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Abstract

Training deep neural networks (DNNs) is time-consuming.
While most existing solutions try to overlap/schedule com-
putation and communication for efficient training, this paper
goes one step further by skipping computing and communica-
tion through DNN layer freezing. Our key insight is that the
training progress of internal DNN layers differs significantly,
and front layers often become well-trained much earlier than
deep layers. To explore this, we first introduce the notion
of training plasticity to quantify the training progress of
internal DNN layers. Then we design EGERIA, a knowledge-
guided DNN training system that employs semantic knowl-
edge from a reference model to accurately evaluate individual
layers’ training plasticity and safely freeze the converged
ones, saving their corresponding backward computation and
communication. Our reference model is generated on the fly
using quantization techniques and runs forward operations
asynchronously on available CPUs to minimize the overhead.
In addition, EGER1A caches the intermediate outputs of the
frozen layers with prefetching to further skip the forward
computation. Our implementation and testbed experiments
with popular vision and language models show that EGER1A
achieves 19%-43% training speedup w.r.t. the state-of-the-art
without sacrificing accuracy.
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1 Introduction

Recent advances in deep learning (DL) benefit significantly
from training larger deep neural networks (DNNs) on larger
datasets. Due to growing model sizes and large volumes
of data, DNNs have become more computationally expen-
sive to train, raising the cost and carbon emission of large-
scale training [65]. Many recent DL research works focus
on improving parallelism and pipelining via sophisticated
computation-communication overlapping or scheduling to
build more efficient systems and reduce training time [39,
61, 67]. Nevertheless, while approaching linear scalability
can reduce the time to train a model, the total amount of
computation requirement remains the same.

In this paper, we move one step further to explore: can
we reduce the total computation (and communication) in large
DNN training? We propose a knowledge-guided training sys-
tem, EGERIA, to accelerate DNN training via computation-
communication freezing while still maintaining accuracy.
Our key insight is that the training progress of internal DNN
layers differs significantly, and front layers can become well-
trained much earlier than deep layers. This is because DNN
features transition from being task-agnostic to task-specific
from the first to the last layer [95, 96]. Thus, the front layers
of a DNN often converge quickly, while the deep layers take
a much longer time to train, as generally observed in both
vision and language models [75, 79], experimentally vali-
dated in §2.3. EGERIA can safely freeze these converged DNN
layers earlier, saving their corresponding computation and
communication expenses without hurting model accuracy.

While freezing layers can reduce training cost, prema-
turely freezing under-trained layers will hurt the final accu-
racy. We observe that in transfer learning, freezing layers is
mainly used for solving the overfitting problem [20]. While
techniques such as static freezing [46] and cosine anneal-
ing [11] can reduce backward computation cost, accuracy
loss is a common side effect. Thus, the main challenge of
extending layer freezing to general DNN training is how to
maintain accuracy by only freezing the converged layers.
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To address this challenge, EGERIA introduces the notion of
training plasticity' to quantify a layer’s training progress and
safely detect the converged DNN layers to avoid premature
freezing. To this end, EGERIA uses a reference model, which
is the proxy for semantic knowledge, to evaluate DNN lay-
ers’ plasticity. The reference model, in essence, is a trained
compressed DNN with the same architecture as the model be-
ing trained to understand layer-wise performance (details in
§4.1). We compare the intermediate activations (internal out-
puts) between the training model and the reference model
elicited by the same data batch to measure the plasticity.
When the plasticity becomes stationary, it implies that the
layer is converged and can be frozen safely (§4.2). In addition,
EGERIA can unfreeze the frozen layers to continue training
with learning rate decay. Our approach is informed by recent
advances in knowledge distillation research that suggest the
same input data (images and word vectors) will elicit similar
pair-wise activation patterns in trained models [4, 64, 83].
Compared to the straightforward metric of gradient’s granu-
larity or norm against a hard label, intermediate activation
as soft distribution is proved to be more semantically mean-
ingful, and thus more accurate by ML research (§4.2.1).

EGER1A adaptively generates the reference model by in-
stantly compressing a snapshot of the training model via
quantization [24] on CPUs after the bootstrapping stage [2, 3]
(early iterations during which the training model converges
quickly). Large DNNs are robust to quantization, accord-
ing to our evaluation and ML literature [48]. EGERIA also
profiles in the background to make sure the CPU-efficient
reference model can provide accurate plasticity evaluation.
The reference model exploits available CPU cores during
GPU-heavy training, running forward operations parallel to
the GPU training using the same input data in a non-blocking
and asynchronous fashion. Hence, the system overhead is
minimal and can be well hidden. In the remaining training
process, EGERIA updates the reference model using the lat-
est snapshots to stabilize the plasticity curve. Essentially,
we trade off small CPU resources for maintaining accuracy
when freezing layers.

Freezing the front layers can save the backward computa-
tion and parameter synchronization. Nevertheless, we find
that the forward pass still takes up to 35% of the time of
an iteration. We observe that, in DNN training, the frozen
front layers will produce the same forward output given the
same input. Prior work on inference also shows that caching
forward results can improve performance [8]. To take ad-
vantage of this, EGERIA saves the intermediate activations of
the frozen layers to the disk, prefetches the saved activation
tensors to the GPU memory, and continues training the re-
maining layers from the cached activations in the following

! Plasticity quantifies a layer’s training progress toward convergence, which
is borrowed from neuroplasticity in neural science and child develop-
ment [15]. Basically, a DNN layer’s training plasticity will gradually decrease
and become stable as it converges.
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epochs. As the data loader knows the future data sequence,
it is possible to prefetch relevant activations without stalling.
Caching and prefetching are also compatible with random
data augmentation. Therefore, we further save the frozen
layers’ forward computation without altering the training
data sequence (§4.3).

We implement EGERI1A as a framework-independent Python
library (§5). Existing code can work with EGERIA with mini-
mal changes. We evaluate EGERIA using seven popular vision
and language models on five datasets (§6). It achieves 19%-
43% training speedup than the state-of-the-art frameworks
and can reach the target accuracy.

To summarize, the key contributions of EGERIA include:
(1) leveraging semantic knowledge to save the backward
computation and communication via DNN layer freezing
while maintaining accuracy; (2) building an efficient sys-
tem to implement the idea of knowledge-guided training;
and (3) caching the intermediate results with prefetching
to further save the forward pass of the frozen layers with
negligible overheads.

