (a task can
be decomposed into multiple sets of actions that could sat-
isfy the same task goal in different ways [43]) T
j=1,...,N, where N € N is the number of tasks along
with a task position Pr = {Pr,, ..., Pr,}. The accomplish-
ment of each task (objective of Tj), can be captured by
meeting a condition C. For example, if the task T; is to
“reach a goal region”, then C; is “being at the goal region”.
We also define a set of task assignment indicators x;;, i =
1,...,M,j =1,...,N, for which x; = 1 if the task T; is
assigned to R; to handle it individually or in collaboration
with other robots, otherwise x; = 0. Similarly, we define
a set of action assignment indicators )Ac,-jk, i=1,....M,
j=1,...,N, k= 1,...,L for which X = 1 if action A
is assigned to R; for completion of T;. To reach the “goal”
of a task T;, depending on the agent that is responsible
to handle the task, a series of actions from the action
bank A should be completed, where the last action should
meet G. In our proposed framework, only a robot that can
accomplish an action which meets G can be a candidate
for being selected to handle T;. Such a robot can complete
an action to meet GG and may delegate the prerequisite
actions to other agents if necessary. Further, to coordinate
the delegation process we define the indicators Gy, i =
1,....M,j=1,...,N, k= 1,...,L for which a; = 1if
robot R; is needed to accomplish Ay to complete the task
T;, otherwise aj = 0.
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(4) The set F includes a set of value functions. A value function
Fj : Rx T — R describes the cost of handling the task
T; by R; based on the performance, energy, and proximity.
Robot R; can accomplish the actions towards T; individually
or delegate the actions to other robots if necessary.
(5) The set C includes preconditions c; for an action A, of
agent R;, wherei = 1,..., M, k = 1, ..., L. Further, since
an action could have multiple preconditions, c;, includes a
list of preconditions Cyp, i = 1,...,M, k = 1,...,L, and
p = 1,..., P, where P is the total number of precondi-
tions for action Ay, and cy, specifies the pth precondition
for completing action Ay by robot R;. We also capture the
accomplishment of each action Ay by meeting the condition
Ck.
Consider a discrete clock clk with a granularity of 1 s,
i.e,, clk = clk + 1 (this can be of different step sizes if
needed). The clock clk represents the elapsed time starting
from the first task announcement. Then, we define Afj,
i=1,...,M,k=1,...,L which represents the duration
that the agent R; needs to complete the action Ai. Consider
o0=1,2,..., where o € N is the sample time index. We
then define an action timeline indicator t;,, i = 1,..., M,
where t;, = 1 during the time that R; is assigned to perform
one of the actions A,, which takes R; for At;, time units.
(7) We define an operation R; = con which checks if the agent
R; satisfies the condition con at its current state, where the
condition con can be a condition for a task, i.e,, G, or a
precondition for an action, Cyp.

—
(2]
-

2.3. Assumptions and problem formulation

To do automatic tasking for multi-agent systems, analogues
to [42], we make the following assumptions:

Assumption 1. Each agent can verify if any of its local actions
have succeeded, failed, or if it is running. This enables the agent
to monitor the status of each action.

Assumption 2. Each agent can verify if any of its local action’s
condition is true or false. This enables the agent to perform an
action only when a condition is false, i.e, the condition acts as a
guard.

Assumption 3. For each goal and for each initial configuration of
the agents, there exists a sequence of actions that can be executed
by the agents leading to the achievement of the goal.

Assumption 4. The effect of the dynamic environment can void
the accomplishment of the actions at most a finite number of
times. This assumption is made to avoid sticking in a live-lock
of repeating an action and being voided by the environment over
and over, preventing the agent to achieve its goal.

Assumption 5. Given any two actions A; and A;, if the execu-
tion of A; requires the execution of A;, A; must not require the
execution of A;. This assumption prevents deadlocks due to cyclic
dependency.

Assumption 6. All actions are ultimately reversible. That is,
each action can be undone through a finite sequence of actions.
The ability to reverse an action is required to resolve possible
conflicts.

Assumption 7. For each action, there exists at least one agent to
achieve it, which can be accomplished by a low level controller
embedded in that agent.
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Fig. 2. The proposed automatic BT coordinator synthesis and execution
framework.

Assumption 8. We assume that the global communication is
available, i.e., messages broadcasted by an agent can be received
by all other agents.

Now, given R, T, F, A, and C, and making Assumptions 1-7,
the tasking and coordination problem for multi-agent systems
can be stated as:

Problem 1. Consider a mission described by T as a set of
streamed tasks Tj, j = 1,...,N, to be completed by a set of
robots R;,i =1, ..., M, by executing the actions Ay, k=1, ..., L,
assuming that each action is executable by some of the agents
(at least one). Also, consider that there is no order and depen-
dency among the tasks, other than the order in which tasks are
issued. Synthesize and execute decentralized BT; to coordinate the
individual robots R; to collectively achieve a set of tasks T;.

3. Automatic behavior tree synthesis and execution

To address Problem 1, we propose a systematic method for
generating the local (individual) BTs by combining a market-
based auctioning algorithm with reactive BT synthesis, so that
the generated local BTs can collectively satisfy the mission spec-
ification. Fig. 2 shows the general description of the proposed
technique. Given a mission in the form of a set of tasks T,
j = 1,...,N, we conduct a two-level auctioning to assign the
tasks and their corresponding actions to the agents as it will be
discussed in Section 3.1. Then, local BTs will be generated for
the robots which will be used for task execution as detailed in
Section 3.2. To manage the multi-level delegation, we allow two
levels of auctioning so that in the second level of auctioning,
the delegated agent cannot delegate an action and should return
to the first level auctioneer if needed. However, the proposed
method can be extended to more levels of auctioning by following
a similar approach discussed in this paper with proper adjust-
ments on the developed algorithms. Clearly, adding more levels
of auctioning requires more communication and process burden.

3.1. Task assignment for coordination of multi agent systems
Task assignment to a set of robots with different resources

and capabilities might raise a conflict when every participating
agent strives to maximize its utility by performing as many tasks
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as possible. To fairly assign tasks and avoid conflicts, we pro-
pose a two-level market-based auctioning algorithm. Generally,
an auctioning algorithm has four stages: announcement stage,
where the auctioneer announces the auctioning item; submis-
sion stage, where the individual agents submit (bid) the price
(cost) for the auctioning item and communicate it with the auc-
tioneer; the selection stage, where the auctioneer evaluates the
cost and selects the lowest offer, and the contract stage, where
the negotiation is concluded by forming a contract between the
auctioneer and the responsible agent. Following this process, at
the first level of the proposed auctioning-based task assignment,
the Mission Controller (MC) announces a task T;. We assume that
MC announces and auctions the tasks one at a time. Then, those
agents, R;, that can accomplish an action to meet G bid for this
task. For this purpose, these candidate robots should identify the
actions that are needed (to be done by themselves or through
delegation to other robots) to complete Tj. For each robot, R;,
using a weighted sum method, the cost of each action has to be
calculated (both local and delegated actions) to find the cost, Fj,
for completing the task T; as:

Fj = ofj + Bty (m

where fj is the operation cost of task T; when handled by R;,
tj is the duration that R; needs to complete task Tj, and « and
B are weights for operational cost and duration respectively,
which should be selected proportional to their relative impor-
tance based on the preferences of the designer/operator. Clearly,
fij and t; would be different for different actions and for dif-
ferent agents. For example, in action MoveTo(destination), which
involves moving toward an object, the distance from the object
and the velocity of the agent impacts f; and t;. However, if the
action does not involve any movement, e.g., the action is to take
an image, we simply assume a fixed cost for the action. Then, MC
selects the agent R; that can handle T; with the lowest cost and
concludes the auction by forming the contract with R; and letting
x;j = 1. This indeed is equivalent to the following minimization:

M

Fj = mxln E ((Xﬁj + ﬁtg)xu, Vj
1] .
i

M
subject to inj =1

1

o, >0
xj €{0, 1}, Vi (2)

where x;; is an indicator that task T; is assigned to R;.

