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Abstract. Sarnak’s Möbius disjointness conjecture asserts that for any zero entropy

dynamical system (X, T ), (1/N)
∑N

n=1f (T nx)µ(n) = o(1) for every f ∈ C(X) and every

x ∈ X. We construct examples showing that this o(1) can go to zero arbitrarily slowly.

In fact, our methods yield a more general result, where in lieu of µ(n), one can put any

bounded sequence an such that the Cesàro mean of the corresponding sequence of absolute

values does not tend to zero. Moreover, in our construction, the choice of x depends on the

sequence an but (X, T ) does not.
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1. Introduction

A topological dynamical system is a pair (X, T ) where X is compact metric space and

T ∈ C(X). If the system (X, T ) has zero topological entropy, then Sarnak’s Möbius

disjointness conjecture [16, Main Conjecture] predicts that

1

N

N
∑

n=1

µ(n)f (T nx) = o(1) for every f ∈ C(X) and every x ∈ X. (1)

Many special cases of Sarnak’s conjecture have been established. A very partial list of

examples consists of [2, 5, 8, 9]. We refer to the surveys of Ferenczi, Kułaga-Przymus, and

Lemańczyk [6] and of Kułaga-Przymus and Lemańczyk [11] for excellent expositions on

the subject, and many more references.

The goal of this paper is to study the rate of decay in Sarnak’s conjecture. That is,

to study the nature of the o(1) as in equation (1). We will show that there are systems
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for which this o(1) decays to zero arbitrarily slowly. Nevertheless, all the examples we

construct to this end satisfy Sarnak’s conjecture. Here is our main result.

THEOREM 1.1. For every decreasing and strictly positive sequence τ(n) → 0, there is a

dynamical system (X, T ) with zero topological entropy that satisfies the following.

(1) There exist x ∈ X and f ∈ C(X) such that:

lim sup
N→∞

(1/N)
∑N

n=1 f (T nx)µ(n)

τ(n)
> 0.

(2) The system (X, T ) satisfies Sarnak’s conjecture in equation (1).

Several remarks are in order. First, Sarnak [15, the remark following Main Conjecture]

remarks that rates are not required in the conjecture, and this is formally justified by

Theorem 1.1. Second, it is natural to ask if Theorem 1.1 may be upgraded by finding a

zero entropy dynamical system (X, T ) and f ∈ C(X) such that for every rate function

τ , we can find x ∈ X that satisfies Theorem 1.1(1). Doing so is as hard as solving the

full Möbius disjointness conjecture. Indeed, by [4, Corollary 10], if the conjecture is true,

then for every zero entropy system (X, T ) and f ∈ C(X), equation (1) holds uniformly

in x ∈ X. This cannot hold concurrently with the aforementioned upgraded version of

Theorem 1.1. In other words, Theorem 1.1 is conjecturally optimal. Next, we remark that

in many cases (possibly in all cases), it is known [17] that a sufficiently fast rate in Sarnak’s

conjecture implies that the system (X, T ) satisfies a prime number theorem (PNT) in the

sense discussed in [6, Section 11.2]. Thus, recent examples [7, 10] of zero entropy systems

failing to satisfy a PNT can be viewed as evidence toward Theorem 1.1. We also mention

the recent interesting counterexamples to polynomial Sarnak’s conjecture constructed by

Lian and Shi [12] and Kanigowski, Lemańczyk, and Radziwiłł [10] that, while not directly

related to Theorem 1.1 as they focus on a sparse sequence of observations instead of the

entire trajectory, are similar in spirit to our work.

Finally, we remark that our construction was partially inspired by the idea of building

a sufficiently complex zero entropy system as a skew product from the recent work of

Dolgopyat et al [3], where they exhibit some new classes of zero entropy smooth systems

that satisfy the central limit theorem. In this paper, we construct a symbolic skew product

instead of a smooth one to code more precise information carried by {an}.

We will derive Theorem 1.1 from a more general statement. This is the following

theorem, which forms the main technical result of this paper.

THEOREM 1.2. For every decreasing and strictly positive sequence τ(n) → 0, there is a

zero entropy dynamical system (X, T ) and some f ∈ C(X) that satisfy the following.

(1) Every sequence |an| ≤ 1 with lim supN→∞(1/N)
∑N

n=1|an| > 0 admits some x ∈ X

such that

lim sup
N→∞

(1/N)
∑N

n=1f (T nx)an

τ(n)
> 0.

(2) The system (X, T ) satisfies Sarnak’s conjecture in equation (1).
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In fact, we will show that any subsequence Nj such that

lim
j→∞

1

Nj

Nj
∑

n=1

|an| = θ > 0 (2)

admits a further subsequence Njk
such that for all k large enough,

1

Njk

Njk
∑

n=1

f (T nx)an ≥ θ · τ(Njk
).

We emphasize that in Theorem 1.2, the system (X, T ) and the function f ∈ C(X) only

depend on the rate function τ , while the point x ∈ X depends also on the sequence

an. (Indeed, (X, T ) is always a subsystem of the same ambient system, which is the

product of four skew product systems with Bernoulli fiber and Bernoulli base and an

addition finite system. When regarded as a function on this ambient system, f is also

independent of τ .)

The derivation of Theorem 1.1 from Theorem 1.2 is straightforward. It is well known

that the Möbius function µ satisfies

lim
N→∞

∑N
n=1 |µ(n)|

N
=

6

π2
> 0,

see e.g. [1, Corollary 1.6]. Thus, Theorem 1.2 applied with an = µ(n) gives Theorem 1.1.