2 Background and Motivation
2.1 DNN Training

Modern DNNs consist of dozens or hundreds of layers that
conduct mathematical operations. Each layer takes an input
tensor of features and outputs corresponding activations. We
train a DNN by iterating over a large dataset many times and
minimizing a loss function. The dataset is partitioned into
mini-batches, and a pass through the full dataset is called
an epoch. A DNN training iteration includes three steps:
(1) forward pass, (2) backward pass, and (3) parameter syn-
chronization. The forward and backward passes require GPU
computation. In each iteration, the forward pass (FP) takes
a mini-batch and goes through the model layer-by-layer to
calculate the loss regarding the target labels and the loss
function. In the backward pass (BP), we calculate the parame-
ter gradients from the last layer to the first layer based on the
chain rule of derivatives regarding the loss [56]. At the end
of each iteration, we update the model parameters with an
optimization algorithm, such as stochastic gradient descent
(SGD) [10]. In data parallel distributed training, indepen-
dently computed gradients from all workers are aggregated
over the network to update the shared model.

2.2 Existing Optimizations for DNN Training

Training large DNNs is computation- (and communication-)
intensive due to the ever-growing data volumes and model
size [36, 61, 67]. One important direction for training acceler-
ation from the system perspective closely related to EGER1IA
is computation-communication overlapping and scheduling.
Baseline training frameworks (e.g., TensorFlow, PyTorch,
and Poseidon [99]) optimize distributed performance by is-
suing the gradient transmission once a layer finishes its
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Figure 1. Post hoc layer convergence analysis with PWCCA.
A lower score means the layer converges better. Layer mod-
ule 2.5 is the first half of Layer module 3. The learning rate
changes at 100th and 150th epochs and reboosts training.
We can freeze layers when they are stationary and unfreeze
them when the learning rate decreases extremely.

backward computation so that the deeper layers can over-
lap their communication with the front layer’s BP. Priority-
based communication scheduling systems (e.g., ByteSched-
uler [67], P3 [36] and TicTac [25]) leverage the layer-wise
structure information to prioritize the front layers in com-
munication which try to overlap the communication with
FP. Pipelining solutions [33, 61, 94] add inter-batch pipelin-
ing to intra-batch parallelism to further improve parallel
training throughput. While all these solutions can optimize
computation-communication efficiency, the total computa-
tional cost remains the same.

Other methods. There are other optimizations, such as
gradient sparsification [50] and quantization [88], to reduce
communication volumes. These methods are largely orthog-
onal to EGERIA, and we will overview them in §7.

2.3 Opportunities of DNN Layer Freezing

In this paper, we explore the idea of reducing computation
and communication costs through DNN layer freezing. In the
following, we first show the idea and its potential, and then
lay out the challenges, motivating the design of EGERIA.

Motivation for layer freezing. Recent efforts have shown
that the front layers primarily extract general features of the
raw data (e.g., the shape of objects in an image) and often
become well-trained much earlier, while deeper layers are
more task-specific and capture complicated features output
from front layers [73, 95]. Our work is also inspired by trans-
fer learning [31, 41, 52, 71]. When fine-tuning a pre-trained
model on a new task, we find that ML practitioners can freeze
(i.e., fix layer’s weights) the front layers or only fine-tune
them for a few iterations and focus on training the deep
layers on the new dataset.
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Figure 2. Prematurely freezing layers with transfer learning
techniques can hurt the final accuracy in general training.

To demonstrate the potential in general training (i.e., not
fine-tuning), we use PWCCA [60], a post hoc layer conver-
gence analysis tool, to track the training progress of different
layers of ResNet-56 [27] as an example. ResNet-56 is a popu-
lar model for image classification on the CIFAR-10 dataset,
and it consists of three layer blocks (refereed to as mod-
ules or stages), where each module has 18 basic blocks of
successive layers. PWCCA compares the intermediate ac-
tivation (i.e., the output feature map produced by a DNN
layer) with a fully-trained model. A low PWCCA score (0-1
range) suggests the layer is converged to the final state. We
can clearly find some freezable regions in Figure 1: e.g., for
layer 1, during the 50th—90th, 120th-140th, and after the
160th epoch, its score becomes stable, meaning it is tem-
porarily converged; other layers also show some relatively
stable regions. The scores drop at the 100th and 150th epochs
because the learning rate decreases as scheduled; after that,
they soon converge again. These patterns reveal a natural
strategy: Freeze the layers when their performance is stable
and unfreeze them when the learning rate decreases.

We find that if we freeze the layers in their freezable
regions, by summing up the #parameters when a layer’s
PWCCA is stable in Figure 1, we can reduce the computa-
tion costs by 45% in theory! For natural language processing
(NLP) models, this potential can be even larger because the
front layers usually contain more parameters than CNNs.

Challenges in layer freezing. Although this opportunity
has been pointed out by ML community, it is not feasible
to run the hypothetical post hoc analysis (e.g., PWCCA) in
practice. Quantifying the training progress of a layer is diffi-
cult due to the lack of prior knowledge (e.g., a trained model).
Furthermore, we find that prematurely freezing layers using
transfer learning techniques can substantially hurt a model’s
accuracy. To demonstrate this, we investigate the impact of
static freezing [46] and a gradient-based metric [51], both
from fine-tuning pre-trained models, on the final accuracy
when training ResNet-56. In Figure 2, we first fix the param-
eters of each layer module at the 20th/50th epoch and show
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their validation accuracies alongside the baseline. The de-
graded accuracies indicate that freezing layers prematurely
can hurt accuracy by nearly 2% which is huge for such mod-
els. We test freezing with a gradient-based metric [51] to
reach a similar 20% speedup, but constantly find ~1% non-
negligible accuracy loss. According to the benchmark [1],
proposing a DNN architecture or training method usually
improves the accuracy by less than one percent, so the such
loss could offset the benefit of a new ML technique.? This
motivates an accurate way to freeze layers in general train-
ing beyond fine-tuning. We further compare EGERIA with
existing freezing proposals in §7.

3 EGERI1A Overview

We propose EGERIA, an efficient DNN training system that de-
tects and freezes the converged layers in a practical manner.
Lacking prior knowledge of the hypothetical fully-trained
model, EGERIA introduces a self-generated reference model
during training to provide semantic knowledge for evalu-
ating a layer’s convergence with minimal system overhead
(§4.1). The reference model is essentially an accompanying
lightweight DNN with the same architecture as the model
being trained to match their internal layers and understand
layer-wise performance.

