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Monitored quantum circuits can exhibit an entanglement transition as a function of the rate of
measurements, stemming from the competition between scrambling unitary dynamics and disentangling
projective measurements. We study how entanglement dynamics in nonunitary quantum circuits can be
enriched in the presence of charge conservation, using a combination of exact numerics and a mapping onto
a statistical mechanics model of constrained hard-core random walkers. We uncover a charge-sharpening
transition that separates different scrambling phases with volume-law scaling of entanglement, distin-
guished by whether measurements can efficiently reveal the total charge of the system. We find that while
Rényi entropies grow sub-ballistically as

ffiffi
t

p
in the absence of measurement, for even an infinitesimal rate

of measurements, all average Rényi entropies grow ballistically with time ∼t. We study numerically the
critical behavior of the charge-sharpening and entanglement transitions in U(1) circuits, and show that they
exhibit emergent Lorentz invariance and can also be diagnosed using scalable local ancilla probes. Our
statistical mechanical mapping technique readily generalizes to arbitrary Abelian groups, and offers a
general framework for studying dissipatively stabilized symmetry-breaking and topological orders.
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I. INTRODUCTION

The dynamics of quantum information has become a
central theme across multiple branches of physics ranging
from condensed matter and atomic physics to quantum
gravity [1–5]. Of particular recent interest is the exploration
of entanglement dynamics in open quantum systems,

motivated by the advent of noisy intermediate-scale quantum
simulators [6]. The dynamics of an open system monitored
by anexternal observer or coupled to its environment consists
of two competing processes: unitary evolution, which gen-
erates entanglement and generically leads to chaotic dynam-
ics [7–12], and nonunitary operations resulting from
measurements and noisy couplings to the environment, that
tend to irreversibly destroy quantum information stored in
the system by revealing it to the environment.
Aminimalmodel that captures these competing processes

consists of a quantum circuit made up of random unitary
gates interlaced with local projective measurements.
Remarkably, this minimal model undergoes a dynamical
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phase transition as the rate of measurements is increased.
This transition occurs in individual quantum trajectories
(i.e., the state of the system conditional on a set of
measurement outcomes), and separates two phases where
typical trajectories have very different entanglement proper-
ties [13,14]. When measurements are frequent enough, they
rapidly extract quantum information from any initial state
and collapse it into a weakly entangled pure state. Below a
critical measurement rate, however, initial product states
grow highly entangled over time, while initial mixed states
remain mixed for extremely long times. In this “entan-
gling” phase, unitary dynamics scrambles quantum infor-
mation into nonlocal degrees of freedom that can partly
evade local measurements. These nonlocal degrees of
freedom span a decoherence-free subspace in which the
dynamics is effectively unitary [15–18]: this subspace can
be regarded as the code space of a quantum error correcting
code. The effective size of the protected subspace vanishes
at the measurement-induced phase transition. The critical
properties of the measurement-induced transition are still
under investigation, but key qualitative features of the
transition including the emergence of conformal invariance
are by now well established [19–22]. Meanwhile, different
variants of this transition have been investigated involving
various ensembles of gates, circuit geometries, etc., estab-
lishing that such transitions are generic aspects of the
quantum trajectories of open systems [13–50].
Given the central role of scrambling in the measurement-

induced transition, it is natural to ask how the transition
(and the entangling phase) is affected if one constrains the
scrambling dynamics by imposing symmetries or conser-
vation laws. Even in the absence of measurements, con-
servation laws severely constrain the scrambling of local
operators [11,12,51]. Moreover, conservation laws can
parametrically slow down entanglement growth. For exam-
ple, the dynamics of the Rényi entropies,

Sn ¼
1

1 − n
ln trρnA ð1Þ

(with ρA the reduced density matrix of a subsystem A),
in systems with a conserved charge have been shown
to grow sub-ballistically as Sn>1 ∼

ffiffi
t

p
[52–56], while the

von Neumann entropy remains linear in time S1 ∼ t. These
results suggest that slow hydrodynamic modes might fun-
damentally alter not just the nature of the measurement-
induced phase transition but also the nature of the entangling
phase. General arguments and numerical studies of both
Clifford and noninteracting fermion circuits give evidence
that symmetries enable distinct phases of volume-law-
entangled dynamics [47], which would be fundamentally
impossible in thermal equilibrium. Despite this work, many
fundamental questions about the nature and phase structure
and universal properties of measurement-induced phases
and critical phenomena in volume-law-entangled matter with
symmetries remain unanswered—in large part due to the
absence of tractable analytic and numerical approaches for

analyzing disorder-averaged quantum circuits with generic
(computationally universal) gate sets.
In this work we study the many-body dynamics of

monitored quantum circuits with a conserved charge [or
equivalently a U(1) symmetry] and introduce a systematic
tool to analytically perform the proper averaging over
random gates and measurement outcomes with well-
controlled approximations for general family of monitored
circuit models with universal gates. This technique enables
efficient numerical analysis of large-scale monitored ran-
dom circuits and opens the door to potential analytic
analysis using well-developed statistical mechanics and
field-theoretic tools [57]. Using this approach, we show
that charge-conserving monitored random circuits exhibit
not only a measurement-induced entanglement transition
but also a new type of “charge-sharpening” transition that
separates two distinct entangling phases. These two
phases are distinguished by whether it is easy or hard
(in a way we will make precise below) for measurements
to reveal the charge of the system. In the “charge-fuzzy”
phase, there are large charge fluctuations even conditional
on the measurement history; i.e., the history of measure-
ment outcomes does not suffice to fix the charge profile. In
the “charge-sharp” entangling phase, by contrast, the
measurement outcomes fix the charge distribution. The
charge-sharp phase is nevertheless highly entangled
because of the scrambling of neutral degrees of freedom.
We find that both the entanglement transition and the
charge-sharpening transition are Lorentz invariant, with a
dynamical exponent z ¼ 1. This ballistic dynamics may
seem surprising in light of the diffusive growth of Rényi
entropies in the absence of measurements. However, we
give general arguments that, for any finite measurement
ratep > 0, all Rényi entropies grow linearly in time, Sn ∼ t.
Our conclusions are supported by exact numerics on

Haar-random U(1) monitored circuits, and by a replica
statistical mechanics model [19,20] obtained from the study
of a U(1) symmetric qubit degree of freedom coupled to a
d-dimensional qudit. Remarkably, in the limit d → ∞, we
are able to analyze the replica limit analytically, and the
contributions to entanglement from the qubit and qudit
degree of freedom decouple. This enables us to study the
entanglement dynamics of the qubit directly in this limit by
simulating an effective statistical mechanics model of a
symmetric exclusion process constrained by the measure-
ments and entanglement cuts. We also discuss scalable
probes of the charge-sharpening transition using ancilla
qubits and find evidence for a new universality class for
the charge-sharpening transition in the limit of small local
Hilbert space dimension.
The plan of the rest of the paper is as follows. In Sec. II

we specify the models we have explored and present some
general considerations on their steady-state phases and
dynamics. In Sec. III we present numerical results for U(1)
symmetric qubit chains. In Sec. IV we present a tractable
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limit in which the model can be mapped onto the statistical
mechanics of constrained random walkers. In Sec. V we
present numerical results for the transfer matrix of this
statistical model. Finally, in Sec. VI we summarize our
results and discuss their broader implications. In particular,
we note that these methods can be readily generalized
to general Abelian symmetry groups, as detailed in
Appendix B, where we leverage duality relations to discuss
implications for systems with highly entangled phases with
symmetry-breaking and topological orders.

II. OVERVIEW OF RESULTS

In this section, we introduce a family of U(1) symmetric
circuits and present some general observations concerning
their steady-state phase structure and entanglement dynam-
ics. The numerical evidence supporting these observations
is presented in Secs. III and V.

A. Models

Following Ref. [12], we consider a one-dimensional
chain in which each site hosts a two-level system (“qubit”)
and a d-level system (“qudit”); i.e., the on-site Hilbert space
is C2 ⊗ Cd for d > 1 and C2 for d ¼ 1. The dynamics will
consist of local unitary gates and measurements, which are
chosen to conserve the U(1) charge,

Q≡X
i

qi ⊗ Ii; ð2Þ

where qi ¼ ðσzi þ 1Þ=2 is acting on the ith site of the chain
of length L and I is the identity matrix on the qudits. These
chains evolve under (i) unitary 2-qubit gates, acting on
nearest neighbor sites, which conserve the global chargeQ,
and (ii) single-site projective measurements in which the
qubit is measured in its Z basis and the qudit is simulta-
neously measured in some reference basis [58]. At each
time step, a given site is measured with probability p; for
specificity, we assume that when this happens both the
qubit and the qudit are measured, so the measurement acts
on that site as a rank-1 projector. The symmetry-preserving
two-site unitary gates are arranged in a brickwork geometry
and take the form

Ui;iþ1 ¼

0
BBB@

U0
d2×d2 0 0

0 U1
2d2×2d2 0

0 0 U2
d2×d2

1
CCCA; ð3Þ

where i labels a site,Uq
D×D is a unitary matrix of sizeD ×D

acting on the charge q1 þ q2 ¼ q ∈ f0; 1; 2g sector (a local
charge is defined to take values 0 and 1), and D is the
dimension of the Hilbert space of the charge sector. Each
matrix is drawn independently from the Haar-random
ensemble of unitary matrices of the appropriate size.

We present numerical results for this class of circuits in
two limits. First, we consider the limit d ¼ 1, where there is
no qudit degree of freedom, and one simply has a chain of
qubits interacting via gates that conserve the charge Q. In
this limit, we obtain numerical results by direct time
evolution. Second, we consider the complementary limit
d ¼ ∞, in which we can map the problem to a statistical
mechanics model and explicitly write down a transfer
matrix that generates the observables of interest. The phase
diagrams in the two complementary limits are similar.
The qubit-only (d ¼ 1) model is directly realizable in

existing quantum processors. The d > 1 model is perhaps
less natural experimentally, but could be realized in circuit
quantum electrodynamics setups [59] in which supercon-
ducting transmon qubits are coupled to multilevel super-
conducting cavities (qudits), or by blocking multiple qubits
together (e.g., d ¼ 2 could be realized as a two-leg ladder
of qubits). Regardless of experimental implementation, we
expect the d > 1 models to capture the generic universal
behavior of phases and transitions, while allowing greater
theoretical control in the large-d limit.

B. Observables and averaging

For a given choice of unitary gates and measurement
locations X (in spacetime), the unitary-measurement
dynamics can be described in terms of quantum trajecto-
ries ρmðtÞ ¼ KmρK

†
m. Here m denotes a “quantum tra-

jectory,” associated with a fixed configuration of
measurement locations X and measurement outcomes
MðXÞ. We will write m ¼ fX;MðXÞg. The Kraus
operators Km consist of random unitary gates and pro-
jection operators onto the measurement outcomes MðXÞ,
and we have

P
fMðXÞgK

†
mKm ¼ I.

We will be concerned with general properties of the
single-trajectory state ρm ≡ KmρK

†
m. [As a concrete exam-

ple, consider the purity Πm ¼ Trðρ2mÞ=ðTrρmÞ2.] We then
average over quantum trajectories, weighting each set of
measurement outcomes by its probability of occurrence,
i.e., the Born probability pm ¼ TrðρmÞ. Finally, we average
the answers across the ensemble of quantum circuits.
A few comments are in order here.
(1) For an initially pure state jψi the Born probability

takes the familiar form pm ¼ kKmjψik2; i.e., it is
just the norm of the projected state. For a series of
measurements interspersed with unitary gates, one
can pick each measurement outcome based on the
Born probability or equivalently apply a set of
projectors at random and evaluate the probability
of the entire measurement history by computing the
norm of the state at the end of the trajectory.

(2) There are four different types of average that we
consider here: (i) the quantum expectation value of
an observable A in a single trajectory ρm, namely,
TrðAρmÞ=Trρm, which wewill write as hAim; (ii) the
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(Born-weighted) average of a single-trajectory
function, such as purity or entanglement entropy,
over quantum trajectories (measurement outcomes);
(iii) the average over unitary gates, chosen with Haar
measure; and (iv) the average over spacetime points
where the measurements occur (measurement loca-
tions). In much of this work, we present results for
which averages (ii)–(iv) have been done. We will use
the notation ½·� for this full average. At some points it
will be useful to separate these averages. In these
cases we will use the explicit notations

P
fMðXÞgð·Þ,

EUð·Þ, and EXð·Þ for averages over measurement
outcomes, gates, and measurement locations, re-
spectively. We will also use a shorthand notation
Em ≡Pm pmð…Þ to denote summation over all
possible measurement locations X including appro-
priate probability factors of p and 1 − p, and over all
measurement outcomes MðXÞ, including the asso-
ciated Born probability factor pm.

(3) It is crucial that the quantities of interest to us are
nonlinear functions of ρm [14], such as Πm. To see
the significance of this, let us compare the quantity
Πm to that of some simple expectation value. In ρm,
the expectation value of a local operator A would be
TrðAρmÞ=Trρm. Averaging this over trajectories
(measurement outcomes) with the Born probabilities
would simply give infinite temperature behavior
[60]:

P
fMðXÞgðpmhAimÞ¼

P
fMðXÞgTrðAρmÞ¼

TrðAρðtÞÞ≈TrðAÞ=Trð1Þ, where ρðtÞ ¼PfMðXÞg ×
KmρK

†
m describes the dynamics of the density

matrix in the case where the environment does not
monitor or keep track of the measurement outcomes.
By contrast,

P
fMðXÞgΠmpm ¼PfMðXÞg Trðρ2mÞ=

Trρm, which cannot simply be written in terms of
ρðtÞ. The averaged density matrix ρðtÞ is blind to
measurement transitions; only nonlinear functions of
single-trajectory wave functions detect it.

C. Results

In the following, we unveil a charge-sharpening tran-
sition that takes place before the entanglement transition in
two distinct models of monitored U(1) symmetric random
quantum circuits. Our main results are summarized in
Fig. 1 and discussed in more detail below.

1. Entanglement transition

A general feature of unitary-projective circuits is the
presence of an entanglement transition, separating a phase
where initially unentangled states develop volume-law
entanglement from one where their entanglement remains
area law at all times. We briefly review the general
properties of this transition and discuss how they are
modified by the presence of a conservation law.

