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Abstract. Sarnak’s Mobius disjointness conjecture asserts that for any zero entropy
dynamical system (X, T), (l/N)ZrIlv:lf(T”x)/L(n) = o(1) forevery f € C(X) and every
x € X. We construct examples showing that this o(1) can go to zero arbitrarily slowly.
In fact, our methods yield a more general result, where in lieu of p(n), one can put any
bounded sequence a,, such that the Cesaro mean of the corresponding sequence of absolute
values does not tend to zero. Moreover, in our construction, the choice of x depends on the
sequence a,, but (X, T') does not.
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1. Introduction
A topological dynamical system is a pair (X, T) where X is compact metric space and
T € C(X). If the system (X, T) has zero topological entropy, then Sarnak’s Mobius
disjointness conjecture [16, Main Conjecture] predicts that
1N
I Z um) f(T"x) = o(1) forevery f € C(X) and every x € X. @))
n=1
Many special cases of Sarnak’s conjecture have been established. A very partial list of
examples consists of [2, 5, 8, 9]. We refer to the surveys of Ferenczi, Kutaga-Przymus, and
Lemariczyk [6] and of Kutaga-Przymus and Lemariczyk [11] for excellent expositions on
the subject, and many more references.
The goal of this paper is to study the rate of decay in Sarnak’s conjecture. That is,
to study the nature of the o(1) as in equation (1). We will show that there are systems
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for which this o(1) decays to zero arbitrarily slowly. Nevertheless, all the examples we
construct to this end satisfy Sarnak’s conjecture. Here is our main result.

THEOREM 1.1. For every decreasing and strictly positive sequence t(n) — 0, there is a
dynamical system (X, T) with zero topological entropy that satisfies the following.

(1) There exist x € X and f € C(X) such that:

N n
lim sup (1/N)) iy f(T"x)p(n)
N—o0 T(I’l)

> 0.

(2) The system (X, T) satisfies Sarnak’s conjecture in equation (1).

Several remarks are in order. First, Sarnak [15, the remark following Main Conjecture]
remarks that rates are not required in the conjecture, and this is formally justified by
Theorem 1.1. Second, it is natural to ask if Theorem 1.I may be upgraded by finding a
zero entropy dynamical system (X, T) and f € C(X) such that for every rate function
7, we can find x € X that satisfies Theorem 1.1(1). Doing so is as hard as solving the
full Mobius disjointness conjecture. Indeed, by [4, Corollary 10], if the conjecture is true,
then for every zero entropy system (X, T') and f € C(X), equation (1) holds uniformly
in x € X. This cannot hold concurrently with the aforementioned upgraded version of
Theorem 1.1. In other words, Theorem 1.1 is conjecturally optimal. Next, we remark that
in many cases (possibly in all cases), it is known [17] that a sufficiently fast rate in Sarnak’s
conjecture implies that the system (X, 7') satisfies a prime number theorem (PNT) in the
sense discussed in [6, Section 11.2]. Thus, recent examples [7, 10] of zero entropy systems
failing to satisfy a PNT can be viewed as evidence toward Theorem 1.1. We also mention
the recent interesting counterexamples to polynomial Sarnak’s conjecture constructed by
Lian and Shi [12] and Kanigowski, Lemanczyk, and Radziwitt [10] that, while not directly
related to Theorem 1.1 as they focus on a sparse sequence of observations instead of the
entire trajectory, are similar in spirit to our work.

Finally, we remark that our construction was partially inspired by the idea of building
a sufficiently complex zero entropy system as a skew product from the recent work of
Dolgopyat et al [3], where they exhibit some new classes of zero entropy smooth systems
that satisfy the central limit theorem. In this paper, we construct a symbolic skew product
instead of a smooth one to code more precise information carried by {a,}.

We will derive Theorem 1.1 from a more general statement. This is the following
theorem, which forms the main technical result of this paper.

THEOREM 1.2. For every decreasing and strictly positive sequence t(n) — 0, there is a
zero entropy dynamical system (X, T) and some f € C(X) that satisfy the following.

(1)  Every sequence |a,| < 1 with lim supN_)OO(l/N)Z;V:] la,| > 0 admits some x € X
such that

> 0.

