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We address spin transport in the easy-axis Heisenberg spin chain subject to different
integrability-breaking perturbations. We find subdiffusive spin transport characterized
by dynamical exponent z = 4 up to a timescale parametrically long in the anisotropy. In
the limit of infinite anisotropy, transport is subdiffusive at all times; for finite anisotropy,
one eventually recovers diffusion at late times but with a diffusion constant independent
of the strength of the perturbation and solely fixed by the value of the anisotropy.
We provide numerical evidence for these findings, and we show how they can be
understood in terms of the dynamical screening of the relevant quasiparticle excitations
and effective dynamical constraints. Our results show that the diffusion constant of
near-integrable diffusive spin chains is generically not perturbative in the integrability-
breaking strength.

spin chains | spin transport | subdiffusion | quantum hydrodynamics

Many strongly interacting one-dimensional and quasione-dimensional experimental sys-
tems are approximately described by integrable models, such as the Heisenberg and
Hubbard models (1–6). Although integrable systems are in some sense exactly solvable,
the problem of characterizing their long-distance, late-time hydrodynamic response
at nonzero temperature remained largely open until the recent advent of generalized
hydrodynamics (GHD) (7–11) as well as modern numerical methods (12). It was found,
remarkably, that although integrable systems possess stable, ballistically propagating
quasiparticles, certain quantities (such as spin in the Heisenberg model) are transported
diffusively or superdiffusively (11, 13–15). Given that experiments are never described
by perfectly integrable systems, it is natural to ask how weak integrability-breaking
perturbations affect transport dynamics. Incorporating such perturbations when the
unperturbed model is already interacting is a challenging open problem, despite much
recent progress (16–20). Qualitatively, integrability-breaking perturbations endow the
ballistic quasiparticles with a finite lifetime, after which they scatter or decay. For quantities
such as energy that are transported ballistically in the integrable limit, integrability
breaking generically renders transport diffusive; the zero-frequency singularity or “Drude
peak” associated with ballistic transport broadens into a Lorentzian feature of width set by
the strength of the integrability-breaking perturbation or alternatively, by the lifetime of
the quasiparticles ( 15–17, 19–29), in full analogy with the standard quantum Boltzmann
equation (30).

In the present work, we address instead what happens to quantities that are diffusive in
the unperturbed integrable limit. We shall see that the mechanism at play in this case
sharply differs from the usual broadening of Drude weight; transport coefficients are
discontinuous functions of the integrability-breaking coupling.

As a concrete example, we consider spin transport in the anisotropic Heisenberg (or
XXZ) spin chain, governed by the Hamiltonian

HXXZ = J
∑
i

(S x
i S

x
i+1 + Sy

i S
y
i+1 +ΔS z

i S
z
i+1), [1]

where Sα
i = σα

i /2 represents the α= (x , y , z ) spin-1/2 operator on site i , J is an overall
energy scale (set to one in what follows), and Δ is the anisotropy parameter. At nonzero
temperature, the equilibrium state is always a paramagnet, and the late-time dynamics is
qualitatively the same regardless of the sign of J .

When Δ> 1, transport is diffusive in the purely integrable limit, with a diffusion
constant DXXZ(Δ) that is exactly known (31, 32); as Δ→∞, DXXZ(Δ) approaches
a nonzero constant when rescaling the temperature so as to keep βΔ fixed. We address
here what happens when integrability is weakly broken, with some generic perturbation
of strength γ. Explicitly, we consider the effect of local spin dephasing, described by the
Hamiltonian H = HXXZ +

√
γ
∑

i ηi(t)S
z
i , with white noise η. Since the integrable
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and perturbed nonintegrable models are both diffusive, one might
expect that the diffusion constant DXXZ(γ, Δ) simply picks up
γ-dependent corrections DXXZ(γ, Δ) =DXXZ(Δ) +O(γr ),
with some power r . What we find is much more striking; for
arbitrary γ > 0, the true diffusion constant D(γ, Δ) is strongly
suppressed at largeΔ and approaches zero asΔ→∞. Moreover,
D(γ, Δ) does not depend on the strength of the integrability-
breaking perturbation. In the limit Δ→∞, the dynamics is
subdiffusive, with the space-time scaling x ∼ t1/4. For large
finite Δ, subdiffusion occurs over a timescale that grows with
Δ before crossing over to diffusion at the latest times. In effect,
the integrability-breaking perturbation moves spectral weight
from the spin conductivity from very low frequencies to a peak at
frequency ω ∼ γ, as shown in Figs. 1 and 2.