We end this introduction with a brief explanation of our construction. We consider

subshifts of ({−1, 0, 1}N × {{−1, 0, 1}Z, T ), where T (y, z) = (σy, σ y1z) and σ is the

left shift. Given a rate function τ , we first construct a certain rapidly growing sequence

qk → ∞. We then construct a subshift such that its base comes from words of length

qk+1 − qk that have non-zero entries at distance at least qk from each other. Our space X

is a product of four spaces constructed this way, together with a finite set {0, 1, 2, 3}. The

function f is taken to be

f ((y(0), z(0)), (y(1), z(1)), (y(2), z(2)), (y(3), z(3)), i) = z
(i)
0 .

We need four spaces in this construction for the reasons below. To retrieve positive

correlation between observation f (T nx) and an from positive correlation between a(n)

and the sequence γn = sign a(n), we make {f (T qkj+bx)} mimic {γqkj+c} for n = qkj +

b ∈ [qk , qk+1/3]. For this analysis to be applied to most steps in the trajectory, we

shall use two different sequences {q
(0)
k }, q

(1)
k such that the intervals [q

(1)
k , q

(1)
k+1/3] and

[q
(0)
k , q

(0)
k+1/3] together cover N. In addition, to express the average of f (T nx)an as an

approximate linear combination of that of γqkj+can = γqkj+caqkj+b, one has to explore

different pairs of congruences (b, c) and use two different values q and q − 1 for q, as

explained in the paragraph below. Thus, two more different sequences {q
(2)
k = q

(0)
k − 1}

and {q
(3)
k = q

(1)
k − 1} are needed. Each of the four sequences {q

(i)
k } corresponds to a

different space X(i). We remark that if limN→∞(1/N)
∑N

n=1 |an| > 0 is assumed instead

of lim supN→∞(1/N)
∑N

n=1 |an| > 0, then only two spaces will be needed as the first

concern above is no longer an issue in this case.
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Given an as in Theorem 1.2(1), our construction of the point x ∈ X relies on the

following observation. Assuming an ∈ R (otherwise one can pass to either Re(an) or

Im(an)), let γn := sign(an), and let Nj , θ be as in equation (2). For everyq, M ≫ 1, one

may show that

max
c,d∈[0,q]∩Z

{

1

qM

q−1+c
∑

b=c

M
∑

n=1

γ qn+c · aqn+b,
−1

qM

q−1+d
∑

b=d

M
∑

n=1

γ qn+d+1 · aqn+b

}

≥
θ

4
.

Here we pick k = k(j) in some convenient way, q = qk , and M ≈ Nj/qk . We then

construct our point x via working in one of the subshifts in our space—the exact choice

depends on certain technical issues coming from the relation between Nj and qk . To

set up x, we carefully concatenate pieces of arithmetic progressions in γ or −γ in the

fiber (using the equation above), with the base living in the corresponding shift space

and behaving nicely along the observable f. This will allow us to find a subsequence

of Nj where the linear correlations as in Theorem 1.2(1) are well approximated by the

average giving the max in the equation above. Thus, with some more work, we bound

these correlations from below by τ(Nj ) · θ .

Finally, to derive Theorem 1.2(2), we apply the Matomäki–Radziwiłł bound [13] on

averages of multiplicative functions along short intervals. To do this, we exploit some

strong periodic behavior that exists in the systems we construct.

2. Proof of Theorem 1.2(1).

2.1. Preliminaries. Let (X, T ) be a dynamical system, where we recall that X is a

compact metric space and T ∈ C(X). We denote the metric on X by dX. Let us recall

the Bowen–Dinaburg definition of topological entropy (as in e.g. [18]). For every n ∈ N,

we define a metric on X via

dn(x, y) = max{dX(T i(x), T i(y)) : 0 ≤ i < n}.

A Bowen ball Bn(x, ǫ) of depth n centered at x ∈ X of radius ǫ > 0 is the corresponding

(open) ball in the metric dn,

Bn(x, ǫ) = {y ∈ X : dn(x, y) < ǫ}.

For any set E ⊆ X, let N(E, n, ǫ) denote the minimal number of Bowen balls of depth n

and radius ǫ needed to cover E. The topological entropy of (X, T ) is then defined as

h(T ) := lim
ǫ→0

(

lim sup
n→∞

log N(X, n, ǫ)

n

)

.

Next, let σ : {−1, 0, 1}Z → {−1, 0, 1}Z denote the left shift. On {−1, 0, 1}Z and

{−1, 0, 1}N, we define the metric

d(x, y) = 3− min{|n|:xn �=yn}.

Also, for every x ∈ {−1, 0, 1}N and k > l ∈ N, let x|kl ∈ {−1, 0, 1}k−l be the word

x|kl := (xl , xl+1, . . . , xk),

https://doi.org/10.1017/etds.2022.61 Published online by Cambridge University Press
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and we use similar notation in the space {−1, 0, 1}Z as well. Next, let

Z := {−1, 0, 1}N × {−1, 0, 1}Z

and endow Z with the sup-metric on both its coordinates. Note that open balls in this metric

are also closed, and thus for every n ∈ N, x ∈ X, and ǫ > 0, the Bowen ball Bn(x, ǫ) is

closed. Also, we denote by �i , i = 1, 2, the coordinate projections in Z. Finally, we define

the skew-product T : Z → Z via

T (y, z) = (σ (y), σ y1(z)).