This transition occurs at some critical measurement
rate pc. In the volume-law phase, the half-system entan-
glement entropy grows linearly in time and saturates on
timescales t ∼ L. At times t > L, the entanglement entropy
(averaged over circuits and trajectories) reaches a steady-
state value ½SðL=2Þ� ¼ cL, where c is a constant that
decreases continuously to zero at pc. At p ¼ pc, we have
that ½SnðL=2Þ� ¼ αn logL, where αn (which generally
depends on the Rényi index n) is part of the universal
critical data [14,28].

An equivalent way to understand the entanglement
transition is as a “purification transition” for an initially
mixed state [16]. For p < pc, an initially mixed state for a
system of size L evolves to a pure state on a timescale
tπ ∼ expðLÞ, whereas for p > pc, purification happens on a
timescale that grows sublinearly in L. If one takes the limits
L → ∞, t=L ¼ const, the purity of an initially mixed state
for p < pc is essentially constant in time; i.e., the steady
state is defined to be at early times compared with the slow
purification dynamics for p < pc.
The purity of an initially mixed state on timescales t ∼ L

can be used to define an effective order parameter for
the volume-law phase, as follows [27,28]. Consider evolv-
ing a pure state along some trajectory until times t ∼ L, and
then entangling some local degree of freedom with an
ancilla qubit. The reduced density matrix of the system is
now a rank-2 mixed state. For p < pc, this mixed state
remains mixed for an exponentially long time. Therefore,
by evolving for another t ∼ L and then measuring the

FIG. 1. Phase diagram and crossover timescales in U(1)
symmetric monitored quantum circuits. Our numerical results
indicate that there are two distinct phases in the entangling
(volume-law) regime p < pc, separated by a charge-sharpening
critical point as p ¼ p#. In the charge-fuzzy phase (p < p#), we
identify three relevant timescales in the dynamics: For a large
enough system, first (1) average Rényi entropies crossover from
diffusive ½Sn>1� ∼

ffiffi
t

p
to ballistic ∼t scaling over a timescale

∼p−3=2, then (2) charge sharpens after the crossover timescale
t# ∼ L, and finally (3) the system purifies over a much longer
timescale tπ ∼ eL.
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entanglement entropy of the ancilla (which is equivalent to
measuring the purity of the system density matrix in this
setup), one can extract a local order parameter for the
volume-law phase [27]. By studying the correlations of this
local order parameter—e.g., by coupling in two ancillas at
distinct spacetime points and tracking their mutual infor-
mation—it was established [in the absence of the U(1)
symmetry] that the critical theory has an emergent Lorentz
invariance with dynamical scaling exponent z ¼ 1.

One of our results is to locate and characterize this
entanglement transition in the presence of the U(1) con-
servation law. In the d → ∞ limit, we find that pc ¼ 1=2,
exactly as in the absence of a conservation law. Moreover,
the entanglement transition corresponds to a percolation
transition. For d ¼ 1, we find that pc ¼ 0.105ð3Þ moves to
substantially lower measurement rate than in the generic
circuit without a conservation law (pHaar

c ≈ 0.17 [28]). The
correlation length exponent ν ¼ 1.32ð6Þ is close to the
percolation value 4=3, but the coefficients αn differ from
the percolation value as well as the value for Haar-random
circuits without a U(1) symmetry. Finally, we find com-
pelling numerical evidence that the dynamical scaling
z ¼ 1 holds at this critical point. That this holds regardless
of the diffusive (z ¼ 2) dynamics of the U(1) conserved
charge is perhaps puzzling at first sight. We return below to
the resolution of this puzzle.

2. Charge-sharpening transition

In addition to changing the critical properties of the
entanglement transition at pc, the conservation law gives
rise to a distinct charge-sharpening transition at a meas-
urement rate p# inside the volume-law phase. The charge-
sharpening transition separates a charge-sharp phase for
p > p#, in which the measurements along a typical
trajectory can rapidly collapse an initial pure superposition
(or mixture) of different charge sectors, and a charge-fuzzy
phase where this collapse is parametrically slower occur-
ring on a timescale t# ∼ L. Specifically, we can distinguish
charge-sharp or charge-fuzzy behavior by the variance of
the conserved charge Q in Eq. (2) over a single trajectory,
averaged across trajectories and samples, i.e.,

½δQ2� ¼ ½hQ2im − hQi2m�; ð4Þ

where the quantity in parentheses is the quantum
number variance in a given trajectory. In the sharp phase,
½δQ2� ¼ 0, while in the fuzzy phase it remains nonzero at
times of order t ∼ L.
The dynamics of charge sharpening at small p can be

qualitatively understood in terms of a simple classical
model, in which one ignores the spatiotemporal correla-
tions between measurements. One can then ask how many
independent density measurements NM are required to
distinguish systems with N particles on L sites from those
with N − 1 particles on L sites, where n≡ N=L ¼ Oð1Þ.

Assuming Gaussian density fluctuations (as in the p ¼ 0
thermal state), we expect the N-particle and (N − 1)-
particle states to become distinguishable when NM ∼ L2

[61]. Since NM ¼ pLt in the circuits we consider, sharp-
ening happens on a crossover timescale t# ∼ L=p. For
timescales t ≥ t#, we expect that ½δQ2� ∼ expð−t=t#Þ. This
follows, e.g., from using the central limit theorem to
estimate the probability that an N-particle state will give
an average density of n� 1=L after pLt measurements.
This simple model of the volume-law phase predicts
that a crossover to charge sharpening should take place
on a timescale t# ∼ L=p, consistent with our numerical
findings (see Secs. III and V), and parametrically faster
than purification. Importantly, at any finite t=L, ½δQ2�
remains nonzero in the fuzzy phase (albeit exponentially
small for t ≫ t#).
By contrast, for p > p#, charge sharpening happens on a

timescale that is sublinear (logarithmic) in system size. In
the limit L → ∞; t=L ¼ const, each trajectory has a def-
inite charge. Thus there is a sharp phase transition at p#, for
which ½δQ2� acts as an order parameter. Our numerical
results also indicate that charges become devoid of quan-
tum superposition in some regions of spacetime exhibiting
locally minimal spacing of measurements (see Sec. V).
As with the entanglement transition, one can probe the

charge-sharpening transition by coupling an ancilla to the
circuit. One entangles the ancilla with the system such that
each ancilla state is coupled to a system state with a
different value of Q. The system-ancilla entanglement
vanishes when Q sharpens under the circuit dynamics.

3. Entanglement dynamics

We now turn to the dynamics of entanglement at times of
order unity. Recall that, absent measurements, the Rényi
entropies Sn ∼

ffiffi
t

p
for all n > 1 in random circuits with

U(1) symmetric gates [52,54,62]. This diffusive entangle-
ment dynamics appears to be a generic property of random
circuits, so one might expect it to hold throughout the
volume-law phase. If it held at the critical point, it would
prevent the critical theory from being a conformal field
theory (CFT). We now discuss why Rényi entropies in fact
scale ballistically for any nonzero measurement probabil-
ity, p > 0, allowing both the sharpening and entanglement
transitions to obey relativistic z ¼ 1 dynamic scaling.
First, we review the argument for diffusive scaling in

the absence of measurements [52,54,62]. This phenomenon
arises from rare fluctuations that leave a region empty
(or maximally filled), as follows. Consider, for concrete-
ness, the dynamics of the initial product state for the
qubit jψi ¼⊗L

i¼1 jþxii, where jþxi ¼ ð1= ffiffiffi
2

p Þðj0i þ j1iÞ.
Suppose we are interested in the entanglement across a cut
at L=2 at some later time t. We can divide the system into
three regions: a central region of radius l ¼ ffiffiffiffiffiffi

Dt
p

centered
at the entanglement cut, and regions to the left and right.
Define
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jψdeadi ¼ ⊗
L=2−l

i¼1
jþxii ⊗

L=2þl

i¼L=2−lþ1
j0ii ⊗

L

i¼L=2þlþ1
jþxii: ð5Þ

Initially, jhψdeadjψij ¼ 2−2l. After evolving for time t,
jðhψdeadjU†

t ÞðUtjψiÞj ¼ 2−2l by unitarity. However,
Utjψdeadi is a product state with respect to the cut at
L=2: by construction, t is not long enough for particles to
have diffused to the entanglement cut, and unless there
is a j10i or j01i configuration at the cut the gates acting
across the cut cannot generate entanglement. The largest
Schmidt coefficient of Utjψi is its maximal overlap with
any product state, so we can lower bound the largest
Schmidt coefficient of Utjψi as 2−2l ¼ 2−

ffiffiffiffi
Dt

p
, and there-

fore S∞ ≤ 2l ln 2 ∼
ffiffiffiffiffiffi
Dt

p
. All Rényi entropies with n > 1

are dominated by this largest Schmidt coefficient and grow
as

ffiffi
t

p
. The von Neumann entropy S1 is dominated instead

by typical Schmidt coefficients: the number of these grows
exponentially in t, but they are also exponentially small in t
and are therefore subleading for n > 1.
We now address how this argument changes when

p > 0. In a typical trajectory, on a timescale t, there are
plt ∼ pt3=2 measurements in the putative dead region near
the entanglement cut, and about half the measurements
observe a qubit to be in the charge state j1i. There are rare
circuits with few measurements near the cut, as well as rare
histories in a typical circuit where all the measurements
yield the same outcome j0i. However, both are at least
exponentially suppressed in l and cannot dominate the
trajectory-averaged entanglement (since any trajectory
contributes at most ∼t entanglement, and in any case these
atypical trajectories have unusually slow entanglement
growth). Therefore, to compute the trajectory-averaged
Rényi entropies it suffices to consider trajectories with
typical measurement locations and typical outcomes. In
typical trajectories, one observes a j1i charge after Oð1Þ
measurements in the region near the cut, so the putative
dead region survives only until a time t ∼ p−2=3. At longer
times, the overlap of the wave function with dead regions is
zero. We conclude that the trajectory-averaged Rényi
entropies ½Sn� grow linearly in time whenever p > 0
[63]. We also note that the existence of diffusive hydro-
dynamic modes, which are a purely classical phenomena,
does not affect the z ¼ 1 dynamical scaling at the volume-
to-area law entanglement transition at pc. Our numerical
estimates of the dynamic exponent in Sec. III are consistent
with this result that z ¼ 1 scaling applies and diffusive
hydrodynamics decouples also at the charge-sharpening
transition at p#.

III. NUMERICS ON QUBIT CHAINS

In this section, we present numerical results on a
model of random U(1)-conserving gates acting on a chain
of qubits (i.e., the d ¼ 1 limit of the general model in
Sec. II A). Specifically, in the basis of the adjacent qubits

fj↓↓i; j↑↓i; j↓↑i; j↑↑ig the 2-qubit gates at site i take the
block diagonal form,

Ui;iþ1 ¼

0
B@

eiϕ0

U1
2×2

eiϕ1

1
CA; ð6Þ

where ϕ1 and ϕ0 are chosen at random from the interval
½0; 2πÞ andU1

2×2 is a Haar-random 2 × 2 unitary matrix that
can be parametrized by four angles,

U1
2×2ðα;ϕ;ψ ; χÞ ¼ eiα

�
eiψ cosϕ eiχ sinϕ

−e−iχ sinϕ e−iψ cosϕ

�
; ð7Þ

where α, ψ , χ, and ϕ are chosen so that U1
2×2 is uniformly

sampled from U(2) [64]. In between layers of gates,
projective measurements are performed: with a probability
p, the qubit is projected onto j↑i or j↓i given by the Born
rule. Utilizing the conservation law, we work in definite
number sectors to reduce the memory load of the exact
numerics.
The conservation law leads to different charge

sectors defined by eigenspaces of Q in Eq. (2). We will
typically focus on charge sectors near the central sub-
space (Q ¼ L=2).

A. Entanglement transition

We begin by locating the entanglement transition point
pc in this model. In order to probe the location of the
critical point and the correlation length critical exponent,
we study two quantities that have been identified as good
measures of the transition: the tripartite mutual information
[28] and an order parameter defined through the use of an
ancilla [27] that is coupled to one charge-Q sector. In the
following it is essential that we use an accurate estimate of
pc to be able to numerically disentangle it from the charge-
sharpening transition at p#.
First, the tripartite mutual information for the Rényi

index n is defined as

I3;nðA;B; CÞ≡ SnðAÞ þ SnðBÞ þ SnðCÞ
− SnðA ∪ BÞ − SnðA ∪ CÞ − SnðB ∪ CÞ
þ SnðA ∪ B ∪ CÞ; ð8Þ

where we have chosen regions A, B, and C to be adjacent
regions of size L=4 and SnðAÞ is the Rényi entropy defined
in Eq. (1). For I3;n at late times (t ¼ 4L) we apply the finite
size scaling hypothesis I3;n ∼ f½L1=νðp − pcÞ�, to locate
the critical point, where fðxÞ is a scaling function and ν is
the correlation length exponent. The data for n ¼ 1
are shown in Fig. 2(a) where we find the data collapse
with the minimum χ2 for the choice of pc ¼ 0.105ð3Þ and
ν ¼ 1.32ð6Þ. The error bars are estimated by a region in
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parameter space near the minimum such that χ2 < 1.3χ2min
[28]; see Fig. 5. A similar analysis can be performed for the
other Rényi entropies, and the resulting values of pc and ν
are similar for all n ≥ 1 investigated; we find pc¼
0.103ð4Þ;0.12ð2Þ;0.12ð1Þ and ν¼ 1.37ð8Þ;1.47ð3Þ;1.5ð2Þ
for n ¼ 2; 5;∞, respectively.
At the critical point, the bipartite entanglement entropy

shows a logarithmic dependence on the system size and the
coefficient of the logarithmic divergence shows strong
Rényi index dependence [Fig. 2(c)]. This behavior can
be described by

Snðpc; LÞ ∼ αðnÞ lnL;

αðnÞ ¼ 0.65ð1Þ
�
1þ 1

n

�
þ 0.04ð1Þ: ð9Þ

Apart from the small offset, this Rényi index dependence
matches the result one expects for the ground state of a CFT
[4], αCFTðnÞ ¼ c

6
½1þ ð1=nÞ�. The coefficients in Eq. (9)

clearly differ from those at the measurement-induced
transition without a conservation law [28].
As an alternative way of locating the entanglement

transition, we also study the “order parameter” [27]. In
order to have the ancilla couple to the system within a
particular global charge sector, we consider the qubits at
two adjacent sites i and iþ 1 to be in the entangled state
with an ancilla: jΨ0i ¼ ð1= ffiffiffi

2
p Þðj↑↓ij1i þ j↓↑ij0iÞ, where

the ancilla has orthogonal basis states j1i or j0i. We then
evolve the system in time t ¼ 2L without measurements in
order to create a state jΨi¼ð1= ffiffiffi

2
p Þðjψ1ij1iþjψ0ij0iÞ,

where jψ0;1i are orthogonal and in the same charge sector.