Observable

We consider linear-response transport under the Hamiltonian Eq.
1. We expect that our results hold at any nonzero temperature,
but for simplicity, we will work in the high-temperature limit,
where the frequency-dependent conductivity is simply related to
the autocorrelation function of the spin current operator Ĵ (t) =∑

n ĵn(t), with jn = i(S+
n S−

n+1 − S−
n S+

n+1)/2:

Tσ(ω) =

∫ ∞

0

dt 〈Ĵ (t)ĵ0(0)〉eiωt . [2]

Under diffusive dynamics (i.e., for Eq. 1 with no integrability-
breaking perturbation), the current–current correlator decays on
a finite timescale τ ; therefore, the conductivity is close to its d.c.
value, σ(ω)�Dχ for ωτ 	 1, with χ the static susceptibility.
For finite γ, remarkably, the correlator overshoots, so the late-time
current, on timescales γt > 1, becomes anticorrelated with the
early-time current. Thus, the integrability-breaking perturbation
shifts spectral weight from very low frequencies to a peak at ω ∼ γ
(Figs. 1 and 2).

Quasiparticle Picture

We now explain the origin of this phenomenon in terms of
the quasiparticle structure of Eq. 1. For Δ> 1, this model has
infinitely many quasiparticle species, called “strings.”These strings
are easiest to visualize near the ferromagnetic vacuum (Fig. 1),
where they simply correspond to spin domains of various sizes.
Under the integrable dynamics, the number of domains of each
size is separately conserved. At large Δ, a domain of size s can
only move collectively via an s th-order process in perturbation
theory, with an effective tunneling amplitude ∼Δ1−s . Because
of integrability, even in a high-temperature thermal state, these
strings remain stable, and their characteristic velocity scale does
not change appreciably, although their other properties are highly
renormalized, as we now discuss.

Δ=∞ Limit

It is instructive to consider the Δ=∞ limit first; this limit is
sometimes called the “folded XXZ model” (33–35). Here, the
quasiparticle picture simplifies; all strings with s > 1 are frozen,
and the only dynamics is due to the s = 1 strings, or magnons,
moving in a static background of spin domains with velocity v =
O(1) (36). In the integrable limit, magnons move ballistically.
However, as a magnon moves through the system, the spin it
carries fluctuates (e.g., when it is moving through a spin-up
domain, it does so as aminority spin-down particle, but on passing

σ(ω)

γ/Δ2 γ

1

Δ

ω

γ/Δ2

IntegrableSubdiffusived.c. limit

σ(ω) ∼
√
ω/γ

Fig. 1. Anomalous low-frequency spin conductivity in the noisy XXZ chain
(in log–log scale). In the frequency regime γ

Δ2 � ω � γ, spin transport is
subdiffusive with σ(ω) ∼

√
ω/γ, corresponding to the dynamical exponent

z= 4. At very low frequency, the conductivity eventually saturates to a finite
d.c. value proportional to Δ−1 (Fig. 2). The cartoon in Upper illustrates the
dominant spin dynamical processes at different timescales; single (mobile)
magnons are pictured in red, and strings (frozen) are in blue (in the text).

into a spin-down domain, it becomes a minority spin-up particle).
On average, there are equally many up and down domains in a
high-temperature state, so the magnon carries no net spin (hence,
the absence of ballistic transport). However, over a time t , the
region it traverses (of size |vt |) has a net magnetization 1/

√
|vt |

from equilibrium thermal fluctuations. Thus, the effective spin
carried by the magnon over this distance is O(1/

√
|vt |). Since

in time t , the magnon transports an amount of spin∼t−1/2 over
a distance ∼t , spin transport is diffusive with an O(1) diffusion
constant. At infinite temperature, this diffusion constant has the
closed-form expression D(T =∞, Δ =∞) = 4/(3π) (31, 32).