When an agent R; forms a contract to complete a task Tj, the
robot should perform a sequence of actions. So, the cost and
duration of completing the task Tj by robot R;, fj and t;;, should be
computed as the summation of costs and duration, f,-k and 8y, for
all actions Ay required for the task Tj. The point is that some of
the actions may need to be delegated to other agents. Thus, the
cost function fj; in the first level auction may not be possible to
be calculated solely based on the costs of R;’s actions, and hence,
the agent R; should find the cost of delegated actions through a
second level auction. In this way, assuming that the actions that
the robot R; is capable of doing will not be delegated, the total
cost and duration for completing the task T; through the robot R;
will be:

fi= (3)

> rey G + (1 — G )fo(iik)), ¥i, j, if Ri = G
00, Otherwise
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Fig. 3. Timeline for executing Ay by R; toward Task Tj.

and
tij = (4)

> hey (@St + (1 — aa)Stn(iik)), Vi, j, if Ri = G
0o, Otherwise

where 8t is the total time (including both operation time and
the delay between the instant that the action is required and the
action start time) needed to complete action Ay, and fp(ijk) and
S8tp(ijk) are the operational and duration cost of the actions Ay
delegated by R; for completing the task T;. To calculate the delay
in both local and delegated actions, we introduce the function
V(ti, Tj, Ag) that returns the time instant that action Ay is avail-
able to be started by R; for task T; at or after clk(Tj, Ay), where
clk(T;, A¢) represents the time that the action Ay is called for the
task Tj, and t;, is the timeline indicator. Then, the total time, Stik,
for the execution of an action Ay for R;, 8t;, can be computed as:

8tk = V(tio, Ty, Ax) — clk(Tj, A) + Al (5)
in which 8fy is considered as the delay part, V(tio, Tj, Ak) —

clk(T;, Ax), plus the actual action execution time, Aty (see Fig. 3
for the details).

To avoid double assignment, once an action or a task is as-
signed to an agent, the function V(tj,T;, Ax) returns
[V(tio, Tj, Ai), V(tio, Tj, Ax) + Aty ] as the time interval in which
the action A, will be executed by R; and updates the availability
indicator t;, from 0 to 1 for Aty over this time interval.

The selection of a robot for action A, through the delegation
process can be conducted via the following minimization:

Fo(ijk) = min " (tfux + BSTac)Raje, Vk
d

Xdjk

subject to Z)?djk =1Vk,

d
d=1---M, d#1i,

o, >0

Xqk € {0, 1}, vd (6)

where fdk and 8ty are the operational and duration cost of the
delegated action A, when done by Ry, Fp(ijk) is the total cost of
action Ay, and Xgj indicates if action A of task Tj is assigned to the
agent Ry or not. After finalizing the second-level auctioning in (6),
the minimum cost and duration fp(ijk) = [, and 8ip(ijk) = 8t
are returned to (3) and (4) to be used in the first-level auctioning
in (2), where f}; and 8¢, are the cost and duration of action A
by robot Ry which minimize (6).

3.2. Decentralized behavior tree synthesis and execution algorithm

In contrast to the execution of a BT which is bottom-up, to
synthesize a BT we should follow a top-down approach where
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individual actions with predefined conditions are sequenced in a
way that the execution of the synthesized BT satisfies the mission
goal. Since we are synthesizing the BTs on-the-fly, we use a mixed
approach. We start with executing the existing parts of BTs from
the bottom, whereas we synthesize the missing parts from the
top (initially from the task condition G). Utilizing the hierarchical
and modular nature of BTs, the algorithm automatically generates
a BT for coordination of each agent that allows collaborative and
decentralized execution of tasks. The algorithm synthesizes and
executes a local coordinator BT for each agent and if the assigned
agent has the necessary capability to do the entire mission, it
will perform the task without any collaboration. In case the agent
cannot perform an action, the agent can delegate it to another
agent. In other words, the collaboration is need-based, i.e., agents
collaborate only if collaboration is required to complete a task.

The overall procedure to generate BTs for individual agents is
explained in Algorithms 1-9. These algorithms work as follow: a
task T; is generated by the Mission Controller (MC). Then, capable
agents send the estimated cost of the task, T;, to MC based on
which MC selects the best agent using a market-based auctioning
algorithm. The selected agent, R;, automatically synthesizes and
executes a BT coordinator to meet the mission goal. Since R; may
or may not have the necessary capabilities (actions) to complete
the task T; on its own, it could potentially act as an auctioneer
to receive assistance for some of the actions from other agents.
Hence, the framework has a two-levels of auctioning mechanism
where the first level is responsible for the task assignment and
the second level is responsible for the action assignment.

Algorithm 1: Main()

/| Initialization

Set all x;,= 0 // no task is assigned to R;

Set all ;.= 0 // no action is assigned to R;

Set tj, =0, for o = 1,2, -- - /| the agent is available

DelegatedAgents;, < ¢

/| Run the BT; which initially is composed of
sub-trees needed for auctioning

7 BTi <~ Para”el(ﬁuction,-y 7751'11," 'rContructi)

@ U R W N =

Algorithm 1 initializes the parameters of the local BT coordina-
tors for the correct operation of the proposed algorithms. Initially,
since the agent R; at the beginning is not assigned a task or an
action, the availability indicator variables for tasks (Line 2) and
actions (Line 3) as well as its availability indicator (Line 4) are
set to zero. Further, a set of global variables DelegatedAgents;, are
defined to track the delegated actions and agents (Line 5). Then, in
Line 7, BT; is initialized by the parallel composition of the follow-
ing sub-trees: Tauction;» Tid;» and Tcontract;» Which are responsible
for auctioning, bidding, and contracting stages, respectively.

Algorithm 2: Add BT for R;

1 function AddBT (G) ;
Input : G : Condition for the assigned task T;
Output: 7; : Synthesized BT
2 Tj < G
/| Start the BT for task T; from the condition C;, which is
used to check if the task is completed or not
3 BT; < Parallel(BT;, Tj)
|| BT; represents all BTs of R; running in parallel
to execute multiple tasks
4 BTSynthesisandExecution(Ty, C;)

Now, assume that the task T; is assigned to the robot R; as
it can meet the condition . For any newly assigned task T; to
R;, Algorithm 2 initializes a new BT 7; and sets it to the goal
condition C; (Line 2) (this condition will be used to determine
if the task is completed or not). Since R; can be assigned to do
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multiple tasks, 7; is composed in parallel with the existing BTs,
BT; = Parallel(BT;, T;), to handle the current assigned task and
previously assigned tasks (Line 3). The BT 7;;, which is initialized
in Algorithm 2, will then be synthesized by calling Algorithm 3
(Line 4).