N n
lim sup (I/N)Zn=1f(T x)an
N—>o00 (n)

(2) The system (X, T) satisfies Sarnak’s conjecture in equation (1).
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In fact, we will show that any subsequence N such that

N.

1 J
lim — =60 2
Jim N,,;W > )

admits a further subsequence N, such that for all k large enough,
1 &
v 2 (T Dan =0 TN,

Tk p=1

We emphasize that in Theorem 1.2, the system (X, 7') and the function f € C(X) only
depend on the rate function v, while the point x € X depends also on the sequence
ap. (Indeed, (X, T) is always a subsystem of the same ambient system, which is the
product of four skew product systems with Bernoulli fiber and Bernoulli base and an
addition finite system. When regarded as a function on this ambient system, f is also
independent of 7.)

The derivation of Theorem 1.1 from Theorem 1.2 is straightforward. It is well known
that the Mobius function w satisfies

i Znet | 6

5 > 0,
N—o00 N b3

see e.g. [1, Corollary 1.6]. Thus, Theorem 1.2 applied with a,, = p(n) gives Theorem 1.1.

We end this introduction with a brief explanation of our construction. We consider
subshifts of ({—1,0, 1} x {{—1,0, 1}%, T), where T(y,z) = (oy,0%1z) and o is the
left shift. Given a rate function t, we first construct a certain rapidly growing sequence
qr — 0o. We then construct a subshift such that its base comes from words of length
qk+1 — qk that have non-zero entries at distance at least g; from each other. Our space X
is a product of four spaces constructed this way, together with a finite set {0, 1, 2, 3}. The
function f is taken to be

FG@,29), 6D, 20), 6P, 2@, 3O, 23, iy = 20,

We need four spaces in this construction for the reasons below. To retrieve positive
correlation between observation f(7"x) and a, from positive correlation between a(n)
and the sequence y, = sign a(n), we make { £(T%I+Px)} mimic {Varjre} forn = qrj +
b € gk, qk+1/3]. For this analysis to be applied to most steps in the trajectory, we

shall use two different sequences {q,ﬁo)}, q,ﬁl) such that the intervals [qlgl), q,ilr)l /3] and

[q,ﬁo), q,i(_):] /3] together cover N. In addition, to express the average of f(T"x)a, as an
approximate linear combination of that of vy, j1can = Vg j+caq; j+b> One has to explore
different pairs of congruences (b, ¢) and use two different values ¢ and ¢ — 1 for g, as
explained in the paragraph below. Thus, two more different sequences {q,ﬁz) = q,ﬁo) — 1}

,El) — 1} are needed. Each of the four sequences {q,ﬁi)} corresponds to a

3
and {q,E ) = q
different space X ©). We remark that if limy_, oo (1/N)Y"2_, |a,| > 0 is assumed instead
of lim supy_, o, (1/N )ZQ’:] lan| > 0, then only two spaces will be needed as the first

concern above is no longer an issue in this case.
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Given a, as in Theorem 1.2(1), our construction of the point x € X relies on the
following observation. Assuming a, € R (otherwise one can pass to either Re(a,) or
Im(ay)), let y, := sign(a,), and let N;, 6 be as in equation (2). For everyg, M > 1, one
may show that

1 qg—l4+c M _1 qg—1+d M 9

max — “Agn+b, —— d+1 " Agn+b ( = -

edeloninz {qM }; ; Y gn+c * Aqn+ M }; 1 Y gn+d+ qn+ } 4
= = =, n=

Here we pick k = k(j) in some convenient way, ¢ = gx, and M ~ N;/q;. We then
construct our point x via working in one of the subshifts in our space—the exact choice
depends on certain technical issues coming from the relation between N; and gi. To
set up x, we carefully concatenate pieces of arithmetic progressions in y or —y in the
fiber (using the equation above), with the base living in the corresponding shift space
and behaving nicely along the observable f. This will allow us to find a subsequence
of N; where the linear correlations as in Theorem 1.2(1) are well approximated by the
average giving the max in the equation above. Thus, with some more work, we bound
these correlations from below by T(N;) - 0.

Finally, to derive Theorem 1.2(2), we apply the Matoméki—Radziwilt bound [13] on
averages of multiplicative functions along short intervals. To do this, we exploit some
strong periodic behavior that exists in the systems we construct.

