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ABSTRACT
Following recent molecular dynamic simulations [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)], we theoretically analyze
how the phonon heat transport along a single polymer chain may be affected by varying the chain configuration. We suggest that phonon
scattering controls the phonon heat conduction in strongly compressed (and tangled) chain when multiple random bends act as scattering
centers for vibrational phononmodes, which results in the diffusive character of heat transport. As the chain is straightening up, the number of
scatterers decreases, and the heat transport acquires nearly ballistic character. To analyze these effects, we introduce a model of a long atomic
chain made out of identical atoms where some atoms are put in contact with scatterers and treat the phonon heat transfer through such a
system as a multichannel scattering problem.We simulate the changes in the chain configurations by varying the number of the scatterers and
mimic a gradual straightening of the chain by a gradual reducing of the number of scatterers attached to the chain atoms. It is demonstrated,
in agreement with recently published simulation results, that the phonon thermal conductance shows a threshold-like transition from the
limit where nearly all atoms are attached to the scatterers to the opposite limit where the scatterers vanish, which corresponds to a transition
from the diffusive to the ballistic phonon transport.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155486

I. INTRODUCTION

Lattice vibrations are the sole carriers of heat currents in
insulating materials. Bulk disordered materials such as amorphous
polymers and/or glasses are known to be rather poor heat con-
ductors. Nevertheless, the phonon thermal conductance of polymer
chains aligned in a crystalline form may far exceed that of their
bulk counterparts.1–4 Specific characteristics of heat transfer in one-
dimensional systems including, among others, atomic, alkane, and
polymer chains have inspired many works concentrated on ana-
lyzing heat conduction in such systems both experimentally5–9 and
theoretically.10–16 Unceasing interest of the research community in
these studies stems in part from the hope of introducing novel appli-
cations in nanotechnology. For example, there are grounds to believe
that sole polymer chains may be employed in building thermal
resistors and nanoscale energy transfer devices.17–20

Using molecular dynamics (MD) simulations, it was demon-
strated that mechanical stress applied to an amorphous polymer
may result in the enhancement of its thermal conductance.21,22 This
happens because the stress sets polymer chains along a certain direc-
tion. Similar effect occurs when a strain is applied to a sole polymer
chain. As the initially crumpled chain straightens up, its thermal
conductance significantly rises.23,24 A nontrivial feature was demon-
strated in the behavior of the phonon thermal conductance κ along
a sole polymer chain with controlled end-to-end distance R.24 It
appears that the conductance behavior is quite different in the com-
pressed (when the chain is crumpled) and stretched (straightened)
limits, which are characterized by different values of R. At suffi-
ciently small end-to-end distances, κ remains nearly independent on
R and rapidly rises when R exceeds a certain threshold value R0, thus
indicating a transition from diffusive to increasingly ballistic phonon
heat transport.
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MD simulations have been successfully employed to explore
transport properties of mesoscale and/or nanoscale systems. How-
ever, this method has its limitations. In some cases, MD does
not provide means to gain the insight into the physical nature of
primary transport mechanisms. Nonequilibrium Green’s functions
formalism (NEGF) and Boltzmann Transport equations (BTEs)
were (and still are) employed to study heat transport through
nanoscale systems.11–13,25–30 Unfortunately, using these methods
often one meets significant computational difficulties. An efficient,
although heuristic, approach was first developed by Büttiker31,32

and later successfully used to explore characteristics of electron33–35

and phonon11,36 transport avoiding computational problems arising
when either NEGF or BTE is employed. In the present work, we use
this method to model and analyze the physical mechanisms con-
trolling the behavior of phonon thermal conductance along a long
polymer chain with varying configuration.

