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a b s t r a c t

This paper proposes a systematic approach for automatic tasking and coordination of a heterogeneous
team of cooperative autonomous vehicles forming an intelligent vehicle. Each vehicle is equipped with
different resources, operating in a shared dynamic environment, and capable of executing a set of
specific tasks. To coordinate such a heterogeneous team of vehicles, we develop a hierarchical modular
coordination algorithm for generating local Behavior Trees (BTs) for tasking individual vehicles so
that they, as a team, can collectively achieve a global mission. A hierarchical auctioning algorithm is
embedded in the proposed framework to effectively assign tasks among the vehicles, so that they can
complement each other and complete a mission that may not be achieved individually. Furthermore, by
introducing operational and duration cost weight terms, the proposed approach provides the possibility
to adjust the total operation cost and duration of the tasks. The details of the developed algorithms
are illustrated through different case studies.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With advances in communication, computation, and control
echnologies, it is now becoming possible to deploy intelligent
ystems in the form of a heterogeneous team of autonomous
ehicles with different capabilities (sensors and actuators) to
ollectively accomplish complex missions and tasks, which are
istributed in time and space and may not be possible to be
chieved individually [1–4]. A cooperative control strategy not
nly can handle such complex scenarios, but also could sig-
ificantly reduce the cost, enhance the resilience of the over-
ll system, and improve the team functionality through sharing
esources and distributing tasks and loads [5–8]. Nonetheless,
ulti-agents cooperation introduces challenges and complexities

ncluding but not limited to task decomposition, task assign-
ent, communication, task execution, and task monitoring [9].
common method for tasking multi-agent systems is to employ

cheduling mechanisms [10]. For example, [11] provides a reliable
cheduling algorithm for a team of agents with the capability to
onduct dynamic rescheduling. However, cooperative tasking in
eneral is beyond simple scheduling and often involves depen-
encies and join execution of actions. Heuristic methods [12,13]
nd bio-inspired approaches [14–16] have been employed in the
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treet, Greensboro, NC, 27411, USA.
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literature for more complex tasking scenarios. However, such
methods often lack proof of performance. Alternatively, one can
use consensus-based algorithms to minimize the cost or maxi-
mize the number of tasks assigned to an agent [17]. The challenge
is that generally tasks are sequences of actions that have to be
completed in a particular sequence and often in collaboration
with other agents, which is beyond the scheduling problem as it
requires a coordinator(s) to synthesize and execute a scheduling
and sequencing plan in a collaborative setting.

Another common approach to address tasking and coordina-
tion of multi-agent systems is to rely on group behaviors that
emerge from group interactions and individual decision-makings
based on local information. Threshold-based methods follow a
simple rule for decision making: if ‘‘decision criteria > threshold’’,
then the agent picks the task. A decision to select a particular task
depends on an individual’s perception of a task and individual’s
response threshold for the task. The game theoretical approaches
formulate the tasking and coordination problem for multi-agent
systems to form a disjoint coalition as a hedonic formation game
between the agents and the tasks that are interacting [18,19]. The
advantage of these methods is that they rely less on the infor-
mation about modeling the environment, tasks, and individuals.
However, this makes it difficult to predict the exact behavior
of individuals, focus on single static global tasks, and formally
design, analyze and implement a cooperative strategy [18]. In
market-based methods [20,21], the task is decomposed into some
subtasks to be assigned through an auctioning process. For this
purpose, each individual agent offers its bid and then the auction-
eer collects the bids and decides which agent is more eligible to
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in the announced task. In [22], an optimal multi-robot tasking
ramework is introduced by modeling each robot as a weighted
ransition system and composing the model of the robots with the
ission requirement expressed as a linear temporal logic (LTL).
owever, this framework is centralized and as the number of
articipating robots increases, scalability becomes a bottleneck.
n [23], a decentralized multi-agent control strategy following a
ottom-up approach is presented, where each agent synthesizes
local coordinator to ultimately meet a global mission. However,
ince the agents have no prior knowledge about each local task,
onflicts among agents could arise which has to be resolved by a
entralized mission controller. In [24–26], an automated task de-
omposition approach is introduced using the natural projection
o local sensing/actuation maps when the tasks are given in the
orm of automata. In [27,28], an automated supervisory control
ramework models the system and its corresponding specifica-
ions as a discrete event system (DES) where the developed
upervisor centrally coordinates the robots indirectly by enabling
r disabling the events. In turn, each robot chooses to execute or
ot to execute the enabled events that are communicated back
o the supervisor to enforce a teaming behavior. These automata-
ased approaches commonly face state explosion problem and
annot be flexibly used/re-used with existing structures in a
odular way.
In [29], an autonomous task allocation mechanism is proposed

here agents initially split into groups to cover an area, and then,
he task allocation is conducted autonomously by negotiation
mong agents. In [30], a task is distributed among agents by
onsidering the current state of the agents and adding a behavior
ayer that takes into account the previous decisions of the agents
o improve collaboration among the agents. In [31], multiple
euristic algorithms are used to come up with the best task
llocation plan for agents operating in a battle-field. Each agent
elects an algorithm based on the flight characteristics and the
nvironment they operate to maximize efficiency. These methods
re often computationally expensive, challenging their scalability
nd the application to cases where the environment changes or
asks are introduced on-the-fly.

In [32] a decentralized coordination architecture to allocate
nd manage resources to meet the mission requirement has been
roposed, however the framework requires a global view of avail-
ble resources to assign tasks. In [33], the problem of efficient
ask allocation is addressed in a distributed manner by solv-
ng non-linear MILP formulation. The major issue in MILP-based
echniques is that the computation is done offline and as the envi-
onment changes, an expensive computation has to be performed
gain which is costly if the environment changes frequently. Like
ILP, a major challenge in almost all aforementioned techniques

s that with these techniques either the computation is done of-
line or the agents have limited intelligence to coup with dynamic
nvironments and emergent scenarios.
An alternative planning solution is to employ Behavior Trees

BTs) [34–37]. BTs are graphical mathematical models for the
xecution of tasks with inherent hierarchical, modular, and reac-
ive properties. With BTs it is fairly more convenient to manage,
odify, and add tasks or subtasks due to the modular and scalable
tructure of BTs. Further to incorporate safety, in [38,39] a safe BT
ynthesis method for a single agent has been proposed. In [40]
Ts are used to address a logistic/load-delivery problem that
tilizes a predefined BT. In [41], given a global BT controller and
ssuming that the tasks are decomposable, a heuristic approach
s employed to create local BTs for each agent. However, the
uestion of how to determine the global BT is left unanswered. To
xtend this framework to multi-agent systems, one way is to use
he method in [42] to develop a global BT and then decompose

he global BT to local BTs using the method in [41]. However, this

2

Fig. 1. Building blocks of Behavior Trees: (a) A sequence node, (b) Execution of
Action 1 based on Condition C1, (c) A selector node, (d) A parallel node.

approach is not computationally efficient and may end up with
the state explosion problem for larger systems.

To address the challenges on the coordination of multi-agent
systems, in this paper, we distributively and reactively synthesize
the local BTs on-the-fly for a set of streamed tasks, so that
each agent is responsible for synthesizing its own BT. Moreover,
our proposed technique incorporates a tasking mechanism by
assigning the tasks via a market-based auctioning algorithm to
minimize the cost. In the proposed framework, collaboration
among agents is needed if and only if a single robot cannot do
the task alone, thus resource utilization is improved leaving other
robots for new tasks. In summary, the contributions of the paper
include:

• developing a hierarchical modular coordination algorithm
for automatically generating local BTs on-the-fly for tasking
individual vehicles so that they, as a team, can collectively
and reactively achieve a global mission,
• incorporating a market-based auctioning algorithm to for

assigning the tasks and actions while minimizing the overall
operation and duration cost.
• deriving the sufficient conditions and formally proving the

correctness of the proposed method in the sense that the
assigned mission can be always completed.
• analyzing the computation cost and investigating the scal-

ability of the method by applying the method to scenarios
with large numbers of tasks and agents.
• applying the proposed method to several case studies,

demonstrating the effectiveness of the proposed approach.

The rest of the paper is organized as follows. The background
and necessary preliminaries on behavior trees are provided in
Section 2, followed by problem formulation for the decentral-
ized coordination of multi-agent systems. Section 3 describes our
proposed approach for synthesizing decentralized BTs in detail.
Section 5 applies the proposed method to several case studies
to illustrate the implementation of the developed algorithms.
Finally, Section 6 concludes the paper. The terms being used in
this paper along with their explanation are provided in Table 8 at
the end of the paper.