We then run the circuit with measurements for an additional
time 2L and compute the von Neumann entropy of the
ancilla, which we denote as S1;E (as it probes the entangle-
ment transition).
The results for the von Neumann entanglement

entropy of the ancilla S1;E are shown in Fig. 2(b), and
are consistent with I3;n data: From the scaling ansatz
S1;E ∼ fE(ðp − pcÞL1=ν), where fEðxÞ is a universal scal-
ing function, we obtain pc ¼ 0.110ð3Þ and ν ¼ 1.4ð2Þ in
good agreement with I3.
Summarizing these results, the entanglement transition

in U(1) symmetric circuits has a critical exponent ν that is
consistent with the value for Haar-random circuits with no
symmetries, although the nonuniversal pc has drifted down
from the Haar value pHaar

c ≈ 0.17 (as one might expect since
each gate cannot generate as much entanglement). At
p ¼ pc we extract the dynamical exponent of the entan-
glement transition using the scaling ansatz ½S1;E�∼
gEðt=LzÞ, which shows a good quality as seen in Fig. 4
for z ¼ 1 and gEðxÞ some universal scaling function.
Again, this result is consistent with the nonconserving
case. While we have focused on Q ¼ L=2, we have
checked that for the largest system sizes considered pc
is only very weakly affected forQ ¼ L=2 − 1 (not shown).

B. Charge-sharpening transition

We now turn to estimating p# in two ways: the charge
variance of a state and the entropy of an ancilla entangled
with two different number sectors.
First, we compute the variance of the total charge

[Eqs. (2) and (4)]. For a trajectory that lies in a

FIG. 2. Entanglement transition in qubit chains. (a) Data and collapse of the tripartite mutual information I3;n¼1 used to determine the
critical point of the entanglement transition, pc ¼ 0.105ð3Þ, and the correlation length exponent, ν ¼ 1.32ð6Þ. The error bars in pc and ν
are estimated using the region in parameter space near the minimum such that χ2 < 1.3χ2min [28]; see Fig. 5. (b) Data and collapse of the
entanglement transition order parameter ½S1;E� used as an alternative method to determine the critical point of the entanglement
transition, pc ¼ 0.110ð3Þ, and the correlation length exponent, ν ¼ 1.42ð16Þ. The critical point and the exponent for ½S1;E� are estimated
with a finite size scaling analysis as explained in Appendix D. (c) At the critical point, the bipartite entanglement entropy shows
logarithmic scaling with the system size. The coefficient of the logarithm has strong Rényi index dependence that can be described by a
functional form αðnÞ ¼ 0.65ð1Þ½1þ ð1=nÞ� þ 0.04ð1Þ. The error bars in αðnÞ are obtained from the standard deviation of the fit
parameters in αðnÞ ∼ a½1þ ð1=nÞ� þ b while the error in the data points themselves take into account the standard deviation of the fit
parameters in Snðpc; LÞ ∼ αðnÞ lnL and the error in pc. This closely resembles the standard result for the ground state of a CFT, but has
an offset slightly larger than zero. Error bars on the data points are obtained from the error on the mean by computing the standard
deviation.

ENTANGLEMENT AND CHARGE-SHARPENING TRANSITIONS IN … PHYS. REV. X 12, 041002 (2022)

041002-7



well-defined charge sector, δQ2 ¼ 0, otherwise δQ2 ≠ 0.
Therefore, we start with a pure initial state that
is spread out over all of the different Q sectors,
jψ0i ¼⊗L

i¼1 ð1=
ffiffiffi
2

p Þðj↑ii þ j↓iiÞ, and run the conserving
hybrid dynamics to late times to determine if the system
has sharpened into a single charge sector for some
measurement probability 0 ≤ p# ≤ pc, where pc ≈ 0.11
is the critical point of the entanglement transition. In
this situation, the critical point of the charge sector
transition can be determined by studying the probability,
PðδQ2 ¼ 0Þ. [Recall that δQ2 is a quantum uncertainty
that is a property of each trajectory; the probability
distribution PðδQ2Þ is over trajectories and circuits, where
each trajectory is weighted by its Born probability.]
For large systems, PðδQ2 ¼ 0Þ → 0 when the system is
distributed over multiple sectors while PðδQ2 ¼ 0Þ → 1
when the system has been constrained to a single sector. In
Fig. 3(a), the fraction N0 of trajectories having a variance
x ¼ δQ2 ≤ s (with s ¼ 10−2) is shown for various system
sizes and measurement probabilities. The critical point
can be identified by the crossing near p ¼ 0.1. Performing
a finite size scaling analysis, we find the data for different
system sizes collapse onto a universal curve for the
critical point p# ¼ 0.094ð3Þ and correlation length expo-
nent ν# ¼ 2.0ð3Þ.
Lastly, we consider an ancilla coupled to two different

charge sectors; in particular, we take jΨi ¼ jψQij0i þ
jψQ−1ij1i where jψQi represents states within the charge
sector Q (while j1i and j0i are states of the ancilla as
before). Since there is no unitary that mixes these sectors,
we can say definitively that the reduced density matrix has
the form

ρanc ¼
 
jhψQðtÞjψQðtÞij2 0

0 jhψQ−1ðtÞjψQ−1ðtÞij2

!
: ð10Þ

This formulation is convenient for the numerical algorithm
we have developed that conserves charge since if the ancilla
were just considered an extra qubit, jΨi would be in the
conserving sector M for Lþ 1 qubits. Doing this, we
compute the von Neumann entanglement entropy of the
ancilla qubit that we denote as S1;Q, that is shown in
Fig. 3(b). Based on the crossing in the data and the ansatz
S1;Q ∼ gQððp − p#ÞL1=ν#Þ, we obtain p# ¼ 0.088ð3Þ and
ν# ¼ 2.2ð2Þ, which matches the p# and ν# found by
PðδQ2 ¼ 0Þ. In addition, we extract the charge-sharpening
transition from the probability that the ancilla has fully
disentangled from the circuit by computing the fraction
of trajectories Npure that have fully purified the ancilla
[Fig. 3(c)]. From the crossing of Npure, we find a third
consistent estimate of p# and ν#. Thus, we have identified
the charge-sharpening transition across all sectors of Q
with the transition in S1;Q across Q ¼ L=2; L=2 − 1. The
dynamical exponent of the charge-sharpening transition is
also z ¼ 1, as ½S1;Q� ∼ gQðt=LÞ at criticality (Fig. 4).
The two critical points we have identified in this model at

p# and pc are at least ∼3.5 error bars from each other,
providing evidence that a charge-sharpening transition
occurs before full purification. This is further exemplified
by the estimated confidence intervals for the two transitions
for the various probes we have considered as shown in
Fig. 5. Moreover, the correlation length exponent for
charge-sharpening quantities is distinct from that of the
entanglement purification transition, further suggesting that

FIG. 3. Charge-sharpening transition in qubit chains. (a) Data and collapse of N0, the fraction of trajectories with δQ2 < ϵ used to
determine the critical point of the charge-sharpening transition, p# ¼ 0.094ð3Þ, and correlation length exponent, ν# ¼ 2.0ð3Þ. The value
of ϵ ¼ 10−2 is chosen such that it maximizes the quality of collapse at t=L ¼ 4. The error bars in p# and ν# are estimated using the region
in parameter space near the minimum such that χ2 < 1.3χ2min [28]; see Fig. 5. (b) Data and collapse of the charge-sharpening transition
order parameter ½S1;Q� used as an alternative method to determine the critical point of the sharpening transition, p# ¼ 0.088ð3Þ, and the
correlation length exponent, ν# ¼ 2.15ð15Þ. (c) Data and collapse of the fraction of trajectories where the ancilla qubit is purifiedNpure at
the charge-sharpening transition. The transition point p# ¼ 0.087ð4Þ and the correlation length exponent ν# ¼ 2.1ð2Þ are consistent with
the ancilla probe. The critical point and the exponent obtained from ½S1;Q� and Npure are estimated with a finite size scaling analysis as
explained in Appendix D. Error bars on the data points are obtained from the error on the mean by computing the standard deviation.
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these represent distinct critical points with different uni-
versality classes.
We note, however, that the close proximity of the

putative two transitions makes them challenging to cleanly
separate numerically in small-scale systems, and acknowl-
edge that this data could in principle be accounted for by
large, systematic finite size errors in the critical exponents

that affected the charge and entanglement properties differ-
ently [65]. In the following sections, we see that for the
model with large-d qudits, the location of the two tran-
sitions become clearly distinct.

IV. STATISTICAL MECHANICS MODEL

In this section, we show that in the d → ∞ limit, the
calculation of entanglement in monitored U(1) circuits can
be mapped exactly onto a classical statistical model defined
on a square lattice. In this limit, the contributions to the
entanglement entropy from the qubit with conserving
dynamics and the qudit decouple. The resulting qubit
contribution can then be obtained from a constrained
symmetric exclusion process.
Our main goal is to compute averaged Rényi entropies

½Sn�. The Rényi entropies of a spatial subregion A for a
fixed quantum trajectoryare given by

SnðA;mÞ ¼ −1
n − 1

½ln Trðρ⊗n
m Tn;AÞ − ln Trρ⊗n

m �; ð11Þ

where ρm ¼ jψmðtÞihψmðtÞj, jψmðtÞi ¼ Kmjψ0i is the
state (“trajectory”) of the system after evolution by time
t for a measurement historym, and Tn;A is a SWAP operator
permuting the n copies of the input state in the entangle-
ment region A:

Tn;A ¼
Y
i

jsσið1Þsσið2Þ…sσiðnÞihs1s2…snj;

σi ¼
�
identity ¼ e i ∉ A

ð12…nÞ i ∈ A;
ð12Þ

where the index i runs over all physical sites, jsii are
members of the on-site Hilbert space, σi is an element of the
permutation group Sn, and ð12…nÞ denotes a cyclic
permutation of the n copies of ρ. The key technical
difficulty in this problem is to perform the average over
gates, measurement locations, and outcomes, and to nor-
malize the state after the projective measurements since
entanglement is intrinsically nonlinear in the density
matrix. To bypass this problem, we follow Refs. [19,20]
(see also Refs. [66,67] in the context of random tensor
networks) and introduce k replica copies of the system. The
average Rényi entropy Sn is then written as

½Sn� ¼ lim
k→0

−1
kðn − 1Þ

X
m

½ZAðmÞ − Z∅ðmÞ�; ð13Þ

where

ZAðmÞ ¼ EUfTr½ðKmjψ0ihψ0jK†
mÞ⊗nkþ1T⊗k

n;A�g;
Z∅ðmÞ ¼ EUfTr½ðKmjψ0ihψ0jK†

mÞ⊗nkþ1�g; ð14Þ

with Tn;A defined in Eq. (12), and jψ0i is the quantum state
of the system at t ¼ 0. As the notation suggests, ZA;∅ will

FIG. 4. Dynamical exponent. Plotof the rescaled timedependence
of the ancilla-circuit entanglement entropy for the entanglement
transition at p ¼ pc ≈ 0.11 (blue curve) and the charge-sharpening
transition at p ¼ p# ≈ 0.088 (red curve). The finite size collapse
indicates a dynamical exponent z ¼ 1 for both transitions.

FIG. 5. Two transitions. Plot of the 68% confidence interval of
the critical point p and the correlation length exponent ν for both
the entanglement and charge transitions. The mutual information
I3;1 (solid blue circle) and the ancilla probe (dashed blue circle)
are for the entanglement transition, while the fraction of trajec-
tories N0 (solid red circle) and the ancilla probe (dashed red
circle) are for the charge-sharpening phase transition. The two
transitions appear to be different with statistical significance,
although we cannot exclude systematic finite size effects that
would change this conclusion in the thermodynamic limit.

ENTANGLEMENT AND CHARGE-SHARPENING TRANSITIONS IN … PHYS. REV. X 12, 041002 (2022)

041002-9



correspond to the partition function of an effective stat-
istical model, where ZA and Z∅ only differ with respect to
the boundary condition at the top boundary region A (see
Fig. 11 in Appendix A). We denote the total number of
replicas as Q ¼ nkþ 1 in the subsequent discussion. The
additional replica is due to the Born probability factor,
which ensures quantum trajectories are weighted appropri-
ately [20]. Also note that since the original nonlinear
quantity has been converted to a linear quantity defined
onQ copies, we are free to do various averages in any order
we want.
The rest of this section is organized as follows. We start

by giving a very brief overview of the statistical model for
random monitored circuits without any symmetries, fol-
lowing Refs. [19,20], before moving on to summarize the
result for the U(1) symmetric system. We include a detailed
and technical derivation of the above model in Appendix A.
This technical section can be skipped without breaking any
continuity.