We now consider, heuristically, what happens when integra-
bility is broken by a generic local perturbation. In principle, the
perturbation could either relax the momentum of a magnon or
change the number of magnons. As we will discuss below, the
latter process becomes impossible for generic, sufficiently local
perturbations at Δ=∞. Thus, the only thing perturbations can

10−2 10−1 100

ω

10−2.5

10−2.0

10−1.5

σ
(ω

)

γ = 0.0

γ = 0.05

γ = 0.1

γ = 0.25

γ = 0.5

Fig. 2. Low-frequency spin conductivity in the noisy XXZ chain. Plot of σ(ω)
obtained from MPO simulations at Δ = 12 and for various values of the
noise strengths γ. The dashed line corresponds to the predicted intermediate
subdiffusive behavior∼ω1/2. Note that the plot starts at ω = 0.005, and data
for γ = 0.05 are expected to converge to lower values at smaller ω. Moreover,
the spectral weights are also redistributed by the noise at higher frequencies
(not shown in this plot).
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do is scatter magnons. One can easily adapt the previous argument
to the case of diffusive magnons; in a time t , they have moved by
an amount

√
Dt , over which the net magnetization fluctuations

are (Dt)−1/4; thus, one would spin transport to be subdiffusive,
with the scaling x ∼ t1/4, corresponding to a conductivity scaling
as σ(ω)∼√

ω. As a function of time, spin transport would
be diffusive until the mean free time of the magnon (which
depends on the integrability-breaking parameter) and subdiffusive
thereafter.

Mapping to Constrained Models

This heuristic argument can be put on a firmer footing if one notes
that the dynamics at infiniteΔ is controlled by the “folded XXZ”
Hamiltonian (33), which consists of flip-flop XY interactions
acting on a constrained subspace with domain wall number con-
servation (since creating or destroying domain walls costs infinite
energy). This model is interacting and integrable, and the only
allowed spin moves are those that conserve the total domain wall
number—similar constraints have been considered recently in
refs. 33 and 37–41. This constrained model is discussed further
in Infinite Δ XXZ Chain, and we have checked numerically that
its dynamics is subdiffusive with z = 4 whenever integrability
is broken. We have also checked that any perturbations acting
on four or fewer sites that conserve the domain wall number
also conserve the number of magnons. Thus, as we anticipated,
the only process an integrability-breaking perturbation (acting on
fewer than five sites) can do is to scatter magnons, supporting the
heuristic argument above.

Interestingly, one can go further by considering dynamics that
is constrained and conservesmagnon number but is otherwise ran-
dom. This corresponds to the case where integrability is strongly
broken. The transport properties of this stochastic model were
very recently computed by a Markov-matrix method in ref. 41;
the subdiffusive transport exponent x ∼ t1/4 was computed from
the low-energy spectrum of the Markov matrix in that work. To
check that the phenomenon we are considering is due specifically
to magnon physics [and not a generic consequence of the do-
main wall conservation law, which holds until exponentially long
timescales ∼eΔ (42)], we have explored random dynamics that
obeys the domain wall constraint but allows for moves on five or
more sites. Such gates do not in general conserve magnon number;
for example, they connect the configuration . . . ↓↓↑↑↑↓↓↑↓ . . .
to . . . ↓↓↑↑↓↓↑↑↓ . . ., turning two 2-strings into a magnon and a
3-string. We find that the random constrained dynamics is diffu-
sive for all gate sizes greater than or equal to five (Infinite Δ XXZ
Chain), highlighting the central role that magnon physics and
proximity of integrability play in subdiffusion. In particular, we
emphasize that the physics at play here is unrelated to other types
of z = 4 dynamics in the presence of the fraction-like constraints
recently discussed in the literature (38, 43–45).

