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Pedestrian Detection for Autonomous Cars:
Inference Fusion of Deep Neural Networks

Muhammad Mobaidul Islam, Abdullah Al Redwan Newaz

Abstract—Network fusion has been recently explored as
an approach for improving pedestrian detection performance.
However, most existing fusion methods suffer from runtime
efficiency, modularity, scalability, and maintainability due to the
complex structure of the entire fused models, their end-to-end
training requirements, and sequential fusion process. Addressing
these challenges, this paper proposes a novel fusion framework
that combines asymmetric inferences from object detectors and
semantic segmentation networks for jointly detecting multiple
pedestrians. This is achieved by introducing a consensus-based
scoring method that fuses pair-wise pixel-relevant information
from the object detector and the semantic segmentation network
to boost the final confidence scores. The parallel implementation
of the object detection and semantic segmentation networks in
the proposed framework entails a low runtime overhead. The
efficiency and robustness of the proposed fusion framework
are extensively evaluated by fusing different state-of-the-art
pedestrian detectors and semantic segmentation networks on
a public dataset. The generalization of fused models is also
examined on new cross pedestrian data collected through an
autonomous car. Results show that the proposed fusion method
significantly improves detection performance while achieving
competitive runtime efficiency.

Index Terms—Pedestrian detection, autonomous vehicles,
object detection, semantic segmentation, fusion, deep learning.

I. INTRODUCTION

HE advent of autonomous and semi-autonomous driving

technologies has led to the development of vehicles
with different levels of autonomy equipped with Advanced
Driver Assistance Systems (ADAS), in which automatically
identifying pedestrians is a crucial safety requirement. Deep
learning-based pedestrian detection methods have gained much
attention in recent years due to their superior detection
accuracy. A vast majority of deep learning-based pedestrian
detection methods rely on object detectors, typically by detect-
ing bounding boxes and their associated class confidence
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Fig. 1.
(a) using a state-of-the-art object detection model can predict only one
pedestrian, (b) our semantic segmentation network provides useful information
though it is noisy and difficult to interpret and accurately localize the
pedestrians, and (c) the developed fusion mechanism in this paper can
accurately detect both pedestrians.

Fusion of network inferences can improve detection accuracy:

scores. Pedestrian detection, however, is more challenging
than generic object detection problems since the image space
variability of this class is very large as pedestrians appear in
various poses, clothing, and various articulations of body parts.
Furthermore, different sizes, aspect ratios, and partial occlu-
sion of pedestrians make it challenging to detect pedestrians
in an image frame.

Deep learning approaches for pedestrian detection either
rely on the configurations in anchor boxes or high level seman-
tic information [1]. The former approaches utilize a set of
anchor boxes combined with an image classification network
to localize pedestrians [2], [3], [4]. The later approaches label
each pixel of an image with its corresponding class. Each
of these methods has its own pros and cons. For instance,
consider the scenario in Fig. 1 in which one can see that
an anchor box-based detection method is unable to detect
all pedestrians. On the other hand, given the same scene as
an input, the semantic segmentation network yields noisy but
useful information that can be used for enhancing pedestrian
detection.

Therefore, in this paper, we hypothesize that jointly pre-
dicting pedestrians using both object detection and semantic
segmentation networks enables efficient and robust pedes-
trian detection in challenging environments. The crux of the
challenge is that it is not straightforward to combine the
inferences of multiple asymmetric networks for the following
reasons. First, pedestrian inferences appear to take place
in different domains. Second, since semantic segmentation
cannot segregate individual pedestrians, it is challenging to
obtain one-to-one correspondence between the inferences of
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semantic segmentation and an object detection network. Third,
the input-output of each network might have different sizes.
Fourth, a sequential operation of fusing inferences from mul-
tiple networks requires a high computation time.

To address the above problems, we propose a novel fusion
method that combines asymmetric inferences of multiple net-
works for enhanced pedestrian detection. Our fusion method
is designed in such a way that parallelizes the image com-
putations in terms of pedestrian detection and semantic seg-
mentation from different networks. We first map overlapping
areas of asymmetric inferences of two networks into the pixel
domain. As semantic segmentation cannot segregate individual
pedestrians, we adopt an anchor box-based detection method
to calculate the overlapping area for individual pedestrians.
We then propose a novel scoring metric to calculate the
confidence score for pedestrians by correlating the outputs of
different networks. The contributions of this paper, therefore,
are as follows:

1) We propose a novel approach for fusing inferences of
an object detection network and a semantic segmentation
network to improve the robustness and performance of
the overall pedestrian detection.

2) We introduce a pixel-wise consensus-based approach to
address the challenge of combining asymmetric infer-
ences of multiple networks.

3) The proposed inference fusion framework is generic,
agnostic, and modular in the sense that it can be
employed for any choices of object detection and seman-
tic segmentation networks.

4) We create a pedestrian dataset with 1746 annotations of
867 images using an autonomous car platform for cross
dataset evaluation purposes.

5) Extensive validation experiments are carried out includ-
ing the fusion of 8 object detectors and 4 semantic
segmentation networks (overall 32 fusion models) by
benchmarking over two different datasets to assess the
performance and the run-time efficiency of the devel-
oped fused models for pedestrian detection.