We say that X ⊆ Z is a subshift if it is closed and T-invariant.

We will require the following lemma.

LEMMA 2.1. The system (Z, T ) satisfies that for every n ∈ N, ǫ > 0, and x = (y, z) ∈ Z,

the following hold.

(1) We have

T n(y, z) = (σ ny, σ
∑n

i=1 yi z).

(2) Let m=m(n, y)= min{min1≤k≤n

∑k
i=1 yi , 0} and M :=M(n, y)= max{max1≤k≤n

∑k
i=1 yi , 0}. Then for any l ∈ N, the Bowen ball dn(x, 3−l) equals

{(a, b) ∈ Z : a|n+u
1 = y|n+u

1 , b|M+u
m−u = z|M+u

m−u }.

(3) For any set E ⊆ Z,

N(E, n, ǫ) = N(cl(E), n, ǫ),

where cl(E) is the closure of the set E.

Proof. Part (1) follows immediately from the definition of the map T. Part (2) follows from

part (1). Finally, part (3) is an immediate consequence of the fact that in (Z, T ), Bowen

balls are closed.

2.2. Construction of some zero entropy systems. Fix a sequence τ(n) → 0 as in

Theorem 1.2. We begin by constructing a rapidly growing sequence qk → ∞ (that depends

on τ ) such that for every k ∈ N, we have the following.

(1) qk+1 > q4
k + 3qk .

(2) τ(qk+1/3) < 1/16qk .

We now use qk to define four sequences:

q
(0)
k := q2k , q

(1)
k = q2k+1, q

(2)
k := q

(0)
k − 1, q

(3)
k := q

(1)
k − 1.

Notice that property (1) above also holds for q
(i)
k for every i ∈ {0, 1, 2, 3}. In particular,

lim
k→∞

q
(i)
k+1

q
(i)
k

= ∞ for every i ∈ {0, 1, 2, 3}.
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Next, for every i ∈ {0, 1, 2, 3} and every k, let

A
(i)
k := {j · q

(i)
k : j ∈ Z, q

(i)
k ≤ j · q

(i)
k ≤ q

(i)
k+1}.

For every i ∈ {0, 1, 2, 3} and every k ∈ N, we construct elements s
(i)
k ∈ {−1, 0, 1}N such

that the following hold.

(1) s
(i)
k (n) = 0 for every integer n /∈ A

(i)
k .

(2) For every j · q
(i)
k ∈ A

(i)
k ,

s
(i)
k (j · q

(i)
k ) = 1 if j ≤

[

q
(i)
k+1

3q
(i)
k

]

,

and

s
(i)
k (j · q

(i)
k ) = −1 if

[

q
(i)
k+1

3q
(i)
k

]

< j ≤ 2

[

q
(i)
k+1

3q
(i)
k

]

.

Next, for every element x ∈ {−1, 0, 1}N and p ∈ N0, we define σ−px ∈ {−1, 0, 1}N as

σ−px = x if p = 0, and otherwise

(σ−px)|
p

1 = (0, . . . , 0) and for all n > p, σ−px(n) = x(n − p).

The following lemma is an immediate consequence of our construction.

LEMMA 2.2. For every i ∈ {0, 1, 2, 3}, k ∈ N, and p = 0, . . . , q
(i)
k , we have

∑

n∈[q
(i)
k , q

(i)
k+1)∩Z

(σ−ps
(i)
k )(n) = 0.

Proof. This follows since by our construction,

|{j · q
(i)
k ∈ A

(i)
k : s

(i)
k (j · q

(i)
k ) = 1}| = |{j · q

(i)
k ∈ A

(i)
k : s

(i)
k (j · q

(i)
k ) = −1}|,

as well as the fact that for all n ∈ A
(i)
k and p = 0, . . . , q

(i)
k , n + p is still in the interval

[q
(i)
k , q

(i)
k+1) ∩ Z.

Next, for every i ∈ {0, 1, 2, 3} and k ∈ N, define the truncations

R
(i)
k = {(σ−ps

(i)
k )|

q
(i)
k+1−1

q
(i)
k

: p = 0, . . . , q
(i)
k } ⊆ {−1, 0, 1}q

(i)
k+1−q

(i)
k .

We now define the space P (i) of all infinite sequences that have, for every k, some word

from R
(i)
k between their q

(i)
k and q

(i)
k+1 − 1 digits. Formally,

P (i) = {x ∈ {−1, 0, 1}N : x|
q

(i)
k+1−1

q
(i)
k

∈ R
(i)
k and x|

q
(i)
1 −1

1 = (0, . . . , 0)}.

The following lemma is an immediate consequence of Lemma 2.2.
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FIGURE 1. Illustration for Lemma 2.4.

LEMMA 2.3. For every i ∈ {0, 1, 2, 3}, k ∈ N, and y ∈ P (i),

q
(i)
k −1
∑

j=1

y(j) = 0.

Finally, for every i ∈ {0, 1, 2, 3}, we define the subshift of (Z, T ),

Xi = cl

(

⋃

n∈N0

T n(P (i) × {−1, 0, 1}Z)

)

.

LEMMA 2.4. For every i ∈ {0, 1, 2, 3}, we have h(Xi , T ) = 0.

Proof. Fix n, u ∈ N. We count how many Bowen balls of radius 1/3u and depth n are

needed to cover Xi . Recall that we denote this quantity by N(Xi , n, 1/3u). By Lemma

2.1(3), this is the same number as

N

(

⋃

l∈N0

T l(P (i) × {−1, 0, 1}Z), n,
1

3u

)

.