Finite Δ and Noise

We now turn to finite Δ. To discuss this case, we need to specify
the noise model more explicitly. We first consider the simplest
integrability-breaking perturbation, namely uncorrelated noise.
We take H = HXXZ +

√
γ
∑

i ηi(t)S
z
i , where the noise η has

the properties 〈ηi〉= 0 and 〈ηi(t)ηj (0)〉= δ(t)δij . This noise
backscatters magnons at a rate ∼γ. It can also create magnons
out of strings by the following process; one end of a larger string
virtually hops away from the rest of the string by one site, with
amplitude 1/Δ, and is put on shell by the noise, giving a transition
rate γ/Δ2.

The quasiparticle picture is modified in this case as follows
(Fig. 1). Magnons that were created at the initial time propagate
ballistically, with a vanishing net magnetization due to scattering
with larger bound states of magnons (strings) (Fig. 1) until they hit
their mean free path, contributing to diffusive spin transport. At
later times, they contribute only through subdiffusion due to their
randomized velocities. However, newmagnons are created at a rate
γ/Δ2 and then, propagate for a time 1/γ before backscattering;
thus, at any time, some fraction of magnons are contributing
to diffusive transport. In addition to magnons, one should also
consider the contribution to transport due tomobile larger strings;
however, the velocity of these large strings is exponentially sup-
pressed in Δ, and in any case, they will also contribute subdiffu-
sively to transport by exactly the same reasoning as we used for
magnons.

The nature of the transport cross-overs can be understood by a
straightforward scaling argument. Let us define a time-dependent
diffusion constant via the relation D(t) = 1

2
dδx2

dt with δx (t) the
variance of the spin structure factor C(x , t) = 〈σz (x , t)σz (0, 0)〉.
If γ is small enough, then on a timescale 1/γ, D(t) =DXXZ(Δ)
is some well-defined O(1) number, which is approximately in-
dependent of Δ for Δ� 1. On timescales 1/γ 	 t 	Δ2/γ,
the dynamics will be subdiffusive, so D(t)∼ t−1/2. Enforcing
continuity at tγ = 1/γ, we find that D(t)∼ (γt)−1/2, indepen-
dently of Δ. Finally, enforcing continuity at the later cross-over
timescale t� =Δ2/γ, we get the asymptotic diffusion constant
D∞ ∼ 1/Δ, with no γ dependence. We thus expect the scaling
form (valid for γ 	 1, ω 	 γ, Δ� 1, and ωΔ2

γ fixed) for the
conductivity:

σ(ω, γ, Δ) =
1

Δ
f

(
ωΔ2

γ

)
, [3]

with f (0) as a constant and f (x )∼√
x as x � 1. Equivalently,

we expect a time-dependent diffusion constant scaling as D =
1
Δg

(
tγ
Δ2

)
. As shown in Fig. 3, direct numerical calculations

of D(t) using matrix product operator (MPO) methods (46)
collapse well onto this scaling form even for relatively large γ
and intermediate Δ. Curiously, our numerical results suggest
that limy→∞ g (y) = 1

2 , although we do not have a theoretical
prediction for this value.

10−2 100

tγ/Δ2

0.5

1.0

2.0

4.0

Δ
D
(t
)

Δ = 8, γ = 0.1

Δ = 8, γ = 0.25

Δ = 12, γ = 0.1

Δ = 12, γ = 0.25

Δ = 12, γ = 0.5

Δ = 16, γ = 0.25

Δ = 20, γ = 0.2

Fig. 3. Cross-over of the time-dependent diffusion in the noisy XXZ spin
chain. Diffusion constant D(t) timesΔ at infinite temperatures, obtained from
MPO simulations, for the time evolution in the presence of on-site noise of
strength γ at large anisotropy Δ is shown. The axes are rescaled to test
the theoretical prediction in Eq. 3. For small γ and large Δ, we find good
agreement; in particular, the diffusion constant saturates to a γ-independent
value at long times [up to O(γ/Δ2) corrections] and is compatible with
subdiffusion with D(t) ∼ t−1/2 (shown as the shaded region) for γ−1 � t �
Δ2/γ.
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Hamiltonian Perturbations