In contrast to existing pedestrian detection methods, our frame-
work offers the following advantages:

« Easy development: our architecture is naturally well
suited for iterative development and testing by leveraging
the existing state-of-the-art networks.

o Modularity: our framework offers a modular structure
where any object detection and semantic segmentation
networks can be adopted.

o Parallelism: our framework can handle the computations
of anchor box detection and semantic segmentation net-
works in parallel, resulting in better runtime efficiency.

o Scalability: our framework can also obtain higher run-
time efficiency by combining relatively less complex
networks.

o Maintainability: Due to the modular structure of our
framework, one can easily add or replace a network.

The remainder of the paper is organized as follows.
Section II describes object detection and semantic segmen-
tation network architectures and reviews the existing network
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fusion mechanisms. Section III presents the proposed method-
ology. Section IV demonstrates the experimental results for
the implementation of different fused models along with their
detection performance and runtime analysis. Finally, Section V
provides the concluding remarks.

II. RELATED WORK

In this section, we will briefly introduce the state-of-the-art
pedestrian detection and masking methods.

A. Classical Pedestrian Detection

Before the deep learning era, hand-crafted features were
a popular choice to capture localization signals in an image
pervasively [5], [6], [7], [8], [9], [10], [11], [12], [13]. For
instance, combining gradient direction and edge orientation
on small spatial regions of an image, a Histogram of Oriented
Gradients (HOG) feature descriptor is created to detect pedes-
trians [5]. Different versions of Local Binary Pattern (LBP)
based pedestrian feature descriptors, including Semantic LBP
and Fourier LBP are also used to detect pedestrians [13].
Semantic LBP and Fourier LBP exploit the idea of a geo-
metrical interpretation and a Fourier boundary descriptor,
respectively. Training weak classifiers in the Euclidean space
for faster computation, AdaBoost is designed for faster pedes-
trian detection [8]. Exploiting motion information, covariance
descriptors can be used to detect pedestrians in multi-camera
settings [10]. Moreover, filtered channel features and low-
level visual features along with spatial pooling demonstrate
a significant improvement in pedestrian detection [14], [15].
However, a major drawback of these classical methods is that
they generally perform poorly when pedestrians are partially
occluded, pedestrians have a different articulation of body
parts, and environmental conditions (e.g., illumination level,
background, etc.) change.

B. Deep Learning-Based Pedestrian Detection

Deep learning-based algorithms [3], [16], [17], [18],
[19], [20] have created a breakthrough in pedestrian detec-
tion and taken the leading position in solving the pedestrian
detection problem. For example, [4], [21], [22] proposed a
pedestrian detection method based on Faster R-CNN that uti-
lizes a Region Proposal Network (RPN) to generate pedestrian
candidates, resulting in both improved detection performance
and runtime efficiency compared to its predecessors [23], [24].
Nevertheless, the computation cost of Faster R-CNN still is
high for realtime applications such as autonomous driving.
One way to achieve a better runtime efficiency is to use single
stage pedestrian detectors due to the fact that by leveraging
the power of CNN, they combine feature extraction, location
regression, and region classification. However, these methods
often suffer from low accuracy [25]. Asymptotic Localization
Fitting (ALF) was introduced in [20] by employing the Single
Shot Detector (SSD) which was stacked together with multiple
predictors for localization of bounding boxes. In [26], the
authors used YOLO for pedestrian detection, which is a
remarkably fast single stage anchor free detector. Another
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anchor-free detector is Center and Scale Prediction (CSP) [16]
that can generate bounding boxes without any requirements
of extra post-processing schemes by utilizing concatenated
feature maps for predicting pedestrians. In [27], the authors
introduced the RetinaNet that overcomes the foreground-
background class imbalance problem by incorporating an
additional focal loss along with classification and localization
losses in the loss function.

C. Pedestrian Masking Using Semantic Segmentation

Semantic segmentation is the process of making the dense
prediction for inferring semantic labels for pixels in an image
frame so that each pixel denotes the class information of its
corresponding object. Most semantic segmentation networks
are based on a Fully Convolutional Network (FCN). For
instance, FCN 1is used in [28] and [29] to introduce a pixel-
wise prediction for an end-to-end semantic segmentation.
FCN along with a dilated convolution is also used in the
dense prediction problem [30] that requires high resolution
features. Another approach is using Generative Adversarial
Network (GAN) [31] for semantic segmentation to improve
labeling accuracy. In [32], authors proposed Pix2Pix GAN
for a general-purpose solution to image-to-image translation
problems. In [33], authors proposed SegGAN in which a GAN
is adopted to refine the segmentation masks. To design a low
convolutional input/output network for semantic segmentation,
HarDNet [34] added a soft constraint on each layer and
achieved high accuracy and low memory traffic. To reduce
the computational cost, an encoder-decoder based semantic
feature extraction method is introduced in [35]. Recently, Seg-
Former [36] introduced a hierarchically structured transformer
encoder that provides multi-scale contextual information for
enhancing accuracy in a semantic segmentation network.
To tackle the problem of computational cost more efficiently,
Deep Dual-resolution Networks (DDRNets) [37] introduces
a composition of two deep branches with multiple bilateral
fusions between them.

