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Abstract. We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent
subgroups of SLy (I) in arithmetic quotients of SLy (C) and SLa (I) x SLa (I).

The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap
of the ambient space.

Résumé. Nous prouvons des théorémes d’équidistribution effectifs, avec un taux d’erreur polynomial pour
les orbites des sous-groupes unipotents de SLy ([) en quotients arithmétiques de SLy (C) et SLy () x SLa (I).

La preuve est basée sur l'utilisation d’'une fonction de Margulis, des outils de la géométrie d’incidence, et
le trou spectral de I'espace ambiant.
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1. Introduction

A landmark result of Ratner [35] states that if G is a Lie group, I' a lattice in G and if u; is a one-
parameter Ad-unipotent subgroup of G, then for any x € G/T the orbit u;.x is equidistributed in
a periodic orbit of some subgroup L < G that contains both the one parameter group u; and the
initial point x. We say an orbit L.x of a group L in some space X is periodic if the stabilizer of x
in Lis alattice in L, equivalently that the stabilizer of x in L is discrete and L.x supports a unique
L-invariant probability measure my ,; and u,.x is equidistributed in L.x in the sense that

T
%f f(ut.x)dt—»ffdmL,x for any f € Co(G/T). (1)
0
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In order to prove this equidistribution result, Ratner first classified the u;-invariant probability
measures on G/I' [33, 34]; the proof also uses the non-divergence properties of unipotent flows
established by Dani and Margulis [5, 6,29].

A key motivation behind Ratner’s equidistribution theorem for one parameter unipotent
flows has been to establish Raghunathan’s conjecture regarding the possible orbit closures of
groups generated by one-parameter unipotent groups; using the equidistribution theorem Rat-
ner proved that if G and I are as above, and if H < G is generated by one parameter unipotent
groups, then for any x € G/T one has that H.x = L.x where H < L < G and L.x is periodic. Im-
portant special cases of Raghunathan’s conjecture were proven earlier by Margulis and by Dani
and Margulis using a different more direct approach, which in particular gave a proof of a rather
strong form of the longstanding Oppenheim conjecture (7, 8, 30].

These results have had a surprisingly rich trove of applications in number theory and beyond.
One drawback of this method, compared to more traditional number theoretic techniques, is
that these equidistribution results were neither effective nor quantitative. Indeed, Ratner’s proof
relies heavily on the pointwise ergodic theorem and Lusin’s theorem, both rather fundamental
theorems but that do not have good effective analogues. The Dani-Margulis method is somewhat
easier to make effective and a result in this direction was given by Margulis and the first named
author in [26]; moreover a general result in this direction was announced by Margulis, Shah and
two of us (E.L. and A.M.) with the first installment of this work appearing in [28]. However, this
only gives density properties of these flows, not equidistribution, and the rate of density obtained
in this way is far from optimal (polylog at best, though in most cases one only has an iterative-log
type bound).

In this paper we announce a quantitative equidistribution result for orbits of a one param-
eter unipotent group on quotients G/T" where G is either SL,(C) or SLy([) x SLy(I) with a poly-
nomial error rate, which is the first quantitative equidistribution statement for individual orbits
of unipotent flows on quotients of semi-simple groups beyond the horospherical case. Our ap-
proach builds on the paper [27] by the first two authors, where an effective density result with a
polynomial rate for orbits of a Borel subgroup of a subgroup H = SL, (R) of G was proved.

Recall that a group N < G is horospheric if there is some g € G so that

N={heG:g7"hg" —1as n— oo}.

For instance, the one parameter unipotent group

{lo1):res]

is horospheric in SL (R) as are the groups

o5 )mserf ana {{(o7)o1))ereef

in SL,(C) and SL,(R) x SL,(R), respectively. The classification of invariant measures and orbit
closures for horospherical flows was established prior to Ratner’s work by Hedlund, Furstenberg,
Dani, Veech and others, and this has been understood for some time also quantitatively since one
can relate the distribution properties of individual N orbits to the ergodic theoretic properties of
the action of g on G/T (cf. § 3 for more details).

