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Abstract—This work considers the problem of Distributed
Mean Estimation (DME) over networks with intermittent con-
nectivity, where the goal is to learn a global statistic over the
data samples localized across distributed nodes with the help of a
central server. To mitigate the impact of intermittent links, nodes
can collaborate with their neighbors to compute local consensus
which they forward to the central server. In such a setup, the
communications between any pair of nodes must satisfy local
differential privacy constraints. We study the tradeoff between
collaborative relaying and privacy leakage due to the additional
data sharing among nodes and, subsequently, propose a novel
differentially private collaborative algorithm for DME to achieve
the optimal tradeoff. Finally, we present numerical simulations
to substantiate our theoretical findings.

I. INTRODUCTION

Distributed Mean Estimation (DME) is a fundamental sta-
tistical problem that arises in several applications, such as
model aggregation in federated learning [1], distributed K-
means clustering [2], distributed power iteration [3], etc. DME
presents several practical challenges, which prior research
[4]-[8] has considered, including the problem of straggler
nodes, where nodes cannot send their data to the parameter
server (PS). Typically, there are two types of stragglers: (i)
computation stragglers, in which nodes cannot finish their
local computation within a deadline, and (ii) communication
stragglers, in which nodes cannot transmit their updates due to
communication blockage [9]-[14]. The problem of communi-
cation stragglers can be solved by relaying the updates/data to
the PS via neighboring nodes. This approach was proposed and
analyzed in [15]-[17], where it was shown that the proposed
collaborative relaying scheme can be optimized to reduce
the expected distance to optimality, both for DME [15] and
federated learning [16], [17].

While the works [15]-[17] show that collaborative relaying
reduces the expected distance to optimality, exchanging the
individual data across nodes incurs privacy leakage caused
by the additional estimates that are shared among the nodes.
Nonetheless, this potential breach of privacy has not been
addressed in the aforementioned works. To mitigate the pri-
vacy leakage in DME, we require a rigorous privacy notion.
Within the context of distributed learning, local differential
privacy (LDP) [18] has been adopted as a gold standard
notion of privacy, in which a user can perturb and disclose
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a sanitized version of its data to an untrusted server. LDP
ensures that the statistics of the user’s output observed by
adversaries are indistinguishable regardless of the realization
of any input data. In this paper, we focus on node-level LDP
where the neighboring nodes, as well as any eavesdropper
that can observe the local node-node transmissions during
collaborations, cannot infer the realization of the user’s data.

There has been extensive research into the design of
distributed learning algorithms that are both communication
efficient and private (see [19] for a comprehensive survey and
references therein). It is worth noting that LDP requires a
significant amount of perturbation noise to ensure reasonable
privacy guarantees. Nonetheless, the amount of perturbation
noise can be significantly reduced by considering the inter-
mittent connectivity of nodes in the learning process [20].
The intermittent connectivity in DME amplifies the privacy
guarantees; it provides a boosted level of anonymity due to
partial communication with the server. Various random node
participation schemes have been proposed to further improve
the utility-privacy tradeoff in distributed learning, such as
Poisson sampling [21], importance sampling [22], [23], and
sampling with/without replacement [20]. In addition, Balle et
al. investigated in [24], the privacy amplification in federated
learning via random check-ins and showed that the privacy
leakage scales as O(1/1/n), where n is the number of nodes.
In other words, random node participation reduces the amount
of noise required to achieve the same levels of privacy that are
achieved without sampling.

So far, works in the privacy literature, such as [18]-
[27], have not considered intermittent connectivity along with
collaborative relaying, where nodes share their local updates
to mitigate the randomness in network connectivity [15]-[17].
Thus, this paper aims to close this theoretical gap. To this end,
we first show that there exists a tradeoff between collaborative
relaying and privacy leakage due to data sharing among
nodes for DME under intermittent connectivity assumption.
We introduce our system model and proposed algorithm in
§II, followed by its utility (MSE) and privacy analyses in
§III and §IV respectively. We quantify the utility (MSE) and
privacy tradeoff by formulating it as an optimization problem
and solve it approximately due to its non-convexity. Finally,
we demonstrate the efficacy of our private collaborative algo-
rithm through numerical simulations. Due to space limitations,
details can be found in the online extended version [28].
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Ps

Fig. 1: An intermittently connected distributed learning network. Blue
and black dotted lines denote intermittent node-PS and node-node
connections. Communication between any two nodes must satisfy
local differential privacy constraints.