2. Proof of Theorem 1.2(1).
2.1. Preliminaries. Let (X,T) be a dynamical system, where we recall that X is a
compact metric space and 7' € C(X). We denote the metric on X by dx. Let us recall
the Bowen—Dinaburg definition of topological entropy (as in e.g. [18]). For every n € N,
we define a metric on X via

dy(x, y) = max{dx (T (x), T'(y)) : 0 < i < n}.

A Bowen ball B, (x, €) of depth n centered at x € X of radius € > 0 is the corresponding
(open) ball in the metric dj,,

B,(x,e) ={ye X :d,(x,y) <€}

For any set E C X, let N(E, n, €) denote the minimal number of Bowen balls of depth n
and radius € needed to cover E. The topological entropy of (X, T') is then defined as

log N(X, n,
h(T) = lim (lim sup M).
€—>

n— 00 n

Next, let o : {—1,0, 1} — {—1,0, 1}% denote the left shift. On {—1, 0, 1}% and
{—1,0, I}N, we define the metric

d(x,y)=3" min{|n|:x #yn}
Also, forevery x € {—1,0, 1}N and k > [ € N, let x|* € {—1, 0, 1}*~! be the word

k.
x|y = (Xt X1415 - -+ 5 Xk)s
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and we use similar notation in the space {—1, 0, 1}Z as well. Next, let
Z:={-1,0, 1}N x {-1,0, 1}Z

and endow Z with the sup-metric on both its coordinates. Note that open balls in this metric
are also closed, and thus for every n € N, x € X, and € > 0, the Bowen ball B, (x, €) is
closed. Also, we denote by I1;, i = 1, 2, the coordinate projections in Z. Finally, we define
the skew-product 7' : Z — Z via

T(y,2) = (0(y), 0" (2)).

We say that X C Z is a subshift if it is closed and T-invariant.
We will require the following lemma.

LEMMA 2.1. The system (Z, T) satisfies that for everyn € N, € > 0, and x = (y, z) € Z,
the following hold.

(1) We have
Tn(y’ Z) = (O’ny, UZ?:I in).

(2) Letm=m(n, y)= min{minj<x<, Zf-‘zl Vi, 0y and M := M (n, y) = max{max <<y
- Vi, OL. Then for any | € N, the Bowen ball d,,(x, 37") equals
S | yi, 0). Then foranyl € N, th ball dy (x, 37! equal

{(a, b) eZ: a|rll+u — yl’i""‘u’ b|M+u — Z|M+u}_

m—u m-—u
(3) Foranyset E C Z,
N(E, n, €) = N(cl(E), n, €),

where cl(E) is the closure of the set E.

Proof. Part (1) follows immediately from the definition of the map 7. Part (2) follows from
part (1). Finally, part (3) is an immediate consequence of the fact that in (Z, T'), Bowen
balls are closed. O

2.2. Construction of some zero entropy systems. Fix a sequence t(n) — 0 as in
Theorem 1.2. We begin by constructing a rapidly growing sequence gx — oo (that depends
on 1) such that for every k € N, we have the following.

(D) g1 > g + 3qx.

(2 t(gr+1/3) < 1/16gy.

We now use gy to define four sequences:

0 1 2 0 3 1
0 = a4 =qui. g =aq0 -1 ¢ =q — 1L

Notice that property (1) above also holds for q,ii) for every i € {0, 1, 2, 3}. In particular,

(@)
lim Tl o for every i € {0, 1,2, 3}.
k— 00 CI/EI)
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Next, for every i € {0, 1, 2, 3} and every £, let
A =gl jelqgl <j-q < q,ﬁ'll}

For every i € {0, 1, 2, 3} and every k € N, we construct elements s ) e {—1,0, 1}N such

that the following hold.
(D) (l)(n) = 0 for every integer n ¢ A,((').
(2) Forevery j - q(') A,(('),
. . qlgl)l_
s g =1 ifjs[ S
3q; "
and
(@) - ()
Di+1 . Di+1
s¢Ga) = lf[%}qsz f,)}
3q, L3q,

Next, for every element x € {—1,0, 1} and p € Ny, we define 0 Px € {—1,0, I}V as
o Px = x if p = 0, and otherwise