2. Problem description

2.1. Behavior Tree structure

Formally BTs are defined as a directed acyclic graph with three
types of nodes: Root node, Leaf node (condition and action), and
Composite node (selector, sequence, parallel). Root node is the
starting vertex in the BT graph. Leaf nodes are terminal nodes in
a BT’s branch in the form of an action or a condition. Composite
nodes are used to compose leaf nodes in the form of selection,
serial (sequence), or parallel. Fig. 1 shows different composite
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odes. In the hierarchical architecture of a BT graph, the nodes on
he higher layers are called parent nodes, whereas linked nodes
n their subtrees are called children. A node in a BT’s hierarchical
tructure could return to its parent with success, running, or
ailure, if it completes its job or satisfies a condition, if it is in the
rocess of completing its job or checking the condition, and if the
ob cannot be completed or the condition is violated, respectively.
enerally, the execution of a task is initiated by the root node
hich sends a tick (enabling signal) with a certain frequency to

ts children. Then, the enabled child activates another child or
eturns its execution status as running, failure, or success to its im-
ediate parent. In this way, the actions are executed from bottom

eft of the BT, returning success/failure/running to their parents.
y systematically composing leaf nodes (actions and condition
odes), using one of the composite nodes (sequence, selector or
arallel nodes) a complex BT with a modular architecture can be
esigned.

.2. Preliminaries and notations

We use BTs to formulate the coordination and tasking for
ulti-agent systems over the following components:

(1) The set R = {R1, . . . , RM}, which includes a team of robots,
where M ∈ N is the number of agents. We also define a set
PR = {(x1, y1), . . . , (xm, ym)} and a set V = {v1, . . . , vM}

which represent the position and velocity of the agents,
respectively. In this paper, the terms agents, robots, and
vehicles are used interchangeably. For each robot, any com-
ponent in its operating space other than the robot itself is
considered to be the environment.

(2) The set A is the global action bank, which contains a set of
actions Ak, k = 1, . . . , L, where L ∈ N is the total number of
actions. We define a set of action capability indicators âik,
i = 1, . . . ,M , k = 1, . . . , L, for which âik = 1 if the robot
Ri can accomplish Action Ak, otherwise âik = 0. Here, the
robots are assumed to perform a single action at a time.

(3) The set T which includes a set of complex tasks (a task can
be decomposed into multiple sets of actions that could sat-
isfy the same task goal in different ways [43]) Tj,
j = 1, . . . ,N , where N ∈ N is the number of tasks along
with a task position PT = {PT1 , . . . , PTN }. The accomplish-
ment of each task (objective of Tj), can be captured by
meeting a condition Cj. For example, if the task T1 is to
‘‘reach a goal region’’, then C1 is ‘‘being at the goal region’’.
We also define a set of task assignment indicators xij, i =
1, . . . ,M , j = 1, . . . ,N , for which xij = 1 if the task Tj is
assigned to Ri to handle it individually or in collaboration
with other robots, otherwise xij = 0. Similarly, we define
a set of action assignment indicators x̂ijk, i = 1, . . . ,M ,
j = 1, . . . ,N , k = 1, . . . , L, for which x̂ijk = 1 if action Ak
is assigned to Ri for completion of Tj. To reach the ‘‘goal’’
of a task Tj, depending on the agent that is responsible
to handle the task, a series of actions from the action
bank A should be completed, where the last action should
meet Cj. In our proposed framework, only a robot that can
accomplish an action which meets Cj can be a candidate
for being selected to handle Tj. Such a robot can complete
an action to meet Cj and may delegate the prerequisite
actions to other agents if necessary. Further, to coordinate
the delegation process we define the indicators âijk, i =
1, . . . ,M , j = 1, . . . ,N , k = 1, . . . , L, for which âijk = 1 if
robot Ri is needed to accomplish Ak to complete the task

ˆ
Tj, otherwise aijk = 0.

3

(4) The set F includes a set of value functions. A value function
Fij : R × T → R+ describes the cost of handling the task
Tj by Ri based on the performance, energy, and proximity.
Robot Ri can accomplish the actions towards Tj individually
or delegate the actions to other robots if necessary.

(5) The set Ĉ includes preconditions cik for an action Ak of
agent Ri, where i = 1, . . . ,M , k = 1, . . . , L. Further, since
an action could have multiple preconditions, cik includes a
list of preconditions cikp, i = 1, . . . ,M , k = 1, . . . , L, and
p = 1, . . . , Pk, where Pk is the total number of precondi-
tions for action Ak, and cikp specifies the pth precondition
for completing action Ak by robot Ri. We also capture the
accomplishment of each action Ak by meeting the condition
Ĉk.

(6) Consider a discrete clock clk with a granularity of 1 s,
i.e., clk = clk + 1 (this can be of different step sizes if
needed). The clock clk represents the elapsed time starting
from the first task announcement. Then, we define △t̂ik,
i = 1, . . . ,M , k = 1, . . . , L, which represents the duration
that the agent Ri needs to complete the action Ak. Consider
o = 1, 2, . . ., where o ∈ N is the sample time index. We
then define an action timeline indicator tio, i = 1, . . . ,M ,
where tio = 1 during the time that Ri is assigned to perform
one of the actions A∗, which takes Ri for △t̂i∗ time units.

(7) We define an operation Ri |H con which checks if the agent
Ri satisfies the condition con at its current state, where the
condition con can be a condition for a task, i.e., Cj, or a
precondition for an action, cikp.

2.3. Assumptions and problem formulation

To do automatic tasking for multi-agent systems, analogues
to [42], we make the following assumptions:

Assumption 1. Each agent can verify if any of its local actions
have succeeded, failed, or if it is running. This enables the agent
to monitor the status of each action.

Assumption 2. Each agent can verify if any of its local action’s
condition is true or false. This enables the agent to perform an
action only when a condition is false, i.e, the condition acts as a
guard.

Assumption 3. For each goal and for each initial configuration of
the agents, there exists a sequence of actions that can be executed
by the agents leading to the achievement of the goal.

Assumption 4. The effect of the dynamic environment can void
the accomplishment of the actions at most a finite number of
times. This assumption is made to avoid sticking in a live-lock
of repeating an action and being voided by the environment over
and over, preventing the agent to achieve its goal.

Assumption 5. Given any two actions Ai and Aj, if the execu-
tion of Ai requires the execution of Aj, Aj must not require the
execution of Ai. This assumption prevents deadlocks due to cyclic
dependency.

Assumption 6. All actions are ultimately reversible. That is,
each action can be undone through a finite sequence of actions.
The ability to reverse an action is required to resolve possible
conflicts.

Assumption 7. For each action, there exists at least one agent to
achieve it, which can be accomplished by a low level controller

embedded in that agent.
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Fig. 2. The proposed automatic BT coordinator synthesis and execution
framework.

Assumption 8. We assume that the global communication is
available, i.e., messages broadcasted by an agent can be received
by all other agents.

Now, given R, T , F , A, and Ĉ , and making Assumptions 1–7,
he tasking and coordination problem for multi-agent systems
an be stated as:

roblem 1. Consider a mission described by T as a set of
streamed tasks Tj, j = 1, . . . ,N , to be completed by a set of
robots Ri, i = 1, . . . ,M , by executing the actions Ak, k = 1, . . . , L,
assuming that each action is executable by some of the agents
(at least one). Also, consider that there is no order and depen-
dency among the tasks, other than the order in which tasks are
issued. Synthesize and execute decentralized BTi to coordinate the
individual robots Ri to collectively achieve a set of tasks Tj.

. Automatic behavior tree synthesis and execution

To address Problem 1, we propose a systematic method for
enerating the local (individual) BTs by combining a market-
ased auctioning algorithm with reactive BT synthesis, so that
he generated local BTs can collectively satisfy the mission spec-
fication. Fig. 2 shows the general description of the proposed
echnique. Given a mission in the form of a set of tasks Tj,
= 1, . . . ,N , we conduct a two-level auctioning to assign the

tasks and their corresponding actions to the agents as it will be
discussed in Section 3.1. Then, local BTs will be generated for
the robots which will be used for task execution as detailed in
Section 3.2. To manage the multi-level delegation, we allow two
levels of auctioning so that in the second level of auctioning,
the delegated agent cannot delegate an action and should return
to the first level auctioneer if needed. However, the proposed
method can be extended to more levels of auctioning by following
a similar approach discussed in this paper with proper adjust-
ments on the developed algorithms. Clearly, adding more levels
of auctioning requires more communication and process burden.

