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ABSTRACT
Pulmonary diseases, such as asthma and Chronic Obstructive Pul-
monary Disease (COPD), constitute a major public health challenge.
The disease symptoms, including airway obstruction and inflam-
mation, usually result in changes in airway mechanical properties,
such as the caliber and impedance of the airway. To measure such
airway properties for disease evaluation and diagnosis purposes,
pulmonary function tests (PFT) has been widely adopted. However,
most existing PFT systems require expensive and cumbersome
hardware that are impossible to be used out of clinic. To allow
out-clinic continuous pulmonary disease evaluation, in this paper
we present AWARE, a new sensing and AI system that supports
accurate and reliable PFT using commodity smartphones. AWARE
uses a smartphone to transmit acoustic signals and reconstructs the
profile of human airway based on the analysis of reflected acoustic
waves captured from the smartphone’s microphone. The subject’s
pulmonary condition is then evaluated by a multi-task learning
model that integrates both the airway measurements and the sub-
ject’s lung function records as the ground truth. Evaluations on
75 human subjects demonstrate that AWARE has the capability
to achieve 80% accuracy on distinguishing between humans with
healthy pulmonary function and with asthma symptoms.
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Figure 1: Overall picture of AWARE

1 INTRODUCTION
Pulmonary diseases constitute a major public health challenge [3].
For example, over 330 million people worldwide have asthma, in-
cluding 25 million in the US [5]. Chronic obstructive pulmonary
disease (COPD) affects another 16 million people in the US. Emerg-
ing pulmonary diseases, such as H1N1 swine flu and COVID-19,
have also made and been making catastrophic impacts on society.
Pulmonary diseases produce symptoms such as airway inflamma-
tion [4, 6] and mucus hypersecretion [8], which result in airway
obstruction [9, 23] and changes in airway mechanical properties,
such as caliber and impedance.

For disease evaluation purposes, Pulmonary Function Testing
(PFT) is used as the objective evaluation of such airway mechanical
changes. In particular, humans with pulmonary diseases usually
suffer from frequent disease exacerbations that cause emergency
room visits, hospitalizations, and sometimes death. Continuous PFT
out of clinic, hence, is critical for disease monitoring, diagnosis and
management [24]. However, most of current PFTmethods [7, 22, 26]
require cumbersome hardware that are unavailable out of clinic.
Some recent research efforts reduce the hardware size, but their
costs (>$2,000) are too high to be used out of clinic [21]. Low-cost
PFT devices priced at <$100 [1, 2], on the other hand, have low
accuracy and could produce >20% measurement error [16].

In this paper, we present AWARE (Acoustic WAveform Respira-
tory Evaluation), a new system design that uses commodity smart-
phones to bridge the gap between current clinical PFTs and the
great need of PFT out of clinic. As shown in Figure 1, our design
uses the smartphone’s speakers and microphones to build an acous-
tic sensing system, which probes the profile of airway from the
reflected acoustic signal in the form of cross-sectional area (CSA) at
different airway positions. The airway profile, then, is used as the in-
put to a multi-task deep learning model, which provides prediction
of pulmonary disease conditions and lung function indices.
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(a) Impulse Oscillometry
System (IOS)

(b) Acoustic Reflection Tech-
nique (ART)

Figure 2: Clinical devices of IOS and ART

2 RELATED WORK
It has been proved that acoustic methods could be useful tools for
measuring human airway conditions, such as narrowing and ob-
struction. One of these methods is the forced oscillation technique
(FOT) [22]. Sinusoidal pressure waves ranging from 5 to 30Hz are
generated by loudspeaker transmitted into the lungs. The overall
impedance of airway is then determined by measuring the magni-
tude of changes in pressure and flow, which will be used to identify
possible airway obstruction or narrowing. An advanced version of
FOT called impulse oscillometry system (IOS) uses pulses as the
transmitted signal to achieve better frequency-domain resolution
[7]. Another acoustic method that aims to provide more detailed
information is the acoustic reflection technique (ART) [13], also
known as airway area by acoustic reflection (AAAR) [10, 14] or
acoustic pharyngometry (APh) [20]. Instead of directly calculat-
ing the overall impedance from pressure and airflow change in
airway, this technique gives an estimation of cross-sectional area
over different positions in the airway.