II. SYSTEM MODEL FOR PRIVATE COLLABORATION

Consider a distributed system with n nodes, each having a
vector x; € R, |x;]l2 < R for some known R > 0. The
nodes communicate with a PS, as well as with each other
over intermittent links with the goal of estimating their mean,
X2 15" x; at the PS (Fig. 1). For any estimate X of the
mean, the evaluation metric for any estimate is the MSE, given
by £ 2 E|[x — x|

A. Communication Model

As shown in Fig. 1, node ¢ can communicate with the PS
with probability p;, with the link modeled using a Bernoulli
random variable 7; ~ Ber(p;). Similarly, node ¢ can commu-
nicate with another node j with probability p;;, i.e., 7; ~
Ber(p;;). The links between different node pairs are assumed
to be statistically independent, i.e., 7; L 7; for i # j, 735 L 7o
for (4, 7) # (m,1), (j,1) # (m,1), and 7;; L 7, for i, 5,1 € [n].
The correlation due to channel reciprocity between a pair of
nodes i, j € [n] is denoted by Ey; ;3 = E[r;;7;:]. We assume
that E{Z,]} > DijPjis ie., ]P)(Tij = 1|7'” = 1) > IP)(T»L'J' = 1)
Furthermore, p;; = 1 V i € [n], and if node i can never
transmit to j, we set p;; = 0. We denote p = (p1,...,pn)
and P = (pij)i jem) € [0,1]"°".

B. Privacy Model

The nodes are assumed to be honest but curious. They are
honest because they faithfully compute the aggregate of the
signals received; however, they are curious as they might be
interested in learning sensitive information about nodes. Each
node uses a local additive noise mechanism to ensure the
privacy of its transmissions to neighboring nodes. We consider
local privacy constraints, wherein node ¢ trusts another node
j to a certain extent and hence, randomizes its own data
accordingly when sharing with node j by using a synthetic
Gaussian noise (see [18]) to respect the privacy constraint
while maintaining utility. We present a refresher on differential
privacy and Gaussian mechanism in [28, App. A].

C. Private Collaborative Relaying for Mean Estimation

We now introduce our algorithm, PriCER: Private
Collaborative Estimation via Relaying. PRICER is a two-stage
semi-decentralized algorithm for estimating the mean. In the

Algorithm 1 PriCER-Stage 1 for local aggregation
Input: Non-negative weight matrix A
Output: x; for all i € [n]

1: for each i € [n] do

: Locally generate x;

2

3 Transmit X;; = a;;X; +1n;; to nodes j € [n] : j #
4: Receive Xj; = 7j;(a;;x; +nj;) from j € [n] : j #4
5: Set X;; = ;X + Ny,

6 Locally aggregate available signals: x; = >
7: Transmit X; to the PS

8: end for

JjEN Xji

Algorithm 2 PriCER-Stage 2 for global aggregation

Input: 7;x; for all i € [n]

Output: Estimate of the mean at the PS: X
1: for Each i € [n] do
2 Receive 7;X;

3: end for

4

: Aggregate the received signals: x=1 >

n £ui€[n] TiX

first stage, each node j € [n] sends a scaled and noise-added
version of its data to a neighboring node ¢ € [n] over the
intermittent link 7;;. The transmitted signal is given by

Xji = Tji(0giX; + nji) (1
Here, oj; > 0 is the weight used by node j while sending
to node 4, and nj; ~ N(0,02I,) is the multivariate Gaussian
privacy noise added by node j. Here, o2 is the variance of
each coordinate, and I; € R**¢ is the identity matrix. We
denote the weight matrix by A = (a;);, je[n)- Consequently,
node ¢ computes the local aggregate of all received signals as
> milagixg +ny). ()
Jj€ln]

We quantify our privacy guarantees using the well-
established notion of differential privacy [18]. By observing
X;i, node i should not be able to distinguish between the
events when node j contains the data x; versus when it
contains some other data xj In other words, we are interested
in protecting the local data of node j from a (potentially
untrustworthy) neighboring node i. We assume that the privacy
noise processes added by different nodes are uncorrelated, i.e.,
E[n; n;,] = 0 forall4,j,1,m € [n], when i, j, 1, m are not all
equal. In the second stage, each node ¢ transmits X; to the PS
over the intermittent link 7;, and the PS computes the global
estimate. Algs. 1 & 2 provide the pseudocode for PRICER.