So far, we included spin dephasing both to allow for well-
converged numerical checks and to simplify the theoretical
analysis by allowing us to neglect energy conservation. We now
turn to generic Hamiltonian perturbations with perturbation
strength δ. Here as well, the timescales for magnon backscattering
and for the string number conservation breaking are both
expected to scale as 1/δ2 but with two different Δ dependences,
giving a broad subdiffusive regime. In particular, we can derive
general lower bounds on the cross-over timescale to diffusion
(or equivalently, upper bounds on the diffusion constant), even
if these might not be tight for all perturbations. The first lower
bound, which is just a consequence of energy conservation, can
be derived as follows. As we saw above, the physics that sets this
cross-over timescale is the creation or destruction of magnons.
Consider the simplest such process, in which two 2-strings collide
to create a magnon and a 3-string. This process must conserve
energy; since the initial and final states have the same number
of domain walls, it suffices to consider the kinetic energy of the
magnons. The bandwidth of the 2-string is suppressed by a factor
1/Δ (at largeΔ) relative to that of the magnon. (The bandwidth
of the 3-string is suppressed by yet another factor of Δ and is
negligible.) Thus, conservation of energy forces the magnon to
lie in a state within an energy window of width ∼Δ−1 measured
from the center of the magnon band. This phase space restriction
forces the magnon creation/decay rate to scale as 1/Δ and (by the
cross-over time analysis above) implies that D(γ, Δ)∼ 1/

√
Δ.

While our analysis was phrased in terms of a particular scat-
tering process (which we expect to be the leading one), it is
clear that any scattering process creating a magnon out of higher
strings will acquire the same bandwidth restriction, so this bound
applies to all local Hamiltonian perturbations. For the specific
subclass of nearest neighbor or on-site perturbations, one can
derive a stronger bound that combines the two arguments above.
For these, the matrix element for tunneling to a configuration
with a broken magnon number is itself suppressed by 1/Δ, as
we discussed above for on-site noise. Combining this with the
phase space restriction, we find that the cross-over timescale grows
at least as Δ3, giving the upper bound D(Δ)∼ 1/Δ3/2 and a
subdiffusive region within the timescale 1/δ2 � t �Δ3/δ2.

To test these predictions, we have simulated the spin
chains given by the Hamiltonian H = HXXZ + V , where the
XXZ Hamiltonian is either perturbed with integrability-
breaking staggered couplings V = δJ

∑
i(−1)i(S x

i S
x
i+1 +

S y
i S

y
i+1 +ΔS z

i S
z
i+1) or next nearest neighbor couplings

V = J ′ ∑
i(S

x
i S

x
i+2 + Sy

i S
y
i+2 +ΔS z

i S
z
i+2). Again, we sim-

ulated the dynamics using MPO methods. For Hamiltonian
perturbations as opposed to noisy perturbations, the simulation
complexity (captured by the bond dimension of the MPO) grows
exponentially in time. Therefore, our simulations are limited to
relatively early times and cannot extract the saturated diffusion
constant; nevertheless, they clearly display the nonmonotonicity
of D(t) and the onset of the subdiffusive regime for 1/δ2 � t ,
where we indeed correctly predict D(t)∼ 1/

√
δ2t (Fig. 4).

Discussion

In this work, we have presented evidence that integrability break-
ing has drastic effects on transport in integrable systems where the
integrable limit is itself diffusive, in sharp constraint with the bal-
listic case. For the infinitesimal integrability-breaking parameter
γ, the diffusion constant jumps to a value that is independent

10−1 100

(δJ)2t

10−1.0

10−0.5

D
(t
)

δJ = 0.2

δJ = 0.25

δJ = 0.3

δJ = 0.35

δJ = 0.4

Δ = 8

Δ = 12

10−2 10−1

J ′2t

10−1.0

10−0.5

D
(t
)

J ′ = 0.1

J ′ = 0.15

J ′ = 0.2

Δ = 10

Fig. 4. Hamiltonian perturbations. Time-dependent diffusion constant D(t)
with the couplings staggered by an amount δJ at large anisotropy Δ ∈
{8, 12} (Upper) and next nearest neighbor couplings J′ at Δ = 10 (Lower)
obtained from MPO simulations. Consistent with the theoretical prediction,
D(t) exhibits a subdiffusive regime consistent with D(t) ∼ t−1/2 (shown as the
shaded regions).

of γ but is parametrically lower than the integrable diffusion
constant at large Δ. The mechanism for this abrupt change in
the diffusion constant is the emergence of a large subdiffusive
temporal regime, which becomes the asymptotic behavior in the
limit of large anisotropy. We presented a kinetic argument for
this asymptotic subdiffusive behavior in terms of the diffusive
propagation of magnons whose magnetization is screened by
thermal fluctuations.