So, we work with the latter space (that is, without taking the closure).

Let k = k(n + u, i) be such that

q
(i)
k ≤ n + u < q

(i)
k+1. (3)

Our first observation is that we can write
⋃

l∈N0

T l(P (i) × {−1, 0, 1}Z) = A1

⋃

A2

⋃

A3.

To define the sets Ai , we first note that every x ∈
⋃

l∈N0
T l(P (i) × {−1, 0, 1}Z) admits

some l ∈ N0 and x̃ ∈ P (i) × {−1, 0, 1}Z such that x = T l x̃. We denote by p = p(x) ∈ N

the unique integer such that q
(i)
k−1 + l ∈ [q

(i)
p , q

(i)
p+1). Note that p ≥ k − 1. Then,

A1 = {x : p(x) ≥ k + 1}, A2 = {x : p(x) = k}, A3 = {x : p(x) = k − 1}.

Thus, we bound the covering numbers for A1, A2, A3 separately. Before doing so, we

notice that for any x ∈ Aj for j = 1, 2, 3, there are at most 3q
(i)
k−1 possibilities for the first

q
(i)
k−1 digits of �1(x) (see Figure 1).

(i) Covering A1. For any x ∈ A1, the word (�1x)|n+u

q
(i)
k−1

always consists of zeros separated

by 1 or −1, and in this case, the non-zero entries appear at a distance at least q
(i)
k+1 > n + u

from each other. Since there can be only one non-zero entry, there are at most 2(n + u)
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options for the configuration of this word. So, with the notation of Lemma 2.1(2), we see

that

|m|, M ≤ q
(i)
k−1 + 1.

Thus, taking into account also the first q
(i)
k−1 digits, and via Lemma 2.1(2), the number

of Bowen balls we need here is at most

(3q
(i)
k−1 × 2(n + u)) × (3u+q

(i)
k−1+1)2.

(ii) Covering A2. The word (�1x)|n+u

q
(i)
k−1

consists of zeros separated by 1 or −1, and in

this case, the first non-zero entries appear at a distance at least q
(i)
k ≤ n + u from each

other. We also know that the first non-zero digit needs to appear within the first q
(i)
k digits.

Another factor that needs to be taken into consideration is the possibility that [q
(i)
k−1 +

l, n + u + l] intersects [q
(i)
k+1, ∞). So, with the notation of Lemma 2.1(2), we see that

|m|, M ≤ q
(i)
k−1 +

n + u

q
(i)
k

+ 1.

Taking all these factor into account, the number of Bowen balls we need here is at most

(3q
(i)
k−1 × q

(i)
k × 2(n + u)) × (3u+q

(i)
k−1+(n+u)/q

(i)
k +1)2.

(iii) Covering A3. The word (�1x)|n+u

q
(i)
k−1

consists of zeros separated by 1 or −1, and in

this case, the first non-zero entries appear at a distance at least q
(i)
k−1 from each other. We

also know that the first non-zero digit needs to appear within the first q
(i)
k−1 digits. Another

factor that needs to be taken into consideration is the possibility that [q
(i)
k−1 + l, n + u + l]

intersects [q
(i)
k , ∞). So, with the notation of Lemma 2.1(2), we see that

|m|, M ≤ q
(i)
k−1 +

q
(i)
k

q
(i)
k−1

+
n + u

q
(i)
k

+ 1.

Taking all these factors into account, the number of Bowen balls we need here is at most

(3q
(i)
k−1 × q

(i)
k−1 × q

(i)
k × 2(n + u)) × (3u+q

(i)
k−1+q

(i)
k /q

(i)
k−1+(n+u)/q

(i)
k +1)2.

Thus, we see that

N

(

Xi , n,
1

3u

)

≤ 3 · max
i=1,2,3

N

(

Ai , n,
1

3u

)

= 3 · N

(

A3, n,
1

3u

)

,

which has been computed in point (iii) above. So, making use of equation (3),

log N(Xi , n, 1/3u)

n

≤
log 3 + log(3q

(i)
k−1 · 2(n + u) · q

(i)
k−1 · q

(i)
k ) · (3u+q

(i)
k−1+q

(i)
k /q

(i)
k−1+(n+u)/q

(i)
k +1)2

n

≤
log 6

n
+

q
(i)
k−1 · log 3

n
+

log(n + u)

n
+

2 log q
(i)
k

n
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+

(

u + q
(i)
k−1 + q

(i)
k /q

(i)
k−1 + n + u/q

(i)
k + 1

)

log 9

n

≤ C1 ·

(

log q
(i)
k

n
+

q
(i)
k−1

n
+

log(n + u)

n
+

q
(i)
k

q
(i)
k−1 · (n + u)

·
n + u

n
+

n + u

q
(i)
k · n

)

≤ C1 ·
n + u

n
·

(

2 log(n + u)

n
+

q
(i)
k−1

q
(i)
k

+
1

q
(i)
k−1

+
1

q
(i)
k

)

.

Here, C1 is a large constant that depends variously on u and the other constants appearing

in the second equation. We conclude that, fixing u,

lim
n→∞

log N(X, n, 1/3u)

n
= 0,

and the claim is proved.

2.3. Finding correlations along arithmetic progressions. Let an be a sequence as in

Theorem 1.2(1), that is, such that lim supN→∞(1/N)
∑N

n=1|an| > 0. By moving to either

Re(an) or Im(an), we may assume an is a real valued sequence. We define a new sequence

γn ∈ {−1, 0, 1} via

γn := sign(an).