II. MODEL AND MAIN EQUATIONS
The following analysis is based on a simple model described

below. To elucidate and justify this model, we turn back to the
original problem treated in an earlier work.24 When the end-to-
end distance R of the polymer chain is significantly smaller than
the chain length, one cannot treat the chain as a 1D system. Due
to numerous kinks and bends appearing in the crumpled chain,
some parts of the latter become strongly tangled. Within the limit of
small R, we may consider the whole chain as a single ball-like object.
Then, we may separate out an arbitrary single atom out of this ball
and treat the remaining atoms as a disordered set. We introduce a
phonon bath representing randommotions of these atoms. The bath
may be considered as a scattering reservoir for the phonons trav-
eling between the walls responsible for the diffusive component of
the heat transport, as shown in the lower part of Fig. 1. For greater
R, the crumpled chain may include several nearly straightened up
pieces alternating with strongly tangled regions. Again, we assume
that each of these ball-like regions can be treated as a single atom
attached to a phonon bath acting as a scattering reservoir for the
traveling phonons. Certainly, there may exist other kinds of scat-
terers for phonons such as various defects and other imperfections
inherent to the chain regardless of its configuration, but we omit
them from consideration assuming that the straightened up chain is
free from defects and any other disorder. Accordingly, we simulate
a molecule/polymer chain by a periodic insulating chain including
N identical atoms with masses m and nearest neighbors harmonic
interactions characterized by the force constant k. End atoms of the
chain are attached to parallel walls, as shown in Fig. 1. The walls
are kept at different temperatures (TL and TR, respectively). The
heat conduction along the chain depends on these temperatures and
on the chain stretching configuration. We assume that M atoms
(0 ≤M ≤ N) are put in contact with scattering reservoirs. Within
the Büttiker’s model, the physical nature of scatterers is not speci-
fied. These reservoirs are solely introduced as technical instruments
intended for simulation of dephasing centers. In the considered case,
these centers originate from the presence of tangled regions in the
compressed polymer chain. The strong chain compression is repre-
sented by the case whenM takes on values close toN, indicating that
nearly all chain atoms are attached to the scatterers. When the chain

FIG. 1. Top: Schematics of the chosen model for the chain including N atoms
placed between two walls. Some atoms represented by green squares are coupled
to scattering phonon baths shown as gray squares. Bottom: A single atom placed
between the walls and attached to a scattering reservoir. The phonon amplitudes
bL, bR coming from the left/right wall are partly reflected back to the walls as ampli-
tudes b′L, b′R and partly transmitted to the atom as b1 and b2. Moreover, amplitudes
b′1 and b′2 are reflected from the atom, and the amplitudes a1, a′1, a2, a′2 represent
phonon exchange between the atom and the scattering reservoir.

is straightening up,M reduces and approaches zero for the extended
chain.

First, we consider ballistic phonon transport along the chain
(M = 0). The Hamiltonian describing the chain may be written in
the form10

H =
N

∑

i=1

p2i
m
+
k
2

N−1
∑

i=1
(xi − xi+1)2 +

k
2
(x21 + x

2
N), (1)

where pi and xi are the linear momentum and the displacement of
the i-th atom in the chain. Atoms’ motions are controlled by N ×N
dynamical matrix K whose off-diagonal elements Ki, j =

∂2H
∂xi∂x j

and
diagonal elements are given by the expressions K i,i = −∑i≠j K i,j.11
As follows from the adopted Hamiltonian, nonzero matrix elements
of the dynamical matrix are K i,i+1 = K i+1,i = −k (1 ≤ i ≤ N − 1) and
K i,i = −2k (1 ≤ i ≤ N).