We also mention that while our result is the first quantitative equidistribution statement for
individual orbits of unipotent flows on quotients of semi-simple groups beyond the horospheri-
cal case! there have been some other interesting quantitative equidistribution results. When G is

1As pointed out by Venkatesh in [42], the distinction between horospheric and non-horospheric is not completely
clear cut, and indeed the results of that paper can also be recast as a nonhorospheric equidistribution problem; cf. [16] as
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unipotent, an effective equidistribution result for unipotent flows on G/T" was given by Green and
Tao in [19], and was a key ingredient in a series of works by Green, Tao and Ziegler about linear
equations in primes. In the case of quotients of the skew product G = SLy(R) x R?, Strombergs-
son [41] has an effective equidistribution result for one parameter unipotent orbits (which are not
horospheric in G, but project to a horospheric group on SL»(R)), and this has been generalized
by several authors, in particular by Wooyeon Kim [24] (using a completely different argument)
to SL, (R) x R". Moreover there is an important work of Einsiedler, Margulis and Venkatesh [11]
showing that periodic orbits of semisimple subgroups H of a semisimple group G are quantita-
tively equidistributed in an appropriate homogeneous subspace of G/T if I' is a congruence lattice
and H has finite centralizer in G. Subsequently Einsiedler, Margulis, Venkatesh and the second
named author by using Prasad’s volume formula and a more adelic view point were able to prove
such an equidistribution result for periodic orbits of maximal semisimple subgroups of G when
the subgroup is allowed to vary [10] with arithmetic applications (the equidistribution of periodic
orbits of semisimple groups is also closely connected to the equidistribution of Hecke points; a
quantitative treatment of such equidistribution was given by Clozel, Oh and Ullmo in [4]).

In a slightly different direction, Bourgain, Furman, Mozes and the first named author [1] gave a
quantitative equidistribution result with exponential rates (this is analogous to polynomial rates
in our problem) for random walks by automorphisms of the torus. In this case this equidistribu-
tion result was new even without rates. There have been several extensions of this result, in par-
ticular [20] where a proximality assumption was removed. Kim in [24] used the techniques of [1]
to study SL,, (R) x R”. Our work is also heavily influenced by [1].

We now proceed to describe our results and some of the ingredients of the proofs. Let

G=SLy(C) or G=SLy(D)xSLy(D).
LetT' c G be alattice, and put X = G/T'. We let mx denote the G-invariant probability measure on
X. Throughout the paper, we will denote by H a subgroup of G isomorphic to SL; (), namely
SLa() =SL2(C) or {(g,8): g€ SLa(D} = SLa(l) x SLy(D).

For all ¢,r € R, let a; and u, denote the image of
et o 1r
( 0 e—”Z) and (0 1)’
in H, respectively.

We fix maximal compact subgroups SU(2) c SL,(C) and SO(2) x SO(2) c SL,(R) x SL(R). Let d
be the right invariant metric on G which is defined using the Killing form and the aforementioned
maximal compact subgroups. This metric induces a metric dx on X, and natural volume forms
on X and its submanifolds. We define the injectivity radius of a point x € X using this metric. In
the sequel, || || denotes the maximum norm on Mat,(C) or Mat, () x Mat, () with respect to the
standard basis.

The following are the main results in this paper.

Theorem 1. AssumeT is an arithmetic lattice. For every xo € X and large enough R (depending
explicitly on the injectivity radius of xy), for any T = R, at least one of the following holds.

(1) Foreveryp e CX(X), we have

1
‘](; (p(alogTurxo)dr_f(Pde

where & (@) is a certain Sobolev norm.

<C .S (@R

well as [23]. There are also some quantitative equidistribution results for particular types of unipotent orbits, e.g. [3] by
Chow and Lei Yang.
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(2) There exists x € X such that Hx is periodic withvol(Hx) < R, and
dx(x,x0) < CiR(log TH)AT™L.
The constants A, k1, and C; are positive, and depend on X but not on xy.
Theorem 1 can be viewed as an effective version of [40, Theorem 1.4]. Combining Theorem 1
and the Dani-Margulis linearization method [9] (cf. also Shah [39]), that allows to control the
amount of time a unipotent trajectory spends near invariant subvarieties of a homogeneous

space, we also obtain an effective equidistribution theorem for long pieces of unipotent orbits
(more precisely, we use a sharp form of the linearization method taken from [28]).

Theorem 2. AssumeT is an arithmetic lattice. For every xo € X and large enough R (depending
explicitly on the injectivity radius of xy), for any T = R, at least one of the following holds.