We expect such nonmonotonicity of the diffusion constant
and the

√
ω dependence of the conductivity at low frequen-

cies to be observable in cold atomic settings with emergent
XXZ interaction (40, 47–49) and in anisotropic Heisenberg–Ising
compounds (50, 51).

Our findings also clarify the reasons behind the apparent diffi-
culties encountered in evaluating diffusion constants by dissipative
truncation schemes, as introduced in ref. 52. One should indeed
expect that close to integrability, the diffusion constant is not a
continuous function of the dissipation strength, making it hard to
extrapolate its value in the limit of small noise. Our results could
also be related to the vanishing of the diffusion constantD ∼Δ−1

obtained coupling an XXZ chain to boundary Lindblad spin
reservoirs (53).

Materials and Methods

A Stochastic Kinematically Constrained Model with Domain Wall Num-
ber Conservation. In this section, we consider a stochastic kinetically con-
strainedmodel, where the total number of domain walls is strictly conserved and
the only allowed spin moves are those that respect this conservation law in addi-
tion to charge conservation. The discrete time evolution can be constructed from

4 of 6 https://doi.org/10.1073/pnas.2202823119 pnas.org
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0.4
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/
4
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x
,t
)

M = 4
z = 4

t = 125

t = 250

t = 500

t = 1000

t = 2000

−10 −5 0 5 10

xt−1/2

0.0

0.1

0.2

0.3

t1
/
2
C(
x
,t
)

M = 5
z = 2

t = 125

t = 250

t = 500

t = 1000

−10 −5 0 5 10

xt−1/2

0.00

0.05

0.10

0.15

t1
/
2
C(
x
,t
)

M = 6
z = 2

t = 50

t = 125

t = 250

t = 500

Fig. 5. Classical kinetically constrained models. Structure factor C(x, t) = 〈σz(x, t)σz(0, 0)〉 in a stochastic model with charge and domain wall conservation,
with local interactions (nonunitary “gates”) acting on M sites. For M = 4, which is the case relevant to the XXZ spin chain with broken integrability, the magnon
number is conserved, and we find subdiffusive transport with z= 4 (Left). For higher-range interactions, the magnon number is not conserved, and we find
ordinary diffusion z= 2, indicating that domain wall conservation is not enough for subdiffusion to occur.

a brick-wall pattern of nonunitary gates that implement all possible transitions
allowed by symmetries with equal probability.

For interactions acting on M= 4 sites, the allowed moves are flip-flop spin
flips between sites j and j+ 1 if the spins on sites j− 1 and j+ 2 are aligned.
Similar constraints have been considered in refs. 33, 37–40, and 54, and this
model was studied in detail in ref. 41. The allowed moves constrain the motion
of the domain walls themselves so that isolated domain walls are frozen, but
adjacent pairs of domain walls (corresponding to isolated magnons in some
background) can hop. In that case, the number of magnons (andmore generally,
the string number) is conserved by the evolution. This corresponds to a form
of intermediate integrability breaking where the string number is conserved
but magnons move diffusively (while larger strings are frozen). This is the case
relevant to integrability breaking in the XXZ spin chain discussed in the text, and
this model was shown to have subdiffusive spin dynamics with z = 4 in ref. 41.

However, subdiffusion does not follow from charge and domain wall con-
servation alone. To illustrate this point, we classically simulated the stochastic
kinetically constrained models with all possible charge and domain wall con-
serving transitions within an interaction radius of M= 4, 5, and 6 sites. For
each model, we computed the average spin structure factor by averaging over
7× 106 realizations of the dynamics. As noted in the text, for M> 4, the
allowed spinmoves do not conservemagnon number; for example, they connect
the configurations . . . ↓↓↑↑↑↓↓↑↓ . . . and . . . ↓↓↑↑↓↓↑↑↓ . . ., turning two
2-strings into a magnon and a 3-string and vice versa while conserving both
charge and domain wall number. This breaks integrability strongly, and in that
case, our numerical results (Fig. 5) indicate vanilla diffusion with dynamical
exponent z = 2.