The retarded Green’s function for the chain G(r)
(ω) equals13

G(r)(ω) = (ω2I + K̃ +
i
2
ΓL(ω) + i

2
ΓR(ω))

−1
. (2)

Here, I is an N ×N unit matrix, K̃ = 1
mK, and matrices ΓL,R(ω)

= −2IΣL,R
(ω) are self-energy terms describing coupling of the chain

end atoms to the left and right walls, respectively. Each of these
N ×N matrices has a single nonzero element: ΓL1,1(ω) = γL(ω),
ΓRN,N(ω) = γR(ω). In further analysis, we treat the walls as identical
Ohmic phonon baths. Then, we may approximate γL,R(ω) ≡ γ(ω)
≈ ηωDω exp(− ω

ωD
),12,37–39 ωD being the analog of Debye frequency

for these baths, which controls the position of maximum of their
phonon spectral densities. The dimensionless parameter η charac-
terizes the coupling strength between the chain end atoms and the
walls and strongly influences heat conduction.
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The expression for ballistic phonon transmission may be pre-
sented in the following form: Ξb = Tr [ΓLG[r]ΓRG(r)†].11 Within the
present model, this expression may be reduced to

Ξb = γ
2
(ω)∣G(r)1,N(ω)∣

2
. (3)

Here,

G(r)1,N(ω)

=
4ζΩ2(N−1)

(μ + ζ)N−1(μ + ζ + 2iγ(ω))2 − (μ − ζ)N−1(μ − ζ + 2iγ(ω))2

(4)

where μ = ω2
−Ω2, ζ =

√

λ2 −Ω4, and Ω =
√

2k
m . Note that Eq. (4)

resembles the known expression for the electron Green’s function
associated with propagation of electrons along a periodical chain
of identical sites with nearest neighbors coupling.40 The resem-
blance originates from similarities in the form of the relevant Green’s
functions.

We first explore the effect of scatterers on the heat conduction
in a simple case when a single atom treated as a harmonic oscillator
is attached to the left and right walls and put in contact with a scatter-
ing phonon bath, as shown in Fig. 1. Phonon amplitudes (bL,R) are
emitted from the left/right wall and amplitudes (b′L,R) are reflected
back to the walls. Moreover, we introduce the incident and outgoing
amplitudes for the atom (b1,2 and b′1,2, respectively) and the ampli-
tudes a1, a′1, a2, a

′
2 corresponding to phonon exchange between the

atom and the scattering reservoir. The outgoing amplitudes b′L, b
′
R,

a′1, a
′
2 are related to the incident ones bL, bR, a1, a2 by 4 × 4 matrix

S(1),

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′L
b′R
a′1
a′2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= S(1)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bL

bR

a1

a2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

Expressions for matrix elements of S(1) are derived in Appendix A.
Note that S(1) has the same form as the scattering matrix derived for
the case of electron transport through a single-site bridge linking two
leads.34,35 Accordingly, outgoing energy fluxes may be presented as
linear combinations of incoming fluxes,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J′L
J′R
J′1
J′2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= T(1)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

JL

JR

J1

J2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

where T(1)k, j = ∣S
(1)
k, j ∣

2
, J′L,R are the heat fluxes outgoing from the atom

to the left/right wall, respectively, JL,R are fluxes coming to the atom
from the left/right and J′1, J1, J

′
2, J2 appear due to the phonons

transferred between the atom and the scatterer. Supposing that heat

transport is directed to the right (JR = 0) and the net heat is not com-
ing to/from the scattering reservoir to the atom, we may rearrange
Eq. (6) to get the expression for the phonon transmission Ξ = J′R

JL
,

Ξ = Ξ1 + Ξ2 = α2
t2Lt

2
R

(1 + α2∣rLrR∣)2
+
1
2
β2

tLtR
1 + α2∣rLrR∣

. (7)

Here, coefficients tL,R describe the transmission between the
left/right wall and the atom, rL,R = i

√

1 − t2L,R, the dimensionless
parameter α2 determines the probability for a phonon to avoid scat-
tering, and β2 = 1 − α2. Accordingly, the terms Ξ1 and Ξ2 denote
the ballistic and diffusive components in the phonon transmission.
In the case of ballistic transport (α = 1), the second term in this
expression vanishes. In the diffusive limit α = 0, the transmission Ξ
is reduced to Ξ2. Within the Büttiker approach, α is treated as a phe-
nomenological parameter. To find a suitable approximation for this
parameter, we must turn to the specifics of the considered problem.