3.1. Task assignment for coordination of multi agent systems

Task assignment to a set of robots with different resources
and capabilities might raise a conflict when every participating

agent strives to maximize its utility by performing as many tasks

4

as possible. To fairly assign tasks and avoid conflicts, we pro-
pose a two-level market-based auctioning algorithm. Generally,
an auctioning algorithm has four stages: announcement stage,
where the auctioneer announces the auctioning item; submis-
sion stage, where the individual agents submit (bid) the price
(cost) for the auctioning item and communicate it with the auc-
tioneer; the selection stage, where the auctioneer evaluates the
cost and selects the lowest offer, and the contract stage, where
the negotiation is concluded by forming a contract between the
auctioneer and the responsible agent. Following this process, at
the first level of the proposed auctioning-based task assignment,
the Mission Controller (MC) announces a task Tj. We assume that
MC announces and auctions the tasks one at a time. Then, those
agents, Ri, that can accomplish an action to meet Cj bid for this
ask. For this purpose, these candidate robots should identify the
ctions that are needed (to be done by themselves or through
elegation to other robots) to complete Tj. For each robot, Ri,
sing a weighted sum method, the cost of each action has to be
alculated (both local and delegated actions) to find the cost, Fij,
or completing the task Tj as:

ij = αfij + βtij (1)

where fij is the operation cost of task Tj when handled by Ri,
tij is the duration that Ri needs to complete task Tj, and α and

are weights for operational cost and duration respectively,
hich should be selected proportional to their relative impor-
ance based on the preferences of the designer/operator. Clearly,
ij and tij would be different for different actions and for dif-
erent agents. For example, in action MoveTo(destination), which
nvolves moving toward an object, the distance from the object
nd the velocity of the agent impacts fij and tij. However, if the
ction does not involve any movement, e.g., the action is to take
n image, we simply assume a fixed cost for the action. Then, MC
elects the agent Ri that can handle Tj with the lowest cost and
oncludes the auction by forming the contract with Ri and letting
ij = 1. This indeed is equivalent to the following minimization:

Fj = min
xij

M∑
i

(αfij + βtij)xij, ∀j

ubject to
M∑
i

xij = 1

α, β > 0

xij ∈ {0, 1}, ∀i (2)

where xij is an indicator that task Tj is assigned to Ri.
When an agent Ri forms a contract to complete a task Tj, the

robot should perform a sequence of actions. So, the cost and
duration of completing the task Tj by robot Ri, fij and tij, should be
computed as the summation of costs and duration, f̂ik and δt̂ik, for
ll actions Ak required for the task Tj. The point is that some of
he actions may need to be delegated to other agents. Thus, the
ost function fij in the first level auction may not be possible to
e calculated solely based on the costs of Ri’s actions, and hence,
he agent Ri should find the cost of delegated actions through a
econd level auction. In this way, assuming that the actions that
he robot Ri is capable of doing will not be delegated, the total
ost and duration for completing the task Tj through the robot Ri
ill be:

ij = (3){∑L
k=1 âijk(âik f̂ik + (1− âik)f̂D(ijk)),∀i, j, if Ri |H Cj

∞, Otherwise
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Fig. 3. Timeline for executing Ak by Ri toward Task Tj .

nd

ij = (4){∑L
k=1 âijk(âikδt̂ik + (1− âik)δt̂D(ijk)),∀i, j, if Ri |H Cj

∞, Otherwise

here δt̂ik is the total time (including both operation time and
he delay between the instant that the action is required and the
ction start time) needed to complete action Ak, and f̂D(ijk) and
t̂D(ijk) are the operational and duration cost of the actions Ak
elegated by Ri for completing the task Tj. To calculate the delay
n both local and delegated actions, we introduce the function
(tio, Tj, Ak) that returns the time instant that action Ak is avail-
ble to be started by Ri for task Tj at or after clk(Tj, Ak), where
lk(Tj, Ak) represents the time that the action Ak is called for the
ask Tj, and tio is the timeline indicator. Then, the total time, δt̂ik,
or the execution of an action Ak for Ri, δt̂ik, can be computed as:

t̂ik = ∇(tio, Tj, Ak)− clk(Tj, Ak)+△t̂ik (5)

in which δt̂ik is considered as the delay part, ∇(tio, Tj, Ak) −
clk(Tj, Ak), plus the actual action execution time, △t̂ik (see Fig. 3
for the details).

To avoid double assignment, once an action or a task is as-
signed to an agent, the function ∇̂(tio, Tj, Ak) returns
[∇(tio, Tj, Ak),∇(tio, Tj, Ak) + △t̂ik] as the time interval in which
the action Ak will be executed by Ri and updates the availability
indicator tio from 0 to 1 for △t̂ik over this time interval.

The selection of a robot for action Ak through the delegation
process can be conducted via the following minimization:

F̂D(ijk) = min
x̂djk

∑
d

(α f̂dk + βδt̂dk)x̂djk,∀k

subject to
∑
d

x̂djk = 1 ∀k,

d = 1 · · ·M, d ̸= i,
α, β > 0

x̂djk ∈ {0, 1}, ∀d (6)

where f̂dk and δt̂dk are the operational and duration cost of the
delegated action Ak when done by Rd, F̂D(ijk) is the total cost of
action Ak, and x̂djk indicates if action Ak of task Tj is assigned to the
agent Rd or not. After finalizing the second-level auctioning in (6),
the minimum cost and duration f̂D(ijk) = f̂ ∗dk and δt̂D(ijk) = δt̂∗dk
are returned to (3) and (4) to be used in the first-level auctioning
n (2), where f̂ ∗dk and δt̂∗dk are the cost and duration of action Ak
y robot Rd which minimize (6).

.2. Decentralized behavior tree synthesis and execution algorithm

In contrast to the execution of a BT which is bottom-up, to

ynthesize a BT we should follow a top-down approach where

5

ndividual actions with predefined conditions are sequenced in a
ay that the execution of the synthesized BT satisfies the mission
oal. Since we are synthesizing the BTs on-the-fly, we use a mixed
pproach. We start with executing the existing parts of BTs from
he bottom, whereas we synthesize the missing parts from the
op (initially from the task condition Cj). Utilizing the hierarchical
nd modular nature of BTs, the algorithm automatically generates
BT for coordination of each agent that allows collaborative and
ecentralized execution of tasks. The algorithm synthesizes and
xecutes a local coordinator BT for each agent and if the assigned
gent has the necessary capability to do the entire mission, it
ill perform the task without any collaboration. In case the agent
annot perform an action, the agent can delegate it to another
gent. In other words, the collaboration is need-based, i.e., agents
ollaborate only if collaboration is required to complete a task.
The overall procedure to generate BTs for individual agents is

xplained in Algorithms 1–9. These algorithms work as follow: a
ask Tj is generated by the Mission Controller (MC). Then, capable
gents send the estimated cost of the task, Tj, to MC based on
hich MC selects the best agent using a market-based auctioning
lgorithm. The selected agent, Ri, automatically synthesizes and
xecutes a BT coordinator to meet the mission goal. Since Ri may
r may not have the necessary capabilities (actions) to complete
he task Tj on its own, it could potentially act as an auctioneer
o receive assistance for some of the actions from other agents.
ence, the framework has a two-levels of auctioning mechanism
here the first level is responsible for the task assignment and
he second level is responsible for the action assignment.

Algorithm 1: Main()
1 // Initialization
2 Set all xi∗= 0 // no task is assigned to Ri
3 Set all x̂i∗∗= 0 // no action is assigned to Ri
4 Set tio = 0, for o = 1, 2, · · · // the agent is available
5 DelegatedAgentsi∗ ← ∅
6 // Run the BTi which initially is composed of

sub-trees needed for auctioning
7 BTi ← Parallel(TAuctioni , TBidi , TContract i )

Algorithm 1 initializes the parameters of the local BT coordina-
ors for the correct operation of the proposed algorithms. Initially,
ince the agent Ri at the beginning is not assigned a task or an
ction, the availability indicator variables for tasks (Line 2) and
ctions (Line 3) as well as its availability indicator (Line 4) are
et to zero. Further, a set of global variables DelegatedAgentsi∗ are
efined to track the delegated actions and agents (Line 5). Then, in
ine 7, BTi is initialized by the parallel composition of the follow-
ng sub-trees: TAuctioni , TBidi , and TContract i , which are responsible
or auctioning, bidding, and contracting stages, respectively.

Algorithm 2: Add BT for Ri

1 function AddBT (Cj) ;
Input : Cj : Condition for the assigned task Tj
Output: Tij : Synthesized BT

2 Tij ← Cj
// Start the BT for task Tj from the condition Cj, which is
used to check if the task is completed or not

3 BTi ← Parallel(BTi, Tij)
// BTi represents all BTs of Ri running in parallel
to execute multiple tasks

4 BTSynthesisandExecution(Tij, Cj)

Now, assume that the task Tj is assigned to the robot Ri as
it can meet the condition Cj. For any newly assigned task Tj to
Ri, Algorithm 2 initializes a new BT Tij and sets it to the goal
condition Cj (Line 2) (this condition will be used to determine
if the task is completed or not). Since R can be assigned to do
i
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ultiple tasks, Tij is composed in parallel with the existing BTs,
Ti = Parallel(BTi, Tij), to handle the current assigned task and
reviously assigned tasks (Line 3). The BT Tij, which is initialized

in Algorithm 2, will then be synthesized by calling Algorithm 3
(Line 4).