D. Pedestrian Masking Using Instance Segmentation

Instance segmentation combines the object detection and the
semantic segmentation in a unified framework. The process
of instance segmentation begins with identifying each object
instance within an image utilizing a detection network, and
then, predicting instance masks in a pixel-to-pixel manner
by utilizing an extended subnetwork. Popular instance seg-
mentation frameworks are based on R-CNN [38], [39]. For
example, Mask R-CNN provides the state-of-the-art frame-
work for object instance segmentation extending a parallel
FCN branch of the Faster R-CNN for predicting masks.
On the other hand, a single shot-based instance segmentation
networks such as YOLACT [40] and Mask SSD [1] generate
comparatively fast instances at the expense of lower detection
accuracy compared to the Mask R-CNN. To accomplish the
instance segmentation task, YOLACT avoids the re-pooling
operation and produces instance masks by linearly combining
the prototypes and mask-coefficient generated from two sub-
tasks. Likewise, Mask SSD utilizes a subnetwork that outputs
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pixel-wise segmentation for each detection while providing
the multi-scale and feedback features from different layers
as input. Recently, a Point-based instance segmentation is
introduced in [39] which can provide comparable performance
to the region-based Mask R-CNN with faster inference.

E. Pedestrian Detection Using Fusion Methods

Deep fusion of multiple networks demonstrates the advan-
tage of capturing a variety of complementary information
for detecting pedestrians robustly. Deep fusion can also be
applied at different layers of the networks for the detection
reinforcement [35], [41], [42], [43], [44], [45], [46], [47], [48]
In [41], the authors introduced a Hyper-learner that integrates
different kinds of channel features into CNN-based detectors
in a multi-tasking manner. In [43], the authors proposed an
unsupervised learning algorithm to learn a non-linear mapping
from the RGB channels to the thermal channel. In [44],
the authors proposed an infusion network where semantic
segmentation provides additional supervision that helps in
guiding features in shared layers along with the pedestrian
detection network. In [42], the authors introduced MGAN that
uses an additional Mask-Guided Attention branch to produce
a pixel-wise attention map to guide the network attention,
resulting in improved performance on occluded pedestrians.
In [35], the authors introduced panoptic segmentation that
merges semantic segmentation and instance segmentation by
combining the output of PSPNet [49] and Mask R-CNN.
Hence, the first network is a Region Reconstruction Network
and the second network is a Multi Scale Detection Network.
In [47], a Scale-Aware Fast R-CNN framework is introduced
that adaptively combines the output of multiple sub-networks
to detect pedestrians of different scales. In [48], the authors
introduced a halfway fusion method that fuses feature infor-
mation of the color image and thermal image by utilizing a
deconvolutional single shot multi-box detector.

Though the aforementioned fusion methods exhibited the
improvement of the detection accuracy, it is often found that
such fusion architectures are complex, resulting in a high
computation cost and significant reduction of the run-time
efficiency due to the sequential operation of subnetworks
at each step. In addition, the training of the entire fused
architecture challenges the development of such models. For
instance, a monolithic deep fusion mechanism cannot directly
utilize pre-trained weights of backbone networks — either
the entire network needs to be trained from the scratch or
a layer-wise pre-training strategy can be used. The closest
work to this paper is [45] which fuses multiple deep neural
networks with a soft-rejection method to adjust the confi-
dence in the detection results, and optionally uses semantic
segmentation network to improve detection accuracy. More
specifically, the method in [45] is a two-stage fusion approach
in which initially multiple deep neural networks are fused
to generate candidate pedestrian proposals, followed by an
optional semantic segmentation network which rejects false
proposals. This is proven to be very computationally expensive
due to the large input size and complex architecture of the
network. In contrast, our proposed fusion method has the
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Fig. 2. Proposed inference fusion architecture: An input image is fed into the object detection branch and semantic segmentation branch simultaneously.
The output of the semantic map is masked for pedestrian instances and mapped into the detected bounding boxes from the object detection network. The
inferences of both networks are fused based on the consensus on detected pedestrians.

following merits: Firstly, our framework provides a general-
purpose solution to combine pedestrian detection networks
with semantic segmentation networks. Secondly, by fusing
two asymmetric inferences, our method improves the detection
accuracy. Finally, the parallel processing of the two networks
allows us to achieve a competitive runtime efficiency.

III. METHODOLOGY

In this section, we propose an asymmetric inference fusion
architecture for pedestrian detection. As shown in Fig. 2,
the proposed framework has two branches. The first branch
utilizes an object detection method to predict the bounding
box score and location of pedestrians, and the second branch
utilizes semantic segmentation and masking techniques to
generate pedestrian inferences. Finally, we develop a fusion
mechanism to combine these two different inferences to pre-
dict pedestrians jointly. Next, we will discuss the components
of the proposed framework in detail.

A. Inferring Pedestrians From an Object Detector

To detect pedestrians, first, we need to classify the pedestri-
ans, and then, localize their corresponding positions within
a given input image. More specifically, consider a generic
pedestrian detector that takes an input image x € X" according
to a data distribution D. We use supervised learning to detect
pedestrians which requires training pedestrian detectors with
the label data, y € ). Canonically, the ground truth labels
are given in terms of bounding boxes that represent the true
pedestrians’ positions on images. In the training context, the
detector is tasked to classify pedestrians and provide their pre-
cise bounding boxes within the known scenes. The output of
the detector for a given input image x € & includes the vector
of bounding boxes ¥ and their corresponding confidence scores
vector P, such that each predicted (or estimated) bounding box
y € ¥ associated with a confidence score p € [0, 1]. In the
course of training, the goal of a good detector is to make
its prediction y as close as possible to the ground truth y.
To capture this relationship, we can define a loss function
L(y, y|x) that measures a distance between the predicted

labels y and their corresponding ground truth y for a given
input image x. Different types of loss functions are studied
in the literature to improve pedestrian detection performance.
A pedestrian detector leverages at least two types of loss
functions, i.e., the classification loss and the localization loss.
A popular choice of classification loss is Cross-Entropy loss.
On the other hand, a common choice of localization/regression
loss is Smooth-L1 loss. In the testing context, we evaluate
the detector performance in unseen data. Evaluation metrics
for pedestrian detection include Average Precision and Log
Average Miss Rate.