X; =

III. MEAN SQUARE ERROR ANALYSIS

The goal of PRICER is to obtain an unbiased estimate
of X at the PS. Since each node sends its data to all other
neighboring nodes, the PS receives multiple copies of the same
data. Lemma 3.1, below gives a sufficient condition to ensure
unbiasedness. This is the same condition as [15, Lemma 3.1],
and holds true even for PriCER.
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Lemma 3.1: Let the weights {cv;}; jefn satisfy
Z Dpipijai; = 1, 3)
j€ln]
for every i € [n]. Then, E[% [{xibiem)| =% =221 %
We prove this lemma in [28, App. B]. Under this unbiased-
ness condition, we derive a worst-case upper bound for the
MSE in Thm. 3.2.
Theorem 3.2: Given p,P and A such that (3) holds, and
n;; ~ N(0,0%I,) Vi,j € [n], the MSE with PriCER satisfies
E|x - /|3 < R%0{,(p. P, A) + 03, (p. Po), (&)
where o2, (p, P, A) is an upper bound on the variance induced
by the stochasticity due to the intermittent topology given by

1
ot (p,P,A) £ o) Z pi(1 = pj)pijprjcvijou;
i,5,l€[n]

+ Y pipi (1= pij)ad; + > pipi By —papi) v |

i,j€[n] i,l€[n]
and agr(p7 P, o) is the variance due to the privacy given by
1
op(p, P o) £ ) > pipijo’d. ©)
i.3€[n]

Thm. 3.2 is derived in [28, App. C]. From (4), we see that
Ugr(p7 P, o) is the price of privacy. For a non-private setting,
i.e., 0 = 0, the privacy induced variance Ugr(p7 P,o) =0, and
Thm. 3.2 simplifies to [15, Thm. 3.2]. In the following section,
we introduce our privacy guarantee and the corresponding
constraints leading to a choice of weight matrix A for the
optimal Utility (MSE) - Privacy tradeoff of PRICER.

IV. PRIVACY ANALYSIS

PRICER yields privacy guarantees for two reasons: (i) the
local noise added at each node, and (ii) the intermittent nature
of the connections. We consider the local differential privacy
when any eavesdropper (possibly including the receiving node)
can observe the transmission from node ¢ to node j in stage-
1 of PRICER. Let us denote the local dataset of node ¢ as
D; C R In DME, D; is a singleton set and by observing the
transmission from node ¢ to node j, the eavesdropper should
not be able to differentiate between the events x; € D; and
x; € D;, where x| # x;. The following Thm. 4.1 (derived in
[28, App. D]) formally states this guarantee.

Theorem 4.1: Given n;; ~ N(0,0%1,), x;,x; € R? with
HXZ'H27 HX”|2 <R, and any 5” S (0, 1}, for pairs (€¢j7pij5ij)
satisfying

1
o= [2 M%)} P2ouR e 50, and,
0 lf pij = O,
the transmitted signal from node 7 to node 7, X;; = 7i; (% +
n;;) is (€, pij0;5)-differentially private, i.e., it satisfies
Pr(iij € S|XZ € DL) < 6€”Pr(iz‘j € S|X; € Di)—l—pijéij, @)
for any measurable set S.

Setting J := p;;0;;, we can immediately see that intermittent
connectivity inherently boosts privacy, since for the same §

(6)

for any pair 4,j € [n], the privacy level ¢;; is proportional
to In(1.25p;; /5)%, implying that a smaller p;; leads to a
stronger privacy guarantee. Additionally, from (6), the privacy
guarantee ¢;; is directly related to the weight ;. That is,
if node ¢ trusts node j more, ¢;; can be relatively large, and
consequently, node 7 can assign a higher weight to the data
it sends to node j. On the other hand, if node ¢ does not
trust node j as much, a smaller value will be assigned to
a;j. In other words, for the same noise variance o, node ¢
will scale the signal «;; so as to reduce the effective signal-
to-noise ratio in settings where a higher privacy is required.
Finally, when p;; = 0, PRICER ensures «;; = 0, implying
€;; = 0, i.e., perfect privacy, albeit zero utility. Our weight
optimization (§V) aims to minimize the MSE subject to the
privacy constraints imposed by (6).