A. Statistical model for systems without symmetry

We briefly review the mapping for random monitored
circuits without symmetries to a statistical model [19,20].
We focus on the details required for our subsequent
discussion, in particular on the large dimension limit
d → ∞. To calculate Eq. (14) we need to average over
Q copies of the circuit over Haar gates and measurement
outcomes (but not over measurement locations). Since the
random Haar gates are drawn independently, we can
individually average Q copies of each gate. The combina-
torial results of the averaging can be captured as a partition
function that can be computed as follows: each unitary gate
in the circuit is replaced by a vertex associated with a pair
of permutation “spins” σa; σ̄a, each belonging to the
permutation group SQ. In the d → ∞ limit, these spins
become locked together in a single SQ degree of freedom,
σa. Vertices from adjacent gates, i.e., those which share an
input or output qubit, are connected by links. The weight
associated with a vertex in the partition function is given by
Va ¼ 1=d2Q. The weight of the links connecting vertices
with elements σa;b is given by

Wab½σ−1b σa� ¼
(
djσ

−1
b σaj if link ðabÞ is not measured

d if link ðabÞ is measured;

ð15Þ

where jσ−1b σaj is equal to the number of cycles in the cycle
decomposition of σ−1a σb ¼ C1…Cjσ−1b σaj. Note that the
above weights are symmetric under left and right multi-
plication by elements of SQ.
We see that in this d → ∞ limit, spins (permutations)

connected by unmeasured links are forced to be the same,
whereas spins on measured links are effectively decoupled;

i.e., measurements “break” the links connecting permuta-
tion spins, diluting the lattice. This naturally yields a
picture of the purification transition in terms of classical
percolation of clusters of aligned permutation “spins”
[14,19,20], though of course this simple percolation picture
is special to d → ∞: 1=d fluctuations are a relevant
perturbation to the percolation critical point such that finite
d transitions are described by a distinct universality class
from percolation [20,22].
As we saw in Eq. (13), the calculation of Sn requires

taking the difference between two partition functions of the
model described above but with different boundary con-
dition (see Fig. 11); in the replica limit, this difference in
partition functions becomes equivalent to a difference in
free energies FA;∅ ¼ − logZA;∅ (since the partition func-
tions approach unity in the replica limit). The boundary
condition for the calculation of ZA forces a different
boundary condition in region A, and thus introduces a
domain wall (DW) near the top boundary. In the limit
d → ∞, the DW is forced to follow a minimal cut, defined
as a path cutting a minimum number of unmeasured links
(assumed to be unique for simplicity [68]). This can be seen
as follows: because of the boundary condition in Z∅, all
vertex elements in Z∅ are equal [69], and Z∅ ¼ dð1−QÞNm ,
whereNm is the number of measured sites. ZA would be the
same as Z∅ except for the fact that due to the DW some
links contribute different weights to ZA. More precisely, we
have ZA ¼ dðkþ1−QÞlDWZ∅, where lDW ¼ lDWðXÞ is equal
to the number of unmeasured links that the DW crosses.
Since kþ 1 −Q ¼ ð1 − nÞk < 0 for n > 1, the DW will
follow the path that minimizes lDW [70]. Using the
expression of ZA;∅ in Eq. (13) and taking the replica limit
k → 0, we find Sn ¼ lDWðXÞ ln d, which is valid for each
configuration of measurement locations. Averaging over
measurement locations, we have

½Sn� ¼ ½EXlDWðXÞ� ln d; ð16Þ

whereX denotes a configuration of measurement locations
(measurement outcomes and Haar gates have been aver-
aged over to get the statistical model). In the language of
the statistical model,X denotes a percolation configuration.
and lDW is the length of the minimal cut from one end of
the subsystem A to the other end.
In the d → ∞ limit, Eq. (16) is valid for any measure-

ment probability p [71]. For p ¼ 0, there are no measured
links and, hence, lDW ¼ jAj, where jAj is the length of
subsystem A. In fact, lDW undergoes a percolation tran-
sition at pc ¼ 1=2, where lDW is extensive in jAj for
p < 1=2, and becomes Oð1Þ for p > 1=2 [14].

B. Statistical model with U(1) qubits—Summary

Here we provide a concise summary of the statistical
model in the case of U(1) circuits, deferring the technical
details to Appendix A.
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Introducing a U(1) qubit on top of each qudit modifies
the above model by introducing an additional degree of
freedom (per replica) αij defined on links, which can take
value 0 or 1 and correspond to the charge of the U(1) qubits.
The weight of each vertex is modified according to the
input and output U(1) charges as follows,

ð1; 1Þ → ð1; 1Þ;
ð0; 0Þ → ð0; 0Þ;

ð1; 0Þ → 1

2
½ð1; 0Þ þ ð0; 1Þ�;

ð0; 1Þ → 1

2
½ð1; 0Þ þ ð0; 1Þ�; ð17Þ

where the left-hand side denotes the two input charges and
the right-hand side denotes output charges. The constants
before the output spins are the contribution to the vertex
weights. For all other configurations of charges, the weight
is equal to 0, thereby enforcing charge conservation. These
rules can also be seen as a special case of a 6-vertex model
where the states 0,1 denote two species of links and the
weight of the vertex depends on the configuration of the
links around the vertex; see Fig. 6. Alternatively, those
weights can be interpreted as describing hard-core random
walkers (symmetric exclusion process), where each state
“1” corresponds to a walker (solid link), with the number of
walkers being conserved as a function of time (vertical
direction in the statistical mechanics model).
We cannot directly average over the measurement out-

comes of the U(1) qubits due to the nonlocal nature of the
vertex weights. Hence, we only write a statistical model for
a given set of measurement locations X and outcomes
MðXÞ for the U(1) qubits; we collectively denote this set
by m, as above. The charges in the statistical model at
broken links of the percolation sample are pinned by the

measurement outcome of the qubit on that link. In other
words, for a given configuration m, all measured links
(broken links in the percolation cluster) carry a fixed value
of the local charge 0 or 1 determined by the measurement
outcome of the qubit, which is fixed in m.
The statistical model is then given by

ZðmÞ ¼
X
fαg

Y
i∈vertices

ViðfαgÞ; ð18Þ

where the sum over fαg denotes the sum over the set of
charges α on all links, Vi is the 6-vertex model weight
corresponding to the rules (17), and m represents a
percolation configuration combined with a set of values
of pinned charges on broken links, corresponding to the
measurement outcomes of the qubits on those links. This
statistical model has a straightforward physical interpreta-
tion: it counts histories of the charge degrees of freedom
compatible with a given set of measurement locations and
measurement outcomes.
To calculate SnðmÞ, we first need to find the minimal cut

in the percolation configuration. Recall that lDW is the
number of unbroken links (not measured) along the cut.
There are 2lDW different charge configurations along the
cut; we denote this set of different configurations by
fβDWg. From the partition function (18), one can straight-
forwardly compute the probability of finding configuration
βDW along the minimal cut. We denote this pβDW. Taking
the replica limit exactly (see Appendix A), we find that the
Rényi entropy is given by

SnðmÞ ¼ −1
n − 1

ln

�X
fβDWg

pn
βDW

�
þ lDW ln d: ð19Þ

The entropy Sn averaged over all trajectories is then
given by

(a) (b) (c)

FIG. 6. Statistical mechanics model. (a) The average of U ¼ U⊗Q ⊗ U�⊗Q over Haar gates is nonzero if and only if the conjugate
(bra) replicas are permutations of the nonconjugate (ket) replicas. Hence we can conveniently write each leg in the circuit as a set of Q
copies of nonconjugate states combined with a permutation group element [see Eq. (A1)]. In the large-d limit, the permutation group
elements for ingoing and outgoing legs become locked together in a single permutation, and the corresponding permutation group
element σ can be associated with a vertex (one per gate), while the charge states live on links. The U(1) charges α, β are constrained by
charge conservation. (b) The charge dynamics in each replica are given by an effective 6-vertex model with weights v, corresponding to
a symmetric exclusion process constrained by the measurements and entanglement cut. (c) Example of charge configuration.
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½Sn� ¼
X
m

ZðmÞSnðmÞ; ð20Þ

where ZðmÞ in Eq. (18) can be interpreted as some effective
Born probability for observing the trajectory m, where
unitary gates have been averaged over. In particular, note
that

P
m ZðmÞ ¼ EX

P
fMðXÞg ZðmÞ ¼ 1.

Note that the second term in Eq. (19) is the entropy of a
pure qudit system. We thus interpret the first term as
coming from the qubit sector and treat it as the qubits’
contribution to the entanglement entropy. This first term
also has an appealing physical interpretation as the classical
Rényi entropy of qubit configurations along the minimal
cut. This is a special feature of the d → ∞ limit. From now
on, we will use STn to denote total entropy of the qubits and
qudits in Eq. (19), Sdn for the contribution to the entropy
from the qudit sector alone, and Sn ¼ STn − Sdn which is
equal to the first term in Eq. (19).
While this expression can, in principle, be computed

using Monte Carlo sampling with no sign problem, for the
one-dimensional systems considered here, we find it more
convenient to use a disordered transfer matrix to evolve the
initial state up to some time t. Specifically, we fix m by
randomly generating a percolation configuration, and use
the vertex rules described in Eq. (17) to evolve the system
in time. At each broken link (measured qubit) encountered
in the evolution, we choose the outcome of the measure-
ment (and hence the fixed value of the charge degree of
freedom on that link) with probability equal to the Born
probability. This is equivalent to a Monte Carlo sampling
for the probability distribution given by ZðmÞ in Eq. (18).
Many samples are generated, and for each sample we
calculate the probability distribution fpβDWg. Any physical

quantity is then calculated as ½O� ¼ ½PNs
i¼1OðmÞ=Ns�,

where Ns is the number of samples generated.
We remark that, in addition to the direct simulation of the

transfer matrix techniques we employ in this work, it could
also be interesting to investigate further the scaling of the
transition using tensor network techniques applied to the
transfer matrix of the constrained 6-vertex model [72].

V. NUMERICAL RESULTS FROM THE
STATISTICAL MECHANICS MODEL

In this section, we present numerical results for the
U(1) statistical mechanics of constrained symmetric exclu-
sion process described in the previous section, valid in
the d → ∞ limit. Unless otherwise stated, we focus on the
contribution of the qubit to entanglement, and ignore the
qudit contribution lDW ln d which is entirely given by
classical percolation physics. We first present late time
(t ∼ L) entanglement data, and present evidence for the
existence of the charge-sharpening transition occurring for
p# ¼ 0.315� 0.01 < pc ¼ 1

2
. We also analyze the time

dependence of the Rényi entropies, and show that they all

grow linearly in time for any p > 0, in sharp contrast with
the p ¼ 0 behavior.

A. Charge-sharpening transition

In the statistical model, the total entanglement entropy
of the subsystem A, STn , depends on the minimal cut which
undergoes a percolation transition at pc ¼ 1

2
; for p < pc,

the length of the minimal cut scales with LA, while for
p > pc the measurement locations percolate and lDW
becomes Oð1Þ. Clearly the total entanglement entropy
follows the area law for p > pc, and is extensive (and
dominated by the qudit contribution) for p < pc. As
discussed below Eq. (20), STn is given by the sum of
two contributions from the qudit and qubit sectors,
respectively. In what follows, we focus on the qubit
contribution Sn ¼ STn − Sdn, and argue that this quantity
undergoes an entanglement transition from volume
law to area law for p ¼ p#. We will show that this
entanglement transition from the qubit sector coincides
with a charge-sharpening transition, which can also be
diagnosed in a scalable way using a local ancilla probe, as
in Sec. III.

1. Entanglement transition in the qubit sector

In this section, we look at the Rényi entropies Sn at long
times t > 4L as a function of p. We consider the qubit
initial state jψ0i ¼ ðj0i þ j1i= ffiffiffi

2
p Þ⊗L. To study the behav-

ior of Sn for p > 0, we numerically run the statistical model
(19) and calculate the half system Sn by averaging Sn over
various time steps in the interval of 4 for t > 4L. We
present results for the S1 in Fig. 7.
In analogy with the nonsymmetric measurement tran-

sition [14,23], we use the following scaling ansatz for Sn:

½Sn� − Scn ¼ fðL=ξÞ; ð21Þ

where ξ ∼ ðp − p#Þ−ν# , and Scn ¼ ½Snðp#Þ� ∼ αn lnL. Using
both the entanglement entropy scaling and tripartite mutual
information as in Sec. III, we find that the qubit contribu-
tion shows an entanglement transition from volume law
to area law at a critical value p# less than pc ¼ 1=2. Finite
size collapses are compatible with p# ¼ 0.3� 0.02 and
ν# ¼ 1.3� 0.2. We emphasize that this entanglement
transition occurs inside the entangling phase of the total
system (the qudit contribution obeys a volume-law scaling
in this regime), and occurs only as a subleading contribu-
tion to the total entanglement entropy.
From the point of view of the statistical mechanics

model, this transition is especially surprising, as it indicates
that the entropy (19) of the charge degrees of freedom along
the minimal cut does not scale with its length for p > p#.
Instead, our numerical results indicate that measurements
are enough to constrain most charges along the cut, so the
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charges are almost completely “frozen” [73] by the
measurements near the minimal cut.

2. Charge-sharpening transition

Following Sec. III we probe charge sharpening by
following the dynamics of the single-trajectory charge
variance δQ2

m starting from an initial pure state that is a
superposition over charge sectors. We first discuss the
average of this quantity over all trajectories. We compute
this quantity using the statistical model and plot ½δQ2� as a
function p in Fig. 8(a). We see that for p≳ p# ≈ 0.3, which
is the threshold of the area-law phase in the qubit sector,
½δQ2�=L goes to zero exponentially as a function of time in
a way that is independent of L. This implies that the
timescale t# for charge sharpening for p > p# (defined as
the time it takes for the charge variance to reach a given
small value ϵ) scales logarithmically with system size. In
contrast, for p < p#, this charge-sharpening time scales as
t# ∼ L (see Appendix C 2). Fixing t ¼ 2L, ½δQ2� behaves
as an order parameter for the charge-sharpening transition,
coinciding with the entanglement transition in the qubit
sector described in the previous section. We observe the
same behavior in the bipartite charge variance.
To extract p# it is useful to analyze a quantity that has a

discontinuity at the transition. To this end, we consider N0,
the fraction of trajectories with δQ2

m < ϵ for a given
threshold ϵ, as in Sec. III. We check that the results do
not depend on ϵ for small enough values. We plot this
quantity in Fig. 8(b) and find a crossing around p# ¼ 0.31.
Note that for all L, we chose ϵ to be small enough so that
N0 counts only configurations where the charge is essen-
tially perfectly sharp to numerical accuracy. Defined in this
way, N0 approaches 0 in the fuzzy phase, while it goes to 1
in the sharp phase. If we increase the threshold ϵ, instead,
we find that N0 behaves more like an order parameter,
being fixed to N0 ¼ 1 in the sharp phase and continuously
decreasing in the fuzzy phase. It is possible that the above

transition in terms of the fraction of exactly sharp trajec-
tories N0 may be special to the case of perfectly projective
measurements, as any slight weakening of the measure-
ments would allow some nonzero quantum fluctuations of
charge to persist in a finite spacetime volume. Nevertheless,
the transition in N0 provides an upper bound for the “true”
sharpening transition, and can, for example, establish
whether the true sharpening transition resides within the
volume-law phase (for both qubits and qudits). We further
explore these questions and the properties of the sharpening
transition in a future work [57], where we give evidence
that the N0-sharpening transition corresponds to a perco-
lation of exactly sharp regions that occurs within the true
charge-sharp phase.
Using a scaling ansatz N0 ¼ f½ðp − p#ÞL1=ν# �, we find

the best collapse for ν ¼ 1.3� 0.15, consistent with the
entanglement data of the qubit. We also look at the
evolution of N0 with t=L in Fig. 8. We find that N0 goes
to 1 for all p at long times, but the rate of increase of N0

decreases with L for p < p# and increases with L for
p > p#, while remaining constant for p ¼ p#. We check
that the exponent ν and the critical probability p# do not
vary much with the time chosen for calculating N0 as long
as it is not too large. The crossing value of N0 tends to
increase with increasing t=L: We focus here on the regime
where the thermodynamic limit is taken first so t=L is
“small” (in practice, t=L ¼ 2 is small enough to obtain
stable results). We thus conclude that the volume- to area-
law transition of ½Sn� in the qubit sector can be interpreted
as a charge-sharpening transition wherein starting from a
mixed superposition of all charge sectors, the measure-
ments collapse the wave function to one charge sector
for p > p# ¼ 0.315� 0.01.