(1) Forevery @€ CX(X), we have

1 T
—f <p(urxo)dr—f<pdmx
T Jo

where & () is a certain Sobolev norm.
(2) There exists x € G/T with vol(H.x) < R4, and for every r € [0, T] there exists g € G with
lgll <R so that

<G F (P)R

N 1/A
dx (usxo, gH.x) < C,RM (%) forall €[0,T].

(3) Foreveryr € [0,T] and t € [logR,logT], the injectivity radius at a_;u,xy is at most (2)
RMet,
The constants Ay, Az, k2, and C, are positive, and depend on X but not on xy.

The assumption in Theorem 1 that I is arithmetic may be relaxed. Let us say I" has algebraic
entries if the following is satisfied: there is a number field F, a semisimple F-group G of adjoint
type, and a place v of F so that F, = R and G(F,) and G are locally isomorphic — in which case
there is a surjective homomorphism from G onto the connected component of the identity in
G(F,) — and the image of I' in G(F,) (possibly after conjugation) is contained in G(F). Every
arithmetic lattice has algebraic entries, but there are lattices with algebraic entries that are not
arithmetic.

Note that the condition that I" has algebraic entries is automatically satisfied if I is an irre-
ducible lattice in SLy(R) x SLy(R) or if G = SL(2,C). Indeed, by arithmeticity theorems of Sel-
berg and Margulis, irreducible lattices in SL(R) x SL,(R) are arithmetic [31, Chapter IX]. More-
over, by local rigidity, lattices in SL,(C) always have algebraic entries [18, Theorem 0.11] (see
also [37,43,44]).

Theorem 3. Assume T is a lattice which has algebraic entries. For every 0 < § < 1, every xg € X
and large enough T (depending explicitly on 6 and the injectivity radius of xy) at least one of the
following holds.

(1) Forevery g€ CX(X), we have

1
fo (p(alogTuer)dr_f(Pde

where & () is a certain Sobolev norm.
(2) There exists x € X with

<O L ()T 9"

dX(x) xO) = Cl T_I/Ay

satisfying the following: there are elementsy, andy, inStaby (x) with||y;|| < T 0 fori=1,2
so that the group generated by {y1,Y2} is Zariski dense in H.
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The constants A, k1, and Cy are positive, and depend on X but not on § and xy.

The obstacle to effective equidistribution in Theorem 1 is much cleaner and simpler than in
Theorem 2. This is not an artifact of the proof but a reflection of reality; a unipotent orbit may
fail to equidistribute at the expected rate without it staying near a single period orbit of some
subgroup {u;} < L < G: one must allow a slow drift of the periodic orbit in the direction of the
centralizer of u,. Unlike the work of Shah in [40], where (in particular) a non-effective version of
Theorem 1 is proved relying on Ratner’s measure classification theorem for unipotent flows, our
proof goes the other way, first establishing Theorem 1, and then reducing Theorem 2 from it using
a linearization and non-divergence argument.

An extremely interesting analogue to unipotent flows on homogeneous spaces is given by
the action of SL»(R) and its subgroups on strata of abelian differentials. Let g = 1, and let
a = (ay,..., @y) be a partition of 2g — 2. Let /(@) be the corresponding stratum of abelian
differentials, i.e., the space of pairs (M,w) where M is a compact Riemann surface with genus
g and w is a holomorphic 1-form on M whose zeroes have multiplicities a1, ..., ;. The form w
defines a canonical flat metric on M with conical singularities and a natural area form. Let # (a)
be the space of unit area surfaces in /#(«). The space #(«) admits a natural action of SL, (R);
this action preserves the unit area hyperboloid # («).

A celebrated theorem of Eskin and Mirzakhani [13] shows that any P-invariant ergodic mea-
sure is SLy (R)-invariant and is supported on an affine invariant manifold, where P denotes the
group of upper triangular matrices in SL, (R). We shall refer to these measures as affine invariant
measures. Moreover if we define, for any interval I « R and x € # (@), the probability measure uj
on /) (a) by

= |I|‘1f16usxds,

then Eskin, Mirzakhani and the second named author [14] showed that for any x € # (a) the
limit
T

