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Abstract— We develop a resilient binary hypothesis testing frame-
work for decision making in adversarial multi-robot crowdsensing
tasks. This framework exploits stochastic trust observations between
robots to arrive at tractable, resilient decision making at a centralized
Fusion Center (FC) even when i) there exist malicious robots in
the network and their number may be larger than the number of
legitimate robots, and ii) the FC uses one-shot noisy measurements
from all robots. We derive two algorithms to achieve this. The first
is the Two Stage Approach (2SA) that estimates the legitimacy of
robots based on received trust observations, and provably minimizes
the probability of detection error in the worst-case malicious attack.
Here, the proportion of malicious robots is known but arbitrary. For
the case of an unknown proportion of malicious robots, we develop
the Adversarial Generalized Likelihood Ratio Test (A-GLRT) that
uses both the reported robot measurements and trust observations to
estimate the trustworthiness of robots, their reporting strategy, and
the correct hypothesis simultaneously. We exploit special problem
structure to show that this approach remains computationally
tractable despite several unknown problem parameters. We deploy
both algorithms in a hardware experiment where a group of robots
conducts crowdsensing of traffic conditions on a mock-up road
network similar in spirit to Google Maps, subject to a Sybil attack. We
extract the trust observations for each robot from actual communica-
tion signals which provide statistical information on the uniqueness
of the sender. We show that even when the malicious robots are in
the majority, the FC can reduce the probability of detection error to
30.5% and 29% for the 2SA and the A-GLRT respectively.

I. INTRODUCTION

We are interested in the problem where robots observe the
environment and estimate the presence of an event of interest. Each
robot relays their measurement to a Fusion Center (FC) that makes
an informed binary decision on the occurrence of the event. An
unknown subset of the network are malicious robots whose goal is
to increase the likelihood that the FC makes a wrong decision [1]–
[4]. This problem can be cast as an adversarial binary hypothesis
testing problem, with relevance to a broad class of robotics tasks
that rely on distributed sensing with possibly malicious or untrust-
worthy robots. For example, robots might perform coordinated
coverage to maximize their ability to sense events of interest [5]–
[8], share target information for coordinated tracking [9]–[12],
or merge map information to provide a global understanding of
the environment [13]–[16]. In crowdsensing tasks such as traffic
prediction, a server may use GPS data to estimate if a particular
roadway is congested or not [17] (see Fig. 1). Unfortunately, this

(*Co-primary authors). M. Cavorsi, O. E. Akgün, and S. Gil
are with the School of Engineering and Applied Sciences, Harvard
University, USA: mcavorsi@g.harvard.edu, erenakgun@g.harvard.edu,
sgil@seas.harvard.edu. M. Yemini is with the Faculty of Engineering, Bar-Ilan
University, Israel: michal.yemini@biu.ac.il. A. J. Goldsmith is with the
Department of Electrical and Computer Engineering, Princeton University, USA:
goldsmith@princeton.edu.

The authors gratefully acknowledge partial support through AFOSR grant
FA9550-22-1-0223 and AFOSR award #002484665.

process is vulnerable to malicious robots [1], [3]. For example,
prior works have shown that a Sybil attack can cause crowdsensing
applications like Google Maps to incorrectly perceive traffic con-
ditions, resulting in erroneous reporting of traffic flows [18], [19].

The problem of binary adversarial hypothesis testing has
been studied within the context of sensor networks [20]–[22].
Many approaches use data, such as a history of measurements
and hypothesis outcomes, to assess the trustworthiness of the
robots [23]–[26]. For example, if a robot consistently disagrees
with the final decision of the FC, then the FC can flag that robot
as potentially adversarial. However, the success of these methods
often hinges upon a crucial assumption that more than half of
the network is legitimate. A growing body of work investigates
additionally sensed quantities arising from the physicality of cyber-
physical systems such as multi-robot networks, to cross-validate
and assess the trustworthiness of robots [5], [27]–[29]. This could
include using camera feeds, GPS signals, or even the signatures
of received wireless communication signals, to acquire additional
information regarding the trustworthiness of the robots [29]–[31].
Importantly, this class of trust observations can often be obtained
from a one-shot observation, independent of the transmitted
measurement. The works [32], [33] use trust observations to
recover resilient consensus and distributed optimization even in
the case where more than half of the network is malicious. In this
paper we wish to derive a framework for adversarial hypothesis
testing that allows the FC to reduce its probability of error, even
in the one-shot scenario and where legitimate robots do not hold a
majority in the network, by exploiting stochastic trust observations
that are independent of the transmitted measurements.