3. Local ancilla probe

As in Sec. III for the qubit-only (d ¼ 1) model, we now
present a scalable probe of the charge-sharpening transition

!" #"(a) (b) (c)

FIG. 7. Entanglement transition in the statistical model qubit contribution. (a) Plot of the qubit entanglement entropy S1 versus p. The
inset shows the finite size collapse using the ansatz discussed in the main text, with ν ∼ 1.3 and p# ≈ 0.29. (b) Plot of S1 versus L near
the critical point. We find that at the critical point S1 grows logarithmically with L. (c) Tripartite mutual information I3;1 versus p,
showing a crossing around p# ≈ 0.29. The inset shows the finite size collapse using the same correlation length exponent as in (a). Error
bars on the data points are obtained from the error on the mean by computing the standard deviation.
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by entangling a reference ancilla qubit to different charge
sectors jΨ0i ¼ jψQij0i þ jψQ−1ij1i. Our numerical proto-
col is identical to that of Sec. III (Fig. 9). Those results are
obtained by taking the minimal cut to be always at the link
connecting the ancilla to the system: this is correct in the
thermodynamic limit below the percolation threshold
p < pc ¼ 1=2, and removes spurious finite size effects
due to percolation physics. Our results for this quantity are
qualitatively different from the d ¼ 1 model of Sec. III,
which showed a possible crossing in that quantity, while we
observe here a behavior consistent with that of an order
parameter for the charge-sharpening transition. This differ-
ence might be due to different “magnetization” exponents
β, with the d ¼ 1 model being closer to percolation.
Analogous to the N0 quantity defined above, we introduce
Npure which is equal to the number of trajectories where the
reference qubit is purified. We observe a crossingNpure near
p# ≈ 0.315 and plot the finite size collapse in Fig. 9.
To conclude this section we compare our results for the

charge-sharpening transition in the two limits of d ¼ 1 and

d → ∞. In both cases we have found Lorentz invariant
critical points with z ¼ 1 to within numerical accuracy. In
the limit of d → ∞ we have a correlation length exponent
ν# ¼ 1.3� 0.15, which is consistent with the percolation
universality class that is also found in the qudit sector at
pc ¼ 1=2. Whereas in the limit of d ¼ 1 we have ν# ≈ 2,
which points to a unique universality class that is distinct
from that in the limit of d → ∞, and the entanglement
transition at pc.

B. Entanglement dynamics

Finally, we briefly turn to the dynamics of the Rényi
entropies SnðtÞ using the statistical model. As before, Sn is
the contribution of the U(1) qubits to the entanglement
entropy: the total entropy STn always grows linearly for
p < pc ¼ 1=2 due to the qudit sector. The results below
should be interpreted as subleading corrections to the
growth of the total entanglement entropy arising due to
the slow dynamics of the U(1) qubits.

FIG. 8. Charge-sharpening transition in the statistical mechanics model. (a) Plot of ½δQ2� versus p plotted for t=L ¼ 2. We find that
with increasing L the value of ½δQ2� approaches zero for p > p# ≈ 0.3. This is consistent with the entanglement transition in the qubit
sector where we observed area-law scaling for hSni for p > p#. Inset: charge variance in half of the system. (b) Charge variance ½δQ2�=L
versus time t. For p≲ p#, ½δQ2�=L decays exponentially with a decay rate decreasing with L. For p > p#, the decay rate is the same for
all L suggesting that hσ2i=L goes to zero faster with increasing system size (faster in units of t=L). (c) Histogram of the charge variance
in the charge-fuzzy phase. (d) Plot of N0 versus p with finite size collapse in the inset. N0 was calculated at t=L ¼ 2. We find excellent
collapse for p# ¼ 0.315 and ν ¼ 1.3. (e) Time evolution of N0. We clearly see a reversal in trend with system size L around p# ≈ 0.31.
At the transition p ¼ p# we find that N0 ∼ hðt=LÞ, with hðxÞ some scaling function, consistent with a dynamical exponent z ¼ 1.
(f) Histogram of the charge variance in the charge-sharp phase. The peak at 0.25 is due to trajectories with superposition of two charge
sectors Q and Qþ 1. The peak is stronger, and more stable, in the fuzzy phase than in the sharp phase. Error bars in (a) and (b) are
obtained from the error of the mean using standard deviations.
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In the absence of measurements, the statistical mechan-
ics model predicts that all Rényi entropies scale diffusively
Sn>1 ∼

ffiffi
t

p
, whereas Sn¼1 ∼ t, in agreement with earlier

results [52,54,62] (see Appendix C 1). As argued in Sec. II,
in the presence of measurements, the “dead regions”
responsible for this unusual behavior survive only until a
time t ∼ p−2=3 in typical trajectories. At long times, the
overlap of the wave function with dead regions is zero, and
we expect the trajectory-averaged Rényi entropies ½Sn� to
grow linearly in time for all p > 0.
To confirm this, we plot the ratio Rs ¼ ½S1�=½S∞� in

Fig. 10. The average von Neumann entropy ½S1� is expected
to grow linearly for all p. The quantity Rs is thus a measure
of the growth of ½S∞�: if ½S∞� were to increase as

ffiffi
t

p
, then

we would expect Rs to grow as
ffiffi
t

p
, too. This is indeed what

we observe at p ¼ 0. At higher p we find that Rs saturates
to a constant value implying that ½S1� ∼ ½S∞� ∼ t, in

agreement with our general argument. Other observables
confirming this scaling are presented in Appendix C 1.

VI. DISCUSSION

In this work, we have studied measurement-induced
phases and phase transitions in monitored quantum circuits
with charge conservation. We argued that measurements
can have a dramatic effect on entanglement growth. While
all Rényi entropies with index n > 1 grow diffusively in the
absence of measurements, for any p > 0, the effect of these
rare regions are washed out by measurements leading to
ballistic scaling Sn ∼ t at long times.

Whereas, in the absence of symmetry, there can only be
two possible steady states, entangling or purifying, charge
conservation enriches this dynamical phase diagram. We
uncovered a new type of charge-sharpening transition that
separates distinct entangling phases. Even as the dynamics
remain scrambling and lead to a volume-law entangled
state, the U(1) charge can either be fuzzy or sharp depend-
ing on the rate of measurements. This charge-sharpening
transition occurs at a critical measurement rate p# that is
generically smaller than pc, corresponding to the purifi-
cation transition. This new transition is also fundamentally
different from the purification entanglement transition, as
for any p > 0, the charge will eventually become sharp
with exponentially small corrections for t ≫ t# ∼ L (up to
logarithmic corrections) for a system of size L, whereas the
purification time diverges exponentially in the system size
in the entangling phases. The sharpening timescale for U(1)
circuits is also parametrically much faster than that in Z2

symmetric circuits [47] (linear versus exponential), high-
lighting the fundamental difference between scrambling

FIG. 9. Ancilla probe in the statistical mechanics model.
Top: entanglement entropy of the ancilla qubit, which behaves
as an order parameter for the charge-sharpening transition.
Bottom: finite size scaling of the number of trajectories where
the ancilla qubit is purified Npure, probing the charge-sharpening
transition.

FIG. 10. Entanglement dynamics in the statistical mechanics
model. Ratio Rs ¼ ðS1=S∞Þ versus

ffiffi
t

p
for L ¼ 12. We find that

Rs saturates implying that S∞ and S1 are growing at the same rate
∼t. As expected, the saturation time is longer at low p. Error bars
are from error in mean using standard deviations and standard
error propagation.
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of U(1) and Z2 symmetric modes. Thus the measurement-
induced phases inside the volume law for U(1) systems are
conceptually very different than those in Z2 symmetric
systems [47]. The type of sharpening transitions studied
here is unique to systems with diffusive modes.
We presented evidence for the existence of this transition

using both exact numerical results in a symmetric qubit
model (d ¼ 1) and from the numerical analysis of an
emergent statistical mechanics model describing the evo-
lution of charged qubits coupled to large qudits (d → ∞).
For the model in the d → ∞ limit, the correlation length
exponent ν of the charge-sharpening transition is consistent
with that of percolation. In contrast, in the qubit-only model
we showed that the charge-sharpening correlation length
exponent is distinct from that found for the entanglement
transition with ν# ≈ 2. Understanding the critical properties
of this transition represents a clear challenge for future
works. A conceivable scenario could be that the charge-
sharpening and entanglement transitions could merge into a
single transition below a critical qudit dimension, d < dc.
Establishing on firmer grounds the existence of a distinct
charge-sharpening transition would also be an important
task for future works.
The statistical mechanics model is also an important step

in the understanding of symmetric monitored circuits. We
were able to take the replica limit analytically, which is a
crucial step to uncover key properties of measurement-
induced phase transitions and is often the most daunting
challenge in the studies of monitored circuits [47]. We find
that the contribution of the U(1) degrees of freedoms to
the Renyi entropies is related to the entropy of local
charge fluctuations along the minimal cut [Eq. (19)].
Though this mapping is restricted to the d → ∞ limit,
since the permutation degrees of freedom are gapped in the
volume-law phase, we do not expect them to change the
general structure of the phase diagram or the universality
class of the sharpening transition for finite d. This is an
important distinction with the d → ∞ percolation limit of
the entanglement transition [19,20], where 1=d corrections
are relevant and completely modify the simple percolation
picture.
The statistical mechanics approach can also be readily

generalized to arbitrary Abelian symmetries (Appendix B),
thus providing a controlled platform for future studies of
symmetric circuits, for example,Zn circuits. We emphasize
that the change of perspective in treating the measurements
as quenched disorder rather than annealed [19,20] is crucial
in incorporating symmetric or constrained degrees of
freedom in the statistical mechanics model. Recently, this
change of perspective turned out to also be useful in other
contexts, for example, in the study of negativity in non-
symmetric circuits [74].
In the models we consider in this paper, the measure-

ments kill both entanglement and charge fluctuations. This
is especially natural for the qubit-only model which is

perhaps physically more relevant. In principle, we can
consider various modifications of this simple model. For
example, in thecase of the qudits model, one could consider
different rate or strength of measurements for the U(1) and
neutral degrees of freedom, or measurement-only models
where measurements compete against creating and destroy-
ing charge fluctuations. A detailed study of such models is
left out for future work, although we do not expect any
qualitative change to the physics of the charge-sharpening
transition discussed in this paper.
We mostly focused on the global properties of charge

dynamics, and defer local properties of the steady state to
future work [57]. An effective field-theory description of
the statistical mechanics model introduced above predicts
that the local sharpening transition is in a Kosterlitz-
Thouless (KT) universality class [57]. In this picture, the
fuzzy phase corresponds to the quasi-long-range order and
the charge-sharp phase is the symmetric phase [57]. A
proper analysis of the replica limit is however crucial to
uncover the peculiar nature of this transition, including the
dynamical properties distinguishing the phases; see
Ref. [57]. It would be interesting to look for signatures
of such KT scaling in the qubit model (d ¼ 1), even though
KT criticality is notoriously hard to study in finite size
numerics.
The conservation law has not affected the universality

class of the entanglement transition in the limit of d → ∞.
Whereas, in the limit of d ¼ 1 we have shown that the log
scaling of the Renyi entropy at criticality Sn ∼ αðnÞ logL
has an αðnÞ that is clearly distinct from the transition with
Haar-random gates [28], which implies that the (boun-
dary)universality class is distinct in the presence of a
conservation law. Interestingly, we have found that
ν ≈ 1.3, which is not sensitive enough to discern between
percolation, stabilizer dynamics, and the Haar universality
class. It will be interesting in future work to probe other
critical exponents of the entanglement transition with a
conservation law to discern other unique properties of this
transition.
It would also be interesting to extend our results to other

symmetry groups or kinetic constraints. Our results can be
readily generalized to arbitrary Abelian groups (see
Appendix B). As we discuss in Appendix B, if one assumes
the existence of charge-sharp phases for other symmetry
groups and spatial dimensionalities, standard duality rela-
tions [75] immediately imply the existence of monitored
random circuit classes that exhibit volume-law-entangled
phases with symmetry-breaking, symmetry-protected
topological, and intrinsic topological orders in a typical
trajectories. Such trajectory-ordered but volume-law-
entangled phases are clearly forbidden in any equilibrium
or closed-system dynamical setting, and are a new feature
of nonunitary open-system dynamics.
Moreover, it is clear by now that new types of dynamical

phases can be obtained in the steady state of monitored
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quantum circuits, from the combination of different
competing (noncommuting) measurements and unitary
dynamics [29–32]. The full phase structure allowed by
the microscopic symmetry group and the dynamical sym-
metries of such monitored quantum circuit appears to be
particularly rich [47], and remains largely unexplored. We
expect non-Abelian symmetries to be especially interesting,
as they could lead to fundamental constraints on the
entanglement structure of the steady state, as in the case
of many-body localized systems [76].
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APPENDIX A: MAPPING TO THE STATISTICAL
MODEL WITH U(1) QUBITS

In this appendix, we present a detailed discussion of the
mapping to the statistical model, and derive Eq. (19) in the
limit d → ∞. To evaluate the quantities in Eq. (14), we
need to calculate the average of K≡ K⊗Q

m ⊗ K†⊗Q
m ,

corresponding to Q copies of the random circuit. Each
unitary gate in K is repeated Q times, and since they are
drawn independently we can individually average them
over the random unitary ensemble. Let us denote the
tensor product ofQ copies of a gate by U ≡ U⊗Q ⊗ U†⊗Q.
We view U as a superoperator which acts on two sites with
each leg containing Q ket states and Q bra states; let
jgiαiihgi�αi�j be a basis where gi is a basis of the qudit
Hilbert space Cd and αi is the computational basis for the
qubit. The index i labels replicas, and runs from 1 to Q.
Using standard Haar calculus and Weingarten formulas,
we find that the action of Ū on the above basis is nontrivial
after averaging if and only if gi� ¼ gσðiÞ and αi� ¼ ασðiÞ,
where σ ∈ SQ is a permutation. Therefore, we introduce a
shorthand notation for writing the relevant members of the
basis as