1
lim — a; 1y ,dt  exists in weak * sense 2)
T—oo T Ji=0 tHio,)

and is equal to an (SL(2,R)-invariant) affine invariant probability measure with x in its support.
On the other hand, there are several results, in particular by Chaika, Smillie and B. Weiss in [2],
that show that an analogue of Ratner’s equidistribution theorem (or our Theorem 2) fails to hold
in this setting, for instance for some x the sequence of measure (0,7} May fail to converge as
T — oo, or may converge to a non-ergodic measure. We believe the followmg strengthening of (2),
which we have learned has already been conjectured by Forni in [17, Conjecture 1.4], should
however hold:

Conjecture 4. Let /7 (a) be the space of unit area surfaces in stratum of abelian differentials on a
genus g surface whose zeros have multiplicities given by @ = (a3, ..., a,), and let x € /0, (a). Then
lim;_ o ay ,uﬁ) 1 exists in the weak® sense and is equal to an affine invariant measure with x in its
support.

Of course, once one establishes that lim;_.o, a; 7. 0,1] exists, the rest follows from [14].

2. Some preliminaries

We discuss the proofs of Theorems 1 and 3. As mentioned above, Theorem 2 is proved by
combining Theorem 1 and the linearization techniques; in this announcement we focus on the
proof of the former results. We note that the idea of using equidistribution of expanding translates
of a fixed piece of a U orbit of the type {a;us.x : 0 < s < 1} to deduce equidistribution of a large
segment of a non-translated U orbit {us.x: 0 < s < T} is quite classical.
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Let U c N denote the group of upper triangular unipotent matrices in H c G, respectively, and
let A={a;: t € R} c H. More explicitly, if G = SL,(C), then

_ (1 r+is), )
N—{n(r,s)—(o 1 ).(r,s)e[}

and U = {n(r,0) : r € [}; note that n(r,0) = u, for r € R. Let

V={n,s)=vs:s€l};

1r . 2
,(0 1)).(r,s)e[ }

and U = {n(r,0) : r € [}. As before, n(r,0) = u, for r e R. Let

if G =SLy(l) x SLy (1), then

1r+s
Nz{n(r,s):((o 1

V={no,s)=vs:s€l}.

In both cases, we have N = UV. Let us denote the transpose of U by U™ and its elements by u; .

Let g = Lie(G), that is, g = sl>(C) or g = sl([) & slx(l). Let v = is[hb(R) if g = 5l,(C) and © =
sl (R) @ {0} if g = sl (R) & sl (R). In either case g = ) & v where §) = Lie(H) = sl,(R), and both §
and v are Ad(H)-invariant.

We fix a norm on b by taking the maximum norm where the coordinates are given by Lie(U),
Lie(U™) and Lie(A); similarly fix a norm on t. By taking maximum of these two norms, we obtain
anorm on g. All these norms will be denoted by || ||

For all g > 0, we define BGﬁ := exp(By (0, B)) - exp(B: (0, B)) where B. (0, ) denotes the ball of
radius f in  with respect to || ||.

We also define

Bg::{us_:lslsﬁ}-{atzltlSﬁ}-{u,:lrlsﬁ}
forall0< < 1.

For the sake of simplicity of the exposition here, let us assume X is compact. Let 0 <1y < 1 be
so that the map g — gx is injective on BGloono forall xe X.

3. From large dimension to equidistribution

We begin with an equidistribution theorem which is of independent interest. In the proof of
Theorem 1, this proposition will be applied to each of the sets obtained in the bootstrap phase,
see Proposition 8.

Let us recall the following quantitative decay of correlations for the ambient space X: There
exists 0 < kg < 1 so that

< ()L (y)e ¥0d@8) 3)

f(p(gx)t//(x)dmx—f(pdmxfwdmx

for all ¢,y € C°(X) +C- 1, where my is the G-invariant probability measure on X and d is our
fixed right G-invariant metric on G. See, e.g., [25, § 2.4] and references there for (3); we note that
Ko is absolute if I" is a congruence subgroup. This is known in much greater generality, but the
cases relevant to our paper are due to Selberg and Jacquet-Langlands [21, 38].

The quantitative decay of correlation can be used to establish quantitative results regarding
the equidistribution of translates of pieces of an N-orbit. Specifically we employ the results
in [25], but there is rich literature around the subject; a more complete list of such papers can
be found in [27, § 1].
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Now let ¢ : [0,1] — v be a smooth nonconstant curve. Then using the quantitative results
regarding equidistribution of translates of pieces of an N-orbit such as [25], one can show that
forevery x € X,

ar{ur exp(¢(s)).x:r,s€|0, 1]}
is equidistributed in X as T — oo (with a rate which is polynomial in e *). The key point in the
deduction of this equidistribution result from the equidistribution of shifted N orbits is that
conjugation by a; moves u, exp(¢(s)) to the direction of N, hence the above average essentially
reduces to an average on a N orbit.