In practice, however, these techniques are limited to in-clinic
use due to the cumbersome devices they need, as shown in Fig-
ure 2. The subject is also instructed to do several exhale tasks for
data acquisition. On the other hand, smartphone-based sensing sys-
tems were introduced in the past few years. Typical spirometer-like
approaches require expensive external sensing hardware that are
attached to the smartphone via cable, WiFi, or Bluetooth [1, 29].
Other acoustic sensing approaches leverage smartphones’ built-in
microphones to passively overhear the breathing sounds and give
lung function predictions [11, 15, 30], but cannot provide detailed
information about the airway’s physiological conditions. In con-
trast, our sensing approach provides highly accurate measurements
of the airway’s internal conditions, in an non-invasive and effortless
manner without using any extra hardware.

3 ACOUSTIC SENSING FOR AIRWAY
MEASUREMENT

In this section, we introduce our technique of measuring human
airway by acoustic reflections using smartphones, especially how
to overcome the hardware constraints when adopting acoustic
reflection technique (ART) onto smartphones.

3.1 Preliminaries
To estimate airway mechanical condition in a non-invasive manner,
AWARE adopts the existing acoustic reflection technique (ART),
which reconstruct the airway CSA based on the analysis of air-
way’s acoustic reflection properties [10, 14, 18]. To do so, AWARE

transmits a series of acoustic pulses through the smartphone’s bot-
tom speaker into the airway, and records the reflected signal using
smartphone’s microphone. With both the transmitted and received
signal, AWARE can derive the impulse response (IR) of human
airway and convert the IR into CSA measurement.

The key challenge is the smartphone’s hardware constraints,
including the poor low-frequency performance of the speaker and
inappropriate layout of bottom speaker and microphone. First, the
smartphone’s speakers are designed for routine use rather than
sensing, and thus only have high gain from 200Hz to 10000Hz [27].
However, the algorithm of ART is quite sensitive to low-frequency
components (<200Hz). Hence, minimizing the error that is brought
by low-frequency noise becomes is crucial.

In a traditional ART system, the speaker and microphone are
placed far away from each other (>50cm), in order to unmix the extra
echoes called source reflection [17, 25]. However, in a smartphone
set-up, the speaker and microphone are usually very close to each
other, hence bringing a challenge to deal with the unnecessary
source reflection. AWARE uses extra calibration steps and newly
developed algorithms to eliminate the impact of source reflection.

Overview

11/6/2021 Xiangyu Yin

Connecting 
Tube

Adaptor

Reflected Signal

Direct 
transmission

Speaker MIC

Mouthpiece

Figure 3: Sensing system design for airway measurement

3.2 Sensing System Design
As shown in Figure 3, AWARE is a smartphone-based system that
consists of an Android app, a plastic phone adapter, a soft probing
tube, and a 3D-printed plastic mouthpiece. To use AWARE, as shown
in Figure 4, one handholds the smartphone connected to the probing
tube, bites on the mouthpiece, and breath through the tube. AWARE
transmits a series of acoustic pulses through the bottom speaker
and analyze the reflected signal received by the microphone.

Figure 4: An example of using AWARE

When the acoustic wavelength is larger than the airway diameter,
it is appropriate to consider an one-dimension plane-wave propa-
gation of the acoustic pressure wave. Such 1-D plane-wave will be
partially reflectedwhen it encountered an impedance changewithin
the duct-like airway, while the cross-sectional area (CSA) is the
major determining factor of the impedance in our case. Therefore,
by inversely calculating the reflection coefficient from the received
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signal, an area-distance curve is eventually given to indicate the
CSA at different positions within the airway.

3.2.1 Calibration and Data Collection. Considering the hetero-
geneity of smartphone speakers and microphones, as well as the
manufacturing error of adapter, tube and mouthpiece, the data col-
lected from different devices could largely vary. To remove such
impact of different hardware, a three-step calibration is conducted
before the data from testing subject is collected.

In the first step, a much longer probing tube is used instead of the
short tube being used in CSAmeasurements. This tube is considered
as a semi-infinite tube since it is long enough to avoid noticeable
reflection from the end. Pure “direct transmission” is collected in
this case, which refers to the signal that directly propagates from
the speaker to the microphone. In the second and third step, the
short tube is placed, and data is collected without the testing subject
(user’s airway) involved. The outlet of the tube is kept open in the
second step and blocked by hand in the third step. Standard reflected
signal is collected in these two cases.