((771’)c)|{7 =(0,...,0) andforalln > p,o Px(n) =x(n — p).
The following lemma is an immediate consequence of our construction.
LEMMA 2.2. Foreveryi € {0,1,2,3}, ke N, andp=0,..., qlg), we have
Yoo @ PsHm =0
nelg, 4}z
Proof. This follows since by our construction,
G-a e A5G - g =101 =104 e A5G- ") = -1},
as well as the fact that for all n € A,((i) and p=0,..., q,i'), n + p is still in the interval
4., i) NZ. O
Next, for every i € {0, 1, 2, 3} and k € N, define the truncations

(@)

I
RY ={(c" (’))Iq’z,*)1 p=0,...,4"y S (~1,0, 1y

We now define the space P of all infinite sequences that have, for every k, some word

from R( ") between their q(’) and q,i’l] — 1 digits. Formally,

: , 0 _4
PO =(xrei-1,01": xlqﬁ# e R andx[{' = (0,....0)).

The following lemma is an immediate consequence of Lemma 2.2.
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>qf)
0 (1,(‘.121 n+u

FIGURE 1. Illustration for Lemma 2.4.

LEMMA 2.3. Foreveryi € {0,1,2,3}, k e N,and y € PO,

o

> v =o.

j=1

Finally, for every i € {0, 1, 2, 3}, we define the subshift of (Z, T'),

X; = c1< U @ x {-1,0, 1}Z)>.

nENO

LEMMA 2.4. Foreveryi € {0, 1, 2, 3}, we have h(X;, T) = 0.

Proof. Fix n, u € N. We count how many Bowen balls of radius 1/3% and depth n are
needed to cover X;. Recall that we denote this quantity by N(X;, n, 1/3*). By Lemma
2.1(3), this is the same number as

N( U 7'P? x (1,0, 1)), n, 3%)

IENO
So, we work with the latter space (that is, without taking the closure).
Let k = k(n 4 u, i) be such that

qlgi) <n+u< ‘11521' 3)

Our first observation is that we can write

U T'(PD x (1,0, 1}%) = A, U Ay U As.

IENO
To define the sets A;, we first note that every x € UleNo TI(P(i) x {—1,0, 1}Z) admits
some/ € Ngand ¥ € PO x {—1,0, 1}% such that x = T'%. We denote by p = p(x) € N

the unique integer such that qlg_)l +1le [qg), q;jjr 1)- Note that p > k — 1. Then,

Ar={x:px)=k+1}, Ary={x:px)=k}, A3={x:pk)=k—1}

Thus, we bound the covering numbers for A, Ay, A3 separately. Before doing so, we
@)
notice that for any x € A; for j = 1, 2, 3, there are at most 3%-1 possibilities for the first
q,ﬁ'ﬂl digits of I (x) (see Figure 1).
n+u

(i) Covering Ay. Forany x € Ay, the word (IT;x)|"i}* always consists of zeros separated
dy—1
(0

by I or —1, and in this case, the non-zero entries appear at a distance atleastg; || > n +u
from each other. Since there can be only one non-zero entry, there are at most 2(n + u)
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options for the configuration of this word. So, with the notation of Lemma 2.1(2), we see
that

Im|, M<q(’) + 1.

Thus, taking into account also the first qk | digits, and via Lemma 2.1(2), the number
of Bowen balls we need here is at most

(@) (@)
(%=1 x 2(n +u)) x (3“Fh1th2,

(i) Covering A,. The word (Hlx)|”+” consists of zeros separated by 1 or —1, and in
k-1

this case, the first non-zero entries appear at a distance at least q(') < n + u from each
other. We also know that the first non-zero digit needs to appear within the first ¢’ @ g gits.

Another factor that needs to be taken into consideration is the possibility that [q,E’)1 +

[, n + u + [] intersects [qk 1 00). So, with the notation of Lemma 2.1(2), we see that

n+u
ml, M < ¢ + — + 1.
)

Taking all these factor into account, the number of Bowen balls we need here is at most
G901 x g x 2 + u)) x BUHELHERO/G 12,

(iii) Covering A3. The word (I"le)|"(J,“)” consists of zeros separated by 1 or —1, and in

k-1
this case, the first non-zero entries appear at a distance at least q,i’)l from each other. We

also know that the first non-zero digit needs to appear within the first q d1g1ts Another
factor that needs to be taken into consideration is the possibility that [, (’) | tlhn+tu+l]
intersects [qk , 00). So, with the notation of Lemma 2.1(2), we see that