Roughly speaking, the following proposition states that one may replace the curve {{(s) : s €
[0, 1]} with a measure on t so long as the measure has dimension = 1-6, for an appropriate choice
of 6 depending on «y.

The precise formulation is the following.

Proposition 5. For any6 > 0 and ¢ > 0 there is a 3 so that the following holds: Let 0 < p < 1075,
and let F c B(0,p) be a finite set satisfying
#(F N B(0,b)) ¢ 1-9
TSp (b/g) forall b= p
where p < p?°.
Then forall x € X and all2log(1/p) <1 < 11—0 log(1/p), we have

_ 2
ZceZTH KO/M)’

|
j(; 7F > (p(d,urexp(w)x)dr—f<pdmx <x :y’((p)max((p/Q)Ks’p

weF

e

where & () is a certain Sobolev norm and M = 100 an absolute constant.

The proof of this proposition is significantly more delicate than that of the “toy version” of a
shifted curve, and relies on an adaptation of a projection theorem due to Kdenmaéki, Orponen,
and Venieri [22], based on the works of Wolff [45], Schlag [36], and [46], in conjunction with a
sparse equidistribution argument due to Venkatesh [42]. These elements also played a crucial
role in previous work by E.L. and A.M. [27] regarding quantitative density for the action of AU on
the spaces we consider here.

The goal in the remaining steps is to show that unless Theorem 1 (2) holds, we can find a subset
J < [0,1], where [0,1] \ J has an exponentially small measure, and up to an exponentially small
error the uniform measure on {as10g7UrXo : € J} can be decomposed into counting measures
on sets each of which satisfies the conditions in Proposition 5.

4. Inheritance of the Diophantine property

If part (2) in Theorem 1 holds, we are done. Let us, therefore, assume the alternative, which gives
some Diophantine condition on the point xj in terms of its distance to nearby periodic H-orbits.
The first step in the proof is to improve this Diophantine condition, perhaps not at xg, but at some
(indeed all except a set of exponentially small measure) point on the translation of a the U-orbit
segment {u;.xo : r € [0, 1]} by a big diagonal element a;.

Proposition 6. There exist Dy (absolute) and Cs3 (depending on X) so that the following holds. Let
S =R, and let xo € X be so that

dx(x,x9) = (logS)D"S_1
for all x withvol(Hx) < R. Then for all s =1ogS we have the following

There is x withvol(Hx) < R }

< G3R7L.
so that dx (x, asu,xg) < C3 1R Po 3

{rE[O,l]:
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In the proof of Proposition 6 we consider each periodic orbit individually, and then use the
fact that the number of periodic H-orbits with volume < R in X is < RS, see e.g. [32, § 10] to
conclude. The desired result for an individual orbit can be proved using Margulis functions for
periodic H-orbits similar to those which were used in [27, § 9], see also [14, Proposition 2.13].

It is worth mentioning that even though [28, Theorem 1.4] concerns long pieces of U-orbits
and Proposition 6 concerns translates of pieces of U-orbits, similar tools are applicable here as
well. In particular, a version of Proposition 6 can also be proved using the methods of [28].

5. Closing lemma

Let ¢ > 0 be a large parameter and fix some e %% < § = ¢7*! < 1¢; in our application, x will be
chosen to be « 1/Dj where the implied constant depends on X and Dy is as in Proposition 6.
For every 7 = 0, put
E.=B"5-a;-{u, : ref0,1]}c H.
If y € X is so that the map h — hy is injective on E,, then g, , denotes the pushforward of the
normalized Haar measure on E; to E;.y < X.
Lett=0and y€ X. Forevery z € E;.y, put

IT(z):z{wet:0<||w||<no and exp(w)zeE,.y};

this is a finite subset of t since E; is bounded — we will define I¢(h, z) for all # € H and more
general sets & in the bootstrap phase below.
Let 0 < a < 1. Define the function f; : E;.y — [1,00) as follows

f (Z)_{Zwemz) lwl=® if () # ¢
T o —a

Un otherwise

The following proposition supplies an initial dimension which we will bootstrap in the next
phase. Roughly speaking, it asserts that points in Eg;.x (possibly after removing an exponentially
small set of exceptions) are separated transversal to H, unless X is extremely close to a periodic
H orbit.