Algorithm 3: BT Synthesis and Execution for R;

1 function BTSynthesisandExecution (75, ) ;
Input : G : Condition for the assigned task to agent i
T = Initialized Bt to handles T;
Output: T7j : Syntheisized BT

2 do
3 do
4 T, 6,< <— Execute(Ty)
5 if C, == C; then
6 break
7 || stop the synthesis and execution process
8 end
9 if (ConflictWithOtherAgents() # () then
10 Ay = ConflictWithOtherTasks()
1 ReassignAction(j, Ay )
||Priority is based on the order of the tasks j and
Ay is the action in conflict

12 end
13 while r == Executable;
14 ¢if < GetConditionToExpand(T;)

//1dentify the reason why 7j; is not executable
15 Tijs Tsubtree; < ExpandBT(Ty;, cif)

//Resolve the cause by Algorithm 4
16 while Conflict(Tj, Tsubtree; ) dO
17 ‘ Tij < IncreasePriority( Ty, Tsubtree;)
18 end

19 while —(R; = G));

Algorithm 3 starts by checking if the agent R; satisfies the
“goal” C. If not, the algorithm iteratively updates the BT 7; until
a sequence of actions is obtained (Lines 11-15) (this stage of the
algorithm is responsible for synthesizing sub-trees to meet failed
condition). Then, the synthesized BT as a whole is executed to
achieve the goal of a task (Lines 3-10). Throughout this process,
there might occur two kinds of conflicts: conflicts between the
actions of a single agent (two actions of an agent are conflicting)
and conflicts between tasks (agents that are executing different
tasks might need the same resource, e.g., occupying the same
spot). Conflicts between the actions can be locally handled during
the synthesis process (Lines 13-15). However, conflicts among
the tasks cannot be handled during the synthesis process, as the
tasks are introduced to Mission Controller in real-time. There-
fore, conflicts between the agents should be resolved during the
execution (Lines 8-10).

So, to synthesize a BT for robot R; to complete the task T;,
the algorithm starts with 7; = G. Then, in a do while loop
(Lines 3-10), the synthesized BT is executed. For this purpose, 7;
is tested to determine whether it is executable (Line 4). If by the
execution of 7;, the assigned task’s condition is satisfied, i.e., the
condition ﬁk of the last accomplished action is the same as the
goal’s condition Cj, the execution loop will be terminated (Lines
5-7). When executing the BT, if ConflictWithOtherTasks() # @
(Line 8), then this means that there exists a conflict between
tasks, i.e., an action, A, from a task Tj, conflicts with another
action from a different task, Ty. To handle this issue, the function
ReassignAction updates the agents’ BTs that are in conflict (Lines
8-10), on a priority-based criteria by delaying the lower priority
BTs, while keeping the highest priority BT as it is. Here, for
simplicity, we assume that the tasks are given to the system
in order, and T; has a higher priority than Ty if j < j. As a
result, the agent(s) with the updated (delayed) BT performs the
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conflicting actions on another time slot, which results in BTs free
from agent-related conflicts.

If 7; = G is not executable, then Algorithm 3 synthesizes/
expands the BT (Lines 11-15). A BT is not executable if one of
the children condition nodes returns failure. Line 11 identifies the
cause of failure, c. The identified cause will become a condition in
a subtree to resolve the problem by finding alternative actions or
other agents (Line 12), as it will be described in Algorithm 4. After
updating the BT, due to the addition of a new subtree, Tsubtree;;»
a conflict between actions could arise. For example, consider a
situation that Tsubtree; has a condition, cjp, that has to be False
(e.g., the robot arm has to be available to open a door, captured
by cip = False, i.e., the arm is free) but another subtree in
Tij sets cip to True (e.g., if a robot picks an object, captured by
Cikp = True, i.e., the arm is busy). In this case, Tsubtree; €annot be
executed due to the conflict between the actions of “opening the
door” and “picking an object”. To resolve the conflict, the function
IncresePriority(Ty, ﬁubfreelj) increases the priority of Tsubtree; by
moving the subtree toward the left (Lines 13-15), e.g., opening a
door should be done when the robot arm is free either by putting
down the object or at a time that the arm is free.

As mentioned in Algorithm 3, if a task is not executable, the
function GetConditionToExpand(T;) returns cj as the condition to
be met to make 7; executable. Algorithm 4 then synthesizes the
subtree that satisfies the condition cj. In line 2 of Algorithm 4,
a local action Ay is identified that could satisfy the condition
cir. In case, there are multiple local actions that can satisfy the
condition ¢, the Algorithm chooses the one with a lower cost.
The preconditions of the action Ay, captured by cjx,, are composed
by a sequence node to form 7y, (Lines 5-8). Then, to allow
Ak to be executed at clk = V(tj, Tj, Ax), the timing condition
T;_A_time is added to the sequence node as a precondition of
the action A; (Line 9), followed by the action A itself (Line
10). Here, we assume that the elapsed time (measured in time
unit) for each action is an integer multiple of the BT clock,
i.e, 1 time unit = k(Bt_tick_time), k € N. This facilitates the
synchronization of BT_tick_time with actual elapsed time. Next,
Tseq; is composed with Tselyjs initially set as ¢y (Line 3), by a
selector node, to enforce the execution of Tseq; only in situations
where cj is not satisfied (Line 11). To enforce the allocation of
Ay to R;, the timeline indicator t;, and action assignment variable
Xjji are updated (Lines 12-13). However, if no local action exists
(GetLocalActionwithPrecondition(cy) == ¥), then Algorithm 5 is
called to find an agent that can accomplish ¢y (Lines 15-17)
through the level-two auctioning mechanism. Finally, c¢i in Tj; is
replaced by the sub-tree that can accomplish ¢ (Line 18), where
both the synthesized tree and sub-tree are returned to Algorithm
3 (Line 19).

Algorithm 5 performs the level-two auctioning to find a suit-
able agent that can execute an action to satisfy c;. The challenge
in level-two auctioning is that even though an agent may win
a bid for a level-two announced action, the contract/assignment
would not be finalized until the level-one auctioning for the
corresponding task is concluded. To handle this situation, one
way is to repeat the level-two auctioning once the level-one auc-
tioning is concluded to delegate the actions. However, to increase
efficiency, we define the variable DelegatedAgent; to keep track
of winning bidders of level-two auctioning announced by R; for
Task T;. In this way, the bidding/submission for an action to meet
¢y will only happen if it is not done before. For this purpose,
the function DelegatedAgentSelected(cy), by examining the vari-
able DelegatedAgent;;, returns False if an agent has not yet been
identified (Line 2). In this case, the condition ¢; is announced
(Line 4) and the participating agents submit a cost (Line 5) for
the action Ay as calculated in Algorithm 8. In Line 6, the function
Selection_L2() conducts the level-two auction in (6) to select the
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Algorithm 4: Expand Behavior Tree Module for R;

1 function ExpandBT (7j;, ¢y );

Input : ¢y = condition (cause) for T; not being executable

Output: 7; = Expanded BT
2 Ay < GetLocalActionwithPrecondition(cis )

/[ 1dentify local actions that satisfy cjf
Tsetj < Cif
if GetLocalActionwithPrecondition(cys) # ¢ then
cix = GetPreconditionforAction(Ay)
for ¢, in cj do

Tseqy — Sequence("&eqij, Cikp)
|| sequence BT with the condition of action

IO

8 end

9 Tseq;; < Sequence(ﬁeqq, Tj_Ay_time)

|| Tj_A_time is true if clk == V(tj, T}, Ay))

10 Tseqy < Sequence(ﬁeqU,Ak)

|| Generate a sequence subtree containing action
Ay and its preconditions

1 Tset <— Selector(Tel;, Tseq;)

12 V(tio, Tj, Ak) [[ tio is set to 1 for Aty time units
13 set X = 1 /[ Action Ay of T; is assigned to R;

14 end

15 else

16 AuctionModule_L2(cjs)
//If there is no action to meet a condition,
initialize the Level IlAuction Module for delegation

17 end
18 Ty < Substitute(Tj, Cy, 7§e,ij)
// add the subtree Tsel; 1O Tjj replacing ¢

19 return Ty, Tsely

©

Algorithm 5: Level Il Auctioning Module for R;