@) ( ) n+u

ml, M < q” | + =k <,> +— L

k-1 9k
Taking all these factors into account, the number of Bowen balls we need here is at most

3% x gD x g x 201 + ) x @I (a1 g 1)2

Thus, we see that

1 1 1
N({X;,n,— ) <3- max N{(A;,n,— | =3-N|A3,n, — |,
3u i=123 3u 3u

which has been computed in point (iii) above. So, making use of equation (3),

log N(X;, n, 1/3%)

n
10g3+10g(3qk V204 u) g, g el i fal o /g0 1y
- n
_ log6 qk | ~log3 1og(n + u) 2 log q(l)
n n n n
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(u +q +a g +n+u/gd + 1) log 9

+ n
log q(l) q,gl)] log(n + u) q,El) n—+u n—+u
<Ci- + + @ . o
n n n g (n+u) n g -n
(@)
n—+u 2log(n +u q 1 1
=G no < g(n ) k(l)l + @) + (l))
q dp—1 4

Here, C is a large constant that depends variously on u and the other constants appearing
in the second equation. We conclude that, fixing u,

. log N(X,n,1/3%)

lim =0,

n— 00 n

and the claim is proved. O

2.3. Finding correlations along arithmetic progressions. Let a, be a sequence as in
Theorem 1.2(1), that is, such that lim sup,\,_,oo(l/N)Z,[:’=1 la,| > 0. By moving to either
Re(a,) or Im(a,), we may assume a, is a real valued sequence. We define a new sequence
vn € {—1,0, 1} via

vy 1= sign(a,).

In particular,

N N
11msup— Zyn ay _hrnsup— Z|an| > 0.

N—o0 nl —00 nl

Let 6 := lim sup(1/N )Zfl\lzl |ay| > 0, and let N; be a subsequence such that

lim —Z|an| =6.

/—)OO

Definition 2.5. For every j € N large enough, we define k' = k(j) e Nand i’ =i(j) €
{0, 1} as the unique integers such that:

(1 ©0)

ifN; e [q"T q"3“) then i’ = 0; and

©0) (1)

if Nj e [q"’;‘, q"’3“> theni’ = 1.

M = [ Ny ]
(")
qy

We also define an integer

https://doi.org/10.1017/etds.2022.61 Published online by Cambridge University Press



2872 A. Algom and Z. Wang

Note that by definition and the construction of the sequence gy,

(i3 (i")4 (i
’ / i’ 6] /
(qk ) . (qk ) - M;S ) < k1 @)

5 3

Next, recall the definition of Z from §2.1 and let g : Z — {—1, 0, 1} be the function

g(y, 2) = z0.

For every g, M >> 1 and r, c such that r, ¢ € [0, g], let

1 q—1+r M
Aq’M:=— n—+c)-algn+b).
re oM bzz; ;V(q ) -a(g )

Finally, we also define

(i) 3 s (i) 3 g

(i/+2) L qk, Mk/ i qk/ Mk/

My T i - (i'+2)
qk/ - 1 qk/

and note that M ,Ei 2~ M,Ef ) In the following lemma, we use the construction from §2.2.

LEMMA 2.6. For every j and u € {0, 1} writing £ =i’ +2u, for every two integers
c,r €0, qlg,e)], let x € PY x{—1,0,1}2 C X, be any element such that for every

4 4
O <n <),
4 4
x(n) = (s (n — 1), )/(q,ﬁl) “n+0)).
Then
() 2 7(0)
1 4 Mk’ q“) M(@) q(/e)
NGV > g(T"x)am) = AL +0(%>.
PRl - My,

Note that by the construction of PO % {—1,0, 1}Z in §2.2, there exists an element x as
in the statement of the lemma in that space.