Proposition 7. AssumeTl is arithmetic. There exists Dy (which depends onT explicitly) satisfying
the following. Let D = D) and x) € X. Then for all large enough t at least one of the following holds.

(1) There is a subset 1(x1) < [0,1] with |[0,1]\ I(x1)| <x B such that for all r € I(x;) we have
the following
(@) h— h.ag;u,x; is injective on E;.
(b) ForallzeE;.ag;u,x;, we have

fi(2) < ePt,

(2) Thereis x € X such that Hx is periodic with

Dyt (-=D+D1)t

vol(Hx) <e and dx(x,x1))<e

This proposition is where the arithmeticity assumption on I' is used. The proof is similar to the
proof of [27, Proposition 6.1]. If we replace the assumption that I is arithmetic with the weaker
requirement that I' has algebraic entries, we get a version of this proposition where part (2) is
replaced with the following.

(2") Thereis x € X with

dx (x, x1) < e7PPVL

satisfying the following: there are elements y; and y, in Staby(x) with |y;|l < eb1t for
i =1,2 so that the group generated by {y1,7y} is Zariski dense in H.
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6. Improving the dimension

Proposition 7 shows that up to an exponentially small error, the set {ag; 1, xo : 7 € [0, 1]} has a small
positive dimension transversal to H at controlled scales. The objective in this step is to show that
by applying elements of the form a,u,, for a fixed ¢ and a random r € [0, 1], we can inductively
improve this dimension transversal to H at controlled scales to a (which will be chosen to be
smaller than but quite close to 1). This is achieved by investigating the evolution of a certain
Margulis function (cf. the survey [15], though the Margulis function we use here is somewhat
intricate).

To state the main result which is Proposition 8, we need some notation. Let R be as in
Theorem 1, and set ¢ = DillogR with D; as in Proposition 7. We will assume R is large enough
so that the conclusion of Proposition 7 holds with this ¢.

Let

E= BHﬁ-{ur cr sno}.
where 8 = e* for some small k¥ > 0. (More explicitly, we will fix some 0 < £ < 1078 which will
depend on k¢, and let x = 107¢/D where D = D; (Dy +1).)

It will be more convenient to approximate translations {asu;xo : r € [0,1]} with sets which
are a disjoint union of local E-orbits as we now define. Let F c B (0, 8) be a finite set with
#F = e'’?, and let y € X. For every w € F, let E,, c E be a Borel set so that my(E,) = f* and
mH(EwA(BHﬁIO -Ew)) = Bmy(Ey), where my denotes a fixed Haar measure on H. Put

&=JEw - {exp(w)y: we F}. 4)

We equip & with the probability measure pg = m 2w Hw,y where py,, denotes the push-
forward of mylg,, to E,.exp(w)y for every w € F.

Let 0 be a small constant depending on the decay of matrix coefficients in G/T (the exact value
we shall useis 0 = K%/ 10* M, where kg is as (3) and M as in Proposition 5). Let

a=1-0 and Ve=80.

Let ¢ =0.01¢t, and let v, be the probability measure on H defined by

1
ve(p) =f p(aguy)dr for all ¢ € C.(H);
0

let v(ln) =vy % .-+ % vy denote the n-fold convolution of v, for all n € N.

The following is the main statement.

Proposition 8. Let x; € X, and assume that Proposition 7(2) does not hold for D, x,, and t. Let
r1 € I(x1), where I(x1) is as in Proposition 7(1), and put x, = agur, X1. Let

J:=[dy—10*7V2, dy] NN,
where d; =100 [%] . Foreveryd € ], there is a collection
Ea={6ai:1<i<Ng}
of sets defined as in (4) for some F; ;  B:(0, B), so that both of the following hold:

(1) Putp= e Vel Letde J,1<i< Ny, and let wy € B.(0, ). Then for every w € B, (wy, p) and
allb=e™"'?, we have

#(Bt(w, b) th(WOVQ) mFd,i)

< e (blp)"~. ()
#(B(wo,g) mFd,i)
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(2) Foralls<tandallre[0,2], we have

f plasuy2) V™ * g, 1, (2) =Y ca f plasu, ) VP x g, ()| <Lip@p? (6
d,i

where € CX(X), cq,; 20 andy 4 ; cq,; = 1-0(B?), Lip(¢) is the Lipschitz norm of ¢, and

k4 and the implied constants depend on X.
Roughly speaking, the proposition states that up to an exponentially small error, v(;h) * UE, x;

may be decomposed as

> cd,iv([dl_d) * g, where Y cai=1-0 (,3(2))

d,i d,i
(see (6)) and forall d € Jand 1 < i < N, the dimension of &, ; transversal to H at controlled scales
is = a (see (5)).