We derive algorithms for achieving resilient hypothesis testing
by exploiting stochastic trust observations between the FC and
a group of robots participating in event detection. We derive a
framework that exploits one-shot trust observations, hereafter
called trust values, over each link to arrive at tractable, closed-form
solutions when the majority of the network may be malicious and

Fig. 1: Malicious robots can perform a Sybil Attack to try to force a FC
to incorrectly perceive traffic conditions on a road. The FC can aggregate
measurements and trust values from robots to accurately estimate the true traffic
condition of the road despite the attack.
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the strategy of the malicious robots is unknown – a challenging
and otherwise intractable problem to solve in the general case [34].

For the case where an upper limit on the proportion of malicious
robots is known, we develop the Two Stage Approach (2SA). In
the first stage this algorithm uses trust values to determine the most
likely set of malicious robots, and then applies a Likelihood Ratio
Test (LRT) only over trusted robots in the second stage. We show
that this approach minimizes the error probability of the estimated
hypothesis at the FC for a worst-case attack scenario. For the case
where an upper bound on the proportion of malicious robots is
unknown, we develop the Adversarial Generalized Likelihood
Ratio Test (A-GLRT) algorithm which uses both stochastic trust
values and event measurements to jointly estimate the trustwor-
thiness of each robot, the strategy of malicious robots, and the
hypothesis of the event. Our A-GLRT algorithm is based upon a
common approach for decision making with unknown parameters,
the Generalized Likelihood Ratio Test (GLRT), which replaces
the unknown parameters with their maximum likelihood estimates
(MLE) [35]. We show that the addition of trust values allows us
to decouple the trustworthiness estimation from the strategy of the
adversaries, allowing us to calculate the exact MLE of unknown
parameters in polynomial time, instead of approximating them as
in previous works [34], [36]. Our simulation results show that the
A-GLRT empirically yields a lower probability of error than the
2SA, but at the expense of higher computational cost.

Finally we conduct a hardware experiment based on
crowdsensing traffic conditions using a group of robots under a
Sybil Attack. We show that the FC can recover a performance
of 30.5% and 29.0% error, for the 2SA and A-GLRT respectively,
even in the case where more than half of the robots are malicious.

II. PROBLEM FORMULATION

We consider a network of N robots, where each robot is
indexed by some i∈N and N ={1,...,N}, that are deployed to
sense an environment and determine if an event of interest has
occurred. The event of interest is captured by the random variable
Ξ, where Ξ= 1 if the event has occurred and Ξ= 0 otherwise.
Each robot i uses its sensed information to make a local decision
about whether the event has happened or not, captured by the
random variable Yi, where its realization yi=1 if robot i believes
the event has happened and yi = 0 otherwise. We denote the
hypothesis that Ξ = 1 by H1 and Ξ = 0 by H0. Each robot
forwards its local decision to a centralized fusion center (FC).

We are concerned with the scenario where not all robots are
trustworthy, that is, some are malicious and may manipulate
the data that they send to the FC by flipping their measured bit
with the goal of increasing the probability that the FC makes the
wrong decision. We denote the set of malicious robots by M⊂N .
The set of robots that are not malicious are termed legitimate
robots, denoted by L⊆N , where L∪M=N and L∩M= ∅.
Additionally, we define the true trust vector, t∈{0,1}N , where
ti=1 if i∈L and ti=0 if i∈M. We note that the true trust vector
is unknown by the FC, but it is defined for analytical purposes.

We assume the following behavioral models for robots:
Definition 1 (Legitimate robot): A legitimate robot i measures

the event and sends its measurement Yi to the FC without altering
it. We assume for each robot i∈L, the measurement is subject

to noise with the following false alarm and missed detection
probabilities

PFA,i=Pr(Yi=1|Ξ=0,ti=1)=PFA,L,

PMD,i=Pr(Yi=0|Ξ=1,ti=1)=PMD,L,
(1)

where PFA,L ∈ (0, 0.5) and PMD,L ∈ (0, 0.5) without loss of
generality. We assume all legitimate robots have the same PFA,L

and PMD,L and these are known by the FC.
Definition 2 (Malicious robot): A robot is said to be a

malicious robot if it can choose to alter its measurements before
sending it to the FC. We assume that all malicious robots have the
same probabilities of false alarm and missed detection, denoted by
PFA,M and PMD,M respectively. These probabilities are not known
by the FC, and can take any value in [0,1].

We assume that all measurements are independent of each
other given the true hypothesis. Furthermore, the assumption we
use that measurements coming from malicious robots are i.i.d. is
common in the literature (see [2], [4], [21], [22]). In addition to
the measurements Yi, we assume that each Yi is tagged with a
trust value αi∈R. Specifically, we consider the class of problems
where the FC can leverage the cyber-physical nature of the network
to extract an estimation of trust about each communicating robot.