To quantify the training progress, EGERIA defines a system
metric of plasticity. A layer’s plasticity is formulated as the
difference between the intermediate activation tensors of the
training model and its reference model given the same mini-
batch input.® The plasticity changes as the model evolves
over training, and EGERIA considers the layers with stable
plasticity values to be converged, whereby EGERIA freezes
these layers without hurting the accuracy (§4.2).

To validate the effectiveness of plasticity in capturing the
training progress, we use ResNet-56 and generate a reference
model with the same architecture but pre-trained for only
50 epochs. We measure the plasticity of ResNet-56’s first
three layer modules during training. In Figure 4a, the top
black curve shows the validation accuracy, and the other
three indicate the derived plasticity for each layer module.
We find that, in the first ~30 epochs, the plasticity of the
first two modules converges quickly to a low level while
the plasticity of layer module 3 is much higher and unstable.
These layers show different trends of plasticity, more clearly
after normalization in Figure 4b. We find similar freezable
regions when using the post hoc analysis (Figure 1), e.g.,
layer 1 converges near the 50th epoch, while layer 3 only
converges at the last epochs.

2Since AutoFreeze’s implementation is deeply coupled with Transformers,
we optimize the performance on ResNet training to the best of our ability.
3We measure the difference using the Similarity-Preserving loss (SP
loss) [83], a novel loss function recently developed to compare two activa-
tion tensors for CV tasks and also echoed in NLP [64]. Unlike PWCCA [60]
for post hoc convergence analysis, SP loss focuses on capturing the semantic
difference for DNN training, making it a perfect fit for plasticity evaluation.
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Plasticity requires no prior knowledge as PWCCA, only a
training-in-progress model for reference, and accurately cap-
tures the trend of layer convergence. We conduct correctness
analysis and find that plasticity shows similar patterns of lay-
ers’ convergence as PWCCA but has ~10x lower overhead
and optimized as a loss rather than for visualization (details
deferred to the full version). The algorithm behind plasticity
is tested performant for various tasks compared to traditional
gradients and other activation-based metrics [64, 83].

Training life cycle with EGERIA. Figure 3 describes the
high-level workflow of EGERIA in two stages.

(1) Bootstrapping stage: When a job is submitted, EGERIA
starts to monitor the job. The bootstrapping stage is a critical
period of training, during which the DNN is sensitive and
no parameter is eligible for freezing, according to recent re-
search [2]. EGERIA monitors the changing rate of the training
loss (in line with the later plasticity monitoring) and moves
to the next stage as the DNN moves out of the critical period.

(2) Knowledge-guided training stage: EGERIA generates the
reference model on the CPU using the latest snapshot of the
training model. Afterwards, EGERIA collects the intermedi-
ate activation of the frontmost non-frozen layer of the full
model and its reference model for plasticity evaluation (§4.1),
freezes the layer once it reaches the convergence criteria
(§4.2), and moves to the next active layer. EGERIA excludes
the frozen layers during BP (and parameter synchronization
in case of distributed training) to accelerate training. Mean-
while, EGERIA caches the frozen layer’s activations to the
disk, so that we can also skip the FP computation by prefetch-
ing the intermediate results for the same input (§4.3).

4 Design

Next we dive into the details on how to capture the semantic
knowledge during training (§4.1), with which EGERr1A opti-
mizes the computation and communication in the backward
pass (§4.2), as well as the forward pass (§4.3) on the fly.

4.1 EGERIA Architecture

Directly running another full DNN to measure the inter-
nal layers’ plasticity can greatly slow down the training.
Instead, EGERIA decouples the control logic and the training
logic with a controller-worker abstraction (§4.1.1), and asyn-
chronously performs plasticity evaluation (§4.1.2). Besides,
EGERIA generates and continuously updates the reference
model by fast quantization (§4.1.3).

4.1.1 Controller-Worker Framework. Figure 5 illustrates
the controller-worker framework of EGer1A, which primarily
consists of a logically centralized controller and workers:

e Controller: It manages the life cycle of the reference
model, including its generation and execution, gath-
ering data for plasticity evaluation, and making layer
freezing/unfreezing decisions for workers. It makes
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Figure 5. EGERIA uses a controller-worker framework. The
controller co-locates on a training node. Solid lines denote
device and logical boundaries; dashed lines denote machines.

plasticity evaluations at one place to reduce the overall
computation overhead in case of distributed training,
as multiple controllers only change the sample size.

e Worker: Each training worker has an EGERIA worker
process. In addition to the original training opera-
tions, it performs EGERIA tasks, including transmitting
data and handling controller decisions. The updated
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Figure 6. Red and blue blocks are worker and controller op-
erations, respectively. They interact asynchronously through
multiprocessing queues (gray blocks).

forward() method uses hooks to obtain the intermedi-
ate activation tensors. The freeze() and unfreeze()
methods will be called by the controller and apply on
target layers.

4.1.2 Non-Blocking Plasticity Evaluation. To avoid slow-
ing down the training, the controller runs an efficient ref-
erence model on CPUs in a non-blocking and asynchronous
fashion, as shown in Figure 6. ML training servers typically
have a high CPU-to-GPU ratio (e.g., 6:1 [5]) since GPUs
are the scarcest resource. In addition, ML system research
suggests that GPUs can be fully utilized by exploiting abun-
dant resources like CPUs [37, 39], storage [58], and network-
ing [67]. Similarly, EGERIA trades limited CPU cycles which
are optimized for int8 inference-only operation [34] for re-
duced GPU workload. Since the plasticity evaluation runs
periodically (e.g., every ~10 to ~100 iterations) and asyn-
chronously, this non-time-critical process will not interfere
with other CPU operations and can be well hidden behind
GPU computation, as tested in our evaluation.

We implement the asynchronous plasticity evaluation us-
ing three single-producer/single-consumer queues: (1) When
EGERIA initiates a plasticity evaluation, the co-located EGE-
RIA worker puts the data batch in the input queue (IQ). (2a)
The controller process polls IQ, runs a forward pass on the
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reference model, and puts the hooked intermediate activa-

tion AI(QI) to the reference output queue (ROQ). The controller
only executes the forward pass at low CPU load (e.g., <50%) to
avoid interference to other CPU-based auxiliary operations,
thanks to the non-blocking framework. (2b) The co-located
EGEeria worker puts the hooked intermediate activation A(Tl)
to the training output queue (TOQ) and continues the train-
ing loop without blocking. (3) The controller polls ROQ and
TOQ and calculates the plasticity of the frontmost active
layer modules to make freezing decisions (§4.2).