ðgiαi; σÞ≡ jgiαiihgσðiÞασðiÞj: ðA1Þ

More precisely, each unitary gate in the circuit is replaced
by a vertex associated with a pair (corresponding to

ingoing and outgoing legs) of permutation “spins” σ; σ̄,
each belonging to the permutation group SQ. In the
d → ∞ limit, these spins become locked together in a
single permutation degree of freedom σa that we associate
with that vertex. Vertices from adjacent gates, i.e., those
which share an input or output qubit and qudits, are
connected by links in a way that will be explained below.
In the large-d limit, the weight associated with a vertex in
the partition function is given by Va ¼ 1=DQ, where D is
the size of the block of the relevant symmetry sector. We
have D ¼ d2 if all incoming and outgoing charges are the
same, and D ¼ 2d2 otherwise; see Eq. (3).
The results for Ū to leading orders are summarized in

Fig. 6; the subleading corrections are suppressed as
Oð1=d2Þ, which we ignore in rest of the paper. The factor
of δαi

1
βi
1
δαi

2
βi
2
þ δαi

1
βi
2
δαi

2
βi
1
=2 in Fig. 6 enforces U(1) charge

conservation, and follows from the size of the different
blocks in Eq. (3). In fact, if we view charge 0 as vacuum
and charge 1 as a particle, then the dynamics of the U(1)
degree of freedoms can be understood as hard-core random
walks of these particles, known as the symmetric exclusion
process. Alternatively, it can be seen as a special case of the
6-vertex model [see Fig. 6(b)]. Though we have focused
mainly on the case of U(1) symmetry groups, our approach
readily extends to other Abelian groups. In Appendix B we
provide a general derivation for arbitrary Abelian symmetry
groups.

1. Link weights

Combining Fig. 6 with the brick wall geometry of the
circuit leads to a model described on a square lattice as
shown in Fig. 11. Each vertex has an element from the
permutation group SQ and each link has Q copies of the
elements of the basis of the local Hilbert space. The vertex
weights Va are given by the rule described in Fig. 6(b). The
link weight Wab has two kinds of contributions: (1) due to
the presence of domain wall in the permutation group
elements σa;b (DW constraint) and (2) the state at the link
habi is being measured (measurement constraint). We
describe these constraints in detail in the following.
(1) DW constraint.—We first consider a link joining

two vertices that we label “1” and “2.” If we integrate
out the qudit degrees of freedom, we find the
following weight for the links:

W12ðσ−12 σ1Þ ¼
X
gi
1
;gi

2

Tr½ðgi1αi1; σ1Þðgi2αi2; σ2Þ†�

¼ dpδC1
…δCp

; ðA2Þ

where C1…Cp is the cycle structure of the permu-
tation element σ−12 σ1, p is the number of cycles in
that permutation, and δCi

is equal to 1 if all charge
states of the replicas within cycle Ci are the same,
and otherwise equal to 0. Note that we cannot sum
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over the charges αi as these depends on the states at
neighboring links (see Fig. 6).
Intuitively we can interpret the above result as

follows. Since the link is shared between vertices
with different permutations σ1 and σ2, then we must
have the following constraint,

ðgiαi; σ1Þ ¼ ðgiαi; σ2Þ; ðA3Þ

which is true if and only if σ−12 σ1ðfαigÞ ¼ fαig, and
σ−12 σ1ðfgigÞ ¼ fgig. Let us take the simple case
where σ−12 σ1 is equal to a transposition, say, (12).
We can interpret the above equation as saying that
g1 ¼ g2 and α1 ¼ α2. The g1 ¼ g2 condition will
reduce the number of allowed basis qudit states from
dQ to dQ−1, and since all qudit contributes equally,

the weight of the link in this case will be reduced by
a factor 1=d due to the reduced configurational
entropy in the qudit sector. For the qubit degrees of
freedom, we cannot sum over all spins due to the
nonlocal charge conservation constraint. The more
general case of σ−12 σ1 ∈ SQ follows similarly, giving
Eq. (A2). An important thing to note is that each
transposition in σ−12 σ1 reduces the weight by 1=d and
the weight is strongest when σ2 ¼ σ1, that is when
there is no DW—corresponding to a ferromagnetic
interaction. Thus at large-d limit, it is expensive to
have a DWand the system will remain in an ordered
phase unless DW are forced, for example, at the
entanglement cut (see Fig. 11). This will play an
important role in the subsequent discussion.

(2) Measurement constraint.—If the link h12i happens
to be measured, then the measurement outcomes are
the same in all replicas; that is, all copies are acted on
with the same projection operator. If the projection
operator is denoted as P ¼ Pq ⊗ Pd, then we have
the weight

W12ðσ−12 σ1;PÞ¼Tr½ðgi2αi2;σ2Þ†P⊗Qðgi1αi1;σ1ÞP⊗Q�:
ðA4Þ

Averaging over all measurement outcomes results in

W12 ¼
X
s¼0;1

X
x¼1;…;d

W12ðσ−12 σ1;P
q
s ⊗ Pd

xÞ

¼ d
X
s¼0;1

Y
i

δαi;s; ðA5Þ

where δαi;s ensures that the charge state of the ith
replica is compatible with the measurement outcome
s ¼ 0, 1 of the qubit. Whenever a measurement
occurs, all Q charges on the corresponding link are
constrained to be same. This gives the δ factor in
Eq. (A5). For the qudit sector, this leads to a
decrease in configurational entropy from dQ to d.
An important observation is that the link weights
Wab do not depend on the permutation σ−1b σa, a
result of crucial importance for the discussion below.

2. Replicated model

Combining all these results we can write a statistical
model with the partition function given by

Z ¼
X
m

Z½m�; ðA6Þ

Z½m� ¼
X

configurations

� Y
ðabÞ∈links

Y
v∈vertices

Wabðσ−1b σaÞVv

�
;

ðA7Þ

FIG. 11. Replicated statistical mechanics model. (a) The re-
plicated statistical model is defined on a tilted square lattice, with
permutation degrees of freedom σa ∈ SQ living on vertices, and
charge degrees of freedom fαigi¼1;…;Q. The Boltzmann weights
have contributions from both vertices Va, see Eq. (A10), and
links Wab, Eq. (A9). (b) Fixed boundary conditions in Z∅ at the
top layer (ending the circuit at a given time t), with all
permutations fixed to e. (c) The partition function ZA differs
from Z∅ by the boundary condition fixed to σ0 in the entangle-
ment interval A. This creates a domain wall that follows a
minimal cut in the limit d → ∞.
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where
P

m ≡PfXg pNXð1 − pÞLT−NX
P

fMðXÞg, where X
denotes a configuration of measurement locations, NX is
the number of links being measured (number of bonds
in the percolation configuration X), L is the spatial length
of the system, T is the number of time steps, and MðXÞ is
the set of qubit measurement outcomes at measurement
locations X. The sum over configurations is given by

X
configurations

≡ X
fσvg∈SQ

X
fα1g¼0;1

� � �
X

fαQg¼0;1

≡ X
fσvg∈SQ

X
fαg

; ðA8Þ

corresponding to permutation and charge degrees of free-
dom in each replica. The link weights Wab are given by

Wabðσ−1b σaÞ¼
(
djσ

−1
b σaj−QδC1

…δCjσ−1
b

σa j
if ðabÞ not inX

d1−Qδαi;sab if ðabÞ inX;

ðA9Þ

with sðabÞ ∈ MðXÞ the measurement outcome of the qubit
on link ðabÞ. Finally, the vertex weight Vv is given by

Vv ¼
YQ
i¼1

δαi
1
βi
1
δαi

2
βi
2
þ δαi

1
βi
2
δαi

2
βi
1

2
¼
YQ
i¼1

Vi
v; ðA10Þ

where α1;2 and β1;2 are incoming and outgoing charges (see
Fig. 6). We note that Vv factorizes over the replicas, that is,
Vv ¼

QQ
i¼1 V

i
v; this will play an important role in factoriz-

ing Z½m� in the discussion below.
Note that we have integrated out the qudit sector from the

model. This was possible due to each qudit on a given link
being independent of the values at other links. However,
this is not possible for the U(1) sector on account of
nonlocal constraints due to the charge conservation.
Importantly, the statistical model ZðmÞ should be thought
of as a quenched disordered model where the measurement
locations and outcomes (for the qubit) are quenched
“impurities”; averaged quantities in the original problem
have become quenched average in the statistical model.
From now on, m ¼ fX;MðXÞg will denote the system’s
quantum trajectory with measurement locations and U(1)
measurement outcomes fixed, corresponding to a fixed
“disorder” realization of the statistical model. This is unlike
the previous works on the nonsymmetric problem where
the randomness in the measurement locations was absorbed
in the statistical model in an annealed way.

3. Replica limit

We now proceed to take the replica limit, and will use
various notations summarized in Table I.

We first focus on the partition function Z∅ðmÞ, where
the links at the top boundary are restricted to be of the
form ðgiαi; eÞ. The permutation identity element e repre-
sents the fact that we are tracing over all the system and is
equal to the Born probability of observing the particular
trajectory m. As mentioned above, a DW in the statistical
model is suppressed by 1=dQ−p, where p is the number of
cycles in the DW. Thus, the leading order contribution
to Z∅ comes when all vertex elements are equal to e. This
simplifies Z∅ðmÞ dramatically, as we do not need to sum
over the permutation elements. We have

Z∅ðmÞ ¼ dð1−QÞNm

� X
fαg¼0;1

δmfαg;MðmÞ
Y
v

Vv

�
;

where Nm is the number of measured links, δmfαg;MðmÞ is
nonzero and equal to 1 if and only if the charges fαg on the
measured sites are equal to the measurement outcomes
MðmÞ of the qubit, and Vv is given in Eq. (A10).
Intuitively, we should only sum over charge configurations
compatible with the measurement outcomes. The partition
function can be factorized over replicas to give

Z∅ðmÞ ¼ dð1−QÞNmðZð1Þ
∅ ðmÞÞQ; ðA11Þ

where Zð1Þ
∅ ðmÞ is given by

Zð1Þ
∅ ðmÞ ¼

X
fαg

δmfαg;MðmÞ
Y
v

Vð1Þ
v : ðA12Þ

The superscript (1) denotes the fact that the quantity is for a
single replica.
We can similarly factorize ZAðmÞwith the caveat that we

now have a minimal cut for the permutation degrees of
freedom running through the system (see discussion in
Sec. IVA). A DW between e and ð1…nÞ⊗k reduces the link
weight by dkþ1−Q ¼ d−ðn−1Þk [Eq. (A9)], and the contri-
bution of the cut to the partition function is thus given by
d−ðn−1ÞklDW, where lDW is the length of the minimal cut.
There are kþ 1 cycles in the DW: k cycles of the type

TABLE I. Summary of the meaning of various notations used in
this appendix.

αil Charge at link l and copy i

fαig Set of charges on all links for copy i

fαlg Set of charges on link l for all copies

fαg Set of charges on all links and copies

δflgfαg
All copies of α on set of links flg are equal

δflgfαg;fMg
All copies of fαg on links flg are equal to fMg
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ð1…nÞ and the last one being an identity on a single copy.
Thus, we can factorize ZAðmÞ as

ZAðmÞ ¼ dð1−QÞNm−ðn−1ÞklDW

×
X

fαig¼0;1

δmfαg;MðmÞ
Y
Ca

δDWfαCag
Y
v

Vv; ðA13Þ

where δDWfαCag is nonzero (and equal to 1) if and only if the

charges within the cycle Ca are the same on (unmeasured)
links on the minimal cut. We can further factorize the above
equation to get

ZAðmÞ ¼ dð1−QÞNm−ðn−1ÞklDWðZðnÞ
A ðmÞÞkZð1Þ

∅ ðmÞ; ðA14Þ

where

ZðnÞ
A ðmÞ ¼

X
fαg

δDWfαg
Yn
i¼1

�
δmfαig;MðmÞ

Y
v

Vi
v

�

¼
X

β1…βlDW

Yn
i¼1

�X
fαig

δDWfαig;fβgδ
m
fαig;MðmÞ

Y
v

Vi
v

�

≡X
fβg

ZA½m; fβg�n; ðA15Þ

with δDWfαg;fβg nonzero (and equal to 1) if and only if all

copies of charges on the unbroken (not measured) links
along the minimal cut are equal to fβg. The superscript (n)
denotes the fact that we have n charge copies. Using the
above results and Eq. (13), we find

SnðmÞ ¼ −1
n − 1

lim
k→0

dð1−QÞNmZð1Þ
∅ ðmÞ

×
d−ðn−1ÞklDWðZðnÞ

A Þk − ðZð1Þ
∅ Þnk

k
: ðA16Þ

Remarkably, this factorized form allows us to take the
replica limit exactly:

SnðmÞ ¼ −1
n − 1

Zð1Þ
∅ ðmÞ ln ZðnÞ

A

ðZð1Þ
∅ Þn

þ lDW ln d

¼ −1
n − 1

Zð1Þ
∅ ðmÞ ln

�X
fβg

ZA½m; fβg�n
ðZð1Þ

∅ Þn
�
þ lDW ln d;

ðA17Þ

where fβg represents all possible configuration of the
charge on the unmeasured links along the minimal cut.