Definition 3 (Trust Value αi): A trust value αi is a stochastic
variable that captures information about the true legitimacy of a
robot i. We denote the set of all possible trust values by A and
denote a trust value realization for robot i by ai.

Assumption 1: We assume that the set A is finite and that
the trust values are i.i.d. given the true legitimacy of the robot,
and are independent of the measurements, Yi, and the true
hypothesis. We denote the probability mass function of the
trust values by pα(ai|ti = 1) and pα(ai|ti = 0) for legitimate
and malicious robots, respectively. We assume the probability
mass functions are known or can be estimated by the FC for
all i. 1 Finally, to omit trivial or noninformative cases, we
assume that pα(ai|ti = 0) ∈ (0,1), pα(ai|ti = 1) ∈ (0,1), and
pα(ai|ti=0)≠pα(ai|ti=1) for all a∈A and all i.

A. The objective of the FC

Denote the vector of all measurements with Y =(Y1,...,YN)
and its realization y=(y1,...,yN), and the vector of stochastic trust
values by α=(α1,...,αN) and its realization by a=(a1,...,aN).
Let D0 and D1 be the decision regions at the FC. That is,
(a,y)∈D0 if the FC chooses hypothesis H0 whenever it measures
the pair (a,y), and (a,y) ∈ D1 otherwise. To simplify our
notations we denote D≜{D0,D1}.

Denote by PFA and PMD the false alarm and missed detection
probabilities of the FC. These probabilities are affected by the strat-
egy of the malicious robots, i.e., PFA,M and PMD,M. We have that:

PFA(D,t,PFA,M)=
∑

(a,y)∈D1

Pr(α=a,Y =y|H0,t,PFA,M),

PMD(D,t,PMD,M)=
∑

(a,y)∈D0

Pr(α=a,Y =y|H1,t,PMD,M),

1 In [30]–[33], for example, the trust values αi∈ [0,1] are stochastic and are determined
from physical properties of wireless transmissions. We use these trust values in our hardware ex-
periment in Section IV where we discretize the sample space by lettingA={0,1} and find the
probability mass functions to be pα(ai=1|ti=1)=0.8350 and pα(ai= 1|ti= 0)=
0.1691. Other examples of observations can be found in [27], [37], [38].
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where we omit the dependence of PFA and PMD on the parameters
that are assumed to be given such as PFA,L and PMD,L.

If the FC knows the true trust vector t, and the probabilities
PFA,M and PMD,M, it could optimize the decision regions D0 and
D1 to minimize the expected error probability:

Pe(D,t,PFA,M,PMD,M)= (2)
Pr(Ξ=0)PFA(D,t,PFA,M)+Pr(Ξ=1)PMD(D,t,PMD,M).

However, there are two main obstacles to the optimization
of (2), namely: 1) The FC does not know the true vector t. 2) The
FC does not know the strategy of malicious robots. In our setup,
this means that the FC does not know the values PFA,M and PMD,M.

Because of this, the FC must estimate the vector t, and the
probabilities PFA,M and PMD,M, and make a decision with these
estimates, denoted by t̂, P̂FA,M, and P̂MD,M. Since the minimization
of (2) is not tractable, we explore different ways to circumvent
this issue. One way is to start by estimating the legitimacy of the
robots using trust values only and choosing the decision regions
D0 and D1 using the measurements from the trusted robots. This
approach leads us to the formulation in Problem 1.

Problem 1: Assume that the FC first estimates the identities
of the robots in the network, i.e., it determines t̂, solely using the
vector of trust values a. Then, it makes a decision using only the
vector of measurements y, from robots it identifies as legitimate.
Given an upper bound m̄ on the proportion of malicious robots in
the network, we wish to determine a strategy for the FC that mini-
mizes the following worst-case scenario under these assumptions:

min
D

max
PFA,M,PMD,M,t:

∑
i∈N ti≤m̄N

Pe(D,t,PFA,M,PMD,M).