Proof. 1In this proof, we suppress the £, k" in our notation and simply write ¢, M. First, for
every two integers j € [1, M]and b € [r,q +r — 1],

qj+b q—1 qj+b—1
Y (Mx)d) =) (Mx)d)+ Y (Mx)d)
d=1 d=1 d=q
qj+b—1
= Y 57—
d=q
qj+b—r—1
= Y sl@=j
d=q—r
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Note the use of Lemma 2.3 in the second equality. Moreover, in the last equality, we use
the fact that M < q,f,lil / 3q(e) and the definition of s,ﬁe) to guarantee that all summands are

either O or 1. Therefore,

] ] ™ 1
i 2 g(T"x)a(n) = i 2:;1 g(T"x)a(n) + O<M>

1 M q+r—1 1
q—Z g(T77*"x)a(q - J+b)+0( )
j=1 b=r
1 M q+r—1
= 1 2 2 8@V, oI MDD (g -+ b)
j=1 b=r
1
ol —
+o(5;
1 M gq+r—1
=X 2 8@V o/ Mag - j+b)
j=1 b=r

y<q~j+c>'a<q-j+b)+0<%>
j=1 b=r

M q

Indeed, the first equality follows since g(7"x) and a,, are both bounded sequences; in the
third equality, we use Lemma 2.1(1); and in the fourth equality, we are using the previous
equation array and the definition of x. This definition along with the definition of s(l)

justify the fifth equality. The last equality is simply the definition of A,,C . [

Remark 2.7. In the setup of Lemma 2.6, we may similarly find another x € P© x
© 3
{—1, 0, 1} that satisfies the conclusion of Lemma 2.6, but for —Azﬁf "K' Indeed, this

follows from the very same proof by picking x € P x {—1,0, 1}Z to be any element

such that for every qg) =n<qyq

¢ ¢
x(n) = (s (0 =), =y (@’ - n + o).
We will also require the following lemma.

LEMMA 2.8. For every j large enough, there is either some c € [0, q;, )) such that

(1, ),M(', b 0
ACkC K > (l/) ’ (5)
8¢,
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orsome d € [0, q; +2)) with

2 2
AIEI/+)M/E£+) ]

> —
d+1d i
8 @)
Proof. In this proof, we again suppress the i’, k', u in our notation, and write instead ¢, M,

for q(’ and M ,Ef , respectively (the terms corresponding to i’ + 2 will come up in the proof
later). Now, for every c, r € [0, q],

q—1 qM
1 1
AL =— V(m)~(a(m+r)+---+a(m+r+q—1))+0<—>.
—~ ctr,c quX::I M
So,
g-1 qM
gM -y AL =) ym) - @m)+ - +alm+q— 1)+ 0()
=0 m=1
and

aM 74
q—L[gM/(g—D)]
=0 2] !

c=1

=Y ym)-(@m+1D+---+am+q—1)+ 0.

m=1

Combining the last two displayed equations,

q—1
M gM LlgM/(g—D)]
gM - Z AL —(q - I)LITJ DAL
c=1
qM
=Y ymam)+ 0@ = 6/2-qM + 0(g”).
m=1

It follows that, assuming ¢ is large enough and via equation (4),

q—1 q—1

q.M a—1,lgM/(q—1)) q 1
DALY =N A 29/2—0(M)29/2—0(—2)39/4.
c=0 d=1

q

Recalling our definition of q(l *2 and M, (@'+2) , this implies the lemma. O

2.4. Construction of the point and system as in Theorem 1.2. Recalling Lemma 2.8,
by perhaps moving to a further subsequence, we may assume that the inequality from
Lemma 2.8 is always given by the term corresponding to q(' +2u) , where u = u(}j) is either
0 or 1, and both the quantities i’ = i(j) (defined in Definition 2.5) and u are assumed to
be constant in j. Let us denote this constant value i’ + 2u € {0, 1, 2, 3} by £. Recalling
Definition 2.5, and passing to a subsequence if needed, we assume that the map j +—

k(j) = k' is injective.
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We now construct a point x® e p® x (—1,0, 1}Z C X, as follows. For every
j € Nand ‘1158) <n< q,ﬁf})H, x©(n) = x(n), where x is the element as in Lemma 2.6
(if u = 0) or Remark 2.7 (if u = 1), corresponding to j, £ as in the paragraph above, and
eitherr =cand ¢ (if u =0) or r =d 41 and ¢ =d (if u = 1) yielding the inequality
from Lemma 2.8. Note that here we need the map j +— k(j) to be injective so this is

well defined (that is, the intervals [qlge), q,if;) 4 do not overlap). Note that so far we

have only specified the digits n € | J jeN[qlgfj')’ q,ﬁf;.) 41)» and (since we have passed to
a subsequence) it is possible that this union does not cover all of N. So, for all digits
not covered, we make some choice that ensures x© € P x {—1, 0, 1}Z. Note that by
Lemma 2.6 and the construction of P, such a choice is readily available.