We can further think of ZA½m; fβg�=ðZð1Þ
∅ Þ as the proba-

bility for the charges along the unbroken links of the
minimal cut to be equal to fβg in the statistical model

described by the partition function Zð1Þ
∅ . Denoting this

probability by pfβg, we have our final result:

SnðmÞ ¼ −1
n − 1

Zð1Þ
∅ ðmÞ ln

�X
fβg

pn
fβg

�
þ lDW ln d: ðA18Þ

4. p= 0 limit

To illustrate the meaning of the statistical model (A18),
we compute Sn for p ¼ 0. Let us start from the following
product state:

jψ0i ¼ ða0j0i þ a1j1iÞ⊗L: ðA19Þ

In terms of the statistical model, this corresponds to the
bottom links being in charge states 1 or 0 with probability
a21 and a20, respectively. The minimal cut will be spatial in
nature as we are considering late times and lDW ¼ LA since
the permutations are fully ordered. Since the vertex weights
(A10) are SU(2) symmetric, the link charge states are
invariant under time evolution. This immediately gives
pfβg ¼ a2N0

0 a2N1

1 , where N0;1 are the number of links with
charge 0,1 in fβg. Using Eq. (A18), we find the following
expression for the Rényi entropies at late times:

Sn ¼
−1
n − 1

lnðja0j2n þ ja1j2nÞLA þ LA ln d: ðA20Þ

This result is consistent with thermalization to a density
matrix ρA ¼ e−μQ=Tre−μQ, where the chemical potential μ
is set by charge conservation:

hqi ¼ a21 ¼ Tr½qρA� ¼
e−μ

1þ e−μ
: ðA21Þ

We check that the Rényi entropies are indeed given by
Sn ¼ −1=ðn − 1Þ ln TrρnA, since

Sn ¼ LA

�
ln dþ 1

n − 1
ln½hqin þ ð1 − hqiÞn�

�
; ðA22Þ

which coincides with Eq. (A20).

5. Charge variance

In this section, we briefly discuss evaluating the charge
variance ½δQ2� in the language of the statistical model
discussed above. The charge variance for fixed measure-
ment locations and outcomes is given by δQ2

m ¼ hQ2im−
hQi2m. As the first term is linear in ρm, the average over
measurement outcomes will give a trivial answer at infinite
temperature (see point 3 in Sec. II B). We have

½hQ2i� ¼ TrQ2=TrI ¼ LðLþ 1Þ=4;
where charges take value 0 and 1. Any nontrivial physics is
hidden in the second term. Nevertheless, the distribution of
the variance over various trajectories is an interesting
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quantity, and it will be useful to evaluate this quantity using
the replica trick.
We first consider the second term, which is given by

½hQi2� ¼
X
m

EU

�
pm

�
TrðQρmÞ
Trρm

�
2
�
:

We can use the replica trick to rewrite the above
expression as

½hQi2� ¼ lim
k→0

X
m

EUf½TrðQρmÞ�2ðTrρmÞ2k−1g

¼ lim
k→0

X
m

EU½Trρ⊗ð2kþ1Þ
m T�; ðA23Þ

where T is an operator acting on the 2kþ 1 copies at the
top boundary and is given by T ¼ Q ⊗ Q ⊗ I… ⊗ I. As
discussed above, the above quantity maps to a classical
statistical model on averaging over random unitary gatesU.
Since the action of T does not mix different copies, we can
factorize the contribution of different copies as in Sec. A 3.
The resulting expression, after taking the replica limit, is
given by

½hQi2� ¼
X
m

Zð1Þ
∅ ðmÞhQTi2m;stat; ðA24Þ

where h·istat is the average in the statistical model described

by the partition function Zð1Þ
∅ ðmÞ [see Eq. (A12)], and

the subscript T inQ is to denote the fact that it is a quantity
defined on the top boundary. As mentioned before, there is
no simple expression for ½hQi2�, but we can use the
statistical mechanics model to evaluate it numerically.
Similarly, for hQ2im the top operator T is given by
T ¼ Q2 ⊗ I… ⊗ I, and we have

½hQ2i� ¼
X
m

Zð1Þ
∅ ðmÞhQ2

Tim;stat: ðA25Þ

APPENDIX B: STATISTICAL MECHANICS
MODEL FOR GENERAL ABELIAN

SYMMETRIES

In this appendix, we generalize the statistical mechanics
models to general Abelian groups and discuss consequences
of charge-sharp phases under duality transformations.
Notably, our results suggest the existence of volume-law-
entangled phases with symmetry-protected and intrinsic
topological order.

1. Haar average

Consider a general Abelian group G, with α ∈ f1…jRjg
labeling the different combinations of total charge for pairs
of sites [e.g., for the U(1) model α ∈ f−1; 0;þ1g, for ZN

α ∈ f0…N − 1g, etc.]. We can decompose a symmetric
two-site unitary into a direct sum of reps: U ¼Pα UαPα,
where Pα is a projector onto the αth charge-sector sub-
space. The main object in the statistical mechanics model is
the unitary average of EU½UQ ⊗ U�Q�, where Q is the
number of replicas, which decomposes into a direct sum of
all R2Q charge-sector combinations. Since Haar averaging
requires that each Uα is “paired” with a complex-
conjugated partner U�

α of the same total charge, only terms
in which the U�Q charge sectors form a permutation of the
UQ charge sectors contribute. For each of these surviving
combinations of charge sectors, denote by nα the number of
times that charge sector α appears in UQ, and choose
permutation elements σ; τ ∈ SQ that sort theQ replicas into
groups of the same charge.
Then we can write

EU½UQ⊗U�Q�¼
X

n1…R∶
P

α
nα¼Q

X
σ;τ∈

SQ
Sn1×…×SnR

Wσ;τ⊗
α
EUðUnα

α Pnα
α

⊗U�nα
α P�nα

α ÞW†
σ;τ; ðB1Þ

where Wσ;τ is the unitary acting on Hq ⊗ H�q that
permutes the Q copies of U by σ and the Q copies of
U� by τ, and the permutation elements σ, τ range over the
quotient group SQ=Sn1 × � � � SnR to avoid overcounting
equivalent permutations that cycle identical replicas with
the same charge sector. Here we have labeled projectors
acting on H� with an asterisk simply for readability, and
this mark carries no mathematical content.
The Haar average of each charge-sector-group is

EUðUnα
α ⊗ U�nα

α Þ ¼Pσα;τα∈Snα
WgDd2ðσ−1α τα; nαÞjσα⟫⟪ταj,

where Wg is the Weingarten function, Dα is the number of
states in the charge sector α, and jσ⟫ denotes the operator
which permutes the input legs ofU by σ, and contracts them
with the corresponding legs of U� (and similarly for ⟪σj
acting on the output legs). For our purposes, we will only
need the large-d limit:

lim
d→∞

Wgdðσ−1τ;QÞ ∼ 1

dQ
δσ;τ: ðB2Þ

The sum over the total charge-sector permutations σα can
now be combined with the quotient-group permutations σ,
τ to yield a simpler sum over SQ permutations:

EU½UQ⊗U�Q�¼ 1

d2Q
X

α1…αQ

Y
i

D−1
αi

X
σ∈SQ

Pα1 ⊗ � ��⊗PαQ

⊗P�
ασð1Þ ⊗ � � �⊗P�

ασðQÞ jσ⟫
×⟪σjPα1 ⊗ � � �⊗PαQ ⊗P�

ασð1Þ ⊗ � ��⊗P�
ασðQÞ :

ðB3Þ
Note that the two sets of projectors are partly redundant
since P2

α ¼ Pα, and since Pα ⊗ 1jσii ¼ 1 ⊗ PασðiÞ jσii, but
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are written in this way to emphasize that charge is
separately conserved in each replica, and also that the
charge-sector labels on theH� spaces are related to those in
the H spaces by the permutation element σ.
Though complicated in appearance, Eq. (B3) has a

simple interpretation: each gate becomes a vertex in the
statistical mechanics model labeled by (i) a permutation
element σ ∈ SQ and (ii) Q-different total charge-sector
labels (those of the conjugate copies are related by
permutation), which can be conveniently associated with
theQ-different individual link charges. After averaging, the
indices of the gate input and output are unrelated, except by
total charge conservation in each replica. Hence any input
charge configuration can be transferred with equal weight
∼1=Dα to any outgoing charge configuration with the same
total charge α. The remaining rules for domain wall and
measurement constraints closely parallel those of the U(1)
model described above.

a. Example: Z2 symmetric monitored circuits

As an example, consider a random monitored circuit
ensemble with symmetry group G ¼ Z2, consisting of
qubits with Z2 symmetry charge qi ¼ð1þσxi Þ=2∈ f0;1g,
and charge addition rule Q ¼Pi qi mod 2 (each accom-
panied by large dimension qudits that transform trivially
under the symmetry). The effective statistical mechanics
model in the d → ∞ limit is an “8-vertex” model, which
has an additional two vertices compared to the U(1)/6-
vertex case that respectively correspond to pair creation and
annihilation of charges, and differs also in that all eight
vertices come with weight v ¼ 1=2.

b. Example: ZN symmetric monitored circuits

As a second example, we can consider models with
symmetry group G ¼ ZN for general N consisting of
“qunits” with charge basis states fj0i;…; jN − 1ig having
symmetry charge q ¼ 0…N − 1 (again, each accompanied
by large-d qudits). The resulting statistical mechanics
model would be an N3-vertex model, with N different
groups of vertices corresponding to the N different total
charges, and each group has N different ways to apportion
the incoming charge between the two input legs, and N
different ways to apportion it between the output legs, each
weighted by a factor of v ¼ 1=N.

From these examples, one can readily generalize to
arbitrary finite Abelian groups for which G can be written
as a product of different ZN factors.

2. Dual entangling phases classical and quantum orders

In principle, the statistical mechanics models sketched
above can be simulated by sign-problem-free Monte Carlo
simulations for arbitrary Abelian symmetry groups and
dimensions. Though we have only performed systematic
numerics on the U(1) symmetric models in one dimension,

we hypothesize that the resulting physics and phase diagram
is similar for other Abelian symmetry groups and higher
dimensions. Assuming this hypothesis holds, then standard
duality transformationswould relate these simple symmetric
monitored random circuit models to those with more
complex types of phases including symmetry-protected
topological (SPT) phases and discrete gauge theories.
In the following, we denote a system with n spatial

dimensions and one time dimension as ðnþ 1Þd, where d
should not be confused with the dimension of the qudits.
In all the examples we discuss here, there will only be a
single type of measurement. Generalizing the statistical
mechanics framework to multiple types of incompatible
measurements remains an open challenge for future work,
and to date has only been done for Clifford circuit models
[29–32]. The 1þ 1d examples with Z2 symmetries were
extensively explored in Ref. [47] from a related but
different perspective, and many aspects of the physics
we discuss below echo that work (though we do not
consider possible phases arising from additional replica
permutation symmetries as it is not clear whether these can
be realized in the physical replica limit).

a. 1 + 1d: Symmetry protected topology

In 1þ 1d, discrete symmetry groups of the form
Zm × Zn have nontrivial projective representations and
can protect topological phases [77,78] when m and n have
a nontrivial greatest common divisor. These SPT phases
can be mapped (at the level of local operators) onto trivial
paramagnets by a “decorated domain wall” mapping [79],
which attaches conjugate operators that add (remove) a Zn
charge to the left (right) of the Zm symmetry generator.
For example, with G ¼ ZA

2 × ZB
2 represented on a

dimerized chain of spin 1=2’s with the two Z2 factors
acting on the A and B sublattices, respectively, the duality

mapping is generated by unitary transformation Udual ¼
e−iπ=4

P
i
σzi ðσzi−1þσziþ1

Þ (which commutes with the symmetry,
but is not generated by a symmetric Hamiltonian). Udual
interchanges the stabilizers of a trivial paramagnet with
those of the cluster state SPT: σxi → σzi−1σ

x
i σ

z
iþ1.

How would the charge-sharp and charge-fuzzy phases of
the Z2 symmetry circuit model transform under this
duality? To answer this question, note that the total charge
in a region of length lmaps onto the string-order parameter
of length l for the SPT phase. For example, in the G ¼
ZA

2 × ZB
2 example, the ZA

2 interval charge maps onto
σz2i−1ð

Q
l
i¼1 σ

x
2iÞσz2ðiþlÞþ1

. In the charge-sharp phase, the

interval charge at fixed time in a single trajectory has
nonzero expectation value that is asymptotically indepen-
dent of l (i.e., charge fluctuations satisfy an area law).
Correspondingly, in the dual model, there is a long-range
string-order parameter in each trajectory. We note that,
while the string order has a nonvanishing expectation value
at any fixed time slice in the dual-charge-sharp phase, this
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expectation value will vary from time slice to time slice due
to intermediate evolution causing short-range charge fluc-
tuations across the end of the string.
While it is perhaps not surprising that in the area-law

phase with SPT order can be stabilized at large measure-
ment rates (in this dual mapping the original charge
measurements become projections onto the stabilizers of
the SPT phase), the possibility of a volume-law-entangled
phase with SPTorder in a fixed trajectory does not have any
precedent in equilibrium, and represents a fundamentally
new type of phenomenon that relies essentially on both
nonequilibrium and nonunitary evolution.

b. 1 + 1d: Spontaneous symmetry breaking

By a closely related reasoning to the section above,
applying standard Kramers-Wannier (KW) duality (which
exchanges the paramagnetic and spontaneous symmetry
broken phases) to a 1þ 1d ZN symmetric random circuit
model relates a charge-sharp phase to a dual phase with
long-range symmetry breaking order in a given trajectory;
i.e., the KW duality exchanges sharp and fuzzy phases. For
example, for a Z2 symmetric circuit duality (KW) mapping
exchanges σxi ↔ σziσ

z
iþ1.

c. 2 + 1d: Discrete gauge theories

As a final application, we consider KW dualities in
2þ 1d systems, which map models with global symmetries
onto dual “pure” gauge theories that have gauge magnetic-
flux degrees of freedom but lack dynamical electrical
charge. In this mapping, the original site degrees of
freedom, which live on vertices of a square lattice and
transform under a ZN symmetry, map to dual link variables
residing on a dual lattice whose sites are centered on
plaquettes of the original lattice. Symmetry domain wall
operators map onto ZN electric field operators living on
links, and local symmetry generators map onto the ZN flux
through the dual plaquette. We define the duality mapping
to act trivially on the large-d qudits, which in the dual
lattice now reside at the center of plaquettes.
This duality mapping interchanges symmetry charge in

the original variables with gauge magnetic flux in the dual
variables. Hence, the charge-sharp and charge-fuzzy phases
respectively map onto confined and deconfined phases of
the gauge theory. Namely, in the charge-sharp phase, the
total charge in a region Σ, QΣ, has fluctuations only from
local quantum fluctuations near the boundary ∂Σ. In the
dual mapping,QΣ transforms into a Wilson loop around the

boundary, which we write schematically asWΣ ¼ ei
H
∂Σ

A·dl

(where eiA is the conjugate variable to the ZN electric field,
and all continuum notations should be appropriately
interpreted as lattice sums). Thus, in a given trajectory at
late times, the dual of the charge-sharp and fuzzy phases is
characterized by area- or volume-law scaling of Wilson
loops, respectively,

lim
t→∞

½jhψmðtÞjWΣjψmðtÞij� ∼
�
e−j∂Σj dual charge sharp

e−jΣj dual charge fuzzy;

ðB4Þ

i.e., correspond to confined and deconfined phases, respec-
tively. Note here, as for spin-glass-like order parameters, it
is important to take absolute values before averaging to
obtain the area-law scaling.
Again, the prospect of a volume-law-entangled, but

trajectory-deconfined gauge theory represents a new pos-
sibility not present in equilibrium settings or closed-system
dynamics. We leave establishing the (non)existence of this
phase and the study of potential critical properties of
putative unconventional volume-law entangled confine-
ment transitions as a loose end for future study. Other
potentially interesting generalizations include both gauge
theories with electrically charged matter, which are not dual
to systems with global symmetries, and continuous U(1)
gauge invariant random circuit dynamics, for which the
duality omits monopole instantons that are known to
confine equilibrium gauge theories in 2þ 1d, but perhaps
have a different fate in monitored random circuit dynamics.