After the calibration phase is finished, testing subject is coupled
to the probing tube. In this subject testing phase, AWARE collects
reflected signal that comes from the subject and send it together
with the calibration signals to the signal processing program.

3.2.2 Airway Profile Reconstruction. Sharing the same principle
as ART, AWARE takes two steps to reconstruct the profile of airway:
acquisition of impulse response and reconstruction of CSA. The
signal processing program first deconvolutes the signal collected
in subject testing phase by the direct transmission collected in first
step of calibration. By doing so, the impulse response of the airway
system is obtained. Impulse response is defined as the output of a
dynamic system when the input is an ideal impulse, thus can be
used to indicates the characteristics of the airway system.

Given the impulse response, it is possible to recover the reflection
coefficient of different position within the airway, and therefore re-
construct the CSA. Suppose an ideal impulse signal was transmitted
into the airway and propagate as a 1-D plane-wave. The impulse
will be reflected wherever a CSA change exists. The farther and
larger the change is, the later and stronger the reflected impulse
is received. This principle gives a possibility to inversely calculate
how much and where the CSA changes from the impulse response.

However, considering that human airway is a duct with continu-
ously varying CSA, the actual case becomesmuchmore complicated.
The signal could bounce around in the airway and the actual re-
ceived signal is a mixture of infinite reflections. Fortunately, Ware
and Aki [28] provided a layer-peeling procedure to recursively
calculate CSA changes from near to far. The detailed solution is
described in Section 3.3.

3.2.3 Source Reflection Removal. The standard ART procedure
works perfectly when microphone is far away from the speaker.
However, when ART is applied to smartphone, the speaker and
microphone are usually very close to each other, leading to the
problem of source reflection. The source reflection means that the
reflected signal from subject will be reflected again by the surface
of smartphone, and be recorded by the microphone again. When
speaker and microphone are close, the main and source reflected
signal will be overlapped.

We solve this problem by abstracting the phenomenon into a
frequency-domain infinite series and use calibration data to derive

the parameters in the series. Such parameters represent the charac-
teristics of source reflection and signal decay, thus can be used to
remove the impact of source reflection when calculating the true
impulse response. Details are elaborated in Section 3.4.

Modeling
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Figure 5: Sound propagation model in duct

3.3 Airway Profile Reconstruction
In this subsection, we introduce the two steps used in ART for
airway profile reconstruction: acquisition of impulse response and
reconstruction of cross-sectional area.

3.3.1 Acquisition of Impulse Response. To acquire the impulse
response of the subject, AWARE applies standard frequency-domain
deconvolution. The Fourier transform of the incident and reflected
signals are computed and divided to estimate the frequency re-
sponse of airway. The impulse response is then obtained by inverse
Fourier transform of the frequency response. To achieve accurate
estimation, the spectrum of the transmitted signal should not miss
any frequency components across the entire bandwidth. Impulse
signal is a good choice because it mathematically has a flat and
complete spectrum. However, in practice, there is no way for a
speaker to generate an ideal impulse. Thus, approximate pulses
with short duration are used as alternatives.

3.3.2 Reconstruction of Cross-sectional Area. The backbone of
the reconstruction relies on the assumption that low-frequency
acoustic signals (approximately below 10kHz) travel as 1-D plane
wave along human airway. Under such assumption, the airway
could be considered as a duct with continuously varying cross-
sectional area. When an acoustic wave travels along a duct and
encounter a cross-sectional area change, it will be partially re-
flected. A simple example is the two-segment case shown in Figure
5a. Therefore, the relative change of cross-sectional area can be
obtained by measuring the ratio of reflected and incident wave
Pr /Pi , namely the reflection coefficient r , using following equation:
A2/A1 = (1 − r )/(1 + r ) = (1 − Pr /Pi )/(1 + Pr /Pi ).