We now take our space to be

X =Xox X1 x Xy xX3x{0,1,2,3}, (6)
with the self-mapping T e C(X) being
7(p©, pO, p@, p¥, iy = (1p®, TpV, Tp®, TP, i).
The function f € C(X) is taken to be
FOO 29, 00, 2D), (9@, 2@), 0P, 2D, i) = 2.

We next choose our point x to be any x € X such that its projection to X is x(©), and its
projection to {0, 1, 2, 3} is £.
We now prove Theorem 1.2(1) via the following two claims.

LEMMA 2.9. We have h(X, T) = 0.

Proof. By Claim 2.4, each factor in the product space X has zero entropy, which implies
the assertion via standard arguments. O

LEMMA 2.10. For all j large enough,

LA
~ > f(@"x)am) =60 - T(N)).
—

In particular,

N ™n
lim sup (/N)Y_,—y f(T"x)a(n) _
N—o0 T(N)

0.

Proof. Fix j large, and let us write N, g, M, x, suppressing the dependence on k', ¢, j
(except in parts of the proof where we wish to emphasize this dependence). Note that
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Now,

A e 1
5 ; F(T"x)a(n) = piY; Z_: F(T"x)a(n) + O(M)
=M ( Z f(@"x)a(n) + Z f(T"x)a(n)) + o( )

qg—1
m ( Y f(@"x)am) +Z g(1"x)a(n) Z g(T"x “>)a(n>)

q n=1 n=1 n=1
1
+ o —
()
= g(T"x <‘>>a(n)+0( )
0 ,O @
g My D M,

©
0 P

Z @ +0< k<e))
8qk, M,

Note that in the third equality, we are again using Lemma 2.3 in a similar fashion to
the proof of Lemma 2.6, which is allowed since x® e pO % {—1,0, I}Z. For the last
inequality, we are using Lemmas 2.8 and 2.6 along with the definition of x.

We conclude that

)
N Z F(T"x)a(n) > L + 0< i )
84,

©
k/ Mk/
)
0 ( 61k(/£)> <0
M

and so, as long as j is large enough,

By equation (4),

9y

Nj—1

— Z F(T"x)a(n) > 9(.,).
l6qkf

Finally, it follows from our choice of N; that N; is larger than the element of the sequence

qk/3 that comes after g, @ /3. So, by the choice of the sequence g,

1
— > T(N;)).
16q(l)

Combining the last two displayed equations implies the claim. O
3. Proof of Theorem 1.2(2).

In this section, we prove Theorem 1.2(2). That is, we show that the system (X, f") given
in equation (6) satisfies the Mobius disjointness conjecture in equation (1). The proof
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will be an application of Matoméki—Radziwill’s bound [13] on averages of multiplicative
functions along short intervals. The Matomiki—Radziwitt bound as well as its extension
by Matomiki, Radziwitt and Tao [14] have recently become a powerful tool to establish
Mobius disjointness for systems with strong periodic behavior.

Denote a point x € X as

@@, xD X 13 iy where x© = (y©, 7).

For each p = (y,z) € {—1,0, 1}N x {—1,0,1}2 and M €N, denote by [ply the
truncation

[P]M = ((ylv CEEE 7yM)s (Z—Ms ... 7ZM))'

Write Cj; (X) for the space of cylinder functions f (x) that only depends on ([x©] M)0<e<3
and the fifth coordinate i € {0, 1, 2, 3}. Then Uidozl Cp(X) is dense in C(X) with respect
to C° norm. In consequence, it suffices to verify equation (1) for all cylinder functions
f € Cy(X) for every M.

The main technical lemma that we need is the following.

LEMMA 3.1. For all 0<¢<3 and M,H €N, and x € X, there exists a set
AO(M, H, x) C N that satisfies:

(1) limyoeo(I/N#{1,...,N}NAYOM, H,x)) = 1;

(2) foralln e A(E)(M, H, x), [T”'H’x(z)]M is constant for0 < h < H — 1.