APPENDIX C: ADDITIONAL NUMERICAL
RESULTS

1. Entanglement dynamics in the statistical
mechanics model

In this appendix, we present additional results on the
entanglement dynamics obtained from the statistical
mechanics model.
We start with the p ¼ 0 case, and analyze how the

argument for
ffiffi
t

p
growth translates to the statistical model

language. We are working in the regime where L ≫ t, so
the minimal cut runs along the time direction. For sim-
plicity of the argument, we assume that the cut does not
fluctuate and is exactly vertical; that is, the cut passes
through the same link at all times (we checked that our
results are independent from averaging over fluctuations of
the minimal cut). Using Eq. (19), the Rényi entanglement
entropies are related to the classical Rényi entropies for
charge configurations along the minimal cut. Let us denote
this distribution by PDW, with S∞ ¼ lnpmax, where pmax is
the maximum of PDW. We find that pmax is given by
PDWð0…0Þ≡ P0. P0 is the probability for all charges on
the vertical cut to be equal to 0 [equivalently, we could have
also considered PDWð1…1Þ≡ P1]. P0 describes the part of
the dynamics where there is no exchange of charge across
the cut and is therefore dominated by dead regions in the
initial state, which we know to be the source of the
dominant contribution in the Schmidt values. As we
discussed in Sec. II, if the initial state has a dead region
of size

ffiffi
t

p
centered at the entanglement cut, charges

cannot diffuse to the cut until times of order t, so the
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configurational entropy of charge along the vertical min-
imal cut will remain zero. It follows that P0 ≥ expð− ffiffiffiffiffiffi

Dt
p Þ

and therefore that Sn ≤
ffiffiffiffiffiffi
Dt

p
for n > 1. Meanwhile, typical

components of the initial wave function give rise to
essentially random charge configurations on the minimal
cut. Owing to the greater multiplicity of typical configu-
rations they dominate S1, which grows linearly in t. These
expectations are borne out in Fig. 12(a).
We now turn to p > 0. For p > 0, the charge on

measured sites in a given trajectory is constrained to match
the measurement outcome. As we noted in Sec. II, this
suffices to eliminate dead regions in typical trajectories. To
capture the effect of dead regions on the growth of S∞ for

p > 0, we calculate − lnP0 as a proxy for entanglement
entropies. For numerical convenience, we make two
simplifying assumptions: (1) we ignore fluctuations of
the minimal cut and (2) we do not perform measurements
on links adjacent to the cut (this avoids numerically
expensive postselection procedures as the trajectories with
nonzero P0 quickly become rare as we increase p).
We plot ½− lnP0� and − ln½P0� versus

ffiffi
t

p
in Fig. 12(b).

We find that the quantity − ln½P0� grows as
ffiffi
t

p
for all p.

This is expected because we are averaging over the
trajectories before calculating the (pseudo)entropy; this
is the same as in the p ¼ 0 case where the unitary evolution
can be seen as equivalent to doing the sum over all
trajectories. We find that at low p, ½− lnP0� stays closer
to the

ffiffi
t

p
growth for longer times. At higher p it diverges

significantly and crosses over to linear growth. Though
½− lnP0� is not exactly equal to the Rényi entropy, this
transition from

ffiffi
t

p
to linear growth ∼t is a generic

phenomenon for all quantities where the survival of dead
regions becomes a rare occurrence due to measurements,
consistent with the general argument in Sec. II and the
results of Sec. V.

2. Charge-sharpening dynamics in the fuzzy phase
and near the charge-sharpening transition

In this appendix, we present numerical evidence that the
charge sharpens on a timescale t# ∼ L, in agreement with
the general argument of Sec. II. We plot the fraction N0 of
trajectories with δQ2 < ϵ versus t ∼ L, both in the qubit
chain numerics (Fig. 13) and in the statistical mechanics
model (Fig. 14). We observe a clear crossover whenN0 lifts
off from zero on a timescale scaling linearly with L, as
expected. Note that this sharpening timescale t# ∼ L=p is
much smaller than the purification timescale tπ ∼ eL [16].
We now turn to the critical dynamics near the charge-

sharpening phase transition in qubit chains. Before

FIG. 12. Entanglement dynamics in the statistical mechanics
model. (a) Plot of S1, S2, S∞, and − lnP0 versus

ffiffi
t

p
for p ¼ 0

obtained using the statistical model with a fixed vertical minimal
cut. We clearly see different growth of S1 and S∞, S2. The curve
of − lnP0 exactly overlaps the S∞ curve as argued in the main
text. (b) Plot showing ½− lnP0� versus

ffiffi
t

p
for various p, and

L ¼ 12. We find that this quantity grows linearly with time for
any nonzero p. We also plot the average − ln½P0� for various p
(dashed curves), which grows as

ffiffi
t

p
independently of p. Error

bars are obtained using standard deviations.

FIG. 13. Dynamics of charge sharpening in qubit chains.
Fraction of trajectories with δQ2<ϵ with ϵ¼10−3 at p¼0.085,
inside the fuzzy phase.
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embarking into numerical details, we summarize the
physics of the critical dynamics obtained from the
simulations.
For generic initial states that mix multiple charge sectors,

the charge sharpening happens in two stages. The meas-
urement first sharpens the charge from multiple sectors to
two consecutive sectors ðN;N þ 1Þ. The measurement then
further collapses the superposition of the two sectors
ðN;N þ 1Þ to a unique charge (either N or N þ 1). The
two stages are separated by the crossover time t# ∼ L=p. At
much later times t ≫ t# we findN0 → 1 in a critical manner
that we now turn to.
The numerical simulations of qubit chains suggest that

the second stage is governed by charge-sharpening criti-
cality. In the longtime limit, t ≫ t#, we find that the
universal scaling law for the critical dynamics is an
exponential function,

Oðt;pÞ∼AOðxÞe−t=ξtðxÞ; where x≡ ðp−p#ÞL1=ν# : ðC1Þ

L is the system size and O is an observable sensitive to the
criticality (e.g., N0 and S1;QÞ. The universal decay rate ξt is

a timescale that is different from the crossover time t#.
Because of the spacetime symmetry, the timescale ξt
follows a scaling law:

ξtðxÞ=L ¼ BðxÞ: ðC2Þ

Both universal scaling functions AOðxÞ and BðxÞ are
smooth in the critical regime. Right at the transition point,
we obtain ξt ≈ 0.5L=p#.
We now show our numerical evidence to support the

above physical picture. We present the charge variance
distribution δQ2 in each phase and the vicinity of the
charge-sharpening critical point in Fig. 15 to provide
additional clarity on the nature of the charge-sharpening
dynamics. More specifically, Fig. 15(a) is deep in the
charge-fuzzy phase characteristic of the first stage of
dynamics t ≪ t#. It reveals a wide charge distribution,
indicating that the quantum state at this stage is charge
fuzzy and spreads across multiple sectors. The middle
panel depicts the second stage t > t# with p ≈ p#. The
charge variance at this stage is peaked at zero and 0.25,
indicating the quantum state is either projected to a unique
state or a superposition of two consecutive charge sectors
ðN;N þ 1Þ, respectively. The third panel is for latetime
dynamics t ≫ t# deep in the charge-sharp phase. In this
regime, only the peak near zero remains, indicating the
longtime evolved quantum state has a unique sharp charge
as expected.
We now focus on the critical dynamics of the charge-

sharpening phase transition. We first present a strong
evidence to show that the critical dynamics is only about
two consecutive sectors ðN;N þ 1Þ. In Fig. 16, we compare
the dynamics of 1 − N0 to that of the ancilla-system
entanglement entropy S1;Q (see Sec. III B for the definition)
in the vicinity of the transition point. The former involves
multiple charge sectors, while the latter only involves two
consecutive sectors ðN;N þ 1Þ (with N ¼ L=2). After
rescaling the overall amplitude, the longtime dynamics
of S1;Q almost perfectly matches with the second stage
dynamics of 1 − N0, both going like ∼e−t=ξt . Furthermore,
due to the absence of other sectors, the ancilla probe
saturates to the critical behavior much earlier than 1 − N0.

FIG. 14. Dynamics of charge sharpening in the statistical
model. Fraction of trajectories with δQ2 < ϵ with ϵ ¼ 10−2 at
p ¼ 0.24, inside the fuzzy phase. Inset: different threshold
ϵ ¼ 10−10, showing a similar scaling of the charge sharpening
over a timescale t ∼ L.

(a) (b) (c)

FIG. 15. Charge variance distribution in the qubit model. Distribution of the charge variance at t=L ¼ 4 (a) in the charge-fuzzy phase
p ¼ 0.05, (b) near the critical point p ¼ 0.10, and (c) in the charge-sharp phase p ¼ 0.14.
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We thus conclude that the longtime critical dynamics only
involves two consecutive sectors. In the longtime limit
t > t#, both observables decay with the same exponential
function, suggesting that the critical dynamics is exponen-
tial as in Eqs. (C1) and (C2).

We use the ancilla dynamics to establish the universal
scaling functions AOðxÞ and BðxÞ in Eqs. (C1) and (C2).
The scaling function for the amplitude AOðxÞ depends on
the choice of observable. It has been extracted for N0 in
Fig. 3(a) and for the ancilla probe E1;Q in Fig. 3(b). In this
section, we extract the scaling of BðxÞ for the universal
decay rate. In Fig. 17, we calculate the longtime dynamics

of S1;Q for various p and system sizes L, then fit the tail to
extract the decay rate ξt. We find ξtðp;LÞ cross at the
transition point p ¼ p#, indicating the existence of a
scaling function ξtðxÞ=L ¼ BðxÞ. To extract this function,
we collapse the curves for different L using the transition
point p# ¼ 0.088 and the critical exponent ν# ¼ 2.15
established in Fig. 3(b).

APPENDIX D: FINITE SIZE SCALING

In the case of qubit chains (d ¼ 1), the numerical
simulations are performed for system sizes L ≤ 24. We
rely on finite size scaling protocols to extract the critical
properties in the thermodynamic limit. We briefly explain
the protocols in this appendix.
The quantities we studied in the main text, including the

tripartite mutual information, the probability of a trajectory
with certain charge variance, and the ancilla probes shown
in Figs. 2 and 3, all have zero scaling dimension. In the
vicinity of the transition point, they share the same finite
size scaling ansatz:

Rðp; LÞ ¼ f(ðp − p0ÞL1=ν; vL−ω)þ � � � ; ðD1Þ

where L is the system size, and the measurement proba-
bility p is the relevant scaling field with a critical exponent
ν > 0. The transition point p0 is either the entanglement
phase transition pc or the charge-sharpening phase tran-
sition p#.
To make the analysis systematic, we keep the leading

irrelevant scaling variable v in the above scaling ansatz. In
thermodynamic limit L → ∞, it is suppressed by a non-
negative exponent ω. In finite size scaling, however, this
field may play an important role. Numerically, we find that
the variable v is significant for the ancilla probes while
negligible for other quantities. We therefore have to use a
more involved finite size scaling protocol as explained
below to analyze the ancilla probes [80].
Since our numerics indicates that the scaling function

fðx; yÞ in Eq. (D1) is analytic for both x ¼ ðp − p0ÞL1=ν

and y ¼ vL−ω, one can approximate f with its Taylor
expansion near the critical point,

Rðp; LÞ ¼ aR þ bRðp − p0ÞL1=ν þ cRðp − p0Þ2L2=ν

þ dR=Lω þ � � � ; ðD2Þ

where we assume p is close to the critical point p0 and
the system size is sufficiently large so that both x ¼
ðp − p0ÞL1=ν and y ¼ vL−ω are small. We also redefine
the Taylor coefficient dR to absorb the unknown amplitude
v of the irrelevant variable. In the ideal case dR ¼ 0,
Rðp0; LÞ collapses to the universal constant aR at the
critical point. It indicates that the curves Rðp; LÞ for
different system sizes perfectly cross at p ¼ p0.
However, in realistic models, dR is nonzero. The irrelevant

FIG. 16. Critical dynamics of charge-sharpening transition in
qubit chains. Comparison of the dynamics of the ancilla entan-
glement entropy S1;Q and the quantity 1 − N0, where N0 is the
fraction of trajectories with δQ2 < 0.01 and the ancilla entan-
glement entropy S1;Q. After rescaling the overall amplitude, both
observables collapse to the same exponential function in the
longtime limit.

FIG. 17. Universal decay rate of charge-sharpening transition in
qubit chains. Data and collapse of the decay rate in the vicinity
of the charge-sharpening phase transition. The transition point
p ¼ 0.088 and the critical exponent ν ¼ 2.15 established in the
main text are used to collapse the curves.
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field then shifts the crossing points as the system size
increases.
The ansatz Eq. (D2) allows us to extract the phase

transition point p0 and the critical exponent ν with the
presence of a non-negligible irrelevant scaling variable. In
practice, we collect dozens of data points for different p and
system size L in the vicinity of the critical points. We then
perform a nonlinear fitting with the ansatz Eq. (D2) by
taking the coefficients a, b, c, d and critical properties p0

and ν as the fitting parameters. Their error bars are defined
as the standard error of the mean, which is approximately
equal to a confidence interval of 67%. We then try to drop
some of the parameters to make sure the fitting is robust and
the error bars are reliable.
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