In particular,

lim sup
N→∞

1

N

N
∑

n=1

γn · an = lim sup
N→∞

1

N

N
∑

n=1

|an| > 0.

Let θ := lim sup(1/N)
∑N

n=1|an| > 0, and let Nj be a subsequence such that

lim
j→∞

1

Nj

Nj
∑

n=1

|an| = θ .

Definition 2.5. For every j ∈ N large enough, we define k′ = k(j) ∈ N and i′ = i(j) ∈

{0, 1} as the unique integers such that:

if Nj ∈

[

q
(1)

k′

3
,

q
(0)

k′+1

3

)

then i′ = 0; and

if Nj ∈

[

q
(0)

k′+1

3
,

q
(1)

k′+1

3

)

then i′ = 1.

We also define an integer

M
(i′)

k′ :=

[

Nj

q
(i′)

k′

]

.
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Note that by definition and the construction of the sequence qk ,

(q
(i′)

k′ )3

3
=

(q
(i′)

k′ )4

3q
(i′)

k′

< M
(i′)

k′ ≤
q

(i′)

k′+1

3q
(i′)

k′

. (4)

Next, recall the definition of Z from §2.1 and let g : Z → {−1, 0, 1} be the function

g(y, z) = z0.

For every q, M ≫ 1 and r , c such that r , c ∈ [0, q], let

A
q,M
r ,c :=

1

qM

q−1+r
∑

b=r

M
∑

n=1

γ (qn + c) · a(qn + b).

Finally, we also define

M
(i′+2)

k′ :=

[

q
(i′)

k′ M
(i′)

k′

q
(i′)

k′ − 1

]

=

[

q
(i′)

k′ M
(i′)

k′

q
(i′+2)

k′

]

and note that M
(i′+2)

k′ ≈ M
(i′)

k′ . In the following lemma, we use the construction from §2.2.

LEMMA 2.6. For every j and u ∈ {0, 1} writing ℓ = i′ + 2u, for every two integers

c, r ∈ [0, q
(ℓ)

k′ ], let x ∈ P (ℓ) × {−1, 0, 1}Z ⊆ Xℓ be any element such that for every

q
(ℓ)

k′ ≤ n < q
(ℓ)

k′+1
,

x(n) = (s
(ℓ)

k′ (n − r), γ (q
(ℓ)

k′ · n + c)).

Then

1

q
(ℓ)

k′ M
(ℓ)

k′

q
(ℓ)

k′ M
(ℓ)

k′
∑

n=1

g(T nx)a(n) = A
q

(ℓ)

k′ , M
(ℓ)

k′

r ,c + O

(

q
(ℓ)

k′

M
(ℓ)

k′

)

.

Note that by the construction of P (ℓ) × {−1, 0, 1}Z in §2.2, there exists an element x as

in the statement of the lemma in that space.

Proof. In this proof, we suppress the ℓ, k′ in our notation and simply write q, M . First, for

every two integers j ∈ [1, M] and b ∈ [r , q + r − 1],

qj+b
∑

d=1

(�1x)(d) =

q−1
∑

d=1

(�1x)(d) +

qj+b−1
∑

d=q

(�1x)(d)

=

qj+b−1
∑

d=q

s
(ℓ)
k (d − r)

=

qj+b−r−1
∑

d=q−r

s
(ℓ)
k (d) = j .
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Note the use of Lemma 2.3 in the second equality. Moreover, in the last equality, we use

the fact that M ≤ q
(ℓ)

k′+1
/3q

(ℓ)

k′ and the definition of s
(ℓ)
k to guarantee that all summands are

either 0 or 1. Therefore,

1

qM

qM
∑

n=1

g(T nx)a(n) =
1

qM

qM
∑

n=q

g(T nx)a(n) + O

(

1

M

)

=
1

qM

M
∑

j=1

q+r−1
∑

b=r

g(T q·j+bx)a(q · j + b) + O

(

1

M

)

=
1

qM

M
∑

j=1

q+r−1
∑

b=r

g(σ qj+b�1x, σ
∑qj+b

d=1 (�1x)(d)�2x)a(q · j + b)

+ O

(

1

M

)

=
1

qM

M
∑

j=1

q+r−1
∑

b=r

g(σ qj+b−rs
(ℓ)

k′ , σ j�2x)a(q · j + b)

+ O

(

1

M

)

=
1

qM

M
∑

j=1

q+r−1
∑

b=r

γ (q · j + c) · a(q · j + b) + O

(

q

M

)

= A
q,M
r ,c + O

(

q

M

)

.

Indeed, the first equality follows since g(T nx) and an are both bounded sequences; in the

third equality, we use Lemma 2.1(1); and in the fourth equality, we are using the previous

equation array and the definition of x. This definition along with the definition of s
(ℓ)
k

justify the fifth equality. The last equality is simply the definition of A
q,M
r ,c .

Remark 2.7. In the setup of Lemma 2.6, we may similarly find another x ∈ P (ℓ) ×

{−1, 0, 1}Z that satisfies the conclusion of Lemma 2.6, but for −A
q

(ℓ)

k′ ,M
(ℓ)

k′

r ,c . Indeed, this

follows from the very same proof by picking x ∈ P (ℓ) × {−1, 0, 1}Z to be any element

such that for every q
(ℓ)

k′ ≤ n < q
(ℓ)

k′+1
,

x(n) = (s
(ℓ)

k′ (n − r), −γ (q
(ℓ)

k′ · n + c)).