4.1.3 Generating and Updating the Reference Model.
An ideal reference model should execute fast for diverse
models and provide semantically meaningful activations. To
this end, EGERIA generates the reference model for the full
model being trained on the fly.

There are several techniques to generate a light-weight
version for a large model. For example, neural architecture
search (NAS) [101] and knowledge distillation (KD) [29] can
compress the model but have prohibitively large computa-
tion overhead. Besides, they may produce different archi-
tectures that do not match the internal layers for plasticity
evaluation. Therefore, EGERIA adopts post-training quanti-
zation [24] to instantly generate a reference model with the
same structure.

Quantization is a popular model compression technique to
accelerate inference on CPUs [32, 90, 92]. It reduces the pre-
cision of model’s parameters (e.g., from 32-bit floating-point
to 8-bit integers). By default, EGERIA quantizes the reference
model using 8-bit integers. This can reduce the reference
memory footprint by 3x to 4x and accelerate the forward
pass by 2x on CPUs; meanwhile, a lower precision (e.g.,
int4 or int2) cannot further improve the performance due to
the CPU instruction set [49]. In our test, int8 quantization
reaches a sweet spot to achieve both fast and accurate se-
mantic reference (§6.4). EGERIA can fall back to full-precision
reference if the training DNN is extremely sensitive or run-
ning the reference on GPU in case the CPU resources are
scarce, adapting to various environments. In addition, we
design the freezing workflow (Algorithm 1) with robustness
kept in mind.

EcgEria will periodically update the reference model every
W iterations (§4.2.2 discusses the frequency value) using the
latest training snapshot to keep it up-to-date for plasticity
evaluation. We empirically find that a stale reference model
can amplify the inherent fluctuations in stochastic gradient
descent (SGD) training [10], making the plasticity curve dras-
tically changes, which is hard for EGERIA to understand its
trend. Updating the reference model can smooth the plastic-
ity and better keep up with the baseline. We use a periodic
update because we find that the frequency of reference up-
date is quite insensitive: Frequently updating is unnecessary

Wang et al.

because learning is a slow process, while a changing rate-
based method that slows down updating in the later training
stage brings little gain since the overhead is low anyway.

4.2 Freezing Layers with Plasticity

Next, we elaborate how EGeRriA decides when to freeze the
stable layers by comparing the intermediate activations of
the model being trained with that of the reference model.
During this stage, EGERIA needs to address two challenges:
(1) how to quantify the training plasticity of a layer module;
and (2) how to accurately make the layer freezing decision.

4.2.1 Evaluating the Plasticity of a Layer Module. The
raw data we collect is the intermediate activation tensors of
the training and reference models, which have been widely
studied as a direct metric of layer performance in understand-
ing and exploring new methods of DNN training [60, 95].
For example, knowledge distillation uses the difference of
activations between the training model and a trained teacher
model [76, 83] as a supervisory signal to improve accuracy
because intermediate activation plays an important role in
forming the decision boundaries for the partitioning of the
feature space in each hidden layer [28, 63]. Rather than com-
paring the gradients of the two models calculated against
a hard label, using intermediate activation as a “soft” label
is proven more effective and accurate in guiding training in
recent research [4, 83] since it is a more semantically mean-
ingful indicator and provides contextual knowledge [14, 64].
We also test freezing with a gradient-based metric [51] from
fine-tuning but find ~1% accuracy loss, which is undesirable
for a general training system and echoes the KD research,
as shown in Figure 2. To freeze layers accurately, we quan-
tify the training plasticity by measuring the changes in the
layer’s intermediate activations.

We use the SP loss [83] that shows high efficacy in KD
tasks to compare the intermediate tensors between the two
models. The theory behind SP loss is that the same input
data will elicit similar pair-wise activation patterns in trained
models for both CV and NLP tasks [64, 83]. Different from
gradient norm that is calculated against single-dimension
hard labels (e.g., “cat” for image classification), SP loss calcu-
lated from two high-dimension activation tensors can better
capture the semantic and contextual information, as dis-
cussed in recent KD research [4, 83] and tested in §6.2. Thus,
EGERIA can make freezing decisions more accurately, and
our evaluation shows higher accuracy when achieving the
same speedup. Compared to PWCCA [60] used in post hoc
analysis, our empirical analysis finds that SP loss shows sim-
ilar training progress of layers and freezing opportunities.
We choose SP loss because (1) it is designed as a training loss
to measure the performance difference in the actual scale
for direct model updating, while PWCCA is a visualization
and analysis tool that uses weighted projection to fit largely
distinct values into the scale of 0-1, showing performance
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gaps differently in different training stages; (2) we find that
PWCCA is more computation-intensive for its projection
operation.

We focus on the performance of a layer module that con-
tains consecutive layers defined together. Layers in a mod-
ule are closely related to performing a sequence of trans-
formations for a certain goal [47] and have similar train-
ing progress. Meanwhile, individual layers with fewer pa-
rameters (e.g., linear layers) are less stable in SGD training,.
Though it’s rare, even a few individual front layers might not
converge in strict order (as observed in [98]), our module-
based freezing can mitigate this and revisit them in the future
unfreezing stage (§4.2.2). EGERIA provides configuration op-
tions to customize the granularity of layer module through
regular expression, e.g., evaluating every convolutional layer.

Given the input data of batch size b, we denote the activa-
tion tensors of the training and reference models at a layer [

as A(Tl ) and Ag) . For the image data, the activation tensors

A(Tl), AI(QI) eRb*exhxw where ¢, h, and w are channel number,
height, and width; similar for the word embeddings. Then SP
loss will align A(Tl ) and Ag) to bxb-shaped matrices, which
encode the pair-wise similarity in the activation tensors that
are elicited by the input mini-batch. We then denote the
training plasticity Pi(l) of layer [ at an iteration i using the
SP loss between the two matrices, representing the semantic
difference compared to the reference model, as shown in
Equation 1. The lower and more stable the plasticity, the
DNN layers are closer to convergence.

PV = SP_loss(Al, A) 1)

4.2.2 How to Decide Layer Freezing. During the knowledge-

guided training stage, EGERIA will periodically run the plas-
ticity evaluation every n iterations and decide whether to
freeze the layer or not. The intuition of the freezing criterion
is straightforward: If a layer’s plasticity becomes station-
ary for some iterations W, EGERIA considers its semantic
performance stable and can safely freeze it.

When obtaining the plasticity Pl.(l), we first smooth it with
the moving average of its recent values (using W or the max
span as the history buffer size), as shown in Equation 2.