Then, for a duct with arbitrary shape, the general idea is to
divide it into multiple small segments with constant length and
cross-sectional area A1 to An , as shown in Figure 5b. However, due
to multiple reflections between different segments, actual analysis
of the model is not simple. In general, the Z-transform of the im-
pulse response H (z) = Z{h(t)} has the following relationship with
reflection coefficients r1, r2 ... rn−1:[

H (z)
1

]
= Q1Q2...Qn−1

[
0

T (z)

]
(1)
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(a) A standard ART configuration

(b) A smartphone-based configuration

Figure 6: ART sensing system configuration
where

Qk =
1

1 + rk

[
z−1/2 rkz

1/2

rkz
−1/2 z1/2

]
(2)

and T (z) is an intermediate variable that can be jointly solved with
H (z). H (z) can be further expanded as

H (z) = H1z
−1 + H2z

−2 + H3z
−3 + ... (3)

where H1 only depends on r1, H2 depends on r1 and r2, H3 depends
on r1, r2 and r3, etc. Similarly, every following rk can be calculated
given Hk and all previous r . Afterwards, the relative changes be-
tween two adjacent segments are derived from Ak+1/Ak = (1 −
rk )/(1 + rk ). Such process provides the estimation of the cross-
sectional areas of different positions in the duct, and an area-distance
curve is eventually given.

3.4 Removing Source Reflection
In this subsection, we elaborate the challenge of source reflection
and the approach to remove its impact.

Figure 7: Modeling of Source Reflection

3.4.1 The Model of Source Reflection. In standard ART, the ex-
perimental setup is as shown in Figure 6a. The microphone is
mounted onto the tube wall and is quite far away from the loud-
speaker mounted at the tube end. Since the signal reflected by the
subject will travel back through the tube and be reflected again
by the sound source (the loudspeaker), the distance between mi-
crophone and speaker makes sure that the signal from subject is
separated from any further source reflection.

However, under a smartphone setup, as shown in Figure 6b,
the distance between speaker and microphone is pre-fixed and
is insufficient for such separation. The source reflection is hence
overlapped with the wanted signal. Such overlapping could lead to
strong distortion to the impulse response.

Fortunately, under the 1-D plane-wave propagation model, all
parts that create reflections can be described as LTI systems with a
frequency response indicating the system properties. The impact

of source reflection can be described using frequency response
Hs . This means if a signal x coming towards the source has a
Fourier Transform of X , the signal reflected by the source will
have a Fourier Transform of HsX . Similarly, we can also describe
the propagation delay and signal decay together as a system with
frequency responseHp , and the testing subject as a system withHo .
Following such denotation, the signal travel path can be abstracted
using a block diagram shown in Figure 7. Assume the original
transmitted signal is x with Fourier Transform being X , and the
final signal received at the microphone is y with Fourier Transform
being Y , the relationship between X and Y can be written as:

Y = X +A + B +C + D + . . .

= X + H2
pHoX + H

2
pHsHoX + H

4
pHsH

2
oX + . . .

(4)

Notice that this formula is actually an infinite geometric sequence,
so the equation can be further written into:

Y = X (1 + H2
pHo + H

2
pHsHo + H

4
pHsH

2
o + H

4
pH

2
sH

2
o + . . . )

= X · (1 + H2
pHo )/(1 − H2

pHsHo ).
(5)

Now, the problem becomes how to get our true target Ho .
3.4.2 Calibration against Source Reflection. From Eq. (5), we

notice that to get our target Ho , we must first know X , Y , Hs , and
Hp .X andY exactly correspond to the data we collected in first step
of calibration phase and in subject testing phase, respectively. For
Hs and Hp , however, we will need the data collected in the second
and third step of calibration.

In second and third step of calibration, we measured the reflec-
tion of a pure “closed end” and a pure “open end”. From the 1-D
plane-wave propagation model, a “closed end” has Ho = 1 and an
“open end” has Ho = −1. Denote the signal collected in these two
steps as Y1 and Y2, we can have such equations:

Y1 = X
1 + H2

p

1 − H2
pHs
,Y2 = X

1 − H2
p

1 + H2
pHs

(6)

Therefore, we can get

H2
p =

(Y1 + Y2)X − 2Y1Y2
(Y1 − Y2)X

,H2
pHs =

Y1 + Y2 − 2X
Y1 − Y2

. (7)

By taking these two results into Eq. (5), we can then get the
target Ho , and by taking the inverse Fast Fourier Transform of Ho ,
we can get target impulse response of the subject.

4 MULTI-TASK LEARNING FOR DISEASE
EVALUATION

In this section, we describe how AWARE helps pulmonary disease
evaluation using multi-task learning.