Algorithm 3: BT Synthesis and Execution for Ri

1 function BTSynthesisandExecution (Tij, Cj) ;
Input : Cj : Condition for the assigned task to agent i

Tij = Initialized Bt to handles Tj
Output: Tij : Syntheisized BT

2 do
3 do
4 r, Ĉk ← Execute(Tij)
5 if Ĉk == Cj then
6 break
7 // stop the synthesis and execution process
8 end
9 if (ConflictWithOtherAgents() ̸= ∅) then

10 Ak′ = ConflictWithOtherTasks()
11 ReassignAction(j, Ak′ )

//Priority is based on the order of the tasks j and
Ak′ is the action in conflict

12 end
13 while r == Executable;
14 cif ← GetConditionToExpand(Tij)

//Identify the reason why Tij is not executable
15 Tij, Tsubtreeij ← ExpandBT (Tij, cif )

//Resolve the cause by Algorithm 4
16 while Conflict(Tij, Tsubtreeij ) do
17 Tij ← IncreasePriority(Tij, Tsubtreeij )
18 end
19 while ¬(Ri |H Cj);

Algorithm 3 starts by checking if the agent Ri satisfies the
‘goal’’ Cj. If not, the algorithm iteratively updates the BT Tij until
sequence of actions is obtained (Lines 11–15) (this stage of the
lgorithm is responsible for synthesizing sub-trees to meet failed
ondition). Then, the synthesized BT as a whole is executed to
chieve the goal of a task (Lines 3–10). Throughout this process,
here might occur two kinds of conflicts: conflicts between the
ctions of a single agent (two actions of an agent are conflicting)
nd conflicts between tasks (agents that are executing different
asks might need the same resource, e.g., occupying the same
pot). Conflicts between the actions can be locally handled during
he synthesis process (Lines 13–15). However, conflicts among
he tasks cannot be handled during the synthesis process, as the
asks are introduced to Mission Controller in real-time. There-
ore, conflicts between the agents should be resolved during the
xecution (Lines 8–10).
So, to synthesize a BT for robot Ri to complete the task Tj,

he algorithm starts with Tij = Cj. Then, in a do while loop
Lines 3–10), the synthesized BT is executed. For this purpose, Tij
s tested to determine whether it is executable (Line 4). If by the
xecution of Tij, the assigned task’s condition is satisfied, i.e., the
ondition Ĉk of the last accomplished action is the same as the
oal’s condition Cj, the execution loop will be terminated (Lines
–7). When executing the BT, if ConflictWithOtherTasks() ̸= ∅
Line 8), then this means that there exists a conflict between
asks, i.e., an action, A′k, from a task Tj, conflicts with another
ction from a different task, Tj′ . To handle this issue, the function
eassignAction updates the agents’ BTs that are in conflict (Lines
–10), on a priority-based criteria by delaying the lower priority
Ts, while keeping the highest priority BT as it is. Here, for
implicity, we assume that the tasks are given to the system
n order, and Tj has a higher priority than Tj′ if j ≤ j′. As a

esult, the agent(s) with the updated (delayed) BT performs the S

6

onflicting actions on another time slot, which results in BTs free
rom agent-related conflicts.

If Tij = Cj is not executable, then Algorithm 3 synthesizes/
xpands the BT (Lines 11–15). A BT is not executable if one of
he children condition nodes returns failure. Line 11 identifies the
ause of failure, cif . The identified causewill become a condition in
subtree to resolve the problem by finding alternative actions or
ther agents (Line 12), as it will be described in Algorithm 4. After
pdating the BT, due to the addition of a new subtree, Tsubtreeij ,
conflict between actions could arise. For example, consider a

ituation that Tsubtreeij has a condition, cikp, that has to be False
e.g., the robot arm has to be available to open a door, captured
y cikp = False, i.e., the arm is free) but another subtree in
ij sets cikp to True (e.g., if a robot picks an object, captured by
ikp = True, i.e., the arm is busy). In this case, Tsubtreeij cannot be
xecuted due to the conflict between the actions of ‘‘opening the
oor’’ and ‘‘picking an object’’. To resolve the conflict, the function
ncresePriority(Tij, Tsubtreeij ) increases the priority of Tsubtreeij by
oving the subtree toward the left (Lines 13–15), e.g., opening a
oor should be done when the robot arm is free either by putting
own the object or at a time that the arm is free.
As mentioned in Algorithm 3, if a task is not executable, the

unction GetConditionToExpand(Tij) returns cif as the condition to
e met to make Tij executable. Algorithm 4 then synthesizes the
ubtree that satisfies the condition cif . In line 2 of Algorithm 4,
local action Ak is identified that could satisfy the condition

if . In case, there are multiple local actions that can satisfy the
ondition cif , the Algorithm chooses the one with a lower cost.
he preconditions of the action Ak, captured by cikp, are composed
y a sequence node to form Tseqij (Lines 5–8). Then, to allow
k to be executed at clk = ∇(tio, Tj, Ak), the timing condition
j_Ak_time is added to the sequence node as a precondition of
he action Ak (Line 9), followed by the action Ak itself (Line
0). Here, we assume that the elapsed time (measured in time
nit) for each action is an integer multiple of the BT clock,
.e, 1 time unit = k(Bt_tick_time), k ∈ N . This facilitates the
ynchronization of BT_tick_time with actual elapsed time. Next,
seqij is composed with Tselij , initially set as cif (Line 3), by a
elector node, to enforce the execution of Tseqij only in situations
here cif is not satisfied (Line 11). To enforce the allocation of
k to Ri, the timeline indicator tio and action assignment variable
ˆijk are updated (Lines 12–13). However, if no local action exists
GetLocalActionwithPrecondition(cif ) == ∅), then Algorithm 5 is
alled to find an agent that can accomplish cif (Lines 15–17)
hrough the level-two auctioning mechanism. Finally, cif in Tij is
eplaced by the sub-tree that can accomplish cif (Line 18), where
oth the synthesized tree and sub-tree are returned to Algorithm
(Line 19).
Algorithm 5 performs the level-two auctioning to find a suit-

ble agent that can execute an action to satisfy cif . The challenge
n level-two auctioning is that even though an agent may win
bid for a level-two announced action, the contract/assignment
ould not be finalized until the level-one auctioning for the
orresponding task is concluded. To handle this situation, one
ay is to repeat the level-two auctioning once the level-one auc-
ioning is concluded to delegate the actions. However, to increase
fficiency, we define the variable DelegatedAgentij to keep track
f winning bidders of level-two auctioning announced by Ri for
ask Tj. In this way, the bidding/submission for an action to meet
if will only happen if it is not done before. For this purpose,
he function DelegatedAgentSelected(cif ), by examining the vari-
ble DelegatedAgentij, returns False if an agent has not yet been
dentified (Line 2). In this case, the condition cif is announced
Line 4) and the participating agents submit a cost (Line 5) for
he action Af as calculated in Algorithm 8. In Line 6, the function

election_L2() conducts the level-two auction in (6) to select the
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Algorithm 4: Expand Behavior Tree Module for Ri

1 function ExpandBT (Tij, cif );
Input : cif = condition (cause) for Tj not being executable
Output: Tij = Expanded BT

2 Ak ← GetLocalActionwithPrecondition(cif )
// Identify local actions that satisfy cif

3 Tselij ← cif
4 if GetLocalActionwithPrecondition(cif ) ̸= ∅ then
5 cik = GetPreconditionforAction(Ak)
6 for cikp in cik do
7 Tseqij → Sequence(Tseqij , cikp)

// sequence BT with the condition of action
8 end
9 Tseqij ← Sequence(Tseqij , Tj_Ak_time)

// Tj_Ak_time is true if clk == ∇(tio, Tj, Ak))
10 Tseqij ← Sequence(Tseqij , Ak)

// Generate a sequence subtree containing action
Ak and its preconditions

11 Tselij ← Selector(Tselij , Tseqij )
12 ∇̂(tio, Tj, Ak) // tio is set to 1 for △tik time units
13 set x̂ijk = 1 // Action Ak of Tj is assigned to Ri

14 end
15 else
16 AuctionModule_L2(cif )

//If there is no action to meet a condition,
initialize the Level IIAuction Module for delegation

17 end
18 Tij ← Substitute(Tij, cif , Tselij )

// add the subtree Tselij to Tij replacing cif
19 return Tij, Tselij

Algorithm 5: Level II Auctioning Module for Ri

1 function AuctioningModule_L2 (cif ) ;
Input : cif : condition for the delegated action
Output: Selectedf : selected agent information

F̂D(ijf ) : cost of the delegated action
2 if (DelegatedAgentSelected(cif ) == False) then
3 Selectedf ← ∅

// The agent selected to resolve the condition cif
4 Announcing(cif )

//broadcasting action in the communication range
5 s = ReceiveSubmission()

// agents with action Af replies
6 Selectedf = Selection_L2(s)

// choose agent d that minimizes cost F̂D(ijf )
7 UpdateDelegatedAgent(Selectedf , cif )
8 end
9 if xij == 1 then

10 Contract_Agent(DelegatedAgent(cif ), cif )
11 end
12 else
13 return Selectedf , F̂D(ijf )
14 end

agent with minimum bid. Then, to keep track of selected agent-
action pairs, the function UpdateDelegatedAgent(Selectedf , cif )
modifies the global variable DelegatedAgentsij (Line 7). Further,
the variable Selectedf and the cost of the action, F̂D(ijf ), are
returned (Lines 12–14) to the caller function, that are used for
the estimation of cost in Algorithm 7.