U] (0
P+ +P;
— (P .
pO_ T iz W @
P B
l‘ b

To determine whether the curve has become stable, we fit

i<W

Pim with linear least-squares regression to a straight line and
analyze its slope (0 means no change at all). This method can
filter out the drastic fluctuation in SGD training and provide
a recent history context than simply evaluating the delta. If
the plasticity slope has been less than the tolerance T for
W evaluations, we consider the layer converged, freeze it,
and move to the next layer, as detailed in Algorithm 1. This
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simple yet effective method has a similar intuition to the
early stopping in DNN training [40, 78].

EGERIA monitors the frontmost active layer module [ to
avoid a fragmented frozen model. According to the chain rule
of automatic differentiation [56], only excluding the last link
of backpropagation can reduce the workload. It is widely rec-
ognized that the front layers converge faster [75, 79, 95, 96],
and EGERIA can handle exceptions with the aforementioned
module-based freezing and unfreezing mechanism.

Unfreezing. Learning rate (LR) scheduling can influence
the convergence of all layers [2] (e.g., the PWCCA score and
accuracy boost in Figure 1 and 2) and is an external factor to
the model. LR annealing [19], the most commonly employed
scheduling technique, recommends gradually lowering the
LR during training with step decay or exponential decay.
Given this, EGERIA will restart training all the frozen layers
if the LR has dropped over a factor of 10 since the frontmost
layers’ freeze and halve the counter and history buffer W
for refreezing, which we find effective for different models.
Another type of LR scheduling is periodically increasing and
decreasing the LR, e.g., cosine annealing [53] and cyclical
LR [80]. Due to its complexity, EGERIA lets the user customize
the unfreezing and refreezing criteria, e.g., training for a few
iterations in each cycle after freezing a layer.

Hyperparameters guideline. We use three hyperparam-
eters: n (plasticity evaluation and bootstrapping stage mon-
itoring interval), T (the tolerance of plasticity slope), and
W (number of low slope evaluations to freeze layers and
history buffer). They are highly related and can be auto-
matically set with some task knowledge. EGER1A sets T for
each layer module as the 20% of the maximal plasticity slope
in its initial 3 readings; the rationale is that layers move
differently and thus should have per-layer thresholds. We
recommend setting n as a moderate frequency value that can
cover the evaluation of all layers. For example, for training
ResNet-56 with 7 layer modules, LR scheduling, and W=10
for 200 epochs (~78k iterations), we set n to 300 iterations
(= 78k/(10 = 2)/7/(1 + 0.5 + 0.25) considering bootstrap-
ping, smoothing delay, and window halving). Our extensive
empirical analysis shows that we achieve consistently good
performance across different parameters following our gen-
eral guideline, and we conduct sensitivity analysis of W, n,
and T in §6.4 to show their impact on performance with
largely different values. The changing rate of ending the
bootstrapping stage is permissively set to 10%.

4.3 Skipping Forward Pass with Caching and
Prefetching

By freezing the converged front layers, we can exclude them
from the backward pass and parameter update to reduce
training cost. However, the forward pass is still necessary
because the deep layers require the frozen layers’ activations
as input [56]. Naturally, we can cache the frozen layers’
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Algorithm 1: Layer freezing algorithm.

Input:

Intermediate activations of the training and reference
models A(Tl), AI(;), layer module /, training iteration i,
counter and history buffer length W, tolerance T.
Output: The (updated) frontmost active layer .

/* Initialize global variables. */

1 pList; < @ ; > Plasticity evaluation history of / across iterations.

> Number of consecutive stale Pl.(l).

5 Function checkPlasticity (A, AV, 1, i, T, w):

2 staleCounter <« 0 ;

4 assert [ is not the last layer
5 if staleCounter < W then
6 Pl.(l) «— calculateSPLoss (A(Tl), Ag), 1, 1)
/* Use moving average to mitigate outliers (Equation 2). */
7 P — smoothPlasticity(P”, W)
/* Update the time-series plasticity list. */
8 pList; « pList; U Pi(l)
/* Calculate the slope of the linear-fitted plasticity. */
9 s < windowLinearFit(pList;, W).slope
/* If the fitting line is close to horizontal. */
10 if s <T then
11 ‘ staleCounter « staleCounter + 1
12 else
13 ‘ staleCounter « 0
14 end if
15 else
16 freezelLayer (I)
17 l—1+1
18 end if

/* Learning rate-based unfreezing mechanism. */

19 if LR annealing and LR decreased by 90% then

20 unfreezeAlllLayers ()

21 1, > Reset [.
22 else

23 if cyclical LR scheduling then

24 ‘ customizedUnfreeze ()

25 end if

26 end if

27 return [

intermediate activations to save the forward pass because
they output the same activation given a certain input.
There are two challenges of caching computation results
for a DNN training task. First, training a large model re-
quires a large dataset (e.g., the training set of ImageNet is
over 100 GB). The size of the intermediate activation ten-
sor depends on the output shape of the last frozen layer. In
our evaluation, the storage space of ResNet-50 intermediate
activations ranges from 1.5X to 5.3% of the input data. It is
not technically appropriate to cache a whole epoch’s results
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Figure 7. EGERIA caches the intermediate activation and
prefetches the tensors into GPU memory during the FP.

to the GPU/CPU memory. Second, given the memory limit,
caching systems usually improve their hit rate by keeping
the most frequent content using replacement policies like
LRU (least-recently-used). However, in DNN training, the
data loader randomly samples a mini-batch, meaning there
is no popular data to prioritize in the cache.

To solve these challenges, we exploit a training work-
flow feature: Before an iteration, the data loader samples
future mini-batches in advance, so unlike typical cache sys-
tems, we actually “know the future” (the incoming data in-
dices)! Prefetching is an effective technique in ML applica-
tions [7, 69]. EGERIA saves the forward computation results
of the frozen layers to the disk and prefetches the relevant
activations to the GPU memory so that the active deep layers
can instantly read them as input. The cache only stores the
recent five mini-batches for minimal memory usage. Users
can set the storage limit for activations that are up to an
epoch (see analysis in §6.5). At the early training stage, we
disable prefetching if the forward pass of a few layers is
faster. In this way, we can skip the forward computation
of the frozen layers and efficiently overlap the slower disk
access with prefetching.

Figure 7 illustrates a forward pass in EGER1A. We maintain
a hash table in the GPU memory. The key is the sample ID,
and the value is the corresponding activation tensor. During
training, the data loader will sample a data batch and prefetch
their activations from the storage to the GPU memory in
parallel to the GPU training. EGERIA prefetches more than
one mini-batch of the future activations, similar to the data
loader [69], depending on the memory and CPU availability.