We will also require the following lemma.

LEMMA 2.8. For every j large enough, there is either some c ∈ [0, q
(i′)

k′ ) such that

A
q

(i′)

k′ ,M
(i′)

k′

c,c ≥
θ

8q
(i′)

k′

, (5)
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or some d ∈ [0, q
(i′+2)

k′ ) with

−A
q

(i′+2)

k′ ,M
(i′+2)

k′

d+1,d ≥
θ

8q
(i′)

k′

.

Proof. In this proof, we again suppress the i′, k′, u in our notation, and write instead q, M ,

for q
(i′)

k′ and M
(i′)

k′ , respectively (the terms corresponding to i′ + 2 will come up in the proof

later). Now, for every c, r ∈ [0, q],

q−1
∑

c=0

A
q,M
c+r ,c =

1

qM

qM
∑

m=1

γ (m) · (a(m + r) + · · · + a(m + r + q − 1)) + O

(

1

M

)

.

So,

qM ·

q−1
∑

c=0

A
q,M
c,c =

qM
∑

m=1

γ (m) · (a(m) + · · · + a(m + q − 1)) + O(q)

and

(q − 1)

[

qM

q − 1

] q−1
∑

c=1

A
q−1,[qM/(q−1)]
c+1,c

=

qM
∑

m=1

γ (m) · (a(m + 1) + · · · + a(m + q − 1)) + O(q2).

Combining the last two displayed equations,

qM ·

q−1
∑

c=0

A
q,M
c,c − (q − 1)

[

qM

q − 1

] q−1
∑

c=1

A
q−1,[qM/(q−1)]
c+1,c

=

qM
∑

m=1

γ (m)a(m) + O(q2) ≥ θ/2 · qM + O(q2).

It follows that, assuming q is large enough and via equation (4),

q−1
∑

c=0

A
q,M
c,c −

q−1
∑

d=1

A
q−1,[qM/(q−1)]
d+1,d ≥ θ/2 − O

(

q

M

)

≥ θ/2 − O

(

1

q2

)

≥ θ/4.

Recalling our definition of q
(i′+2)

k′ and M
(i′+2)

k′ , this implies the lemma.

2.4. Construction of the point and system as in Theorem 1.2. Recalling Lemma 2.8,

by perhaps moving to a further subsequence, we may assume that the inequality from

Lemma 2.8 is always given by the term corresponding to q
(i′+2u)

k′ , where u = u(j) is either

0 or 1, and both the quantities i′ = i(j) (defined in Definition 2.5) and u are assumed to

be constant in j. Let us denote this constant value i′ + 2u ∈ {0, 1, 2, 3} by ℓ. Recalling

Definition 2.5, and passing to a subsequence if needed, we assume that the map j 
→

k(j) = k′ is injective.
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We now construct a point x(ℓ) ∈ P (ℓ) × {−1, 0, 1}Z ⊆ Xℓ as follows. For every

j ∈ N and q
(ℓ)
k(j) ≤ n < q

(ℓ)
k(j)+1, x(ℓ)(n) = x(n), where x is the element as in Lemma 2.6

(if u = 0) or Remark 2.7 (if u = 1), corresponding to j, ℓ as in the paragraph above, and

either r = c and c (if u = 0) or r = d + 1 and c = d (if u = 1) yielding the inequality

from Lemma 2.8. Note that here we need the map j 
→ k(j) to be injective so this is

well defined (that is, the intervals [q
(ℓ)
k(j), q

(ℓ)
k(j)+1) do not overlap). Note that so far we

have only specified the digits n ∈
⋃

j∈N[q
(ℓ)
k(j), q

(ℓ)
k(j)+1), and (since we have passed to

a subsequence) it is possible that this union does not cover all of N. So, for all digits

not covered, we make some choice that ensures x(ℓ) ∈ P (ℓ) × {−1, 0, 1}Z. Note that by

Lemma 2.6 and the construction of P (ℓ), such a choice is readily available.

We now take our space to be

X := X0 × X1 × X2 × X3 × {0, 1, 2, 3}, (6)

with the self-mapping T̂ ∈ C(X) being

T̂ (p(0), p(1), p(2), p(3), i) = (Tp(0), Tp(1), Tp(2), Tp(3), i).

The function f ∈ C(X) is taken to be

f ((y(0), z(0)), (y(1), z(1)), (y(2), z(2)), (y(3), z(3)), i) = z
(i)
0 .

We next choose our point x to be any x ∈ X such that its projection to Xℓ is x(ℓ), and its

projection to {0, 1, 2, 3} is ℓ.

We now prove Theorem 1.2(1) via the following two claims.

LEMMA 2.9. We have h(X, T̂ ) = 0.

Proof. By Claim 2.4, each factor in the product space X has zero entropy, which implies

the assertion via standard arguments.

LEMMA 2.10. For all j large enough,

1

Nj

Nj
∑

n=1

f (T̂ nx)a(n) ≥ θ · τ(Nj ).

In particular,

lim sup
N→∞

(1/N)
∑N

n=1 f (T̂ nx)a(n)

τ(N)
> 0.