Standard deep learning-based pedestrian detectors come in
two flavors: single-stage detectors and two-stage detectors.
A single-stage based pedestrian detector, e.g., SSD and Reti-
naNet, requires only a single pass through the neural network
and predicts all the bounding boxes directly. This leads to a
simpler and faster model architecture, thereby suitable for edge
devices. On the other hand, a two-stage pedestrian detector,
e.g., Faster R-CNN, Cascade Mask R-CNN, and MGAN,
requires a pre-trained ImageNet model such as VGG-16 or
MobileNet, followed by a region proposal network (RPN) to
detect pedestrians [42]. Although most two-stage pedestrian
detectors are known to be relatively slow, they are very
accurate and provide state-of-the-art performance.

B. Inferring Pedestrians From a Semantic Map

Pedestrian masking is a byproduct of the semantic segmen-
tation which has a wide range of applications in autonomous
driving. Unlike an object detector that uses bounding boxes
to estimate the position of objects, the semantic segmenta-
tion focuses on labeling each pixel of an image with its
corresponding class. The output of semantic segmentation
is called semantic map which is crucial for a scene under-
standing, inferring support-relationships among objects. In this
work, from a semantic map, we are only interested in those
dense predictions that represent pedestrians. For this purpose,
a masking method (based on color thresholds) is applied to
separate and group the pixels related to the pedestrian class
from a semantic map.
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Now consider a generic semantic segmentation system that
takes an input image x € X according to a data distribution D.
Unlike the ground truth label data of a pedestrian detector,
the ground truth data z € Z for a semantic segmentation
network is given in terms of polygons with different filled
colors to represent different objects in a scene. During training,
a deep neural network learns the feature information using
different feature descriptors comparing each pixel of the output
of the network with the corresponding pixel in the ground
truth segmentation image. At the training time, the task of the
segmentation classifier is to group pixels based on their object
category within the known scenes. The output of the classifier
includes the groups of colored pixels denoted by z € Z for
each class for a given input image x € X'. In the course of
training, the goal of a good classifier is to make its prediction Z
as close as possible to the ground truth z. To capture this rela-
tionship, we can define a generic loss function £(z, Z|x) that
measures matching information between the predicted group
of pixel z and the ground truth z for a given input image x.
During testing with a semantic segmentation model, each pixel
of an input image x is classified as a predefined class Z based
on the learned information. For semantic segmentation, Cross-
Entropy loss is also a popular choice.  Standard seman-
tic segmentation networks predominantly come in the form
of three architectures: Fully Convolutional Network (FCN),
Encoder-decoder, and Two-pathway architectures. In the FCN,
fully convolution layers generate a spatial map for pixel-
wise semantic segmentation [28], [50]. In the Encoder-decoder
architecture such as SegFormer and FCHarDNet, the encoder
generates feature maps containing several feature information
(e.g., shape, size) and the decoder takes this information to
produce the segmentation maps. Some lightweight backbone
networks, e.g., MobileNet [51] and ShuffleNet [52], often are
used as an encoder to reduce the computational burden of this
architecture. Finally, in Two-pathway architecture, a shallow
path along with the main path are used to extract semantic
information. Thus, this architecture avoids information loss
during repeated downsampling of feature maps in the Encoder-
decoder architecture.

C. Inference Fusion Architecture

We propose an inference fusion architecture that combines
unalike predictions of multiple networks. More specifically,
we fuse two networks: (i) the first one is an object detection
network architecture that is used for detecting objects in the
form of bounding boxes along with their confidence scores
over the entire image, and (ii) the second one is a semantic
segmentation network architecture that is used for semantic
map generation based on the same input image that the object
detector has used. The challenge is that it is not straightfor-
ward to combine the inferences of these two models for the
following reasons. First, the output of the object detector is
in the form of bounding boxes with corresponding confidence
scores whereas the output of semantic segmentation is a group
of pixels dedicated for the pedestrian class. Second, since
the semantic segmentation cannot segregate individual pedes-
trians, it is challenging to obtain one-to-one correspondence
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Fig. 3.
models to compute joint confidence scores: (a) the output of the pedestrian
detector, (b) the pixels within the pedestrians’ bounding box, and (c) the pixels
for the pedestrian class from the semantic map within the box.

We utilize pixel-level information from two deep neural network

from their inferences. Third, the outputs of each branch do
not share the same image size so that they can be easily
combined without any modification, e.g., the Pix2Pix GAN
semantic segmentation branch predicts over an image size
of 256 x 256 whereas the SSD MobileNet object detection
branch predicts over an image size of 300 x 300.