EGERIA can cover different training techniques and cache
their outputs. EGERIA is compatible with stateless random
operations, which are recommended for random data aug-
mentation and dropout [81, 82]. Thus we can deterministi-
cally keep the randomly augmented images the same across
epochs without ML performance penalty. Each worker ma-
chine maintains its own cache in distributed training to avoid
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extra network overhead; besides, the random seed is device-
dependent. For most layers, e.g., convolutional (for CNNs)
and linear (for language models), the output activation only
depends on the parameters given the same data, so caching
can work naturally. For batch normalization layers, the acti-
vation also depends on the specific data batch. EGErIA han-
dles this case using the practice in transfer learning [41]: we
set these layers to the inference mode, using the dataset sta-
tistics to normalize the input rather than the specific batch.

5 Implementation

EGERi1A is independent of DNN training frameworks. In this
paper, we implement and evaluate EGERIA using PyTorch
and Huggingface Transformers [89]. All the technical de-
pendencies of EGERIA (e.g., quantization and asynchronous
computation) can work in other ML frameworks like Ten-
sorFlow and MXNet. EGERIA obtains the layer modules by
parsing the model definition and adds forward hooks to ob-
tain intermediate activations.

Reference model. When EGERIA controller generates or
updates the reference model, it directly moves a snapshot
of the training model from GPU to CPU and runs int8 quan-
tization using PyTorch’s built-in library. We use dynamic
quantization for NLP models and static quantization for con-
volutional networks, which add little overhead in the back-
ground. We add the same forward hooks to the reference
model to match the training model.

Knowledge-guided training. Our high-level API allows
us to take advantage of the framework engines to execute
all the DNN computation operations. To freeze a layer, we
essentially set the requires_grad flag of all its parameters to
false to exclude the subgraph from gradient computation [68].
Distributed training requires rebuilding the communication
buffer. For caching, we use the dictionary data structure with
O(1) lookups.

6 Evaluation

In this section, we evaluate the effectiveness of EGERIA,
namely accelerating DNN training while maintaining accu-
racy, for different tasks and models using single or multiple
machines. The main takeaways are:

e EGERIA can work for different CV and NLP models;

o EGERIA accelerates general training by 19%-43% with-
out hurting accuracy; and

e EGERIA minimizes the system overhead while accu-
rately freezing layers.

6.1 Methodology

Testbed setup. We evaluate EGERIA using two testbed
configurations: a cluster of 5 machines and a multi-GPU
machine. In the 5-node cluster, each machine has 2 NVIDIA
V100 GPUs (32 GB), 40 CPU cores, 128 GB memory, and 2
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Mellanox CX-5 NICs. To match the CPU-to-GPU ratio of the
cloud training instance [5], we use 12 CPU cores (equivalent
to 24 vCPUs) with taskset [54]. The testbed has a leaf-spine
topology with two core and two top-of-rack (ToR) switches;
each ToR switch is connected to 5 servers using 40 Gbps and
two core switches using 100 Gbps links. The single node has
8 NVIDIA RTX 2080 Ti and 64 CPU cores.

Tasks, models, and datasets. We evaluate two CV and
two NLP tasks: image classification, semantic segmenta-
tion, machine translation, and question answering; the cor-
responding 7 models and 5 datasets are listed in Table 1. We
follow the recommended learning rate and batch size set-
tings [62, 70] and the learning rate schedulers are step decay
LR schedule for CV training, inverse square root schedule
for Transformer training, and linear schedule for fine-tuning
BERT. We use the all-reduce parameter synchronization
scheme for data parallel distributed training with multiple
GPUs or machines and allocate one GPU per process.

Metrics and baselines. The training performance metric
is the time taken to a converged validation accuracy (TTA),
as listed in Table 1. We compare EGERIA with the vanilla train-
ing framework, PyTorch, and a communication scheduling
system, ByteScheduler [67], in multi-node distributed train-
ing using its default configuration. ByteScheduler achieves
the theoretically optimal scheduling without skipping any
parameter and full accuracy. We use scheduling/pipelining
systems as the main baseline since maintaining accuracy is
our major goal. We also compare EGERIA to a recent gradient-
based layer freezing system, AutoFreeze [51], and to using
the metric of Skip-Conv [23] as an alternative to plasticity.
We use the input-norm gate of Skip-Conv, which applies to
intermediate activation rather than convolution-specific.

6.2 End-to-End Training Performance

We use EGERIA to train different models to reach the tar-
get accuracies with largely reduced training time. Table 1
summarizes the evaluation results and the time-to-accuracy
(TTA) speedups compared to the baseline training system.
We tune AutoFreeze and Skip-Conv to achieve a similar
training time as EGERIA and compare their final accuracy to
EGERIA and full training in Figure 8.

Image classification. ResNet-50 for ImageNet is a popu-
lar CNN benchmarking model. It consists of 48 layer mod-
ules, grouped into four stages, and the deep stages of layers
have more parameters than the front stages (similar to the
ResNet-56 structure in Figure 11). Figure 8a shows the vali-
dation accuracy curves of EGERIA and the baselines. Within
90 epochs of training, EGERIA reaches the target accuracy
while AutoFreeze and Skip-Conv each loses 1.5% and 2.6%
when achieving the same time speedup of 28%. During these
critical stages, the unfreezing mechanism of EGERIA (§4.2.2)
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Accuracy  # Servers X # Building TTA
Task Model Dataset target # GPUs/server layer modules speedup
Top 1 1X2 . 28%
Image ResNet-50 [27] ImageNet [16]  75.9% 22 - 5%2 48 (residual blocks) /., 5,
classification 17 (inverted
MobileNet V2 [77] 71.2% 1%x2 residual blocks) 22%
ResNet-56 [27] CIFAR-10 [42] 92.1% 1%x2 54 (residual blocks) 23%
Semantic mloU 49 (residual blocks
segmentation DeepLabv3 [13] voc [18] 63.3% Ix2 and DeepLab head) 21%
Machine Transformer-Base [84] WMT16 Ze7rpleX1ty :iz _5%2 (1&26(6(12?532::)3 ;123_437
translation EN-DE [9] ’ o
Transformer-Tiny 53.3 1x8 4(2&2) 19%
Question BERT-Base [17] F1 score 12 (Transformer
answering (fine-tuning) SQUAD 1.0 [74] 87.6 1x2 blocks) 4%

Table 1. Summary of evaluation tasks. Accuracy targets are the converged accuracy in baseline training. EGERIA accelerates

different models by 19%-43% to reach the target accuracy.
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Figure 8. EGERIA can accelerate training for different tasks without sacrificing accuracy compared to the full training baseline,
while previous freezing techniques suffer from accuracy loss when reaching the same speedup (except for fine-tuning).

restarts the frozen layers and achieves the same level of accu-
racy boost. The performance improvement primarily comes
from later training stages when EGERIA freezes the deeper
layer modules with more parameters. EGERIA can accelerate
lightweight models (e.g., MobileNet V2) on smaller datasets
(e.g., CIFAR-10) with 22% and 23% speedups.