When the level-one auction for the task Tj is concluded and
Ri is assigned to handle Tj, again Algorithm 5 is called to make a
contract for the delegated action to meet c . In this case, where
if 1

7

Task Tj is assigned to Ri (xij == 1), since the bidder for cif is
already known (DelegatedAgentSelected(cif ) ̸= ∅), the auction will
be concluded with a contract (Lines 9–11) where the function
Contract_Agent(.) informs the selected agent about the action
delegation.

Algorithm 6: Level I Auctioning Module for Mission
1 function AuctioningModule_L1 (Tj) ;
Input : Tj : task to be auctioned

2 selectedi ← ∅ // The agent selected to handle the task Tj
3 Announcing(Cj) // Broadcasting the condition Cj for task Tj
4 s = ReceiveSubmission()

// Agents with the specified action replies
5 selectedi = Selection_L1(s)

// choose the agent that minimizes cost and duration
6 Contract_MC(selectedi, Tj)

In Algorithm 3, we had assumed that the task Tj is assigned to
the robot Ri. We now can discuss the task assignment, which is
done in Algorithm 6. First, Algorithm 6 announces the task Tj in
Line 3. In Line 4, the algorithm receives the estimated operational
and duration cost returned by the participating agents, fij and
tij, from Algorithm 8. Then, by calling the function Selection_L1,
lgorithm 6 conducts the level-one auctioning in (2) to find a
uitable agent to assign a task (Line 5). Then, in Line 6, the
uction is concluded by activating the contract module, Algorithm
, of the selected agent and appointing the agent selectedi as
he handler and coordinator of the task Tj (Here the function
ontract_MC basically notifies the selected agent about the task
ssignment).

Algorithm 7: Bidder Module For Ri

1 function Biddermodule() ;
Input : c : task or action condition

2 while True do
3 c = listen() // Listen to broadcasted tasks or actions
4 if c ̸= Null and (∃ Ak ∈ LocalAction(Ri) s.t. Ak |H c) then
5 if c.isatask() then
6 Fij = EstimateTaskCost(c) // call Algorithm 8
7 submit(Fij)

// Submit cost for level one auctioning, i.e.,
for task auctioning

8 end
9 if c.isanaction() then

10 δt̂ik = ∇(tio, Tj, Ak)− clk(Tj, Ak)+△t̂ik
11 F̂ik = α f̂ik + βδt̂ik // cost of action Ak

12 Bidderik = (i, Ak, Pre(Ak),△t̂ik,∇(tio, Tj, Ak)
13 submit(Bidderik, F̂ik) )

// Submit cost for level-two auctioning
14 end
15 end
16 end

In response to level-one/level-two task/action announcement,
Algorithm 7 performs biding operation. The algorithm continu-
usly listens to announced tasks or actions from the
ission Controller (MC) or other agents (Line 3). If the robot has
n action that satisfies the condition for an announced task, then
t calls Algorithm 8 to estimate the cost of the task and submits
he estimated cost (Lines 5–8). Otherwise, if the robot has an
ction that can satisfy an announced action, then the cost of the
ction is calculated and submitted (Lines 9–14). Here, the variable
idderik contains parameters that are useful for cost estimation
nd auctioning such as the preconditions of action Ak, i.e., Pre(Ak)
nd the time that action Ak is available, i.e., ∇(tio, Tj, Ak) (see Line
2).



T.G. Tadewos, L. Shamgah and A. Karimoddini Knowledge-Based Systems 260 (2023) 110181

p
i
n
p
b
o
t
f
v
1
o
a
t
e

(

Algorithm 8: Estimate Task Cost For Ri

1 function EstimateTaskCost (Cj);
Input : Cj : Task goal
Output: Fij : Estimated task cost

2 con = Cj, Fij = 0
3 B← GetLocalActionToMeetCondition(con)
4 do
5 for Ak in B do
6 CAk ← GetPreconditionForAction(Ak)
7 end
8 B← ∅
9 for CAkp in CAk do

10 Ak ← GetLocalActionToMeetCondition(CAkp )
11 if Ak == NULL then
12 Bidderik, F̂D(ijk)← AuctionModule_L2(con)

// Level-two auctioning
13 Fij = Fij + F̂D(ijk)
14 end
15 else
16 Fij = Fij + (α f̂ik + βδt̂ik)
17 end
18 B← B ∪ (Ak or Bidderik.Ak)
19 end
20 while (

⋁
(¬(Ri |H CAk )));

21 return Fij

Called by Algorithm 7, Algorithm 8 estimates the total cost
of a task. This algorithm starts by setting the condition, con, to
the input Cj, the cost Fij to 0 (Line 2), and the actions to meet
Cj to variable B (Line 3). Algorithm 8 calculates CAk as the set of
reconditions that have to be satisfied before executing actions
n B (Lines 5–7). Then, in a do while loop, as long as Ri does
ot satisfy all Ak ∈ B (checked in Line 20), actions to meet the
reconditions CAkp are identified either from Ri’s local action bank
y using the function GetLocalActionToMeetCondition(.) (Line 10)
r via an auctioning mechanism (Line 11–14). At the same time,
he set B initialized to ∅ (Line 8) is used to collect sets of actions
or the next iteration (Line 18). Computing and updating the cost
alues for local actions in Line 13 and delegated actions in Line
6 will continue in a loop (Lines 4–20), until the satisfaction
peration

⋁
(¬(Ri |H CAk )) is False (Line 20), which implies that

ll preconditions can be met by the set of agents to execute the
ask Tj. After the loop terminates, the algorithm returns the total
stimated cost of the task (Line 21).

Algorithm 9: Contract Module For Ri

1 function Contract () ;
2 while True do
3 c = listen()
4 if c.selected == i then
5 if c.isaction() then
6 ∇̂(tio, Tj, Ak) // tio is set for △tik time units
7 set x̂ijk = 1 // Ak of Tj is assigned to Ri

8 con = Ĉk // the condition for meeting Ak

9 end
10 if c.isatask() then
11 set xij = 1 // The task Tj is assigned to Ri
12 con = Cj // the condition for meeting Tj
13 end
14 AddBT (con)

// start BT synthesis for con = Cj or con = Ĉk
15 end
16 end

Algorithm 9 continuously listens to broadcasted messages
Line 3) and forms a contract among agents, by updating
8

task/action assignment variables, in response to level-one and
level-two auctioning (Lines 2–16). If the assigned agent index
matches the robots index (Line 4) and the received message is an
action assignment (Line 5), then the agent timeline, tio, and ac-
tion assignment indicator variables, x̂ijk, are updated (Lines 5–9).
Otherwise, if the received message is a task assignment, the task
assignment indicator variable is set to 1, xij = 1. Setting xij implies
that the agent Ri is a handler for the task Tj and hence acts as
an auctioneer for all delegated actions required to meet Cj. Then,
the function AddBT (con) in Algorithm 3 is called to generate the
appropriate BT, either for a task Tj or action Ak (Line 14).

The overall flow of the algorithms from task announcement
to the synthesis and execution of the BT to satisfy the mission
goals is shown in Fig. 4. As shown in Fig. 4, the Mission Controller
starts announcing a task (Algorithm 6) with condition Cj, where
agents with the appropriate local action to handled the task
perform a bidding operation (Algorithm 7). The bidding operation
mainly consists of estimating the cost of tasks and their actions
(Algorithm 8). Based on the estimated cost the Mission Controller
selects the agent with the minimum cost and executes a contract
phase (Algorithm 9). The contact process in Algorithm 9 calls
for Algorithm 2 that initializes a BT with the goal condition Cj.
Then, in the selected agent, Algorithm 3 synthesizes and executes
the BT, in which actions are appropriately sequenced to meet Cj.
These actions can either be executed immediately or expanded
further in situations where the preconditions of Ak are not met.
Thus, Algorithm 4 expands the preconditions of an action Ak,
cik, and identifies appropriate actions, A∗, ∗ ̸= k, to satisfy cikp
from the Ri’s local action bank or via a second level auctioning
(Algorithm 5).