Problem 1 estimates the trustworthiness of a robot i using only
the trust value ai associated with that robot. However, it is natural
to seek additional information about the trustworthiness of the
robots that can be obtained from the random measurement vector
y. Following this intuition, we seek a decision rule that estimates
the unknown parameters in the system, i.e., t, PFA,M, and PMD,M
as well as the hypothesis H0 or H1 jointly, without requiring a
known upper bound on the proportion of malicious robots. A
common approach to hypothesis testing with unknown parameters
is to use the generalized likelihood ratio test (GLRT) [35], i.e.,

p(z;θ̂1,H1)

p(z;θ̂0,H0)

H1

>
⩽
H0

Pr(Ξ=0)

Pr(Ξ=1)
≜γGLRT, (3)

where θ̂1 is MLE of the unknown parameter θ1 assuming Ξ=1
and θ̂0 is the MLE of θ0 assuming Ξ = 0. For our problem,
z=(a,y), θ1=(t,PMD,M), and θ0=(t,PFA,M), which results in
the following formulation

maxt∈{0,1}N ,PMD,M∈[0,1]Pr(a,y|H1,t,PMD,M)

maxt∈{0,1}N ,PFA,M∈[0,1]Pr(a,y|H0,t,PFA,M)

H1
>
⩽
H0

γGLRT. (4)

Note that the vector t is a parameter, thus, we do not make any
prior assumption on its distribution. Calculating the MLE in the
numerator and denominator in (4) is not trivial since the unknown
t is a discrete multidimensional variable while PMD,M and PFA,M
are continuous variables. Doing this in a tractable way leads us
to the formulation in Problem 2.

Problem 2: Find a computationally tractable algorithm that
calculates the GLRT given in (4).

In the next section we propose solutions to these problems.

Then, we investigate the performance of both methods in
Section IV, and conclude the paper in Section V.

III. APPROACH

In this section we present two different approaches: The Two
Stage Approach (2SA) solves Problem 1, and the Adversarial
Generalized Likelihood Ratio Test (A-GLRT) solves Problem 2.
Proofs are delegated to our extended technical report in [39].

A. Two Stage Approach Algorithm

We present an intuitive approach that separates the detection
scheme into two stages where 1) a decision is made about the
trustworthiness of each individual robot i based on the received
value αi, and then 2) only the measurements Yi from robots that
are trusted are used to detect H0 or H1.

a) Detection of Trustworthy Robots: We utilize the Likeli-
hood Ratio Test (LRT) to detect legitimate robots. This test is guar-
anteed to have minimal missed detection probability (i.e., detecting
a legitimate robot as malicious) for a given false alarm probability
(i.e., detecting a malicious robot as legitimate) [35, Chapter 3].

The FC decides which robots to trust using the LRT:

pα(ai|ti=1)

pα(ai|ti=0)

t̂i=1

≷
t̂i=0

γt, (5)

where γt is a threshold value that we wish to optimize.
The FC decides who to trust and stores it in the vector t̂, where

t̂i=1 if the FC decides to trust robot i, and t̂i=0 otherwise. In
the case of equality, a random decision is made where the FC
chooses t̂i=1 with probability pt and chooses t̂i=0 otherwise,
where pt is another parameter to be optimized. This leads to
the following trust probability, where Ptrust(γt,pt, t̃ = 1) is the
probability of trusting a legitimate robot and Ptrust(γt,pt,̃t = 0)
is the probability of trusting a malicious robot:

Ptrust(γt,pt,̃t)=Pr

(
pα(ai|ti=1)

pα(ai|ti=0)
>γt

∣∣∣∣ti= t̃

)
+ptPr

(
pα(ai|ti=1)

pα(ai|ti=0)
=γt

∣∣∣∣ti= t̃

)
.

(6)

b) Detecting the Event Ξ: To determine a hypothesis H on
the event Ξ, the FC only considers measurements from trusted
robots, i.e., i : t̂i=1, and uses the following decision rule:∏

{i:̂ti=1}P
1−yi
MD,L(1−PMD,L)

yi∏
{i:̂ti=1}(1−PFA,L)1−yiPyi

FA,L

H1
⩾
<
H0

exp(γTS), (7)

where exp(γTS) ≜ Pr(Ξ=0)
Pr(Ξ=1) . This decision rule is commonly

used in standard binary hypothesis testing problems, and it is
known to be optimal in a system where no malicious robots
are present, i.e., M= ∅. Thus, we attempt to approximate this
scenario by removing information from all robots deemed to be
malicious. However, since there may be errors in classifying the
trustworthiness of robots, the parameters γt and pt should balance
the need to exclude measurements from malicious robots with
the need to allow measurements from legitimate robots in (7). We
show how to optimize the threshold γt and tie-break probability
pt by computing the probability of error of the FC using the 2SA.