Proof. Since
x®ex, = c1< U 7P x {-1,0, 1}Z)>,
bENO

for each £ and all N € Ny, there exists x(V-0) ¢ UbeNo TP(P® x {—1, 0, 1}%) such that
Ny = [x©]y foralln < N.

We also choose bVO eNy and MO e PO x {—1,0,1}% such that xV:0 =
76N (N0

Then,forl1 <n < Nand0O<h <H —1,

[T O], = [T H xN+HHEMO - bV Oeh s (N MO
Therefore, by Lemma 2.1(1), [T”“‘hx“)]M isconstant for0 < h < H — 1 if
y
Mg VMO G 4 pND L p'y =0 forall0<h’' < H+ M — 1. (7)

Since ¥ NTH+AM.0 ¢ p(O) 5 (1,0, 1}Z, for every k € N, there is some 0 < r,E() < qlge) —1
such that

MM HAEMO Gy = 5O =) for gl <n' < g

In particular, IT{x V+HH+M.0 7y = 0 for all q,,EK) <n < ‘11521 with n’ # r,ﬁz) (mod q,ﬁe)).
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It follows that for each k, equation (7) holds on the set

AP M, H x):={1<n<N:q” <n+bWHHFMO < g0 — g — M

n pNHHEMO O g 1, — 1, r0 (mod ).
Set AV M, H,x) =2, AV (M, H,x) C{1,...,N}. Then [T"+"x®]y is con-
stantfor0 <h < H — lifn € A©(M, H, x).
Finally,
_ ®
lim —#({1,...,N}NAy (M, H,x)) =1
N—oo N

because of the following facts: H and M are fixed, bV TH+TM0 > 0, limy_, o qu) = 00,

and limkﬁoo(qlg_?l / q(e)) = 00. We conclude the proof by defining

o
AOM, H x) = AP M, H, ). O
N=1

COROLLARY 3.2. Forall M, H € N, and x € X, there exists a set A(M, H, x) C N that
satisfies the following:

(D) limyeo(I/NM#({1,...,N}NAM, H,x)) =1;
(2) forall f € Cy(X) and any given n € A(M, H, x), f(T"t"x) is constant for 0 <
h<H-1.

Proof. Let A(K)(M, H, x) be as in Lemma 3.1, and set

AM, H,x):= ﬂ A®OM, H,x) CN.

0<¢<3
Then clearly, we still have
li 1#({1 NINAM, H,x)) =1
im — e ,H, =1.
N—oo N o

Next, let f € Cy(X). Since f(T”+hx) only depends on ([T""x ©O1p)0<e<3 and the i
coordinate (that does not change when we apply 7), given n € AYG, M, H, x), it is
constant for0 < h < H — 1 by Lemma 3.1. O

We are now ready to establish Mobius disjointness.

Proof of Theorem 1.2(2). As remarked in the beginning of this section, we may assume
f € Cy(X) for some M and | f| < 1. Let x € X. Then for a fixed H, as N — o0,
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- f(T"x)pnn)| = ‘— - FT@" )|+ 0<—>
N n=1 N n=1 H h=0 N

1 [ H
= ‘— Y X A | +on () + o(ﬁ)
1<n<N h=0
neA(M,H x)
1 . H
sy X |5 X sdtonan|+on+o(5).
1<n<N h=0
neA(M,H x)

Here, oy (1) stands for a quantity that tends to 0 as N — oo for a fixed H.
By Corollary 3.2, f(T"""x) = f(I"x) for every n € A(M, H,x) and 0 <h <
H — 1. So,

A, 1 1= H
‘N;f” SOIES-2EY ‘Ehg(:)f(T x)/i(n+h)‘+oy(l)+0(ﬁ)

1<n<N
neA(M,H x)
H-—1
1 1 H
sy X g X ueen|+oum o)
1<n<N h=0
neA(M,H ,x)
A R H
sv2lg 2 ,u(n—l—h)’ +ou (1) + O(ﬁ)

h=0

1\ log H\OO! o
~o((w) () ) reno(5)

The last step is given by [13, Theorem 1].
By letting H — oo first, and then N — oo for each fixed H, we see that

n=1

14
~ Z F(T"x)un) = o(l) as N — oo. 0

n=1
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