Semantic segmentation. We use the DeepLabv3 model
with a ResNet-50 backbone for semantic segmentation train-
ing. The structure of DeepLabV3 includes a backbone mod-
ule for feature computation and extraction plus a classifier
module that takes the output of the backbone and returns a
dense prediction. DeepLabv3 uses a Lambda LR scheduler
that changes along with the training procedure, which will
trigger the unfreezing mechanism of EGERiA at the 45th
epoch. Figure 8b shows that, compared to the full baseline,

EGERIA can reach the target accuracy (mloU of 63.3%) 21%
faster and quickly improve accuracy at the later training
stage when the LR scheduler significantly decreases; while
the other freezing baselines lose accuracy by 2.1% and 3%.

Machine translation. EGERIA not only works for CV
models but also for language models. A low perplexity means
high accuracy for translation tasks. In Figure 8c, the model
quickly reaches a low level of perplexity then continues to
improve slowly. EGERIA brings a 43% speedup by freezing
the front encoders. Unlike CNN models that usually have
heavy deep layers, Transformer has a balanced structure, so
skipping front layers can bring a considerable speedup. The
other freezing baselines each loses perplexity by 0.3 and 0.62.
We also evaluate Transformer-Tiny using an 8-GPU machine
and achieve a 19% speedup.
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Question answering. Training a question answering model
is different from the other tasks because we fine-tune a pre-
trained general-purpose language model BERT for a new
task on a new dataset, rather than training from scratch [17].
Fine-tuning a pre-trained language model (e.g., BERT [17]
and GPT-2 [72]) is a popular training technique for NLP tasks
because it can save computation overhead and achieve state-
of-the-art results for many tasks, e.g., sequence classification
and sentiment analysis. The freezing technique was also
first used in fine-tuning/transfer learning (see §7). Figure 8d
shows the results of fine-tuning BERT on the SQuAD 1.0
dataset. The metric for question answering is the F1 score.
EGERI1A accelerates the baseline by 41% to reach the target
accuracy, while AutoFreeze achieves a close performance
compared to EGERIA as it is design for fine-tuning language
models. Since fine-tuning converges faster than training
from scratch, EGERIA does not freeze many deep layers be-
fore achieving the target, but the frozen front layers can still
provide a good speedup. During the training, the learning
rate scheduler does not trigger the unfreezing mechanism.

Compared to freezing alternatives. EGERIA is motivated
by the accuracy loss of training from scratch with freezing
techniques designed for transfer learning, which is evalu-
ated in Figure 8. AutoFreeze performs well in fine-tuning
BERT but loses non-negligible final accuracy in other tasks,
while EGERIA achieves the target accuracy in all tasks. Using
the metric of Skip-Conv loses more accuracy, which was de-
signed for identifying differences in consecutive frames [23].
When comparing models’ intermediate results, Skip-Conv
metric works similarly to an early KD research, FitNets [76],
by directly subtracting two tensors. Recent ML research sug-
gests that, compared to such loss metric, SP loss can better
capture the high-level similarity between activations [83].

6.3 Performance Breakdown

FP caching benefits. For single-node training, the per-
formance speedup comes from the BP computation of the
frozen layers and prefetching the cached FP results. Figure 9
shows that caching FP generally contributes more for CNN
models than language models but are all less than 10%. If
there are few frozen layers or the front layers have fewer
parameters, FP caching will be disabled.

Distributed training. EGERIA accelerates multi-node data
parallelism training as shown in Figure 10. EGERIA can also

work together with communication optimizations like ByteSched-

uler [67]. Other distributed methods, e.g., pipeline paral-
lelism, can be explored in the future.

ResNet-50 and Transformer are both computation-intensive
models, just like most of the recent DNN architectures, so the
performance improvement of ByteScheduler is limited here.
A slight throughput drop when communication is not the
bottleneck is normal for ByteScheduler with the default con-
figuration [66]. While the benefits of EGERIA mostly come
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Figure 10. Distributed training performance. EGERIA freezes
layers to exclude them from parameter synchronization.

from computation saving, since frozen layers are not required
for parameter synchronization, the reduced communication
traffic can speedup the training by up to 5% for ResNet-50,
which can benefit the linear scalability of large scale training.

Freezing & unfreezing decisions. We take a closer look
at one of our evaluations, training ResNet-56, to understand
the decisions made by EGEr1a in Figure 11. The bottom-up
DNN consists of layer 1.0-1.8, 2.0-2.8, 3.0-3.8, and input/out-
put layers adjacent to layer 1.0 and 3.8. EGERIA parses the
model based on its structure and the size of each layer, so that
layer 3 (75% of the total parameters), which is significantly
larger than layer 2 (20%), is split finer-grained into similar-
sized modules; while layer 1 (5%) and layer 2 are evaluated as
a whole. Layer 3.7-3.8 (17%) is further split because it is the
last module. EGER1A gradually freezes layers and remarkably
reduces the training cost (the blanks) without hurting accu-
racy. Refreezing after the 100th and 150th epochs’ unfreezing
takes much less time because of the relaxed criteria (§4.2.2).

6.4 Sensitivity Analysis

Impact of the reference model’s precision on accuracy.
EGERIA generates the reference model using int8 quanti-
zation by default for CPU execution efficiency (§4.1). We
evaluate using higher precisions for the reference model,
including float16 and float32 (full-precision), in ResNet-56
training on CIFAR-10, as shown in Table 2. We find using
the int8-quantized reference model, which averagely has a
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Figure 11. Freezing and unfreezing decisions breakdown
through the ResNet-56’s 200-epoch training. Y-axis shows
the percentage of the active layers’ parameters (their sizes).

Performance int8 float16 float32

Final accuracy 92.1% 92.0%  92.2%
CPU inference speed 3.59x 1.69x  1X
Reference acc. gap -0.6% -0.2% 0

Table 2. Using difference precisions for the reference model.
EcEria hits the sweet spot between efficiency and accuracy.