Let w1,L = log(
1−PMD,L
PFA,L

), w0,L = log(
1−PFA,L
PMD,L

), and denote

SN ≜
∑N

i=1 t̂i[w1,Lyi − w0,L(1 − yi)] corresponding to the
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logarithm of the left-hand side of (7). After the FC discards robot
measurements that it does not trust, the decision rule (7) leads to
the following missed detection error probability at the FC,

PMD(γt,pt,t,PMD,M)=Pr
(
SN <γTS

∣∣H1,γt,pt,t,PMD,M

)
. (8)

A similar expression can be found for the false alarm probability.
Consequently, the overall error probability at the FC is:

Pe(γt,pt,t,PFA,M,PMD,M)= (9)
Pr(Ξ=0)PFA(γt,pt,t,PFA,M)+Pr(Ξ=1)PMD(γt,pt,t,PMD,M).

We seek to minimize the probability of error (9) for the decision
rule (7) by minimizing the false alarm and missed detection
probabilities. Since the error probability must be calculated
for every possible combination of vectors t̂ and y during the
minimization of (7), the computation has exponential complexity
with respect to the number of robots, N . Furthermore, the true
trust vector t and the probabilities of false alarm PFA,M and
missed detection PMD,M of the malicious robots are unknown, and
therefore, they cannot be used in minimizing (9).

To this end, we derive analytical guarantees regarding the
error probability of the overall detection performance of the 2SA
as follows. We find the worst-case probability of error of the
FC by considering all the possible trust vectors t∈{0,1}N and
false alarm and missed detection probabilities PFA,M and PMD,M,
respectively, in the interval [0,1], and choosing the t, PFA,M, and
PMD,M that maximize (9). Then, we minimize this worst-case
error probability by choosing the best threshold γt, i.e., choose
γt=γ∗t and tie-break probability pt=p∗t where

(γ∗t ,p
∗
t )=argmin

γt,pt

max
t,PFA,M,PMD,M

Pe(γt,pt,t,PFA,M,PMD,M). (10)

However, we must first determine the PFA,M,PMD,M,t that max-
imize Pe. In the remainder of this section, we assume that the pro-
portion of malicious robots in the network is upper bound by (m̄).

Lemma 1: If PFA,L<0.5 and PMD,L<0.5, then the probability
of false alarm and missed detection of the FC (8) is maximized
for the 2SA when malicious robots choose PFA,M =PMD,M =1,
for any vector t∈{0,1}N .

Lemma 2: Let t̄ be the worst-case vector t, i.e., the vector
t that maximizes the probability of error (9). If PFA,L < 0.5,
PMD,L<0.5, and PFA,M=PMD,M=1, then the probability of error
Pe(γt,pt, t̄,1,1) is maximized when t̄ contains the maximum
number of malicious robots, i.e.,

∑
i∈N t̄i=N−m̄N .

The proofs of Lemmas 1-2 hinge on the fact that after information
is discarded in the 2SA, the remaining information is trusted
as legitimate, so any trusted malicious robots can maximize the
probability of error by always sending information that contradicts
the true hypothesis.

Utilizing Lemma 2, we calculate the exact probability of
error for the FC for the worst-case attack where there are mN
malicious robots and PFA,M = PMD,M = 1. In order to compute
the probability of error exactly, we must compute the probability
of false alarm and missed detection using (8). Let kL ∈ KL
be the number of legitimate robots trusted by the FC, where
KL={0,...,(1−m̄)N}, and kM∈KM be the number of malicious
robots trusted by the FC, where KM={0,...,m̄N}.

Using the law of total probability, the probability of missed

detection at the FC is given by

PMD(γt,pt,m,1)=
∑

kL∈KL,kM∈KM

Pr(KL=kL)Pr(KM=kM)

·Pr(SN<γTS|H1,kL,kM). (11)

Hereafter, we denote fb(x; p, n) =
(
n
x

)
px(1 − p)n−x and

Fb(x;p,n)=
∑x

i=0

(
n
i

)
pi(1−p)n−i. These are the Binomial PDF

and CDF, evaluated at x for n trials and success probability p.
Due to the assumption of homogeneity among legitimate

robots and similarly among malicious robots, we can show for
any particular instantiation of kL and kM that:

Pr(SN<γTS|H1,kL,kM)

=Fb

(
⌈γTS+kMw1,L+kLw0,L

w0,L+w1,L
⌉−1;1−PMD,L,kL

)
. (12)

Recall (6), then we have that

Pr(KL=kL)=fb(kL;Ptrust(γt,pt,̃t=1),(1−m̄)N),

Pr(KM=kM)=fb(kM;Ptrust(γt,pt,̃t=0),m̄N). (13)

We calculate PFA(γt,pt,m,1) by plugging-in (12) and (13) in (11).
We can follow similar arguments for the false alarm probability:

PFA(γt,pt,m,1)=
∑

kL∈KL,kM∈KM

Pr(KL=kL)Pr(KM=kM)

·Pr(SN≥γTS|H0,kL,kM). (14)

Therefore, we define the following total error probability in
the worst-case

P e(γt,pt,m,1,1)≜Pr(Ξ=0)PFA(γt,pt,m,PFA,M=1)

+Pr(Ξ=1)PMD(γt,pt,m,PMD,M=1), (15)

and we can choose the thresholds γt and pt that minimize this
expression. Once we choose γt and pt, the rest of the 2SA
becomes a standard binary hypothesis testing problem.