1 function AuctioningModule_L2 (cy) ;
Input : cj : condition for the delegated action
Output: Selected; : selected agent information

ﬁD(Uf) : cost of the delegated action
2 if (DelegatedAgentSelected(ciy ) == False) then
3 | Selected; < ¢
/| The agent selected to resolve the condition ¢
4 Announcing(cy)
//broadcasting action in the communication range
5 s = ReceiveSubmission()
/| agents with action Ay replies
6 Selected; = Selection_L2(s)

/| choose agent d that minimizes cost I:'D(i]f)
7 UpdateDelegatedAgent (Selectedy, cif)

end

9 if x; == 1 then

10 \ Contract_Agent(DelegatedAgent(cis), Ci)

11 end

12 else

13 ‘ return Selectedy, I:“D(ijf)

14 end

o

agent with minimum bid. Then, to keep track of selected agent-
action pairs, the function UpdateDelegatedAgent(Selecteds, cif)
modifies the global variable DelegatedAgents; (Line 7). Further,
the variable Selected; and the cost of the action, ﬁD(Uf), are
returned (Lines 12-14) to the caller function, that are used for
the estimation of cost in Algorithm 7.

When the level-one auction for the task T; is concluded and
R; is assigned to handle Tj, again Algorithm 5 is called to make a
contract for the delegated action to meet ¢;. In this case, where
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Task T; is assigned to R; (x; == 1), since the bidder for cj is
already known (DelegatedAgentSelected(cy) # ), the auction will
be concluded with a contract (Lines 9-11) where the function
Contract_Agent(.) informs the selected agent about the action
delegation.

Algorithm 6: Level I Auctioning Module for Mission

1 function AuctioningModule_L1 (T;) ;
Input : T;: task to be auctioned
2 selected; <— ¢ [/ The agent selected to handle the task T;
3 Announcing(C;) /| Broadcasting the condition (; for task T;
4 s = ReceiveSubmission()
/| Agents with the specified action replies
5 selected; = Selection_L1(s)
/| choose the agent that minimizes cost and duration
6 Contract_MC(selected;, T;)

In Algorithm 3, we had assumed that the task T; is assigned to
the robot R;. We now can discuss the task assignment, which is
done in Algorithm 6. First, Algorithm 6 announces the task T; in
Line 3. In Line 4, the algorithm receives the estimated operational
and duration cost returned by the participating agents, f; and
tjj, from Algorithm 8. Then, by calling the function Selection_L1,
Algorithm 6 conducts the level-one auctioning in (2) to find a
suitable agent to assign a task (Line 5). Then, in Line 6, the
auction is concluded by activating the contract module, Algorithm
9, of the selected agent and appointing the agent selected; as
the handler and coordinator of the task T; (Here the function
Contract_MC basically notifies the selected agent about the task
assignment).

Algorithm 7: Bidder Module For R;

1 function Biddermodule() ;
Input : c: task or action condition
2 while True do

3 ¢ = listen() /| Listen to broadcasted tasks or actions
4 if ¢ # Null and (3 Ay € LocalAction(R;) s.t. Ay = c) then
5 if c.isatask() then
6 F;j = EstimateTaskCost(c) [/ call Algorithm 8
7 submit(Fy)
/| Submit cost for level one auctioning, i.e.,
for task auctioning
8 end
9 if c.isanaction() then
10 8tix = V(tio, Tj, Ax) — clk(T;, Ay) + Al
1 Fix = afi + BSTi |/ cost of action Ay
12 Bidderik = (l, Ak, Pre(Ak), Af,‘k, V([’io, Tj, Ak)
13 submit(Biddery, Fi) )
/| Submit cost for level-two auctioning
14 end
15 end
16 end

In response to level-one/level-two task/action announcement,
Algorithm 7 performs biding operation. The algorithm continu-
ously listens to announced tasks or actions from the
Mission Controller (MC) or other agents (Line 3). If the robot has
an action that satisfies the condition for an announced task, then
it calls Algorithm 8 to estimate the cost of the task and submits
the estimated cost (Lines 5-8). Otherwise, if the robot has an
action that can satisfy an announced action, then the cost of the
action is calculated and submitted (Lines 9-14). Here, the variable
Bidder;, contains parameters that are useful for cost estimation
and auctioning such as the preconditions of action Ay, i.e., Pre(Ay)
and the time that action Ay is available, i.e., V(t;, Tj, Ax) (see Line
12).
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Algorithm 8: Estimate Task Cost For R;

1 function EstimateTaskCost (G);

Input : G : Task goal

Output: F; : Estimated task cost
2con=¢C,F;=0
3 B <« GetLocalActionToMeetCondition(con)

4 do

5 for A, in B do

6 | Ca < GetPreconditionForAction(A)

7 end

8 B¢

9 for Cay, in Gy, do

10 Ay < GetLocalActionToMeetCondition(CAkp)

1 if A, == NULL then

12 Biddery, IED(ijk) <« AuctionModule_L2(con)
|| Level-two auctioning

13 Fj =F; + Fp(ijk)

14 end

15 else

16 | Fj = Fj + (afic + B8t)

17 end

18 B < BU (A or Bidder.Ay)

19 end

20 while (\/(=(R; = Ca,)))i
21 return Fj

Called by Algorithm 7, Algorithm 8 estimates the total cost
of a task. This algorithm starts by setting the condition, con, to
the input Cj, the cost F; to 0 (Line 2), and the actions to meet
G to variable B (Line 3). Algorithm 8 calculates Cy, as the set of
preconditions that have to be satisfied before executing actions
in B (Lines 5-7). Then, in a do while loop, as long as R; does
not satisfy all A, € B (checked in Line 20), actions to meet the
preconditions Cy,, are identified either from R;’s local action bank
by using the function GetLocalActionToMeetCondition(.) (Line 10)
or via an auctioning mechanism (Line 11-14). At the same time,
the set B initialized to ¢ (Line 8) is used to collect sets of actions
for the next iteration (Line 18). Computing and updating the cost
values for local actions in Line 13 and delegated actions in Line
16 will continue in a loop (Lines 4-20), until the satisfaction
operation \/(—(R; = Ca,)) is False (Line 20), which implies that
all preconditions can be met by the set of agents to execute the
task T;. After the loop terminates, the algorithm returns the total
estimated cost of the task (Line 21).

Algorithm 9: Contract Module For R;

1 function Contract () ;
2 while True do

3 c = listen()

4 if c.selected == i then

5 if c.isaction() then

6 @(tm, Ti, Av) || tio is set for Aty time units
7 set X = 1 [/ Ay of T is assigned to R;

8 con = @k |/ the condition for meeting Ay

9 end

10 if c.isatask() then

1 set x; = 1 [/ The task T; is assigned to R;
12 con = C; || the condition for meeting T;

13 end

14 AddBT (con)

/| start BT synthesis for con = (; or con = G

15 end
16 end

Algorithm 9 continuously listens to broadcasted messages
(Line 3) and forms a contract among agents, by updating
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task/action assignment variables, in response to level-one and
level-two auctioning (Lines 2-16). If the assigned agent index
matches the robots index (Line 4) and the received message is an
action assignment (Line 5), then the agent timeline, t;,, and ac-
tion assignment indicator variables, X;, are updated (Lines 5-9).
Otherwise, if the received message is a task assignment, the task
assignment indicator variable is set to 1, x;; = 1. Setting x;; implies
that the agent R; is a handler for the task T; and hence acts as
an auctioneer for all delegated actions required to meet C;. Then,
the function AddBT(con) in Algorithm 3 is called to generate the
appropriate BT, either for a task T; or action Ay (Line 14).