V. PRIVACY CONSTRAINED WEIGHT OPTIMIZATION

When deriving the utility-privacy tradeoff, our objective is
to minimize the MSE at the PS subject to desired privacy
guarantees, namely (¢, ;, ;;pi;) node-node differential privacy.
Here, ¢;;,0;; are pre-designated system parameters that quan-
tify the extent to which node ¢ trusts node j (or alternatively,
how much it trusts the communication link ¢ — j against an

eavesdropper). More specifically, we solve the following:
IEin R2Ut2v(p7 Pa A) + Of)r(pa Pa U)
st g 2> 0,Vije [n],
Z PjpijCij = 1, Vi S [TL],
j€ln]

9.,
{2 ln<léﬁ)} ZayR <e¢; Vi,j € [n], (privacy)
[ o

1]

(non-negative weights)

(unbiasedness)

o >0. (privacy). (8)
The above optimization (8) is not necessarily convex. Fur-
thermore, the objective is also not separable with respect to A
and o. Thus, in what follows, we propose an alternate mini-
mization scheme, where we iteratively minimize with respect
to A and o; one variable at a time, keeping the other fixed.
We tie up the components of §V-B and §V-A and present the
complete PRICER weight and variance optimization algorithm
in Alg. 3. For clarity of presentation, we assume that p; > 0
for all ¢ € [n], so we can have a simple initialization rule.

A. Optimize the variance o for given weights A

The non-negative weights, unbiasedness, and privacy con-
straints are present in (8) due to our problem formulation.
However, when using alternating optimization we must choose
a variance that can fulfill the unbiasedness condition in the
weight optimization stage. In other words, PriCER needs to
add a minimum amount of noise, oy, in order to meet privacy
constraints and unbiasedness conditions simultaneously. Thus,
we introduce a necessary condition to ensure a non-empty
feasible set when we optimize the weight for the chosen o.

We visualize this in Fig. 2. Note that for a fixed ¢ € [n],
the unbiasedness constraint together with o;; > 0, defines a
hyperplane H in the positive quadrant of R™ with respect to the
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Feasibility Condition:

@2 N\ -1
. 1.25\]77
o > 2R max; (Zpﬂ)ug] [2111 ( 5, )] )
J=12 'J
! -y Privacy Constraint:
P2piz [ " 1 =1
1.25\132
o Qijmax £ €0 ([2 In ( 5 )} 2R>1]' =1,2
i, max @--nnnnnmeet —
Solution Space
Unbiasedness Constraint:
, P1Pi i1 + Papisciiz = 1
-
(0,0) Qit,max 1 Qa

Pipin
Fig. 2: Feasible solution for the optimization problem in (8) with
n = 2 nodes and ¢ = 1, 2. Note that a1; = a2 = 1.

optimization variables {c;} c[n). Moreover, for i € [n], the
constraints av;; > 0 and v < ¢;;0 - ([2 11(1(1.25/@14]4)]%ZR)*1
V j € [n], together define a box B aligned with the standard
basis of R™ with one of the vertices at the origin. The edge
length of this box along any of the axes is proportional to
o When o0 = 0, i.e., no privacy noise is added, B = 0,,
where 0,, denotes the origin of R™. Since H does not pass
through 0,,, (11) is infeasible. This implies there is a minimum
value of o so that B is big enough to have a non-zero
intersection with H. More specifically, we require o such that

. Zje[n] DjPij€ij ([2 111(15.25)} éQR)

> 1,Vi € [n], and

hence, we have the last feasibility constraint in (9), where
-1

9ij

1.25 . 1
Ohr = 2R max;e(y ijpijéij [2 IH(T)] : > 0.

j€[n] =i
We now fix A in (9) and minimize the PIV, i.e.,

1 2
min — Y pipijo’d

i,j€[n]
1.25\7% 20;,R o
s.t.: {2 1n<5”)} aj <¢; Vi, j€[n],
0 > Othr- )]

It can be shown [28, App. E-A] that the update rule is:

0 = max<{ max [21n<1'—25>} 20 , Othr (10
i,j€[n] 0ij Eij

B. Optimize the weights A for given variance o

Firstly, for a fixed o, we optimize the weights A, i.e.,
n}in R?0Z (p, P, A)

s.t.roa; >0, Vi, j e [n], Z pipijai; =1, Vi€ [n],

jJ€E[n]

1
1.251 1% 2a4,R .
{2 ln<é—)} U] <€; Vi, j€n]

(11)
ij

The objective function of problem (11) is not convex. With
this in mind, we adopt an approach similar to [15], [17]
wherein (11) is minimized in two iterative stages — (i) first,
a convex relaxation of (11) is minimized using Gauss-Seidel
method, and (ii) the outcome is subsequently fine-tuned again,

using Gauss-Seidel on (11). The convex relaxation is chosen
to be:

mjin R?52 (p,P,A) s.t. the same constraints as (11), (12)

where the new objective function is,

_ 1
ot (p,P,A) £ 3 Z pi(1 = pj)pijprjcuijou;
i,5,l€[n]

+Zpijpj(1 — pij)a; +ZP¢P1(E{i,z} —papii)og |, (13)

i,j€[n] i,l€[n]

We delegate the complete derivations to [28, App. E] and
only mention the update rules here. Let us denote the i*" row
of A as A;. Since the objective functions of both (11) and (13)
are separable with respect to A;, we can apply Gauss-Seidel
iterations on both (12) and subsequently on (11).

Minimizing the convex relaxation (12): Let us denote
the iterate at the (*" Gauss-Seidel iteration of the convex
relaxation (13) as A9, Then, the update rule is given by

A — ALY
! Agéfl) otherwise,

where 1{,{‘ denotes the indicator function. In one iteration,
only the i*" row, i.e., the weights assigned by the i*" node for
its neighbors, are updated. Since Gauss-Seidel performs block-
wise descent, the update KEZ) = {Qs;}i,je[n) can be obtained
by formulating the Lagrangian [28, App. E-B]. Let us denote
Wij égija([an(%)]%ZR)71 and

(e-1) +
—2(1 —p, i PO A
aij()\i)é< ( J)Zze[,].z;é 15 %5 > (15)

if i = £ mod n +n g mod n=0}, (14)

2[(1 = pjpiz) + pi(Ei 1 /i —pji)]
We separate the solution into three scenarios:
a) p; < 1and pjp;; < 1forall j € [n]: In this case,

;= min{d;(Ai), wij }, (16)
where a;;(\;) is given by
~ aii( A if pip;; > 0,
0 if Pjibiy = 0.

Here, (a)t £ max{a,0}, and \; > 0 is set such that
Zje[n] pipijQ;; = 1. A; is found using bisection search.

b) p; <1 and there exists j 7# ¢ such that
P;jpi; = 1: Denote S; = Zke[n] ]I{Pkpikil}{aik' If S, >1,
then we choose, @;; = w;;/.S; for all j such that p;p;; = 1,
and @;; = 0 otherwise. If S; < 1, we set a;; = w;; for
nodes j that satisfy p;p;; = 1, and subsequently allocate the
residual 1 — S; of the unbiasedness condition to minimize
the objective function. Similar to (16), this will yield that
&;; = min{a;;(X\;), w;; }, where &;;();) is given by

~ @i (i if p;pi; € (0,1),
y(a) = § a0 € 0.1, g
0 if DPjpij = 0.
Here, \; > 0 is such that Zj:pjpije(ﬂ,l) pjpij(’iij =1-5;.
c) p; = 1: In this case, to preserve privacy we set
)1 ifj=1,
a;; = {0 (19)

otherwise.
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Algorithm 3 MSE-Privacy tradeoff: Joint opt. of A and o

Input: Connection probabilities: p > 0, P, Pairwise privacy
levels: {¢;;,0;;}i je[n], Maximal iterations: K, Ly, Lo.
Output: Weight matrix A®) and privacy noise variance o(%)
that approximately solve (8) .
Initialize: 0(©) = &), and A©) = diag( ’p%)

1: for k< 0to K—1do

2 E—Ek+1.

3 Set A0 A(R—D),

4

5

1
P’

Initialize ¢ + 0.
for ¢ + 0 to L; — 1 minimize convex relaxation, do
{+—L41.
i+ ¢ mod n+n-ly mod n=0}-
Compute ng’[) according to (15)-(19).
Set AEM) according to (14).