Combining Proposition 8 with the previous discussion, we may complete the proof of Theo-
rem 1. A brief outline of this deduction follows: Let xy be as in the statement and suppose that
part (2) in Theorem 1 does not hold. We first apply Proposition 6 with s = log T — ClogR for an
appropriate large constant C to improve the (weak) Diophantine property of xy provided by the
failure of part (2) in Theorem 1 to the stronger Diophantine property,

dx(x,x;)> R0 for all x with vol(Hx) <R (7

for most points x; on {dieg7-ClogrUrXo : I € [0, 11}. Thus, in order to show that fol p(aogTUrxo) dr
is within R™* of [ ¢ it is enough to show the same for fol @(aciogrurx1)dr for x; satisfying the
stronger Diophantine property (7).

The remaining time, i.e., Clog R, will be divided into three phases:

Phase I

Recall that ¢ = D% log R. We apply Proposition 7 with the point x;. Then for every r; € I(x;), the
conclusion of part (1) in that proposition holds for x, = ag u;, x;. Thatis, h— hx, is injective over
E; and the transverse dimension of E;.x, is = 1/D for all

x2€{dstur1x13r1€1(x1)} (8)

where D = DyD; + D;. Therefore, in order to show that fol @(aciogrurx1)dr is within R™ of [ ¢,
it is enough to show a similar estimate for fol @(aclogr-srUrx2)dr for all x; as in (8).

Phase II

Let s = 2y/€t (note that this is much larger than ¢ = 0.01¢¢). Then
1
‘/(; ¢ (as+d1l+t urxz) dr
is within R™* of )
fo f(p(asurz) dv(;i‘) * UE, x, (2)dr.

We now use Proposition 8 to improve the small transversal dimension from 1/D to a. More
precisely, Proposition 8 shows that

1
fo f(p(asurz) dv([dl) * UE, x, (2)dr

is within R™* of a convex combination of integrals of the form

1
fo f(p(asurz) dv([”) * g (z)dr
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where 0 < n = d; —d < 10*¢72 and & = &,,; has dimension at least a transversal to H at
controlled scales, see (5).

Phase III

It now suffices to show that [, [¢(asu,2) dv([") * g (z)dr is within R™* of [¢ for all & and n
as above. We will use Proposition 5 to show this. First note that

1
f f(p(asurz) dv(gn) * g (z)dr
0
is within R™* of .
ff @ (asipeurz)drdug(z).
0
Moreover, we have

10%¢
=102V¢t;

2VEt<ss+nl<2Vet+ =
E

2
in view of our choice of 8 the right most term in the above series of inequalities is < [ﬁﬁ L
Thus, Proposition 5, applied with6 =1-a, c=2¢,p = e“/gt, p= e 2 and 1 =s+nt, gives

[[ ot@ssneurarduearar- [ gpams

where the implied constants depend on X.

Note that the total time required for these three phases is s+ d; £ + 9¢ which in view of the
choices of s, £ and t is indeed a (large) constant times log R. Theorem 1 follows.

In the setting of Theorem 3, we cannot utilize Proposition 6 combined with Proposition 7 as
we did above; cf. the weaker conclusion in (2’) following Proposition 7. Thus, we only use the
three phases above (with ¢ = x6log T) to improve the small dimension, namely the parameter §
in Theorem 3, to a. Thus the number of steps required is > 1/§ which forces k¥ < §. Hence, we
only obtain the rate T —*0% in part (1) of Theorem 3.