To overcome these challenges, we apply masking opera-
tion on the semantic map to carry out inferences over the
pedestrians, and then, scale those masks to overlay the output
image of the object detection network inference. Fig. 2 shows
our proposed fusion framework with two branches: the object
detection branch and the semantic segmentation branch. The
key idea is to let the two branches with two different models
reach a common consensus on pixel-level information. For this
purpose, we use the object detection branch that takes images
as input to generate bounding boxes and corresponding con-
fidence scores. In parallel, the semantic segmentation branch
and a masking process are applied to translate the same input
image to a gray-scale mask-based image to predict pedestrians
from a semantic map. This will yield pixel-wise information
about pedestrians that needs to be mapped into bounding boxes
to compute joint confidence scores. For instance, consider the
output image of an object detector in Fig. 3.(a). We identify
the pixels within the pedestrians’ bounding boxes as shown in
Fig. 3.(b). On the other hand, we identify the pixels for the
pedestrian class from the semantic map as shown in Fig. 3.(c).
These steps allow us to calculate the number of overlapping
pixels by combining two asymmetric sources of inferences.
Let A € N be the total number of pixels within a predicted
bounding box y shown in Fig. 3.(b), which formally can be
calculated as follows:

A=|{tex|t e}, (h

where ¢ is image pixel and |.| represents the cardinality of
a set. Let N € N be the number of masked pixels for the
pedestrian class z within the bounding box y as shown in
Fig. 3.(c). Formally, we can compute N as follows:

N=|{tex|teinleH. 2)

We then compute the amount of non-overlapped pixels
between the two inferences which are denoted by M € N
such that M = A — N. The joint confidence score for a given
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bounding box can be calculated using Eqn. (3).

li =y M 1) ifp <1
= <
Score .= { P A ’ 4 ’

p otherwise,

3)

where p € RT is the confidence score of pedestrian class
from the object detector. As it is obvious from the Eqn. (3),
when there is no consensus between the two models, i.e.,
N = 0, or the pedestrian detector has full confidence, i.e.,
p = 1, we then rely on the confidence score of pedestrian
detector to classify pedestrians. Otherwise, we compute the
weighted average of overlapped pixels, N, and non-overlapped
pixels, M, in the bounding box with the weights of ﬁ and
p, respectively. Clearly, with this method, we are taking into
account the overlapping pixels with a much higher weight,
which complements the lack of confidence in the object
detection module based on the consensus (overlapped pixel) of
the two models. Finally, while boosting the confidence scores,
we make sure that the joint confidence score does not exceed
1 by clipping the scoring function. The summary of the fusion
process is provided in Algorithm 1.

Algorithm 1 Network Fusion

Require: image x

1: §,p <« object_detection_branch(x)

2: 7 & semantic_segmentation_branch(x)
3: detection < {}

4: for all y € y and p € p do

5. Compute A from x given y using Eqn. (1)

6: Compute N from Z given y using Eqn. (2)
7
8

Compute M such that M := A — N

Compute Score from p, A, N, M using Eqn. (3)
9: detection < detection U {y, Score}
10: end for
11: return detection

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed inference fusion
framework with numerous pedestrian detectors and pedestrian
mask segmentation models. We benchmark our results on a
64-bit Ubuntu 18.04 server that has an Intel(R) Core(TM)
19-7900X CPU @ 3.30GHz with 64GB memory, which also
has two NVIDIA GeForce RTX 2080 GPUs with 8GB mem-
ory each. We used Python programming language with
frontend Keras and Pytorch libraries and backend Tensor-
Flow library for training, testing, and benchmarking of our
models. We also use Docker to build image with different
versions of Python and associated libraries. The developed
codes and tools are publicly available at https://github.com/
ACCESSLab/InferenceFusion, the model weights for our
trained networks are available at https://bit.ly/3qoFvAt (the
weights of other pre-trained networks that are used in this
study are available online in provided references), and the
developed Geensboro Dataset is accessible at https://bit.ly/
3GpTtaS.
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A. Datasets and Training

For evaluation purposes, we use CityPersons dataset [14]
which is a very diverse and challenging pedestrian dataset,
collected through autonomous cars in 27 different cities in
Germany and neighboring countries. In total, CityPersons
dataset contains 2,975 training images and 400 test images.
The advantage of CityPersons dataset is that it has been widely
used for training different pedestrian detectors. We, therefore,
use four pre-trained object detector models including Cascade
Mask R-CNN with HRNet backbone, Cascade Mask R-CNN
with MobileNet backbone, CSP, and MGAN which are already
pre-trained on CityPersons dataset. In addition, to include
more representative of pedestrian detection networks, we train
another four pedestrian detection networks on CityPersons
dataset including SSD MobileNet vl, SSD MobileNet FPN,
Faster R-CNN, and RetinaNet. To expedite the training time
and loss convergence, we use pretrained weights for these
networks from the MSCOCO dataset [53] and fine-tune them
on the CityPersons dataset using the progressive training
method [54]. Note that the reason to not solely rely on pre-
trained weights from the MSCOCO dataset and fine-tune the
models on CityPersons is that the MSCOCO dataset lacks
in complex driving backgrounds, partial occlusions, difficult
body articulation, small size pedestrians.