Proof. Fix j large, and let us write N , q, M , x, suppressing the dependence on k′, ℓ, j

(except in parts of the proof where we wish to emphasize this dependence). Note that

qM ∈ [N − q, N].
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Now,

1

N

N
∑

n=1

f (T̂ nx)a(n) =
1

qM

qM
∑

n=1

f (T̂ nx)a(n) + O

(

1

M

)

=
1

qM

( q−1
∑

n=1

f (T̂ nx)a(n) +

qM
∑

n=q

f (T̂ nx)a(n)

)

+ O

(

1

M

)

=
1

qM

( q−1
∑

n=1

f (T̂ nx)a(n) +

qM
∑

n=1

g(T nx(ℓ))a(n) −

q−1
∑

n=1

g(T nx(ℓ))a(n)

)

+ O

(

1

M

)

=
1

q
(ℓ)

k′ M
(ℓ)

k′

q
(ℓ)

k′ M
(ℓ)

k′
∑

n=1

g(T nx(ℓ))a(n) + O

(

1

M
(ℓ)

k′

)

≥
θ

8q
(i′)

k′

+ O

(

q
(ℓ)

k′

M
(ℓ)

k′

)

.

Note that in the third equality, we are again using Lemma 2.3 in a similar fashion to

the proof of Lemma 2.6, which is allowed since x(ℓ) ∈ P (ℓ) × {−1, 0, 1}Z. For the last

inequality, we are using Lemmas 2.8 and 2.6 along with the definition of x.

We conclude that

1

Nj

Nj
∑

n=1

f (T̂ nx)a(n) ≥
θ

8q
(i′)

k′

+ O

(

q
(ℓ)

k′

M
(ℓ)

k′

)

.

By equation (4),

O

(

q
(ℓ)

k′

M
(ℓ)

k′

)

≤ O

((

1

q
(i′)

k′

)2)

,

and so, as long as j is large enough,

1

Nj

Nj −1
∑

n=0

f (T̂ nx)a(n) ≥
θ

16q
(i′)

k′

.

Finally, it follows from our choice of Nj that Nj is larger than the element of the sequence

qk/3 that comes after q
(i′)

k′ /3. So, by the choice of the sequence qk ,

1

16q
(i′)

k′

≥ τ(Nj ).

Combining the last two displayed equations implies the claim.

3. Proof of Theorem 1.2(2).

In this section, we prove Theorem 1.2(2). That is, we show that the system (X, T̂ ) given

in equation (6) satisfies the Möbius disjointness conjecture in equation (1). The proof
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will be an application of Matomäki–Radziwiłł’s bound [13] on averages of multiplicative

functions along short intervals. The Matomäki–Radziwiłł bound as well as its extension

by Matomäki, Radziwiłł and Tao [14] have recently become a powerful tool to establish

Möbius disjointness for systems with strong periodic behavior.

Denote a point x ∈ X as

(x(0), x(1), x(2), x(3), i) where x(ℓ) = (y(ℓ), z(ℓ)).

For each p = (y, z) ∈ {−1, 0, 1}N × {−1, 0, 1}Z and M ∈ N, denote by [p]M the

truncation

[p]M := ((y1, . . . , yM), (z−M , . . . , zM)).

Write CM(X) for the space of cylinder functions f (x) that only depends on ([x(ℓ)]M)0≤ℓ≤3

and the fifth coordinate i ∈ {0, 1, 2, 3}. Then
⋃∞

M=1 CM(X) is dense in C(X) with respect

to C0 norm. In consequence, it suffices to verify equation (1) for all cylinder functions

f ∈ CM(X) for every M.

The main technical lemma that we need is the following.

LEMMA 3.1. For all 0 ≤ ℓ ≤ 3 and M , H ∈ N, and x ∈ X, there exists a set


(ℓ)(M , H , x) ⊆ N that satisfies:

(1) limN→∞(1/N)#({1, . . . , N} ∩ 
(ℓ)(M , H , x)) = 1;

(2) for all n ∈ 
(ℓ)(M , H , x), [T n+hx(ℓ)]M is constant for 0 ≤ h ≤ H − 1.

Proof. Since

x(ℓ) ∈ Xℓ = cl

(

⋃

b∈N0

T b(P (ℓ) × {−1, 0, 1}Z)

)

,

for each ℓ and all N ∈ N0, there exists x(N ,ℓ) ∈
⋃

b∈N0
T b(P (ℓ) × {−1, 0, 1}Z) such that

[x(N ,ℓ)]N = [x(ℓ)]N for all n ≤ N .

We also choose b(N ,ℓ) ∈ N0 and x̃(N ,ℓ) ∈ P (ℓ) × {−1, 0, 1}Z such that x(N ,ℓ) =

T b(N ,ℓ)
x̃(N ,ℓ).

Then, for 1 ≤ n ≤ N and 0 ≤ h ≤ H − 1,

[T n+hx(ℓ)]M = [T n+hx(N+H+M ,ℓ)]M = [T n+b(N+H+M ,ℓ)+hx̃(N+H+M ,ℓ)]M .

Therefore, by Lemma 2.1(1), [T n+hx(ℓ)]M is constant for 0 ≤ h ≤ H − 1 if

�1x̃
(N+H+M ,ℓ)(n + b(N ,ℓ) + h′) = 0 for all 0 ≤ h′ ≤ H + M − 1. (7)

Since x̃(N+H+M ,ℓ) ∈ P (ℓ) ×{−1, 0, 1}Z, for every k ∈N, there is some 0 ≤ r
(ℓ)
k ≤ q

(ℓ)
k − 1

such that

�1x̃
(N+H+M ,ℓ)(n′) = s

(ℓ)
k (n′ − r

(ℓ)
k ) for q

(ℓ)
k ≤ n′ < q

(ℓ)
k+1.