Lemma 3: Denote Γt := {pα(a|ti=1)
pα(a|ti=0)}a∈A, where {·}a∈A

represents a set corresponding to all possible values of a∈A and
the set A follows Assumption 1. Then, the minimal value of (10)
with respect to γt can be achieved by γt∈Γt.

Let Γp := {0, δp,2δp, ... ,1} with discretization constant δp.
Algorithm 1 explains the 2SA step-by-step. Determining the
threshold value γt and tie-break probability pt requires computing
the probability of error |Γt|·|Γp| times, where |·| represents the
cardinality of the set. However, this can be computed offline, and
Algorithm 1 Two Stage Approach
Input: y, a, PFA,L, PMD,L, {Pr(Ξ)}Ξ=0,1, {pα(ai|ti)}ti=0,1,m,
Γt, δp
Output: Decision H0 or H1

1: Set Γp={0,δp,2δp,...,1}.
2: for all γ̂t∈Γt, p̂t∈Γp do
3: Compute Ptrust(γ̂t,p̂t,̃t) for t̃=0, t̃=1 by (6).
4: Compute PMD(γ̂t,p̂t,m,1) by (11).
5: Compute PFA(γ̂t,p̂t,m,1) by (14).
6: Compute P e(γ̂t,p̂t,m,1,1) by (15).
7: Set (γt,pt)=argminγ̂t∈Γt,p̂t∈Γp

P e(γ̂t,p̂t,m,1,1).
8: Determine the vector t̂ using (5).
9: Determine decision using (7).
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then the returned γt and pt can be used for conducting the hypoth-
esis test. With a given γt and pt, the hypothesis test requires O(N)
comparisons. We utilize Lemmas 1-3 to establish the following.

Theorem 1: Assume that the FC uses the decision rule
in (5) to detect malicious robots, and then uses the decision
rule (7). Then Algorithm 1 chooses the threshold value γt
and tie-break probability pt that minimize the worst-case
probability of error of the FC (10) up to a discretization distance
d(δp) ≜ minpt∈Γp

P e(γ
∗
t , pt, m, 1, 1) − P e(γ

∗
t , p

∗
t , m, 1, 1).

Furthermore, d(δp)→0 as δp→0.

B. A-GLRT Algorithm

Here, we construct an efficient algorithm that implements
the GLRT in (4) and solves Problem 2 in Section II. Under
Assumption 1 we reformulate (4) with the following:

max
t∈{0,1}N ,PMD,M∈[0,1]

Pr(a|t)Pr(y|H1,t,PMD,M)

max
t∈{0,1}N ,PFA,M∈[0,1]

Pr(a|t)Pr(y|H0,t,PFA,M)

H1

>
⩽
H0

γGLRT. (16)

Due to the symmetry in the calculation of the numerator and
denominator in (16), we focus our discussion on the numerator. Let

cL,i≜pα(ai|ti=1)P1−yi
MD,L (1−PMD,L)

yi, and

cM,i(PMD,M)≜pα(ai|ti=0)P1−yi
MD,M(1−PMD,M)

yi, (17)

and C(t, PMD,M) ≜
∏N

i=1

(
ctiL,i·[cM,i(PMD,M)]

1−ti
)

. Applying
Assumption 1 and the i.i.d. assumption about measurements, we
reformulate the numerator in (16) as follows:

max
t∈{0,1}N ,PMD,M∈[0,1]

C(t,PMD,M). (18)

Since there is no clear way to optimize (18) over variables t
and PMD,M at the same time, we reformulate the problem as two
nested optimizations using the Principle of Iterated Suprema [40,
p. 515]. We rewrite (18) as follows:

max
t∈{0,1}N

{
max

PMD,M∈[0,1]
C(t,PMD,M)

}
.

With this formulation, one possible way to calculate the
maximization is iterating over all vectors t in the set {0,1}N ;
then for each t, calculating the inner maximization. We utilize
the well-known estimation problem [41, Problem 7.8] to calculate
the inner maximization as follows.