For the semantic segmentation models, we use Cityscapes
dataset [55]. The Cityscapes dataset is in fact CityPer-
sons dataset with semantic annotations. Similarly, Cityscapes
dataset has been widely used for training semantic segmen-
tation models. Therefore, we use three semantic segmenta-
tion models including SegFormer, DDRNet, and FCHarDNet
which are already pre-trained on Cityscapes dataset. In addi-
tion, we train Pix2PixGAN on this dataset as the fastest seman-
tic segmentation network. Similar to the detection networks,
the same set of 2,975 training images are used for training
all of these semantic segmentation networks and 400 images
for testing purposes.

The CityPersons dataset is collected before 2017, often
containing difficult examples of crowded scenarios captured
under low illumination conditions. To address these concerns
and also for the purpose of cross data evaluation [54] and
assessing the generalizability of the developed framework for
other driving scenes particularly at the US, we created a
cross pedestrian dataset. For this purpose, we used Aggies
Autonomous Auto driving passenger vehicle equipped with
two front-facing cameras —one for a short distance and
the other one for the long-distance views. The images are
collected in downtown Greensboro city in North Carolina
states, USA. This dataset consists of 867 test images with
1746 pedestrian annotations. This dataset is hereafter referred
to as the “Greensboro Downtown dataset.”

B. Parallel Implementation of Inference Fusion Mechanism

Since we use a pedestrian detector and a semantic seg-
mentation network to predict pedestrians jointly, a parallel
implementation of inference fusion speeds up the runtime
of the overall pedestrian detection system. For this pur-
pose, our inference fusion method is implemented using
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TABLE I

BENCHMARK ON THE CITYPERSONS DATASET. CITYPERSONS — CITYPERSONS REFERS TO TRAINING ON CITYPERSONS DATASET AND TESTING ON
CITYPERSONS DATASET. ALL PEDESTRIAN DETECTORS PERFORMANCE IMPROVE BY FUSING WITH A PEDESTRIAN MASKING NETWORK USING
OUR FRAMEWORK. HERE, THE INFERENCE FUSION WITH SEGFORMER MODEL ACHIEVES THE HIGHEST AP AND THE LOWEST MR

CityPersons — CityPersons Baseline SegFormer DDRNet FCHarDNet Pix2PixGAN

AP MR AP MR AP MR AP MR AP MR
Cascade Mask R-CNN HRNet 6594 3405 6749 3250 66.88 33.11 66.85 33.14 66.50 33.49
Cascade Mask R-CNN MobileNet 64.80 35.19 6649 3350 6556 3443 6581 34.18 6521 3478
CSp 5428 4571 5699 43.00 5550 4449 5596 44.03 5531 44.68
MGAN 52.61 4738 5477 4522 5451 4548 5454 4545 5441 4558
SSD MobileNet v1 1599 84.00 17.88 82.11 1678 8321 1692 83.07 16.68 83.31
SSD MobileNet FPN 12.54 8745 32.61 67.38 20.88 79.11 2143 7856 18.86 81.13
Faster R-CNN Inception v2 4630 53.69 47.40 5259 4670 5329 47.10 52.89 46.67 53.32
RetinaNet 3484 65.15 4238 57.61 38.77 6122 3973 60.26 3828 61.71

TABLE II

CROSS DATASET EVALUATION ON THE GREENSBORO DATASET. CITYPERSONS — GREENSBORO REFERS TO TRAINING ON CITYPERSONS DATASET AND
TESTING ON GREENSBORO DATASET. ALL PEDESTRIAN DETECTORS PERFORMANCE ARE IMPROVED BY FUSING WITH A PEDESTRIAN MASKING
NETWORK USING OUR FRAMEWORK. HERE, SEGFORMER AND FCHARDNET ARE TWO ToP
PERFORMING PEDESTRIAN MASK SEGMENTATION BRANCHES

CityPersons — Greensboro Baseline SegFormer DDRNet FCHarDNet Pix2PixGAN
AP MR AP MR AP MR AP MR AP MR
Cascade Mask R-CNN HRNet 86.93 13.06  90.74 09.25 9029 9.70 91.26 8.73 90.35  9.64
Cascade Mask R-CNN MobileNet  85.32 14.67 89.28 1071 87.53 1246 89.44 1055 8755 1244
CSsp 48.88 5111 70.07 2992 6501 3498 7526 2473 6549 34.50
MGAN 50.48 4951  67.59 3240 66.06 3393 6756 3243 66.16 33.83
SSD MobileNet v1 14.09 8590 2893 71.06 2122 7877 2871 7128 21.17 78.82
SSD MobileNet FPN 46.30 53.69 6830 31.69 5743 4256 7456 2543 57.39  42.60
Faster R-CNN Inception v2 84298 1570 8543 1456 8434 1565 86.01 1398 8440 15.59
RetinaNet 68.15 31.84 79.73 2026 78.68 21.31 8196 18.03 7897 21.02

a multi-processing approach for detecting pedestrians concur-
rently. In one process, we implement the pedestrian detection
branch, while in another process, we implement the pedestrian
mask segmentation branch. Each of these processes is imple-
mented using a separate docker container and a discrete GPU.
We, however, use the shared memory to fuse the outputs of
these branches. The two parallel branches are then cascaded
with the fusion inference. We observed that fusing inferences
takes much less computational time in contrast to the detection
or segmentation branches. As an evidence, we can see from
Table IV, the runtime of the overall process is primarily
governed by the slower branch.