The overall flow of the algorithms from task announcement
to the synthesis and execution of the BT to satisfy the mission
goals is shown in Fig. 4. As shown in Fig. 4, the Mission Controller
starts announcing a task (Algorithm 6) with condition C;, where
agents with the appropriate local action to handled the task
perform a bidding operation (Algorithm 7). The bidding operation
mainly consists of estimating the cost of tasks and their actions
(Algorithm 8). Based on the estimated cost the Mission Controller
selects the agent with the minimum cost and executes a contract
phase (Algorithm 9). The contact process in Algorithm 9 calls
for Algorithm 2 that initializes a BT with the goal condition C;.
Then, in the selected agent, Algorithm 3 synthesizes and executes
the BT, in which actions are appropriately sequenced to meet C;.
These actions can either be executed immediately or expanded
further in situations where the preconditions of A, are not met.
Thus, Algorithm 4 expands the preconditions of an action Ay,
Cik, and identifies appropriate actions, A,, * # k, to satisfy cy,
from the R;’s local action bank or via a second level auctioning
(Algorithm 5).

3.3. Correctness of the proposed approach

In this section, we first show that the proposed algorithm is
conflict-free. By conflict-free, we mean that each action, in the
generated BT, does not violate the preconditions of an immediate
or subsequent successor action. Then we show that the process
for generation of BT takes a finite-time and the generated BT is
live-lock free. Finally, we prove the developed algorithms solve
Problem 1.

Lemma 1. Under Assumptions 3 and 6, conflict-free BTs always exist
which accomplish the goal of a task T;.

Proof. Based on Assumption 3, there always exists a sequence
of actions to satisfy a task T;. These sequences of actions in
the form of sub-trees (each sub-tree contains the action with
its preconditions) are added one after the other to generate the
BT. With this approach, including a new sub-tree may conflict
with one of the existing sub-trees preconditions. Considering the
worst-case scenario, where adding an action always generate a
conflict, we show that the conflict can be handled by Algorithms
3-9. Lines 13-15 of Algorithm 3, repeatedly increase the priority
of the conflicting sub-trees to resolve conflict. Further, imagine
that the robot R; was executing the action A; toward the accom-
plishment of the task Ty. Now, the task T; which has a higher
priority as it had been announced earlier (j < j') requires the
robot R; to accomplish the action A, which conflicts with A;. In
this case, A; has to be undone and delayed until the completion
of Ay, as described in Lines 8-10 of Algorithm 3. Assumption 6
ensures that all actions can be undone to resolve a conflict. This
conflict-free mechanism is postulated below:
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Fig. 4. A flowchart for Algorithms 1-9. The boxes on the left side of the blue broken line represent algorithms running on the agent R;, while the orange solid box
on the right of the blue line represents algorithm running on the Mission Controller.

Premise 1 ( Adding Ay) — ( Conflict with Cy, t # k)
Premise 2 ( Conflict with ¢y for action Ay, t # k) —
( Undo A; and Increase priority of Ay
or delay A;)
Premise 3 Repeat (Increase priority of Ay) —

(Resolve conflict with all actions A;, t # k)
(Adding Ay) —
( Resolve conflict with all A, t # k)

Now, since based on Assumption 3 any task T; can be ac-
complished by a series of actions in the action bank, and for all
actions, as stated above, it is possible to resolve the conflict with
all other actions in progress, then a conflict-free BT exists for
coordinating the task T; as postulated below:

Premise 1 (Assumption 3) —
3 sequence of Ay for T; )
Premise 2 Adding Ay ) —

Premises 1,2 ) —

(
(
(Resolve conflict with all A, t # k)
(
(Conflict-free BTs exit for T; )

Lemma 2. Under Assumptions 3 and 5, a deadlock-free BTs always
exist which accomplish the goal of a task T;.

Proof. A deadlock occurs if an action A; wait for the completion
of another action, let us say A;. On the other hand, assume that the

completion of A; needs A; to be completed first. This phenomenon
creates a dependency among the actions which block the entire
process resulting in a non-progressing BT, always waiting for the
completion of each other. Assumption 5 prevents the situation
that two actions are dependent on each other. Therefore, based
on Assumptions 3 and 5 a sequence of actions to accomplish a
task T; exists, which is deadlock-free. This is postulated as:

Premise 1 Assumption 3) —
3 sequence of Ay for T; )
Premise 2 Assumption 5) —

Premise 1,2 ) —

(
(
(
(All actions, A, are deadlock-free)
(
(Deadlock-free BTs exit for Tj )

Lemma 3. Under Assumptions 3 and 4, a live-lock free BTs always
exist which accomplish the goal of a task T;.

Proof. A live-lock occurs in a situation where the completed
action, Ay, is continuously violated by the environment (being
undone). Since the environment in which the agent operates is
dynamic, an agent may be forced to infinitely repeat the same
action as a result of the environment interference. However,
according to Assumption 4, the completion of an action can be
violated only a finite number of times by the environment. Thus,
combining Assumptions 3 and 4, it is possible to conclude that
the generated BT is live-lock free. This is postulated as:
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Premise 1 Assumption 3) —

3 sequence of Ay for Tj )
Assumption 4) —

Ay can be violated a finite number
of time)

(Ax can be violated a finite number
of time) —

(Action Ayis live-lock free)
(Premises 1, 2,3 ) —

(Live-lock free BTs exist for T; )

o~~~

Premise 2

P

Premise 3

Lemma 4. Under Assumptions 3 and 7, as well as Lemmas 2 and 4,
there exist BTs that can accomplish a task T; in a finite-time.

Proof. Based on Assumption 3, for each task, Tj, there ex-
ists a sequence of actions to meet its goal, C;. Also, based on
Assumption 7, for each action A, there is at least one agent.
However, some of the actions in T; may not be accomplished at
the time the action is required either because the agent which
is assigned to handle the task does not have a local action, Ay,
or other agents capable of accomplishing action A, are busy.
We showed that all actions are deadlock-free and live-lock free,
which guarantees that agents which are capable of performing
action A, will be free after a finite amount of time. Therefore, as
each action can be completed in a finite-time, the BTs generated
in a backward way starting from the goal of a task T; and executed
in a forward way can always be completed within a finite amount
of time. This is postulated as:

3R; for action Ag)
Premises 1, 2, 3,4 ) —
Finite time BTs for T; )

Premise 1 (Assumption 3) —

( 3 sequence of A for T; )
Premise 2 (Lemma 2) —

( Deadlock-free BTs for T; )
Premise 3 (Lemma 3) —

(Live-lock free BTs for T; )
Premise 4 (Assumption 7) —

i

(

(

Theorem 1. The proposed decentralized BT synthesis and execution
approach, described by Algorithms 1-9, addresses Problem 1.

Proof. Given Lemmas 1-4, we show that there exist BTs for
coordinating a group of robots to accomplish a mission which
consists of multiple tasks as described in problem 2.

According to Lemmas 1, 2, 3, and 4, the generated BTs for each
task is conflict-free, deadlock-free, and live-lock free, which can
be executed in finite-time. Also, we showed that conflict within
or among tasks can be resolved either by increasing the priority
of actions, Ay, or delaying agents executing a lower priority task.
Thus, it is always possible to guarantee that Algorithms 1-9,
addresses the coordination of multi-robots to meet the goals of
several tasks, in any given order (mission). This is postulated as:

Finite-time BTs for all T})
Premises 1,2, 3,4 ) —
Problem 1 is addressed for all Tj)

Premise 1 (Lemma 1) —

(Conflict-free BTs exits for all T; )
Premise 2 (Lemma 2) —

( Deadlock-free BTs for all T;)
Premise 3 (Lemma 3) —

(Live-lock free BTs for all Tj)
Premise 4 (Lemma 4) —

(

(

(

10
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Table 1
Action bank for the UAV in case study 5.1.