Infinite Δ XXZ Chain. The largeΔ limit of Hamiltonian Eq. 1 can be taken by
projecting out the fast oscillating term and giving an effective projected hopping
term, namely

HXXZ,Δ=∞ →
∑
i

[
Pupi−1[S

x
i S

x
i+1 + Syi S

y
i+1]P

up
i+2

+ Pdowni−1 [S
x
i S

x
i+1 + Syi S

y
i+1]P

down
i+2

]
, [4]

with Pup/down = (1± 2Sz)/2 the projection on spin up or down. This
Hamiltonian is still interacting and integrable (33) and displays spin diffusion
with the finite diffusion constant DΔ=∞ = 4/(3π) (32). By perturbing it with
a spin dephasing term, it displays spin subdiffusion at all timescales showing
a clear dependence D(t)∼ (γt)−1/2 (Fig. 6) as explained in the text. In this
Δ→∞ limit, only magnons are mobile, and bigger domains are strictly
frozen. As discussed in the text, larger domains of size s can only move via an
s th-order process in perturbation theory with amplitude∼Δs−1. The cross-over
to diffusion occurs for finite Δ at the timescale t∗ ∼Δ2/γ, corresponding to
the creation of magnons out of bigger strings (in the text).

Details on the Numerical Calculations. For the case where the XXZ chain
is coupled to a bath, we numerically simulate real-time dynamics of quantum
systems with Markovian noise by evolving operators with the Lindblad master
equation

ρ̇= L[ρ] =−i[H, ρ] + γ
∑
i

(
σz
i ρσ

z
i − ρ

)
.

100 101 102

t

10−1.5

10−1.0

10−0.5

D
(t
)

γ = 0.0

γ = 0.1

γ = 0.2

γ = 0.3

γ = 0.4

10−1 100 101 102

γt

10−2.0

10−1.5

10−1.0

D
(t
)

γ = 0.1

γ = 0.2

γ = 0.3

γ = 0.4

Fig. 6. Projected XXZ chain at infiniteΔ. Time evolution of the spin diffusion constant given by the Hamiltonian Eq. 4 coupled to spin dephasing with different
values of coupling strength γ is shown. While the γ = 0 case shows diffusion (the dotted horizontal line indicates the value D= 4

3π predicted by GHD), any finite
γ leads to subdiffusion at all times D(t) ∼ t−1/2 (the shaded regions), with time dependence solely fixed by the rescaled time γt as shown in Right.
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We work in the Heisenberg picture, where the density matrix is static and opera-
tors evolve as

dA
dt

= L∗(A), L∗ = i
−→
H − i

←−
H − γ

2

∑
j

(
−→
σz
j′ −

←−
σz
j′)

2. [5]

We Trotter decompose the operator evolution

A(t + δt) = eL
∗δtA(t)≈ eL

∗
1 δteL

∗
0 δtA(t). [6]

The evolution by H0 is further decomposed using a standard Trotter scheme, and
the noisy evolution is represented as a quantum channel with Kraus operators
Ma, where the evolution of an operator is

A(t + δt) =
∑
a

M†
a (δt)A(t)Ma(δt),

∑
a

MaM†
a =

∑
a

M†
a Ma = 1,

M1,j =
√
1− γδt · 1,

M2,j =
√
γδt · σz

j .

The evolution can then be represented as a product superoperator:

eL1δt =
∏
j

(∑
a

−→
Ma,j

←−
Ma,j

†

)
.

We use time steps δt = 0.1/
√
Δ in the case with finite noise γ and δt = 0.1

for the case of Hamiltonian perturbations (where a fourth-order Trotter scheme
is employed). The maximal bond dimension is chosen to be 1,024, which is
never saturated in the case of noisy perturbation, due to the loss of quantum
entanglement due to dephasing.

Data Availability. All study data are included in the main text.
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