6: end for
7: Warm initialize A*:0) « AK®L)  rejnitialize ¢ < 0.
8: for / + 0 to Ly — 1 fine tune, do

{0+ 1.

i L mod n+mn-1g mod n=o}-
Compute ng’é) according to (16)-(20).
Set AEM) according to (14).
9: end for
100 Set A A(RL)
11: For weights A®), set o(*) according to (10).
12: end for

Fine tuning (11): We now fine tune the above solution by
setting it as a warm start initialization and performing Gauss-
Seidel on (11). Then, the update equation for fine tuning is of
the same form as (14) and (16)-(19). However, we substitute
the updated quantity c;;(\;) for this case, which is now

1 (¢-1)
— | —2(1 - py) DLy
2(1 = p;pij) Jle%ﬂ o

(e-1) *
=2pi(E(i jy/pij — pji)ay;  + )\z>>

VI. NUMERICAL SIMULATIONS

aij(Ni) =

(20)

In Fig. 3, we consider a setup with n = 10 nodes that can
collaborate over an Erdds-Rényi topology, i.e., P;; = p. for
j # i and P;; = 1. The nodes can communicate to the PS with
probabilities p = [0.1,0.1,0.8,0.1,0.1,0.9,0.1,0.1, 0.9, 0.1],
i.e., only three clients have good connectivity. Even though
any node can communicate with any other node with a non-
zero probability, they do not do so as they only trust a small
number of immediate neighbors, which lies along the x-axis.
If node 7 trusts node j, we set €;; = €nigh = 103 (low privacy),
otherwise, €;; = €low = 0.1 (high privacy). Moreover, €; =
€high- We also set §;; = § = 1073. The y-axis shows the
(optimized) objective value of (8). As is evident from Fig. 3,
the MSE decreases as nodes trust more neighbors, as expected.

In Fig. 4, we consider that the data with d = 1000 at each
node is generated from a Gaussian distribution A(0, 1), raised

PriCER: Erdos-Renyi graph G(10, p.)

~
S

@
]

o
o

w
°

Objective value (MSE)
N &

-
°

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

No. of trustworthy neighbors
Fig. 3: Variation of worst-case MSE with trustworthy neighbors

Ring Topology: pPgood = 0.9

0.275 -
—— Naive
© o.250 —— Collaboration
@ 0.225
T
@ 0.200
—
g 0.175
(-3
0 0.150
c
[ 0.125
[T}
S o.100
0.075

1 2 3 4 5 6 7 8 9
No. of good connectivity nodes
Fig. 4: Variation of MSE with number of good connectivity nodes

to the power of 3, and normalized — resulting in a heavy-tailed
distribution. Consequently, if a node that has a vector with a
few large coordinate values is unable to convey its data to the
PS due to a failed transmission, this can incur a significant
MSE. In this setup only some nodes have good connectivity
to the PS, i.e., p; = Pgood = 0.9, and the remaining have p; =
Pbad = 0.2 In the naive strategy, the PS averages whatever
it successfully receives, i.e., it computes the mean estimate
as % Zie[n} T;X;. Whereas, in our collaborative strategy, each
node trusts 6 other neighbors and can communicate with them
with a probability P;; = 0.8. Clearly, PRICER achieves a
lower MSE than the naive strategy. The plots are averaged
over 50 realizations.
VII. CONCLUSIONS

In this paper, we have considered the problem of mean
estimation over intermittently connected networks with col-
laborative relaying subject to peer-to-peer local differential
privacy constraints. The nodes participating in the collabo-
ration do not trust each other completely and, in order to
ensure privacy, they scale and perturb their local data when
sharing with others. We have proposed a two-stage consensus
algorithm (PRICER), that takes into account these peer-to-
peer privacy constraints to jointly optimize the scaling weights
and noise variance so as to obtain an unbiased estimate of
the mean at the PS that minimizes the MSE. Numerical
simulations have shown the improvement of our algorithm
relative to a non-collaborative strategy in MSE for various
network topologies. Although this work considers peer-to-peer
privacy, there can be other sources of privacy leakage such
as at the PS. Moreover, adding correlated privacy noise may
help reduce the MSE even further. In future work, we plan to
include investigating these questions in more detail.
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