Global Action Bank

No Action Precondition Effect

1 MoveTo(Np, path) path is collisionfree uav at Np

2 Detect(m) - m is detected
3 Deliver(o, p) uav at Np m is detected oatp

4. Complexity of the proposed algorithm

The complexity of the proposed framework can be investi-
gated by analyzing the complexity of synthesis and execution
processes. The contributions of other parts of the framework such
as the initialization steps (Algorithm 1) and the BT invoking rou-
tine (Algorithm 2) to the complexity analysis are not significant,
and hence, are ignored.

For the synthesis part, Algorithm 3 (Lines 11-15) starts by
identifying unsatisfied preconditions of an action, with a compu-
tational requirement of O(1) (Here, we assume a lookup table and
a library of sub-trees containing the preconditions and actions is
already available). Then, using Algorithm 5, assigning an action to
the right agent among M agents at the worst case requires O(M)
computation operations when the agent plays the auctioneer
role (compared to O(1) computation operation when the agent
has the role of bidder). This is followed by a conflict resolution
mechanism which requires O(n) computation operations to check
if the assigned actions conflict with maximum n — 1 previous
actions. As a result, to synthesize a single action the auctioneer
requires O(M + n) operations. Consequently, for synthesizing a
task with n actions, the synthesis procedure requires O(Mn + n?)
computation operations.

Regarding to the execution of a BT, as can be seen in
Algorithm 3 (Lines 4-10), for a task with n actions, the execution
stage has a complexity of O(n), as the loop should be repeated for
n actions.

Therefore, the complexity of the whole process is dominated
by the complexity of the synthesis part, which is O(Mn + n?).

5. Case studies
5.1. Single agent single task: Search and delivery UAV mission

Consider a UAV whose mission objective is to deliver an object
o to a specific place marked by m near position p. The UAV has
to search for the marking m in the close vicinity of p, Ny, before
delivering the object o. Then, the problem is to generate a BT for
the UAV with the action capabilities listed in Table 1. Since it is a
single agent, no bidding mechanism is needed and it is sufficient
to use Algorithms 3 and 4 to achieve this search and delivery task.

Algorithm 3 starts from the goal, “o at p”, i.e., the object o
should be at position p, as shown in Fig. 5a. Since initially the
goal is not satisfied yet and the generated BT is not executable,
the function GetConditionsToExpand is called to identify the pre-
conditions (Line 11 of Algorithm 3). From Table 1, the Deliver
action can meet the condition “oatp”, and hence the ExpandBt
function (Line 12 of Algorithm 3) uses this action to update the
BT by composing the conditions of Deliver action via a sequence
node and the goal by a selector node (Lines 4-14 of Algorithm 4)
as shown in Fig. 5b. Again since the preconditions, uav at N, and
m is detected, are not true, they have to be expanded, following
the same procedure, by their corresponding actions MoveTo and
Detect as shown in Fig. 5c.
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a) The Initial BT

ML Deliver
detected

b) After expanding condition (O at P)

Pathis
Collison free
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Deliver

c) After expanding condition (UAV at NP) and (m is detected)

Fig. 5. Synthesizing a BT for a UAV to search and deliver an object to a particular position: (a) Algorithm 3 starts with generating a BT with the goal condition

“o at p”

, (b) Algorithm 4 finds out that the action “Deliver” can meet the goal condition, and hence, the action “Deliver” and its preconditions (“being at Np” and

“detecting m”) are added as a subtree with a selector node, (c) Algorithm 4 expands the false preconditions (“being at Np” and “detecting m”) to find the actions

that can meet these preconditions.

Table 2
Operational and duration cost of an action. The actions MoveTo and
Reconnaissance are functions of distance divided by velocity.

Cost of action

Action Decription Operation Duration
Aq MoveTo o *d(s) aid(s)lv
Ay Recon ap*d(s) ap*d(s)/v+M
Az Pick 4 2
Ag Attack 10 2
As Deliver 4 2
Ag Repair 5 8
Table 3
Agents capabilities.
Resource
No Agent Agent capability
1 UAV, (A1, Ag}
2 UAV, {As, Ay, Ag}
3 UAVs {As, A1, A3}
4 UAV, {A1, Az}
5 UAVs {A1, Az}
Table 4
Five tasks expanded using Algorithm 3.
Mission
Task goal Sequence of actions
T, G Recon(sy ), MoveTo(s}), attack(s})
T, G Recon(s, ), MoveTo(s,), Deliver
T3 C3 MoveTo(s3), Pick, MoveTo(s}), Deliver
Ts Cy MoveTo(s4), Repair
Ts Cs MoveTo(ss), attack(s})

5.2. Multiple agent multiple task

Consider a heterogeneous team of agents R = {R1, Ry, R3, Ry,
Rs} with the maximum velocity of V = {20, 20, 20, 20, 20} [m/s],
initially located at Pg {(60, 60), (54, 24), (90, 53), (25, 40),
(75, 85)} [m]. The capabilities of these UAVs are described by the
action bank in Table 3 where each action has an operational and
duration cost associated with it as shown in Table 2. The cost for
actions MoveTo and Reconnaissance is in the form of «yd(s)/v,
where d(s) is the distance to be traveled by the agent i, v is its
velocity, and «j is a proportional term that depends on the type
of agent. In this section, we have a1y oy = a3, = 1.2 and
a4 = sy = 1. For Recon, the UAV should travel to a particular
location and conduct reconnaissance to find a target. Therefore,
since the exact location of the target is not known beforehand,
after reaching the search location, an additional duration cost is
considered for searching a target, which is assumed to have a
maximum value, M (in this section we let M=10). For simplicity,
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the actions Pick, Attack, Repair and Deliver are assumed to have
fixed costs.

Our aim is to synthesize and execute BTs in a decentralized
way to accomplish the tasks Tq, T, T3, T4, and Ts, which are
announced at time instances 1, 3, 4, 6 and 13, and located at
Pr = (15, 60), (80, 20), (60, 90), (20, 20), (50, 80)[m], as listed in
Table 4. The sequence of actions for each task is given in Column
4 of Table 4 (expansion of a task to a sequence of actions is
explained in Section 5.1) so that the last action meets the task
condition G. Then, we consider two scenarios in an environment
with an area of 10, 000m? and will follow Algorithms 1-9 to
generate BTs.