3.3. Correctness of the proposed approach

In this section, we first show that the proposed algorithm is
conflict-free. By conflict-free, we mean that each action, in the
generated BT, does not violate the preconditions of an immediate
or subsequent successor action. Then we show that the process
for generation of BT takes a finite-time and the generated BT is
live-lock free. Finally, we prove the developed algorithms solve
Problem 1.

Lemma 1. Under Assumptions 3 and 6, conflict-free BTs always exist
which accomplish the goal of a task Tj.

Proof. Based on Assumption 3, there always exists a sequence
of actions to satisfy a task Tj. These sequences of actions in
the form of sub-trees (each sub-tree contains the action with
its preconditions) are added one after the other to generate the
BT. With this approach, including a new sub-tree may conflict
with one of the existing sub-trees preconditions. Considering the
worst-case scenario, where adding an action always generate a
conflict, we show that the conflict can be handled by Algorithms
3–9. Lines 13–15 of Algorithm 3, repeatedly increase the priority
of the conflicting sub-trees to resolve conflict. Further, imagine
that the robot Ri was executing the action At toward the accom-
plishment of the task Tj′ . Now, the task Tj which has a higher
priority as it had been announced earlier (j < j′) requires the
robot Ri to accomplish the action Ak which conflicts with At . In
this case, At has to be undone and delayed until the completion
of Ak, as described in Lines 8–10 of Algorithm 3. Assumption 6
ensures that all actions can be undone to resolve a conflict. This

conflict-free mechanism is postulated below:
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Fig. 4. A flowchart for Algorithms 1–9. The boxes on the left side of the blue broken line represent algorithms running on the agent Ri , while the orange solid box
n the right of the blue line represents algorithm running on the Mission Controller.
Premise 1 ⟨ Adding Ak⟩ → ⟨ Conflict with ĉijt , t ̸= k⟩
Premise 2 ⟨ Conflict with ĉijt for action At , t ̸= k⟩ →

⟨ Undo At and Increase priority of Ak
or delay At⟩

Premise 3 Repeat ⟨Increase priority of Ak⟩ →

⟨Resolve conflict with all actions At , t ̸= k⟩
⟨Adding Ak⟩ →

⟨ Resolve conflict with all At , t ̸= k ⟩

Now, since based on Assumption 3 any task Tj can be ac-
omplished by a series of actions in the action bank, and for all
ctions, as stated above, it is possible to resolve the conflict with
ll other actions in progress, then a conflict-free BT exists for
oordinating the task Tj as postulated below:

Premise 1 ⟨Assumption 3⟩ →
⟨ ∃ sequence of Ak for Tj ⟩

Premise 2 ⟨ Adding Ak ⟩ →

⟨Resolve conflict with all At , t ̸= k⟩
⟨Premises 1, 2 ⟩ →
⟨Conflict-free BTs exit for Tj ⟩

■

Lemma 2. Under Assumptions 3 and 5, a deadlock-free BTs always
exist which accomplish the goal of a task Tj.

Proof. A deadlock occurs if an action Ai wait for the completion
of another action, let us say A . On the other hand, assume that the
j t

9

completion of Aj needs Ai to be completed first. This phenomenon
creates a dependency among the actions which block the entire
process resulting in a non-progressing BT, always waiting for the
completion of each other. Assumption 5 prevents the situation
that two actions are dependent on each other. Therefore, based
on Assumptions 3 and 5 a sequence of actions to accomplish a
task Tj exists, which is deadlock-free. This is postulated as:

Premise 1 ⟨Assumption 3⟩ →
⟨ ∃ sequence of Ak for Tj ⟩

Premise 2 ⟨Assumption 5⟩ →
⟨All actions, Ak, are deadlock-free⟩
⟨Premise 1, 2 ⟩ →
⟨Deadlock-free BTs exit for Tj ⟩

■

Lemma 3. Under Assumptions 3 and 4, a live-lock free BTs always
exist which accomplish the goal of a task Tj.

Proof. A live-lock occurs in a situation where the completed
action, Ak, is continuously violated by the environment (being
undone). Since the environment in which the agent operates is
dynamic, an agent may be forced to infinitely repeat the same
action as a result of the environment interference. However,
according to Assumption 4, the completion of an action can be
violated only a finite number of times by the environment. Thus,
combining Assumptions 3 and 4, it is possible to conclude that
he generated BT is live-lock free. This is postulated as:
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Premise 1 ⟨Assumption 3⟩ →
⟨ ∃ sequence of Ak for Tj ⟩

Premise 2 ⟨Assumption 4⟩ →
⟨Ak can be violated a finite number
of time⟩

Premise 3 ⟨Ak can be violated a finite number
of time⟩ →
⟨Action Akis live-lock free⟩
⟨Premises 1, 2, 3 ⟩ →
⟨Live-lock free BTs exist for Tj ⟩

■

Lemma 4. Under Assumptions 3 and 7, as well as Lemmas 2 and 4,
there exist BTs that can accomplish a task Tj in a finite-time.

Proof. Based on Assumption 3, for each task, Tj, there ex-
ists a sequence of actions to meet its goal, Cj. Also, based on
Assumption 7, for each action Ak, there is at least one agent.
However, some of the actions in Tj may not be accomplished at
the time the action is required either because the agent which
is assigned to handle the task does not have a local action, Ak,
or other agents capable of accomplishing action Ak are busy.
We showed that all actions are deadlock-free and live-lock free,
which guarantees that agents which are capable of performing
action Ak will be free after a finite amount of time. Therefore, as
each action can be completed in a finite-time, the BTs generated
in a backward way starting from the goal of a task Tj and executed
in a forward way can always be completed within a finite amount
of time. This is postulated as:

Premise 1 ⟨Assumption 3⟩ →
⟨ ∃ sequence of Ak for Tj ⟩

Premise 2 ⟨Lemma 2⟩ →
⟨ Deadlock-free BTs for Tj ⟩

Premise 3 ⟨Lemma 3⟩ →
⟨Live-lock free BTs for Tj ⟩

Premise 4 ⟨Assumption 7⟩ →
⟨∃Ri for action Ak⟩

⟨Premises 1, 2, 3, 4 ⟩ →
⟨Finite time BTs for Tj ⟩

■

Theorem 1. The proposed decentralized BT synthesis and execution
approach, described by Algorithms 1–9, addresses Problem 1.

Proof. Given Lemmas 1–4, we show that there exist BTs for
coordinating a group of robots to accomplish a mission which
consists of multiple tasks as described in problem 2.

According to Lemmas 1, 2, 3, and 4, the generated BTs for each
ask is conflict-free, deadlock-free, and live-lock free, which can
e executed in finite-time. Also, we showed that conflict within
r among tasks can be resolved either by increasing the priority
f actions, Ak, or delaying agents executing a lower priority task.
hus, it is always possible to guarantee that Algorithms 1–9,
ddresses the coordination of multi-robots to meet the goals of
everal tasks, in any given order (mission). This is postulated as:

Premise 1 ⟨Lemma 1⟩ →
⟨Conflict-free BTs exits for all Tj ⟩

Premise 2 ⟨Lemma 2⟩ →
⟨ Deadlock-free BTs for all Tj⟩

Premise 3 ⟨Lemma 3⟩ →
⟨Live-lock free BTs for all Tj⟩

Premise 4 ⟨Lemma 4⟩ →
⟨Finite-time BTs for all Tj⟩
⟨Premises 1, 2, 3, 4 ⟩ →
⟨Problem 1 is addressed for all Tj⟩

■

10
Table 1
Action bank for the UAV in case study 5.1.
Global Action Bank
No Action Precondition Effect

1 MoveTo(Np, path) path is collisionfree uav at Np
2 Detect(m) – m is detected

3 Deliver(o, p) uav at Np m is detected o at p

4. Complexity of the proposed algorithm

The complexity of the proposed framework can be investi-
gated by analyzing the complexity of synthesis and execution
processes. The contributions of other parts of the framework such
as the initialization steps (Algorithm 1) and the BT invoking rou-
tine (Algorithm 2) to the complexity analysis are not significant,
and hence, are ignored.

For the synthesis part, Algorithm 3 (Lines 11–15) starts by
dentifying unsatisfied preconditions of an action, with a compu-
ational requirement of O(1) (Here, we assume a lookup table and
library of sub-trees containing the preconditions and actions is
lready available). Then, using Algorithm 5, assigning an action to
he right agent among M agents at the worst case requires O(M)
omputation operations when the agent plays the auctioneer
ole (compared to O(1) computation operation when the agent
as the role of bidder). This is followed by a conflict resolution
echanism which requires O(n) computation operations to check

f the assigned actions conflict with maximum n − 1 previous
ctions. As a result, to synthesize a single action the auctioneer
equires O(M + n) operations. Consequently, for synthesizing a
ask with n actions, the synthesis procedure requires O(Mn+ n2)
omputation operations.
Regarding to the execution of a BT, as can be seen in

lgorithm 3 (Lines 4–10), for a task with n actions, the execution
tage has a complexity of O(n), as the loop should be repeated for
actions.
Therefore, the complexity of the whole process is dominated

y the complexity of the synthesis part, which is O(Mn+ n2).