The proof of Propositions 8 relies on the evolution of the Margulis function fg,g,K defined
below. For every (h,z) € H x &, put

< L(pe =L @R* 9

Igo(h,z):= {WE‘C:O <|lwl <pand exp(w)hz e hé"}

Since E is bounded, Ig'p(h, z) is a finite setfor all (h,z) e Hx &. R
For every K = 0, define the modified and localized Margulis function fg, k : H x & — [1,00) as
follows?: if#lg(h,2) < K, put
Fooxh2) =079
andif #Ig »(h, z) > K, put

N ) —a. Iclgy(h,z)and
h, — a: Y .
feok(h2) mln{uglllwll #(I&Q(h,z)\]):K}

We begin the outline of the proof of Propositions 8 with the following observation: the set E;.x;
gives rise to sets & which are defined as in (4) and since we assume that Proposition 7 (2) does not
hold these satisty f¢ g 0(e z) < ePlforall ze &.

Let & be one of these sets, then up to an exponentially small error, v, x ttg may be decomposed
into Y c}. He! where c} =0and ) c} =1— O(B*). This can be seen by first decomposing v, * g
into a combination of measures supported on subsets of X which are exponentially thin in the

2If T is nonuniform, this Margulis function needs to be modified accordingly; but in this section we limit ourselves to
the compact case.
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direction of U~ (note that a,E.y will be exponentially thin in the direction of U~), and then
smearing these measures with B g . Continuing inductively, we obtain the decomposition (6).

The fact that the energy estimate (5) is also satisfied for the terms appearing in (6) is at the
heart of the proposition. The proof of this fact is based on the following bootstrap step: for all but
an exponentially small set of r € [0, 1] and all but an exponentially small setof z€ &,

~12eDt 4 46l 0™ g o (ap Uy, 2) . (10

féa,g,ﬁq (aeur,z)<e
where g, (h, 2) := max{#Is ,(h, 2),1}.
The proof of (10) relies on the aforementioned works of Wolff, Schlag, and Zahl [36,45,46], see
also the discussion below.
The set ayu,.& can now be used to construct sets &' (defined as in (4)), and in view of (10),
the estimate for fg , 51 is improved. Continuing inductively and using Dt —0.5d, ¢ < 31/4, after
d < d, steps, we have

fgr,g,dﬁ—l(e, z) < estg_“Wg/,Q(e, 2), (11

which implies the dimension estimate (5) for the set F' < B,(0, 8) which is used in the definition
of &', see (4).

We emphasize that our inductive scheme produces sets &' at every step 0 < d < d; with
an improved bound on f & o.dp1r however, it does not guarantee that (11) is only satisfied for
d € J. On the other hand, and as it was discussed above, the fact that our stopping times d
satisfy d; — d < 10*~1/2 is essential for us when we apply Proposition 5. We remedy this issue as
follows: if (5) holds for some &’ defined at step d < d; — 10*¢~Y2, then we use the above inductive
scheme to show that starting with &’, the process again terminates (i.e., (11) is satisfied) in at
most 10*e~2-many further steps.

On a related note, it should also be mentioned that ideally one would like to replace the
interval of possible choices of d € J with the singleton {d;}, i.e., to show that after exactly d, steps,
one obtains sets which satisfy (5). Indeed, such statement can be obtained if one is content with
restricting to @ < 1/2 — this can be achieved using estimates analogues to [12, Lemma 5.1] where
one replaces the integral over [0, 1] with integrals over much smaller intervals and by conditioning
the random walk.

However, it is essential for us to work with @ = 1—6 where 6 > 0 is rather small. For such choices
of a, there are vectors w € vt where the growth of ||a;u, w| is too slow. Indeed, in general, one can
only guarantee that

1
f gt wl =% dr < e w] . (12)
0

Using this general fact (which is an exercise in linear algebra) as an input, one can prove a version
of Proposition 8 where

4
d1_£;d1 ﬁ,dll,

Ve 0ve
in particular, the length of the interval cannot be made smaller than (0 \/E)‘l.

As it was discussed above, this improvement is pivotal to our analysis, and it is made possible
by bringing to bear [36, 45, 46] in this step of the argument as well. Indeed, the poor rate in (12)
is closely related to the existence of double zeroes for the map r — (a,;u,w);» (the (1,2)-entry
of a;u,w); we thus use [36, 45, 46], to control tangencies between the two parabolas {(u,w;);2 :
r € [0,1]} and {(u, w2)12 : 7 € [0,1]} for most pairs w;, w» € F and most r € [0,1]. This yields an
improved version of (12) which we use crucially.

is replaced by [dl -
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