0.6% lower accuracy, will not degrade the final accuracy and
can largely improve the inference speed to obtain the inter-
mediate activation. Besides, EGERIA can switch to higher-
precision if int8 fails. Other tasks show similar results.

Impact of hyperparameters on performance. EGERIA
evaluates plasticity in every n iterations and uses the slope
of linear fitting on a moving window W to filter out the dras-
tic fluctuation and provide a recent context. If the plasticity
slope has been considerably lower compared to itself during
the early fast training stage (i.e., s < T) for W evaluations,
we freeze the layer. We find that the hyperparameters are
tolerant in general when following our guidelines, while dras-
tically changing them could result in performance penalties.
As shown in Figure 12, halving W from 10 to 5 or doubling
T’s coefficient from 20% to 40% would eagerly freeze un-
converged layers, hurt the accuracy, but only make training
slightly faster, while doubling W to 20 or evaluation interval
n from 300 to 600 would lead to longer training time without
accuracy gain. Halving T’s coeflicient to 10% virtually dis-
ables freezing. Making frequent evaluations (n=150) brings
no extra speedup, while further reducing n could consume
more CPUs and potentially slow down the training.

6.5 System Overhead and Discussion

EGER1A leverages CPUs to freeze layers accurately while
maintaining accuracy; it also uses disk storage to reduce for-
ward computation overhead. As a result, EGERIA reduces the
training time by 19%-43%. Through careful system designs,
we minimize the extra overhead of EGERIA.
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Figure 12. Following our hyperparameter guideline can
balance accuracy and speedup (ResNet-56).

The reference model. Using the reference model for plas-
ticity evaluation involves the model generation and execu-
tion. We find that generating and updating the reference
model through dynamic and static quantization on CPU take
0.5s—1.5s for each time, thus bring no noticeable slowdown.
Running the reference model on CPU could introduce up to
1.5% time overhead to the overall training process on stan-
dard training server configurations, which is worthwhile
compared to the saving from layer freezing. If CPU resources
are limited (e.g., on shared machines or using CPU-based
optimizations), we support GPU execution for the reference
model.

Caching and prefetching. We store the serialized inter-
mediate tensors of the frozen layers to the disk for prefetch-
ing. The storage usage depends on the DNN architecture.
For example, we need 1.5X to 5.3X compared to the input
for ResNet-50, which is generally viable. For language mod-
els, since the text data volume is smaller, the overall space
usage is limited. Since we only keep the relevant tensors
in memory, the overhead is small compared to the regular
utilization. It takes hundreds of MB of GPU memory, which
is a small fraction of device memory for modern GPUs.

Generalization. We design EGERIA as a general system.
Users can adjust the usage of CPU and storage in plasticity
evaluation and caching to meet their needs. Future research
can study how EGERIA collaborates with other CPU-based
(e.g., BytePS [39]) or storage-based (e.g., CoorDL [59]) opti-
mizations and on different hardware.

7 Related Work

Efficient training systems. Accelerating DNN training
is a key goal of ML systems. To optimize the computation,
they may optimize the computation graph to maximize the
degree of parallelism [38], or deploy advanced scheduling to
distribute the computation across multiple machines [21, 57].
To maximize the communication efficiency, priority-based
communication scheduling systems [36, 67] use the layered
structural information to prioritize the front layers and avoid
blocking layers with high priority. BytePS [39] combines the
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benefits of parameter server and all-reduce and transmits the
gradients among workers or between workers and servers.
Some efforts [35, 50] measure the importance of gradient
updates in terms of the magnitude of difference w.r.t. the
last update, and then filter out trivial parameters before ship-
ping the updates. EGERIA aims to reduce the total training
workload, thus should be compatible with them. Addition-
ally, there are a wide range of networking solutions that
can help in distributed DNN training [55, 85-87, 97]. Model-
Keeper [43] accelerates training by repurposing previously-
trained models in a shared cluster. Oort [44, 45] accelerates
federated training with guided participant selection.

Using an assistant model in training. EGERIA echoes
the broad idea of using another DNN to assist training. Knowl-
edge distillation trains a small student model to mimic the
probability distribution of a pre-trained large model [29]. Co-
distillation [6] trains multiple tweaked copies of the model
in a distributed manner and encourages one model to agree
with others’ predictions. AutoAssistant [100] trains a light-
weight assistant model to identify the hard-to-classify ex-
amples and feed them to the training model to improve its
performance fast. Infer2Train [30] runs a copy of the training
model on the additional hardware accelerator and finds the
difficult examples to prioritize in the following iterations.

Freezing parameters and caching DNN results. Exist-
ing proposals on freezing are limited to fine-tuning certain
models [22, 26, 51] or reducing communication only [12];
otherwise, considerable accuracy loss would nullify any im-
provements in training speed [11, 46]. An early work Freeze-
Out [11] explores the freezing technique in general train-
ing with heuristics but reports large accuracy loss on many
models; nevertheless, it shows that freezing can trade off
accuracy for speed. A concurrent work AutoFreeze [51] fo-
cuses on fine-tuning pre-trained Transformer-based models;
it falls into the original use of transfer learning rather than
general training and we found that fine-tuning suffers less
from accuracy loss than training from scratch (discussed in
§2.3 and §6.2). PipeTransformer [26] also applies freezing in
fine-tuning Transformers with pipeline parallelism using a
gradient-based importance metric [91]; still, it novelly ex-
plores opportunities in pipeline parallelism. We discuss the
accuracy performance of gradient-based metrics in §4.2.1.
APF [12] excludes stable parameters from synchronization
in federated learning; it suggests that model snapshots can
best capture the performance and implements a workaround.
GATI [8] accelerates DNN inference by caching the interme-
diate results and skipping the rest of the forward pass.

8 Conclusion

We introduce a novel system EGERIA to accelerate DNN train-
ing while maintaining accuracy by accurately freezing the
converged layers. To avoid the limitations of existing work,

EuroSys ’23, May 8-12, 2023, Rome, Italy

we employ a reference model and use semantic knowledge
to evaluate the plasticity of internal layers efficiently dur-
ing training. EGERIA excludes the frozen layers from the
backward pass and parameter synchronization. Furthermore,
we cache the frozen layers’ intermediate computation with
prefetching to skip the forward pass. We evaluate EGERIA us-
ing several CV and language models and find that EGER1A can
accelerate training by 19%-43% without hurting accuracy.
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