C. Benchmarking State-of-the-Art Pedestrian Detectors

We thoroughly evaluated and compared our method against
state-of-the-art pedestrian detection methods. In the pedestrian
detection branch of our fusion framework, we used base-
line pedestrian detection methods including bounding-box-
based detection methods (i.e., Faster R-CNN, RetinaNet, CSP,
SSD MobileNet, and SSD FPN) and instance segmentation
networks (i.e., Cascade Mask-R-CNN with MobileNet and
HRNet backbones, and MGAN). In the pedestrian mask seg-
mentation brnach, however, we used pedestrian mask segmen-
tation networks (i.e., SegFormer, DDRNet, FCHarDNet, and
Pix2PixGAN).

The CSP, Cascade Mask R-CNN with MobileNet and
HRNet backbones, and MGAN are already pre-trained by
other researchers on the CityPersons dataset [54]. Further,
we used SSD MobileNet, SSD FPN, Faster R-CNN, and

RetinaNet which are already pre-trained on the MSCOCO
dataset [53], and applied progressive training to fine-tune them
on CityPersons dataset. The pedestrian mask segmentation
networks including SegFormer, DDRNet, and FCHarDNet
which are already trained on the CityScape dataset [55].
In addition, we trained the Pix2PixGAN from the scratch on
the CityScape dataset.

Table I shows the detailed performance evaluation of the
developed fusion inference framework trained and tested on
CityPersons dataset with different choices of pedestrian detec-
tion and pedestrian mask segmentation networks, compared to
the baseline networks. We can observe that the performance
of pedestrian detectors is significantly improved when fused
with a pedestrian mask segmentation network using the pro-
posed fusion inference method. For instance, fusing Cascade
Mask R-CNN HRNet with SegFormer, or Cascade Mask
R-CNN MobileNet with SegFormer increases the average
precision (AP) from 65.94 to 67.49 and from 64.80 to 66.49,
respectively, and decreases the miss rate (MR) from 34.05 to
32.50 and from 35.19 to 33.50, respectively. Likewise, CSP,
MGAN, SSD MobileNet v1, Faster R-CNN show about
1% ~ 3% higher AP and about 1% ~ 3% lower MR after
fusing with Segformer.

We also conducted the cross-dataset evaluation for our
benchmarking. For this purpose, we used our fusion frame-
work whose detectors are trained on the CityPersons dataset,
and tested them on Greensboro dataset. This provides an
insight into whether the developed fused models are over-fitted
on the CityPersons dataset and how well they can adapt to
different datasets with new scenes. Table II shows the cross
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Fig. 4. Detection comparisons: The top row represents the input images. Then, the middle row indicates the corresponding semantic map of input images.
Finally, the bottom row shows the ground truth, baseline detection, and detection with the fusion mechanism. Green, blue, and red color bounding boxes
represent ground truth, baseline detection, and improvement with fusion, respectively.

dataset evaluation and comparison of the fused models against
all eight baseline detectors. As it can be seen in Table II,
all baseline detection networks show improvement on the
Greensboro dataset after fusing with mask segmentation net-
works. In particular, mask segmentation networks SegFormer
and FCHarDNet performed significantly better in terms of
enhancing the baseline detectors. This is due to the fact that
these segmentation networks retain semantic maps at higher
resolution, increasing the likelihood of important information
being captured in bounding box selection, which is especially
beneficial for computing consensus in our proposed inference
fusion method. At their best, these two fusion methods achieve
13.82 4 10.06 higher AP and 13.82 4 10.061 lower miss rate
than baseline detectors, respectively. Particularly, we observe
a significant improvement (20.82 +7.55 lower miss rate) after
applying the proposed inference fusion method on the lower
performance detection networks, i.e., CSP, SSD Mobilenet
FPN, and RetinaNet.

To show the robustness and accuracy of our model in
challenging scenarios, we visualize the detection results of
our method in Fig. 4 Fig. 4 showcases detection results of the
SSD MobileNet FPN and its improved results after fusing with
the SegFormer. In Fig. 4, the first and second rows represent
the input images and the corresponding pixel-wise colored
semantic map from the SegFormer, respectively. The third row
in Fig. 4 shows the detection output of SSD MobileNet FPN
and the improvement after applying the fusion mechanism.
Here in the third row, green bounding boxes represent the
ground truth labels while blue bounding boxes represent the
detection results of the SSD mobileNet FPN. As it can be
seen, there are some situations when the SSD MobileNet FPN
cannot detect pedestrians but when fused with the SegFormer,
it can predict them more accurately. We highlighted such

TABLE III

AVERAGE PRECISION AND MISS RATE OF DIFFERENT FUSION
METHODS ON THE CALTECH DATASET

. Caltech Dataset
Fusion Method AP MR

F-DNN [45] 34.09 65.90

F-DNN2+SS [45] 35.75 64.29
SDS-RCNN [44] 31.90 68.09

Ours (Cascade Mask-RCNN+DDRNet) 44.46 55.53
Ours (Cascade Mask-RCNN+SegFormer) | 45.02 54.97

pedestrians with red bounding boxes in Fig. 4. As we can
observe from the first, second, third, and fifth columns, the
proposed fusion method can detect multiple pedestrians more
accurately than the baseline SSD MobileNet FPN, which
fails to detect red boxes. Finally, in the fourth column, the
SSD MobileNet FPN missed a partially occluded pedestrian.
However, our proposed fusion method is able to detect this
pedestrian by combining inferences from the SSD MobileNet
FPN and the SegFormer.