. Case studies

.1. Single agent single task: Search and delivery UAV mission

Consider a UAV whose mission objective is to deliver an object
to a specific place marked by m near position p. The UAV has

o search for the marking m in the close vicinity of p, Np, before
elivering the object o. Then, the problem is to generate a BT for
he UAV with the action capabilities listed in Table 1. Since it is a
ingle agent, no bidding mechanism is needed and it is sufficient
o use Algorithms 3 and 4 to achieve this search and delivery task.

Algorithm 3 starts from the goal, ‘‘o at p’’, i.e., the object o
hould be at position p, as shown in Fig. 5a. Since initially the
oal is not satisfied yet and the generated BT is not executable,
he function GetConditionsToExpand is called to identify the pre-
onditions (Line 11 of Algorithm 3). From Table 1, the Deliver
ction can meet the condition ‘‘oatp’’, and hence the ExpandBt
unction (Line 12 of Algorithm 3) uses this action to update the
T by composing the conditions of Deliver action via a sequence
ode and the goal by a selector node (Lines 4–14 of Algorithm 4)
s shown in Fig. 5b. Again since the preconditions, uav at Np and
is detected, are not true, they have to be expanded, following

he same procedure, by their corresponding actions MoveTo and
etect as shown in Fig. 5c.
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Fig. 5. Synthesizing a BT for a UAV to search and deliver an object to a particular position: (a) Algorithm 3 starts with generating a BT with the goal condition
‘‘o at p’’, (b) Algorithm 4 finds out that the action ‘‘Deliver ’’ can meet the goal condition, and hence, the action ‘‘Deliver ’’ and its preconditions (‘‘being at Np’’ and
‘‘detecting m’’) are added as a subtree with a selector node, (c) Algorithm 4 expands the false preconditions (‘‘being at Np’’ and ‘‘detecting m’’) to find the actions
that can meet these preconditions.
t
f

w
a
P
T
4
e
c
w
g

t
s
o
o
o
l
a
f
p
T
w
a
a
p
(
b
c
1√
2

f

F
d
w
a
r
∇

i
s

d

Table 2
Operational and duration cost of an action. The actions MoveTo and
Reconnaissance are functions of distance divided by velocity.
Cost of action

Action Decription Operation Duration

A1 MoveTo αi1*d(s) αi1*d(s)/v
A2 Recon αi2*d(s) αi2*d(s)/v+M
A3 Pick 4 2
A4 Attack 10 2
A5 Deliver 4 2
A8 Repair 5 8

Table 3
Agents capabilities.
Resource

No Agent Agent capability

1 UAV1 {A1, A4}

2 UAV2 {A5, A1, A8}

3 UAV3 {A5, A1, A3}

4 UAV4 {A1, A2}

5 UAV5 {A1, A2}

Table 4
Five tasks expanded using Algorithm 3.
Mission

Task goal Sequence of actions

T1 C1 Recon(s1),MoveTo(s′1), attack(s
′

1)
T2 C2 Recon(s2),MoveTo(s′2),Deliver
T3 C3 MoveTo(s3), Pick,MoveTo(s′3),Deliver
T4 C4 MoveTo(s4), Repair
T5 C5 MoveTo(s5), attack(s′1)

5.2. Multiple agent multiple task

Consider a heterogeneous team of agents R = {R1, R2, R3, R4,

5} with the maximum velocity of V = {20, 20, 20, 20, 20} [m/s],
initially located at PR = {(60, 60), (54, 24), (90, 53), (25, 40),
(75, 85)} [m]. The capabilities of these UAVs are described by the
action bank in Table 3 where each action has an operational and
uration cost associated with it as shown in Table 2. The cost for
ctions MoveTo and Reconnaissance is in the form of αikd(s)/v,
here d(s) is the distance to be traveled by the agent i, v is its
elocity, and αik is a proportional term that depends on the type
f agent. In this section, we have α1k = α2k = α3k = 1.2 and
4k = α5k = 1. For Recon, the UAV should travel to a particular
ocation and conduct reconnaissance to find a target. Therefore,
ince the exact location of the target is not known beforehand,
fter reaching the search location, an additional duration cost is
onsidered for searching a target, which is assumed to have a

aximum value, M (in this section we let M=10). For simplicity,

11
he actions Pick, Attack, Repair and Deliver are assumed to have
ixed costs.

Our aim is to synthesize and execute BTs in a decentralized
ay to accomplish the tasks T1, T2, T3, T4, and T5, which are
nnounced at time instances 1, 3, 4, 6 and 13, and located at
T = (15, 60), (80, 20), (60, 90), (20, 20), (50, 80)[m], as listed in
able 4. The sequence of actions for each task is given in Column
of Table 4 (expansion of a task to a sequence of actions is

xplained in Section 5.1) so that the last action meets the task
ondition Cj. Then, we consider two scenarios in an environment
ith an area of 10, 000m2 and will follow Algorithms 1–9 to
enerate BTs.
B.1. Scenario 1: In the first scenario, we aim to complete the

asks in Table 4, where the duration is of higher importance by
etting α = 0.6 and β = 0.4, assigning more weight to the
perational costs of the tasks and a lower weight to the duration
f the tasks in the cost function given in (2). Further, the location
f a task in Table 4 is used as an argument for the actions, e.g., the
ocation of T4 (s4 = [25, 40]) is given as an argument for the
ction MoveTo. Then, we follow Algorithms 1–9 to generate BTs
or each task, Tj, for which the details of the generated BTs are
rovided in Table 5. For example, consider the expanded task
1 with the sequence Reccon,MoveTo, Attack (Row 1 of Table 5),
here UAV1 is the winner of T1 (since only UAV1 can do Attack
s the last action of T1). To complete task T1, UAV1 can perform
ctions MoveTo and Attack, but it does not have the capability to
erform action Reccon. Hence, UAV1 initiates a level-two auction
Lines 2–8 of Algorithm 5) to assign action Reccon (Row 2 of Ta-
le 5), for which using (6), UAV4 wins the auction with minimum
ost (the duration cost for UAV4 to accomplish Reccon is δt̂42 =
2 (using Table 2 the duration cost is α42∗

√
(PT1 − PR4 )/v4+M =

(25− 15)2 + (40− 60)2/20 + 10 = 12) and its operation cost
is f̂42 = α42 ∗

√
(PT1 − PR4 ) = (

√
(25− 15)2 + (40− 60)2 =

2.4), resulting in a total cost of F̂42 = α f̂42 + βδt̂52 = 0.4 ∗
22.4 + 0.6 ∗ 12 = 18.2 (Line 6 of Algorithm 5). Therefore, using
(4), the duration cost of T1, being handled by UAV1, is t11 =
δt̂D(112)+δt̂12+δt̂13 = 18, where δt̂D(112) = δt̂42 = 12. Similarly,
using (3), the operation cost of T1, being handled by UAV1, is
11 = f̂D(112) + f̂12 + f̂13 = 88.3, where f̂D(112) = f̂42 = 22.4.
Using (1) and (2), task T1 can be concluded with the total cost of
1 = F11 = αf11+βt11 = 0.4 ∗ 88.3+ 0.6 ∗ 18 = 60.2. Further, as
etailed in Row 3 of Table 5, upon finalizing the contract, UAV1
ill be assigned to handle T1 and accomplish actions MoveTo and
ttack over ∇̂(t1o, T1, A1) = [14, 17) and ∇̂(t1o, T1, A4) = [17, 19),
espectively, while delegating UAV4 to accomplish Reccon over
ˆ (t5o, T1, A2) = [2, 14), ensuring that task T1 will be completed
n the time range from [2, 19). Assignment of all tasks follows the
ame procedure.
Since task T1 is the first task, the delay in the calculation of

urational cost is 0, i.e., using (5), ∇(t , T , A )− clk(T , A ) = 0.
∗o 1 ∗ 1 ∗
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Table 5
Task assignment for Scenario B.1 (α = 0.6, β = 0.4) : ‘‘MC, L1’’ represents the level-one auctioning by the Mission
Controller, and ‘‘UAV∗, L2’’ represents the level-two auctioning by UAV∗ .
Table 6
Task assignment in Scenario B.2 (α = 0.4, β = 0.6) : ‘‘MC, L1’’ represents the level-one auctioning by the Mission
Controller and ‘‘UAV∗, L2’’ represents the level-two auctioning by UAV∗ .
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Table 7
In Scenario B.2, a mission consists of 100 tasks assigned to different number of
agents.
Number of tasks Number of agents Computation Duration time