Lemma 4: Let t and y be given vectors in {0,1}N . Assume
that pα(ai|ti) is known for both ti = 0 and ti = 1, and
that

∑
i:ti=0 1 > 0. Then, C(t, PMD,M) is maximized by

P̂MD,M=
∑

i:ti=0(1−yi)∑
i:ti=01

. Additionally, if
∑

i:ti=01=0, any choice

P̂MD,M∈ [0,1] maximizes C(t,PMD,M).
Thus, the optimum value of PMD,M is of a special structure,

which we can exploit to avoid an exponential complexity incurred
by the 2N possible values of the trust vector t∈{0,1}N . We next
find an efficient algorithm using another formulation of (18) that
is obtained by the Principle of Iterated Supremum

max
PMD,M∈[0,1]

{
max

t∈{0,1}N
C(t,PMD,M)

}
. (19)

The following shows how to calculate the inner maximization.
Lemma 5: Let PMD,M, a, and y be given. Additionally, assume

that pα(ai|ti) is known for both ti=0 and ti=1. If the estimated

Algorithm 2 A-GLRT
Input: y, a, PFA,L, PMD,L, {Pr(Ξ)}Ξ=0,1, {pα(ai|ti)}ti=0,1, N
Output: Decision H0 or H1

1: Set P=
{

Tn

Td

}
Tn∈{0,...,Td},Td∈{1,...,N}

.

2: Set γGLRT=
Pr(Ξ=0)
Pr(Ξ=1) , lnum,max=0, ldenom,max=0.

3: for all PM ∈P do
4: Set PMD,M=PM , lnum=1.
5: for i=0 to N do
6: Set lnum=lnum ·max{cL,i, cM,i(PMD,M)}.
7: if lnum>lnum,max then Set lnum,max=lnum.
8: Repeat steps 4-7 for the denominator.
9: if lnum,max

ldenom,max
>γGLRT then Return decision H1

10: else Return decision H0

robot identity vector t̂ is constructed by choosing t̂i = 1 if
cL,i ≥ cM,i(PMD,M) and t̂i = 0 otherwise, where t̂i is the ith

component of t̂, then, t̂ is a vector that maximizes C(t,PMD,M).
By Lemma 5, C(t,PMD,M) can be maximized by comparing

two likelihoods for each robot, resulting in O(N) comparisons in
total. We combine Lemma 4 and Lemma 5 to introduce an efficient
calculation of the numerator of the GLRT (18). By exploiting the
special structure that P̂MD,M has (Lemma 4), we can restrict the
search space for PMD,M in (19). Then, the inner maximization can
be calculated using Lemma 5. The following theorem builds on
this intuition to provide an efficient calculation of (18).

Theorem 2: Assume that (t∗,P∗
MD,M) attains the maximization

in (18). Then, for each vector of measurements y and
trust values a, P∗

MD,M belongs to the set P where

P≜
{

Tn

Td

}
Tn∈{0,...,Td},Td∈{1,...,N}

. Moreover, the maximization

in (18) can be calculated by iterating over O(N2) different values
in P and performing O(N) comparisons.

Using Thm. 2, we present the A-GLRT algorithm (Alg. 2),
which calculates the GLRT (16) using only O(N3) comparisons.

IV. HARDWARE EXPERIMENT AND NUMERICAL RESULTS

We perform a hardware experiment with robotic vehicles
driving on a mock-up road network where robots are tasked with
reporting the traffic condition of their road segment to a FC. The
objective of the malicious robots is to cause the FC to incorrectly
perceive the traffic conditions (see Fig. 2). A numerical study
further demonstrates the performance of this scenario with an
increasing proportion of malicious robots.

We compare the performance of the 2SA and A-GLRT against
several benchmarks including the Oracle, where the FC knows
the true trust vector t and discards malicious measurements, (this
serves as a lower bound on the probability of error), the Oblivious
FC, where the FC treats every robot as legitimate, and a Baseline
Approach [26] where the FC uses a history of T measurements
to develop a reputation about each robot. The Baseline method
ignores information from robots whose measurements disagree
with the final decision at least η<T times. The Oracle, Oblivious
FC, and Baseline Approach use the decision rule in (7). Malicious
robots perform a Sybil attack where they spoof additional robots
into the network. We use the opensource toolbox in [42] to
obtain trust values from communicated WiFi signals by analyzing
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Fig. 2: Robots drive along six road segments to get from point A to point B. While
traversing the roadmap, robots estimate the congestion on their current segment
as either containing traffic (red) or not (green), and relay their estimates to the FC.