D. Comparison With Other Fusion Methods

We compared our fusion method with state-of-the-art fusion
methods including F-DNN [45], F-DNN2+SS [45], and SDS-
RCNN [44]. An overview of these methods was provided
under Section II. These models have been trained and tested
over the Caltech dataset [56]. To illustrate performance
improvements that can be achieved by our method over
existing fusion methods, we also extended the evaluation
of our method by testing it on the Caltech test dataset.
Caltech pedestrian dataset has different types of instances
including partially and heavily occluded pedestrians. Table III
exhibits the average precision (AP) and miss-rate (MR) of



23366

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 12, DECEMBER 2022

TABLE IV
RUNTIME EFFICIENCY OF FUSION METHODS

Det. time SegFormer DDRNet FCHarDNet Pix2PixGAN
: (time = 1.400s) (time = 0.039s) (time = 0.115s) (time = 0.011s)
Cascade Mask R-CNN HRNet 0.450 1.401 0.451 0.451 0.451
Cascade Mask R-CNN MobileNet 0.340 1.401 0.341 0.341 0.341
MGAN 0.170 1.401 0.171 0.171 0.171
CSp 0.220 1.401 0.221 0.221 0.221
SSD MobileNet v1 0.011 1.401 0.040 0.116 0.012
SSD MobileNet FPN 0.026 1.401 0.040 0.116 0.027
Faster R-CNN Inception v2 0.040 1.401 0.041 0.116 0.041
RetinaNet 0.091 1.401 0.092 0.116 0.092

different fusion methods on the Caltech dataset, includ-
ing our models. From Table III, it can be seen that our
fusion method outperforms other fusion methods in terms
of higher AP and lower MR. As we can observe from
Table III, F-DNN, F-DNN24-SS, and SDS-RCNN have AP
of 34.09, 35.75, and 31.90, respectively, whereas our two
fusion models Cascade Mask-RCNN-+DDRNet and Cascade
Mask-RCNN+Segformer show higher AP of 44.46, and 45.02,
respectively. Table III also shows that existing fusion methods,
i.e., F-DNN, F-DNN2+SS, and SDS-RCNN have a miss rate
of 65.90, 64.29, and 68.09, respectively, whereas our two
fusion models Cascade Mask-RCNN+DDRNet and Cascade
Mask-RCNN+-Segformer show lower miss rate of 55.53 and
54.97, respectively. These results demonstrate that the pro-
posed approach effectively fuses inferences from asymmetric
networks and accurately detects pedestrians under a wide
variety of challenging scenarios.

E. Runtime Efficiency

Typically, combining asymmetric inference information in
a network fusion architecture comes at the expense of a
significant loss in speed due to the large input size, complex
network structures, and sequential processes [45]. However,
instead of sequentially processing the information, our pro-
posed fusion method executes the information from the two
branches in parallel. Then, this information is passed through
the fusion inference mechanism whose computation time is
negligible. Therefore, the overall computation time of the
proposed fusion framework is almost the maximum of the
computation time of the slower branch. For instance, as we
can observe from the Table IV, the Cascade Mask R-CNN
with the backbone of HRNet takes around 0.45 second to
detect pedestrians and the SegFormer spends 1.40 seconds to
generate pedestrian masks, whereas the overall computation
time for our fusion method is 1.401 seconds. Interestingly,
the combinations of high performing detectors with low com-
putationally demanding pedestrian mask generation networks
such as DDRNet, FCHarDNet, and Pix2PixGAN improved
detection performance with competitive runtime efficiency.
Table IV shows a thorough runtime comparison among all
fused models. As it can be seen in Table IV, with our
proposed fusion approach, we can reach to 83 fps when fusing
Pix2PixGan and SSDMobileNet, whereas the best runtime
efficiency reported in [45] is around 7 ~ 8 fps (note that [45]
has used a more advanced GPU). For the sake of readability,

we also highlighted fused models with competitive runtime
efficiency in Table IV.

V. CONCLUSION

This study was carried out to assess the inference fusion
between two different deep neural networks for detecting
pedestrians. We proposed a novel, modular, scalable, and
maintainable fusion framework that combines asymmetric
inferences from object detectors and semantic segmentation
networks for jointly detecting multiple pedestrians. Our key
idea is to introduce a computationally efficient consensus-
based scoring method to fuse pair-wise pixel relevant infor-
mation from these two networks to boost the final confidence
scores accordingly. Further attention was given to improve the
runtime efficiency among fusion models. We demonstrated that
a real-time and accurate pedestrian detection system can be
developed by running an object detection and a semantic seg-
mentation model in parallel. We thoroughly investigated the
performance of the proposed fusion framework with several
different object detectors and semantic segmentation networks.
We also created a new cross pedestrian dataset utilizing an
autonomous car platform. This dataset allowed us to evaluate
the generalizability of our fused models. All datasets, the
developed models under this study, the codes and evaluation
tools are made publicly available on the project website. The
results exhibited that fused models outperform current state-
of-the-art pedestrian detectors in terms of (lower) miss rate
and (higher) average precision values. Future work includes
the integration of the multi-modal sensor information into our
fusion framework to ultimately create a generalizable, robust,
efficient pedestrian detection system that takes advantage of
both network and sensor fusion. In addition, the developed
framework with enhanced pedestrian detection performance
paves the way toward tracking pedestrians in a driving scene
for more informed decision-making by autonomous cars.
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