In particular, �1x̃
(N+H+M ,ℓ)(n′) = 0 for all q

(ℓ)
k ≤ n′ < q

(ℓ)
k+1 with n′ �≡ r

(ℓ)
k (mod q

(ℓ)
k ).
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It follows that for each k, equation (7) holds on the set



(ℓ)
N ,k(M , H , x) := {1 ≤ n ≤ N : q

(ℓ)
k ≤ n + b(N+H+M ,ℓ) ≤ q

(ℓ)
k+1 − H − M;

n + b(N+H+M ,ℓ) �≡ r
(ℓ)
k − H − M + 1, . . . , r

(ℓ)
k − 1, r

(ℓ)
k (mod q

(ℓ)
k )}.

Set 

(ℓ)
N (M , H , x) =

⋃∞
k=1 


(ℓ)
N ,k(M , H , x) ⊆ {1, . . . , N}. Then [T n+hx(ℓ)]M is con-

stant for 0 ≤ h ≤ H − 1 if n ∈ 
(ℓ)(M , H , x).

Finally,

lim
N→∞

1

N
#({1, . . . , N} ∩ 


(ℓ)
N (M , H , x)) = 1

because of the following facts: H and M are fixed, b(N+H+M ,ℓ) ≥ 0, limk→∞ q
(ℓ)
k = ∞,

and limk→∞(q
(ℓ)
k+1/q

(ℓ)
k ) = ∞. We conclude the proof by defining


(ℓ)(M , H , x) :=

∞
⋃

N=1



(ℓ)
N (M , H , x).

COROLLARY 3.2. For all M , H ∈ N, and x ∈ X, there exists a set 
(M , H , x) ⊆ N that

satisfies the following:

(1) limN→∞(1/N)#({1, . . . , N} ∩ 
(M , H , x)) = 1;

(2) for all f ∈ CM(X) and any given n ∈ 
(M , H , x), f (T̂ n+hx) is constant for 0 ≤

h ≤ H − 1.

Proof. Let 
(ℓ)(M , H , x) be as in Lemma 3.1, and set


(M , H , x) :=
⋂

0≤ℓ≤3


(ℓ)(M , H , x) ⊂ N.

Then clearly, we still have

lim
N→∞

1

N
#({1, . . . , N} ∩ 
(M , H , x)) = 1.

Next, let f ∈ CM(X). Since f (T̂ n+hx) only depends on ([T n+hx(ℓ)]M)0≤ℓ≤3 and the i

coordinate (that does not change when we apply T̂ ), given n ∈ 
(ℓ)(i, M , H , x), it is

constant for 0 ≤ h ≤ H − 1 by Lemma 3.1.

We are now ready to establish Möbius disjointness.

Proof of Theorem 1.2(2). As remarked in the beginning of this section, we may assume

f ∈ CM(X) for some M and |f | ≤ 1. Let x ∈ X. Then for a fixed H, as N → ∞,

https://doi.org/10.1017/etds.2022.61 Published online by Cambridge University Press
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∣

∣

∣

∣

1

N

N
∑

n=1

f (T̂ nx)µ(n)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

N

N
∑

n=1

1

H

H−1
∑

h=0

f (T̂ n+hx)µ(n)

∣

∣

∣

∣

+ O

(

H

N

)

=

∣

∣

∣

∣

1

N

∑

1≤n≤N
n∈
(M ,H ,x)

1

H

H−1
∑

h=0

f (T̂ n+hx)µ(n)

∣

∣

∣

∣

+ oH (1) + O

(

H

N

)

≤
1

N

∑

1≤n≤N
n∈
(M ,H ,x)

∣

∣

∣

∣

1

H

H−1
∑

h=0

f (T̂ n+hx)µ(n + h)

∣

∣

∣

∣

+ oH (1) + O

(

H

N

)

.

Here, oH (1) stands for a quantity that tends to 0 as N → ∞ for a fixed H.

By Corollary 3.2, f (T̂ n+hx) = f (T̂ nx) for every n ∈ 
(M , H , x) and 0 ≤ h ≤

H − 1. So,

∣

∣

∣

∣

1

N

N
∑

n=1

f (T̂ nx)µ(n)

∣

∣

∣

∣

≤
1

N

∑

1≤n≤N
n∈
(M ,H ,x)

∣

∣

∣

∣

1

H

H−1
∑

h=0

f (T̂ nx)µ(n + h)

∣

∣

∣

∣

+ oH (1) + O

(

H

N

)

≤
1

N

∑

1≤n≤N
n∈
(M ,H ,x)

∣

∣

∣

∣

1

H

H−1
∑

h=0

µ(n + h)

∣

∣

∣

∣

+ oH (1) + O

(

H

N

)

≤
1

N

N
∑

n=1

∣

∣

∣

∣

1

H

H−1
∑

h=0

µ(n + h)

∣

∣

∣

∣

+ oH (1) + O

(

H

N

)

= O

((

1

log H

)0.01

+

(

log H

log N

)0.01)

+ oH (1) + O

(

H

N

)

.

The last step is given by [13, Theorem 1].

By letting H → ∞ first, and then N → ∞ for each fixed H, we see that

1

N

N
∑

n=1

f (T̂ nx)µ(n) = o(1) as N → ∞.
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[5] E. H. el Abdalaoui, M. Lemańczyk and T. de la Rue. On spectral disjointness of powers for rank-one

transformations and Möbius orthogonality. J. Funct. Anal. 266(1) (2014), 284–317.
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