the similarity between different fingerprints to detect spoofed
transmissions. The works [30]–[33] model these trust values
αi ∈ [0,1] as a continuous random variable. We discretize the
sample space by letting A = {0,1} and setting ai = 1 if the
measured trust value is ≥0.5 and ai=0 otherwise.

a) Hardware Experiment: A group of N = 11 mobile
robots drive in a loop from a starting point A to point B, approx-
imately 4.5 meters apart, by randomly choosing to traverse one of
four possible paths made up of six different road segments. As the
robots drive between points A and B they are given noisy position
information for themselves and neighboring robots from an
OptiTrack motion capture system with added white Gaussian noise
with a variance of 1m2. This serves as a proxy for GPS-reported
measures used in crowdsourcing traffic estimation schemes like
Waze, Google Maps, and others. A road segment is considered
to have traffic (yi=1) if the number of robots on the segment is
≥2. Of the 11 robots in the group, 5 robots are legitimate, 3 are
malicious, and 3 are spoofed by the malicious robots (making them
also malicious). This leads to scenarios where hypothesis tests are
performed with only legitimate robots, only malicious robots, or
a combination of both, depending on where each robot is in the
roadmap. Malicious robots know the true traffic conditions and
report the wrong measurement with probability 0.99, i.e., PFA,M=
PMD,M =0.99. The empirical data from the experiment is stated

Parameters
PFA,L 0.0800 PMD,L 0.2100

Pr(Ξ=0) 0.6432 Pr(Ξ=1) 0.3568
Percent Error

2SA (Sec. III-A) 30.5 % A-GLRT (Sec. III-B) 29.0 %
Oracle 19.5 % Oblivious FC 52.0 %

Baseline1 50.8 % Baseline10 48.7 %

TABLE I: EXPERIMENTAL RESULTS

Fig. 3: Empirical distribution of the trust values gathered during the hardware
experiment for legitimate and malicious robots. The trust value is thresholded
to a=1 if it is ≥0.5, and a=0 otherwise.

Fig. 4: The percent error for multiple hypothesis test approaches when the propor-
tion of malicious robots is varied. The 2SA and A-GLRT outperform the Oblivious
FC and Baseline Approaches (B) when the majority of the network is malicious
(right side of the dashed line). The performance of the Oracle declines as the propor-
tion of malicious robots increases since it has less legitimate information to leverage.

in Table I, where Baseline1 and Baseline10 refer to the Baseline
Approach from [26] with parametersT and η set to (T=1,η=0.5)
and (T=10, η=5). We determined the parameters in Table I by
first running an experiment without performing hypothesis tests
and observing the behavior of the system compared to ground
truth. The trust values gathered using the toolbox in [42] led to
the empirical probabilities pα(ai = 1|ti = 1) = 0.8350 and
pα(ai = 1|ti = 0) = 0.1691 (see Fig. 3). The entire experiment
was run for 15 minutes with a frequency of 30 hypothesis tests
on each road segment per second. A test was only run if at least
one robot was present in the segment. This led to a total of 61233
hypothesis tests carried out. Of the 61233 tests, 29.9% consisted
of only legitimate robots, 28.1% of only malicious robots, and
42.0% contained both legitimate and malicious robots.

In our hardware experiment the 2SA and A-GLRT outperform
the Oblivious FC and the Baseline Approach. The Baseline
Approach exhibits a high percent error due to the fact that it relies
on the majority of the network being legitimate. This points to a
common vulnerability of reputation based approaches that assume
only a small proportion of the network is malicious.

b) Numerical Study: Next, we perform a numerical study
on the performance of each approach when the proportion of
malicious robots is varied. In the numerical study we use N=10
robots with Pr(Ξ=0)=Pr(Ξ=1)=0.5, PFA,L =PMD,L =0.15,
and PFA,M = PMD,M = 0.99 and perform hypothesis tests
over 1000 trials for each proportion of malicious robots. In
the simulation study the trust value distributions are fixed at
pα(ai = 1|ti = 1) = 0.8, pα(ai = 1|ti = 0) = 0.2, and the
proportion of malicious robots varies from 0 to 1. The results
of the simulation study are plotted in Fig. 4. From the plot it can
be seen that the 2SA and the A-GLRT perform well even after
the number of malicious robots exceeds majority since they use
additional trust information independent of the data.

V. CONCLUSION

In this paper we present two methods to utilize trust values
in solving the binary adversarial hypothesis testing problem.
The 2SA uses the trust values to determine which robots to
trust, and then makes a decision from the measurements of the
trusted robots. The A-GLRT jointly uses the trust values and
measurements to estimate the trustworthiness of each robot, the
strategy of malicious robots, and the true hypothesis.
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