B.1. Scenario 1: In the first scenario, we aim to complete the
tasks in Table 4, where the duration is of higher importance by
setting « 0.6 and B = 0.4, assigning more weight to the
operational costs of the tasks and a lower weight to the duration
of the tasks in the cost function given in (2). Further, the location
of a task in Table 4 is used as an argument for the actions, e.g., the
location of T, (s4 = [25, 40]) is given as an argument for the
action MoveTo. Then, we follow Algorithms 1-9 to generate BTs
for each task, Tj, for which the details of the generated BTs are
provided in Table 5. For example, consider the expanded task
T; with the sequence Reccon, MoveTo, Attack (Row 1 of Table 5),
where UAV; is the winner of T; (since only UAV; can do Attack
as the last action of T;). To complete task T;, UAV; can perform
actions MoveTo and Attack, but it does not have the capability to
perform action Reccon. Hence, UAV; initiates a level-two auction
(Lines 2-8 of Algorithm 5) to assign action Reccon (Row 2 of Ta-
ble 5), for which using (6), UAV, wins the auction with minimum
cost (the duration cost for UAV, to accomplish Reccon is 8ty =
12 (using Table 2 the duration cost is csp*,/(Pr, — Pr,)/v4+M =
\/(25 — 15)2 + (40 — 60)2/20 + 10 = 12) and its operation cost
is fu ag % \/(Pr, —Pg,) = (v/(25 — 15)2 4 (40 — 60)2 =
22.4), resulting in a total cost of 1342 ozf42 + Bt = 0.4 %
22.44 0.6 %« 12 = 18.2 (Line 6 of Algorithm 5). Therefore, using
(4), the duration cost of T;, being handled by UAV3, is tq1q
8tp(112)+8t1,+8t13 = 18, where 8tp(112) = 8ty = 12. Similarly,
using (3), the operation cost of Ty, being handled by UAV, is
fir = fo(112) + fio + fi3 = 88.3, where fp(112) = fy = 22.4.
Using (1) and (2), task T; can be concluded with the total cost of
F] = F]] = Olf]] +ﬂt11 =0.4%88.3+0.6%18 = 60.2. Further, as
detailed in Row 3 of Table 5, upon finalizing the contract, UAV,
will be assigned to handle T; and accomplish actions MoveTo and
attack over V(tlo, T1,A1) = [14, 17) and V(tlo, T1,A4) = [17,19),
respectively, while delegating UAV, to accomplish Reccon over
V(tso, T1, Az) = [2, 14), ensuring that task T; will be completed
in the time range from [2, 19). Assignment of all tasks follows the
same procedure.

Since task Ty is the first task, the delay in the calculation of
durational cost is 0, i.e., using (5), V(t., T1, As) — clk(Ty, A,) = 0.
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Task assignment for Scenario B.1 (¢« = 0.6, 8 = 0.4)
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: “MC, L1” represents the level-one auctioning by the Mission

Controller, and “UAV,, L2” represents the level-two auctioning by UAV,.

Auctioning steps for assigning the tasks Ty, - -, T
Step | Auctioneer | Task/Action | Bidder/Candidate issil Selection/Contract
1 | MC,L1 T, UAV,
2 | UAW, L2 A; UAVLUAV; | {UAVi: 8tiz = 12, fag = 224, Fiz = afus + Bliz = 18.6}
=14, fs2= 65, Fyo = afs + Blsa = 4.6} _ | UAV4:86p(112) = 14, fp (112) = 22.4, Fp(112) = 18.6
YA v UAV, thy = 0lp (112) + 0fyz + 8t1s = 18, fu1 = fp(112), UAV; : Fy = Fy; = 602,V (t10, Tl A3) = [2,14),
+h2 + f1s =883, Fu = afur + ftn = 60.2 V(to, Ti, A1) = [14,17), V(t10, Ti, As) = [17,19)
4 | MC L1
Ts | van, 2] [ (UAVL: 6t =23, fio = 585, Fio = afis + Bl =443} |~~~ TTTTTTTTTTTT
UAV, : 6p(222) = 23, fp(222) = 58.5, Fp(222) = 44.3
T6 | VAV L2 T A, | UAVL,UAVs | {UAVi: 0fiy =23, far = 585, Fra = afa + Bl =443} | T T oTTToT
I I I 3, fp(222) =
7 | MC,LL T, UAV,, UAV; JAVy : Fy = 65.8, Y (ta0, T2, Az) = [14,27),
V(t;.,,T; A1) = [27,29), V(ts0, T2, As) = [29,31)
322)+af +5r1 =11,
fa2 = fp(332) + for + fos =597, Fyz = afss + Bz = 65.8
8 | MC,LI T UAV, UAV; : tog = '5t1| + atn + .sm + 51‘” =14,fi3=fn UAVs : Py = Fyy = 83.5,V(tao, Ti, As) = [5,13)
3.5 V(ts0, Ts, As) = [13,17), V(ts0, Ts, As) = [17,19)
9 | Mc L1 T UAV, VAVl = 5!1, +6m -1, f“ = /1, + fas = 59.1, UAV, : Fy = Fyy = 395, v(zm Ty, Ay) = [7,9)
Fau = afou+ Blas 5 V(tao, Tu, As) = [9,11)
10 | MC L1 T VAV, UAV; : tig = 6t11 + 0k1a = 13, f15 = Ju1 + Ju = 93.6, UAV, : Fy = Fys = 614, v(r. Ty, Ay) = [19,23)
Fi5 = afis + Bl = 61.4 V(t10,T5, As) = [23,25)
Table 6

Task assignment in Scenario B.2 (« = 0.4, 8 = 0.6) :

“MC, L1” represents the level-one auctioning by the Mission

Controller and “UAV,, L2” represents the level-two auctioning by UAV,.

Auctioning steps for assigning the tasks 7y, - -, T5
Step | Auctioneer | Task/Action | Bidder/Candidate issi Selection/Contract
T | MC,L1 [ UAV,
2 | UAV, L2 A, UAV;,UAV;
: k UAV; : 8ip(113) = 1./D(111) =07, FD(IIJ) =088
3 ML | T T T VAV, ™7 [ fas = 6hu; + 60 (113) + 36, fur+ fo(113

Fu=afu+Btn =4

UAV; ity =

(226) + 8 p (224) + bt
far = (226) + o (224) + fag = 2.2, Fyy = afar + Btas = 6.88;
bty + Ofay + Ofss = 6,

fs2 = fa + fas + fas = 2.7, Fao = afaz + Bfso = 4.56

=10,

[ 5 o 9),
V(tg0, T3, As) = [9,10), V(t30, T3, A3) = [10,11)

{UAV: : btss

. 1 ity =0lp
Ji3 = fp(135) + fi3 = 0.5

= 0.4, Fys = a fas + Blas = 1.96}

Fig

fobhs=7
afis + ftis = 4.4

UAV; UAV; : 0t =7, f2a = 0.7,

1 = afas + Blag = 448 A) = [12,13)

UAVy,UAV, UAV

ttis = 0l1a + Olas

Fis = afis + Bfis =5.8;
UAV, : tys = 8tag + 8t57 = 5,
Fas = afss + Btas =

L fis = fiz4 fis =1 F = 3.36, v(lzo Ts As) =1[6,8),

V(t1o, T, A7) = [8.10)

fos + for =09,

Table 7
In Scenario B.2, a mission consists of 100 tasks assigned to different number of
agents.

Number of tasks Number of agents Computation Duration time
100 1 3.6 5932

100 10 8.10 927

100 20 13.25 509

100 30 33.15 282

100 40 58.5 237

This may not be the case for other tasks. For example, for task
T, in Table 5, since there are ten time units delay between the
announcement of Ty, clk(T,, A;) = 4, and the availability of UAV,
for the execution of task T,, V(ts, T>,A;) = 14, the duration
cost of Ay is 8ty = V(tao, T2, A7) — clk(Ty, Ax) + Al = 23.
Therefore, the cost of A, for task T, is fs; = o * f42 + B % 8ty =
0.6 x58.5 + 0.4 %23 = 44.3). As another example, task Ts should
start with the action A; of UAV;. Even though UAV; is available
at t = 11 for 3 time unit to start action Ay, this is not enough
to complete A; with Af; 4 due to prior contract with Ty
(the timeline for the tasks Ty, T, and T3 can be seen in Fig. 6).
Therefore, since the available time for UAV; is not sufficient to
complete the action A; (this is checked by Line 12 of Algorithm 4
for local actions and Line 6 of Algorithm 9 for delegated actions,
action A, is deferred to a later time as shown in Fig. 6 and Row 10
of Table 5. The corresponding execution of the task by the agents
is shown in Fig. 7.

For each task, once the auctioning process is completed, the
winning agent synthesizes the BT to meet the goal of the task.