100 1 3.6 5932
100 10 8.10 927
100 20 13.25 509
100 30 33.15 282
100 40 58.5 237

This may not be the case for other tasks. For example, for task
T2 in Table 5, since there are ten time units delay between the
nnouncement of T2, clk(T2, A2) = 4, and the availability of UAV4
or the execution of task T2, ∇(t4o, T2, A2) = 14, the duration
ost of A2 is δt̂42 = ∇(t4o, T2, A2) − clk(T2, A2) + △t̂42 = 23.
herefore, the cost of A2 for task T2 is f42 = α ∗ f̂42 + β ∗ δt̂42 =
.6 ∗ 58.5+ 0.4 ∗ 23 = 44.3). As another example, task T5 should
tart with the action A1 of UAV1. Even though UAV1 is available
t t = 11 for 3 time unit to start action A1, this is not enough
o complete A1 with △t̂11 = 4 due to prior contract with T1
the timeline for the tasks T1, T2, and T3 can be seen in Fig. 6).
herefore, since the available time for UAV1 is not sufficient to
omplete the action A1 (this is checked by Line 12 of Algorithm 4
or local actions and Line 6 of Algorithm 9 for delegated actions,
ction A1 is deferred to a later time as shown in Fig. 6 and Row 10
f Table 5. The corresponding execution of the task by the agents
s shown in Fig. 7.

For each task, once the auctioning process is completed, the
inning agent synthesizes the BT to meet the goal of the task.
 s

12
Fig. 6. Task and action assignment timeline for Scenario B.1.

s an example, the synthesized BT for UAV1 is shown in Fig. 8.
he tree BT1 is composed of five subtrees running in parallel.
he left subtrees are responsible for the market based auctioning
auctioning, bidding, and contract), while the two right subtrees
equence actions appropriately to satisfy the mission goals: the
op right subtree and the bottom right subtree contribute to tasks
1 and T5. The level-two auctioning is conducted at the agent
evel (the left subtrees in Fig. 8). The Level-II Auction subtree
on the top-left announces the actions to be delegated, receives
the submissions, selects the winner agent, and makes a con-
tract by informing the selected agent about the assigned action.
On the other hand, the MissionController (MC) handles level-
ne auctioning. For this purpose, the Level-I Auction subtree in
ig. 9, announces the tasks, receives the submissions, selects the
inner/handler agent, and makes a contract by informing the
elected agent about the assigned tasks. The Bidder subtree in
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Table 8
Terms and their explanations.
No Terms Explanation

1 T Set of tasks
2 Tj jth task
3 N Total number of tasks
4 A Global action bank
5 Ak kth action
6 L Total number of actions
7 R Set of robots i
8 Ri ith Robot
9 M Total number of agents/robots
10 xij Task assignment indicator; xij = 1 if Tj is assigned to Rj
11 x̂ijk Action assignment indicator; x̂ijk = 1 if AK is assigned to R1 to complete of task Tj
12 Cj Condition to meet task Tj
13 âik Action capability indicator for Ri to handle action Ak; âik = 1 if Ri can handle Ak

14 Ĉ Set of preconditions for the actions
15 Ĉk Condition to meet action Ak
16 pk Number of preconditions for action AK
17 âijk âijk =1 if action Ak of Ri is needed for task Tj
18 cik Set of preconditions for action Ak when being handled by Ri
19 cikp pth precondition for action Ak when being handled by Ri
20 F Set of value functions
21 Fij Total cost of Tj when Ri is the handler
22 Fj The minimum total cost to complete Tj
23 fij Operational cost of Tj when Ri is the handler
24 tij Durational cost of Tj when Ri is the handler
25 f̂ik Operational cost of Ak to be done by Ri

26 t̂ik Durational cost of Ak when done by Ri

27 F̂ik Total cost of action Ak to be done by Ri

28 F̂D(ijk) The operational and duration cost of Ak delegated by Ri to complete Tj
29 f̂D(ijk) The operational cost of Ak delegated by Ri to complete Tj
30 δt̂D(ijk) The durational cost of Ak delegated by Ri to complete Tj
31 α Operational cost weight term
32 β Durational cost weight term
33 clk Discrete clock
34 clk(Tj) The time instant that Tj is announced
35 clk(Tj, Ak) The time instant that action Ak is called for Tj
36 o The sample time index from start to the end of mission (1, 2, · · · )
37 tio Action timeline indicator for Ri; tio = 1 during the time Ri is assigned an action
38 ∇(tio, Tj, Ak) Returns the time instant that Ak is available to be started by Ri for task Tj
39 ∇̂(tio, Tj, Ak) A function that makes tio = 1 over [∇(tio, Tj, Ak),∇(tio, Tj, Ak)+△t̂ik] when Ri should execute Ak

40 △t̂ik The time duration that Ri needs to complete action Ak

41 δt̂ik The duration between request and completion of Ak by Ri
42 |H Satisfaction operator
43 BTi The whole BT structure of agent Ri
44 Tij Sub-tree of BTi responsible for meeting task Tj
45 TAuctioni Sub-tree of BTi responsible for auctioning
46 TBidi Sub-tree of BTi responsible for bidding
47 Tcontract i Sub-tree of BTi responsible for contract
48 DelegatedAgentsij A global variable that store the delegated agent-action pairs for task Tj
o
r

t
m
c
s

t
w

Fig. 7. Tasking and coordination of agents in Scenario B.1 where the execution
f tasks by each agent is associated with a unique color. For example, the
olor green represents UAV4 moving to the target location performing action
Reconnaissance for task T1 and T2 .
13
Fig. 8), submits the costs for both actions and tasks if they can
be handled by UAV1. Once UAV1 is selected for a task by Level I
r for an action by Level II auctioning, then the contract subtree
eserves UAV1 for the assigned task/action.

B.2. Scenario 2: In the second scenario, our aim is to complete
he tasks for more agents by letting β = 0.6 and α = 0.4 to assign
ore weight to the duration of the tasks in the cost function
ompared to their operational costs as in (2). We pursued the
ame procedure similar to Scenario 1 by following Algorithms 1–
9, and generating decentralized BTs to coordinate the robots to
complete the tasks in order. The details of the generated BTs are
provided in Table 6 and is shown in Figs. 10 and 11.

B.3. Scenario 3: In the third scenario, our aim is to access
he scalability and computational cost of the proposed frame-
ork. Table 7 shows the execution of 100 randomly generated

tasks from Table 4, which are assigned to a different number of
agents. For example, when the tasks are done using 10 agents
the computation time needed for the task allocation is 8.10 s and
the duration of execution of the tasks is 927 s, while using 40
agents the computation and execution time are 58.5 s and 237
s, respectively. This result shows that as the number of agents
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Fig. 8. The synthesized BT for UAV1 in Scenario B.1 in Section 5.2. The sub-trees on the left are responsible for the Market based auctioning method on the agent
side, while the sub-trees on the right are responsible for the execution of assigned tasks.
Fig. 9. The BT for the Mission Controller for Scenario B.1 in Section 5.2. This tree is responsible for the Market based auctioning level I.
increase, the computation cost increases while the execution time
decreases as more resources (agents) are available for parallel
execution of the tasks.

6. Conclusion

This paper developed a new automatic tasking approach for
decentralized coordination of a heterogeneous team of
autonomous agents. The agents have different capabilities in
terms of executing different tasks. In the proposed framework,
14
the collaboration can take place when an agent cannot perform a
part of a mission individually but can accomplish the mission in
collaboration with other agents which have complementary ca-
pabilities. For this purpose, we developed a hierarchical modular
coordination approach and the required algorithms for synthesiz-
ing and executing local Behavior Trees (BTs) for tasking individual
vehicles so that they can collectively achieve a set of tasks.
Further, a two-level auctioning algorithm was incorporated into
the developed framework to assign tasks among the vehicles with
lower costs. The developed framework allows a trade-off between
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Fig. 10. Task and action assignment timeline for Scenario B.2.

Fig. 11. Tasking and coordination of agents in Scenario B.2, where each agent
execution is associated with a unique color. For example, the color green
represents UAV4 moving from the agents initial position to the target location
performing action Reconnaissance for tasks T1 .

he total cost and the duration of the accomplishment of the
asks through an embedded cost function. Illustrative examples
ere provided to describe the implementation of the proposed
pproach. Future work includes implementing the developed
ramework for decentralized collaboration of multiple UAVs using
obot Operating System (ROS) as well as developing the ROS
ackages for the general purpose applications of this framework.
nother potential future research direction is to consider the
mpact of uncertainty of measurements on the task allocation
echanism.
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