4.1 Design Rationale
With the airway CSA measurement, it is important to consider
how to interpret such result and reveal its relationship to the pul-
monary diseases. However, most existing research efforts have been
focusing on discovering the correlation between airway CSA mea-
surements and upper airway diseases like sleep apnea. It remains an
uncharted territory to utilize this technique for pulmonary diseases
evaluation such as asthma and COPD that mainly affect lower air-
ways. On the other hand, spirometry, as the most commonly used
PFT, has been the gold standard for pulmonary disease evaluation.
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Predict disease from CSA curve via multitask learning
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Figure 8: Multi-task Learning Model

Therefore, we come with the idea of building a multi-task learning
framework which uses spirometry measurements to assist disease
evaluation from airway CSA measurement.

As shown in Figure 8, our multi-task learning model consists of
three major parts: 1) a feature extractor that takes the airway CSA
measurement as input, 2) two regressors that estimate the lung
function indices being used in spirometry, and 3) a classifier that
gives prediction of the disease condition. The feature extractor is an
encoder taken from an auto-encoder (AE) structure that is trained
to extract the representative features from CSA measurements. It
converts the CSAmeasurement into a 48-element feature array. The
regressor then takes the features as the input and predict the lung
function indices. After that, both the features and the predicted
lung function indices are used as the input to the classifier, which
gives the prediction of whether the patient has the disease.

4.2 Feature Extractor
To extract features from the airway CSA measurement, we train
an auto-encoder with a 3-layer encoder and a 3-layer decoder, and
use the encoder part as the feature extractor. The key challenge
of training such an auto-encoder is the overfitting problem given
limited amount of data collected in clinic. Therefore, before feeding
the CSA measurements into the auto-encoder, we augment the
input data by random zeroing to mitigate overfitting and to help
the latent features better represent the underlying patterns of the
CSA measurement curves. The mean-square error (MSE) between
the recovered and original curve is used as the loss function for
training. After training is finished, the encoder is extracted as the
feature extractor that participate in predicting disease.

4.3 Regressors and Classifier for Disease
Evaluation

In clinical diagnosis of asthma and COPD, several indices that
obtained from spirometry are used. Spirometry mechanically mea-
sures the volume and velocity of the subject’s airflow with forced
expiration [19], and evaluates lung function in peak expiatory flow
(PEF), forced expiratory volume in 1 second (FEV1) and forced vital
capacity (FVC). However, the measurements of PEF, FEV1, and FVC
are highly correlated with the subject’s age, height, gender and race.
Therefore, the actual metrics being used in clinic are the percentiles
of PEF, FEV1, and FVC to the reference value[12]. Among all of the
metrics, the most commonly used and reliable ones are the FEV1
and the ratio of FEV1 to FVC (FEV1/FVC).

In our model, two regressors take the extracted features of the
airway CSA measurememt as the input, and predict the subject’s

FEV1 and FEV1/FVC percentile, respectively. Each regressor con-
sists of 3 fully connected layers, and the outputs are supervised by
the MSE loss compared to the subject’s clinical spirometry mea-
surements being used as the ground truth. The predicted FEV1
and FEV1/FVC, together with the extracted features of the airway
CSA measurememt, are then used as the input to to a disease pre-
dictor. Such design builds on the basis that our acoustic sensing
and spirometry provide two different modalities for measuring the
airway mechanics that complement each other. With the regressors,
we only need the subject’s spirometry measurements during offline
training. For inference stage, the only input to the model is the
airway CSA measurement, and both the disease prediction and the
predicted value of FEV1 and FEV1/FVC are given.

5 PERFORMANCE EVALUATION
We evaluated the accuracy of AWARE in different scenarios: 1)
concatenated plastic tubes with different calibers; 2) 3D-printed
human airway models with different scales; 3) human subjects.

5.1 Accuracy on Concatenated Tubes
To investigate the CSA measurement accuracy by acoustic sensing,
we first conducted lab experiments in which the testing subjects
are several sets of concatenated plastic tubes with various calibers.
The tubes are directly connected to AWARE system’s probing tube
without the mouthpiece. Each case is tested 5 times and 25 prob-
ing pulses are transmitted in 5 seconds in each experiment. Mean
absolute percentage error (MAPE) between the measured and the
actual CSA of the tubes is calculated as:

MAPE =
100%
n

n∑
t=1

����At −Ap

At

���� (8)

whereAp is the measured CSA by AWARE andAt is the actual CSA
of the tube. As shown in Figure 9, AWARE can achieve an average
error of 5-12% when measuring the CSA of different positions of
the tube, and the results are highly repeatable.
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Figure 9: CSA measurements of concatenated tubes