12

s [ 3 2 F 0
1
i ‘F _
o
s [ 0 ) ® E)

Fig. 6. Task and action assignment timeline for Scenario B.1.

As an example, the synthesized BT for UAV; is shown in Fig. 8.
The tree BT; is composed of five subtrees running in parallel.
The left subtrees are responsible for the market based auctioning
(auctioning, bidding, and contract), while the two right subtrees
sequence actions appropriately to satisfy the mission goals: the
top right subtree and the bottom right subtree contribute to tasks
T; and Ts. The level-two auctioning is conducted at the agent
level (the left subtrees in Fig. 8). The Level-II Auction subtree
on the top-left announces the actions to be delegated, receives
the submissions, selects the winner agent, and makes a con-
tract by informing the selected agent about the assigned action.
On the other hand, the MissionController (MC) handles level-
one auctioning. For this purpose, the Level-I Auction subtree in
Fig. 9, announces the tasks, receives the submissions, selects the
winner/handler agent, and makes a contract by informing the
selected agent about the assigned tasks. The Bidder subtree in



T.G. Tadewos, L. Shamgah and A. Karimoddini

Knowledge-Based Systems 260 (2023) 110181

Table 8
Terms and their explanations.
No Terms Explanation
1 T Set of tasks
2 T; jth task
3 N Total number of tasks
4 A Global action bank
5 Ax kth action
6 L Total number of actions
7 R Set of robots i
8 R; ith Robot
9 M Total number of agents/robots
10 Xij Task assignment indicator; x; = 1 if T; is assigned to R;
11 Riji Action assignment indicator; Xy = 1 if A is assigned to Ry to complete of task T;
12 G Condition to meet task T;
13 Qi Action capability indicator for R; to handle action Ay; @y = 1 if R; can handle A
14 ¢ Set of preconditions for the actions
15 Q Condition to meet action Ay
16 Dk Number of preconditions for action Ak
17 Gjji G =1 if action Ay of R; is needed for task Tj
18 Cik Set of preconditions for action Ay when being handled by R;
19 Cikp pth precondition for action A, when being handled by R;
20 F Set of value functions
21 Fj Total cost of T; when R; is the handler
22 F The minimum total cost to complete T;
23 fi Operational cost of T; when R; is the handler
24 tij Durational cost of T; when R; is the handler
25 Aik Operational cost of Ay to be done by R;
26 [ Durational cost of A, when done by R;
27 I:'ik Total cost of action Ay to be done by R;
28 ﬁD(Uk) The operational and duration cost of A, delegated by R; to complete T;
29 oliik) The operational cost of A, delegated by R; to complete T;
30 Stp(ijk) The durational cost of Ay delegated by R; to complete T;
31 o Operational cost weight term
32 B Durational cost weight term
33 clk Discrete clock
34 clik(T;) The time instant that T; is announced
35 clk(T;, Ay) The time instant that action Ay is called for T;
36 o The sample time index from start to the end of mission (1, 2, ---)
37 tio Action timeline indicator for R;; tj, = 1 during the time R; is assigned an action
38 V(tio, Tj, Ax) Returns the time instant that Ay is available to be started by R; for task T;
39 @(tio, Tj, Ax) A function that makes t;, = 1 over [V(tj, T}, Ax), V(tio, Tj, Ax) + Afix] when R; should execute Ay
40 N The time duration that R; needs to complete action Ay
41 Stix The duration between request and completion of Ay by R;
42 = Satisfaction operator
43 BT; The whole BT structure of agent R;
44 Tij Sub-tree of BT; responsible for meeting task T;
45 Thuction; Sub-tree of BT; responsible for auctioning
46 Tid; Sub-tree of BT; responsible for bidding
47 Teontract; Sub-tree of BT; responsible for contract
48 DelegatedAgents;; A global variable that store the delegated agent-action pairs for task T;
o - Fig. 8), submits the costs for both actions and tasks if they can
be handled by UAV;. Once UAV; is selected for a task by Level I
o, or for an action by Level II auctioning, then the contract subtree
120 . .
reserves UAV; for the assigned task/action.
B.2. Scenario 2: In the second scenario, our aim is to complete
100 Ts the tasks for more agents by letting 8§ = 0.6 and « = 0.4 to assign
T, X Ms more weight to the duration of the tasks in the cost function
<) * compared to their operational costs as in (2). We pursued the
T, same procedure similar to Scenario 1 by following Algorithms 1-
=2l T e 1 9, and generating decentralized BTs to coordinate the robots to
’ complete the tasks in order. The details of the generated BTs are
0 iete provided in Table 6 and is shown in Figs. 10 and 11.
T B.3. Scenario 3: In the third scenario, our aim is to access
2 ¥ the scalability and computational cost of the proposed frame-
work. Table 7 shows the execution of 100 randomly generated

. tasks from Table 4, which are assigned to a different number of
agents. For example, when the tasks are done using 10 agents
the computation time needed for the task allocation is 8.10 s and

Fig. 7. Tasking and coordination of agents in Scenario B.1 where the execution
of tasks by each agent is associated with a unique color. For example, the
color green represents UAV, moving to the target location performing action
Reconnaissance for task T; and Ty.
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the duration of execution of the tasks is 927 s, while using 40
agents the computation and execution time are 58.5 s and 237
s, respectively. This result shows that as the number of agents
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Level-IT Auction A 4 Task 1 Subtree
Subtree E;I
v v
Announce Receive S Contract
action Submission _Agent()
Bidder Subtree
{ + }
listen submit
Calculate Calculate
task Cost action cost
Contract Subtree * Task 5 Subtree
—
?
v v
?
listen AddBT
Crask >
Set task Set action Al
Indicator indicator

v
o P

Fig. 8. The synthesized BT for UAV; in Scenario B.1 in Section 5.2. The sub-trees on the left are responsible for the Market based auctioning method on the agent

side, while the sub-trees on the right are responsible for the execution of assigned tasks.
Root
Level-1 Auction ¥
Subtree =
Announce Receive Selection Contract
- I
Task Submission _MCH)

Fig. 9. The BT for the Mission Controller for Scenario B.1 in Section 5.2. This tree is responsible for the Market based auctioning level 1.

increase, the computation cost increases while the execution time
decreases as more resources (agents) are available for parallel
execution of the tasks.

6. Conclusion

This paper developed a new automatic tasking approach for
decentralized coordination of a heterogeneous team of
autonomous agents. The agents have different capabilities in
terms of executing different tasks. In the proposed framework,
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the collaboration can take place when an agent cannot perform a
part of a mission individually but can accomplish the mission in
collaboration with other agents which have complementary ca-
pabilities. For this purpose, we developed a hierarchical modular
coordination approach and the required algorithms for synthesiz-
ing and executing local Behavior Trees (BTs) for tasking individual
vehicles so that they can collectively achieve a set of tasks.
Further, a two-level auctioning algorithm was incorporated into
the developed framework to assign tasks among the vehicles with
lower costs. The developed framework allows a trade-off between
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g. 10. Task and action assignment timeline for Scenario B.2.
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Fig. 11. Tasking and coordination of agents in Scenario B.2, where each agent
execution is associated with a unique color. For example, the color green
represents UAV, moving from the agents initial position to the target location
performing action Reconnaissance for tasks Tj.

the total cost and the duration of the accomplishment of the
tasks through an embedded cost function. Illustrative examples
were provided to describe the implementation of the proposed
approach. Future work includes implementing the developed
framework for decentralized collaboration of multiple UAVs using
Robot Operating System (ROS) as well as developing the ROS
packages for the general purpose applications of this framework.
Another potential future research direction is to consider the
impact of uncertainty of measurements on the task allocation
mechanism.
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