5.2 Accuracy on 3D-printed Airway Models
To further evaluate AWARE’s CSA measurement accuracy on ducts
with more complicated shapes and its capability of detecting me-
chanical changes in the real human airway, we use 3D-printed
human airway models with different scales. These airway models
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are printed according to CT scan data from real human bodies. As
shown in Figure 10, the airway model is composed of an upper
airway part and a lower airway part, where the upper airway has
a fixed size and the lower airway has three different scales: 100%,
90%, and 80%. The two parts are connected using a short plastic
tube, and the openings of both parts are precisely designed to make
sure the tube can be tightly plugged in.

Figure 10: Realistic airway models with different scales

In this setup, the ground truth of airway model’s CSA is hard to
measure, and so we measure AWARE’s accuracy using the relative
error between different scales. As shown in Figure 11, the curves for
the airway segment between 0 and 18cm are quite consistent since
they correspond to the upper airway model which has a fixed size.
After 18cm, the curves are consistent with respect to the different
scales of the models being used. For example, when measuring
the length between first and second significant peak after 18cm
(correspond to the length of main trachea), and the amplitude of
second peak (correspond to the CSA of carina), the relative error is
<3% compared to the 100%-scale model.

CSA Pct Sqrt Pct

5.61 100% 100%

4.32 77% 88%

3.60 64% 80%

Length Pct

8.58 100%

7.51 88%

7.15 83%

Figure 11: CSA measurement of realistic airway models

5.3 Clinical Study on Human Subjects
We also evaluated AWARE’s measurement accuracy with a clinical
study over 75 human subjects recruited through the Children’s
Hospital of Pittsburgh1. Among these human subjects, 39 of them
are adults and 36 are below age 18. 46 of these subjects have been
diagnosed as asthma patients in clinic, and the rest 29 are healthy.

The subjects were asked to use AWARE under the guidance of
physicians in clinic, and also required to collect spirometry data
afterwards. The subjects need to follow a detailed protocol to com-
plete the AWARE tests, including 3 normal respiration cycles. Each
1University of Pittsburgh IRB approval No. STUDY20040181-01.

Table 1: Human Subjects’ Information

Category Characteristics Number

Demographics

Tests per subject 2.98 ± 1.24
Age (years) 25.19 ± 17.60
Adults (%) 39(52.0)
Female (%) 40(53.3)

Caucasian (%) 51(68.0)
African-American (%) 24(32.0)

Body conditions Height (cm) 161.23 ± 16.09
Weight (kg) 71.45 ± 27.98

Pulmonary diseases Asthma 46(61.3)
Healthy 29(38.7)

inhalation or exhalation stage lasts for 5 seconds during which 25
probing acoustic pulses are transmitted in AWARE. The airway CSA
measurements during exhalation stages were then averaged and
used for evaluation. In total, 224 samples were collected and used to
train the multi-task learning model. The multi-task learning model
is expected to distinguish between asthma patients and healthy
human subjects.

Group Test-level accuracy Subject-level accuracy
Adults 58.88% 75.67%
Minors 90.60% 84.21%
Overall 75.45% 80.00%

Table 2: Disease Prediction Accuracy

The samples are divided into training and validation datasets
using 5-fold cross-validation. The multi-task learning model is then
trained based on such dataset division. Both test-level accuracy and
subject-level accuracy are measured. As shown in Table 2, AWARE
achieves 80% subject-level accuracy when predicting asthma pa-
tients over the whole subject group, and achieves 75.67% and 84.21%
accuracy on adults andminors separately. The fact that the accuracy
on minors are significantly higher than on adults are potentially
because of the imbalanced labels in two groups. Only 12 out of
39 adults are asthma patients while the number is 34 out of 36 in
minors. A more balanced dataset could help to address this issue.

6 CONCLUSION AND FUTUREWORK
In this paper, we present AWARE, a new sensing system which
accurately measures human airway calibers and predict pulmonary
disease conditions. Clinical study showed that AWARE can achieve
80% accuracy on predicting asthma symptoms. In the future, we
will focus on new system designs to deal with different human
factors such as unwanted tongue movements, breathing sound, and
smartphone hardware heterogeneity. Such designs may involve
new adapter and mouthpiece design and algorithm improvements.
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