Assuming that the walls are kept at temperatures TL and TR
and stipulating that there is no heat exchange between the atom and
the scatterer, we may determine the temperature T̃ associated with
the atom. The corresponding expression is derived in Appendix B.
It is shown that in the case tL = tR T̃ = 1

2(TL + TR). In a general case
(tL ≠ tR), T̃ is shifted from this position.

In further analysis, we assume that the phonon bath acting as a
scatterer is characterized by a continuous spectral function. Particu-
lar form of this function may be found based on MD simulations
but to qualitatively study the processes of phonon scattering, we
may employ a commonly used approximation treating the scatterer
as an Ohmic phonon bath whose coupling to the vibrating atom
is described by a self-energy term δ(ω) similar to that characteriz-
ing the coupling of the atom to the walls: δ(ω) ≈ λωDsω exp(− ω

ωDs
).

The value of parameter α is controlled by self-energy terms γ(ω)
and δ(ω), which makes α dependent on the phonon frequency. It
may happen that the Debye frequencies ωD and ωDs strongly dif-
fer. For example, in the case of metallic walls at the ends of the
polymer chain,41 ωD could be far below ωDs. As a result, within the
long wavelength limit, γ(ω) would predominate over δ(ω) and the
effect of scattering on the phonon heat conduction could vanish.
Here, however, we concentrate on the situation whenωD andωDS are
close, so we may apply our model to analyze the interplay between
diffusive and ballistic transport. Furthermore, we ignore the differ-
ence between ωD and ωDs for simplicity. It is natural to expect the
phonon heat transport to be nearly ballistic provided that the atom
is much stronger coupled to the walls than to the scatterer (η≫ λ)
and nearly diffusive in the opposite limit (η≪ λ). Within these lim-
its, α takes on values close to 1 and 0, respectively. Keeping this in
mind, we may put forward a simple approximation: α ≈ η

η+λ , which
elucidates its physical meaning.

Now, we turn to the case when the chain includes an arbi-
trary number N of atoms. In this case, the scattering matrix S(N) has
dimensions 2N + 2 × 2N + 2. Its elements depend on parameters αi,
βi (1 ≤ N), which may take on different values for different atoms.
Specifically, αi = 0 for all atoms detached from the scatterers.

In Appendix A, we derive recursive relations matching up
matrix elements of S(N−1) and of S(N). The phonon transmission
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accepts the form identical to that of electron transmission through a
multisite one-dimensional bridge derived in earlier works,33,34,42

Ξ = Ξ1 + Ξ2 = T(N)2,1 +
N

∑

i, j=1
Q(1)i (W

−1
)
i, j
Q(2)j . (8)

Here,

Q(1)i = T(N)2i+1,1 + T
(N)
2i+2,1; Q(2)j = T

(N)
2,2 j+1 + T

(N)
2,2 j+2; (9)

W is an N ×N matrix whose elements are given by

Wi, j = (2 − Ri,i)δi, j − Pi, j(1 − δi, j), (10)

where

Ri,i = T(N)2i+1,2i+1 + T
(N)
2i+2,2i+2 + 2T

(N)
2i+1,2i+2; (11)

Pi,i = T(N)2i+1,2 j+1 + T
(N)
2i+1,2 j+2 + T

(N)
2i+2,2 j+1 + T

(N)
2i+2,2 j+2; (12)

T(N)l,m = ∣S
(N)
l,m ∣

2
(1 ≤ l,m ≤ 2N + 2) and δi,j is the Kronecker symbol.

Again, the term Ξ1 predominates when the effect of phonon scat-
tering on heat conduction is insignificant. In the limit where all αi
approach 1, the second term in Eq. (8) disappears, reducing Ξ to
Ξ1. We stress that these results are derived omitting all anharmonic
terms not only from theHamiltonian Eq. (1) but from the expression
for the phonon transmission Eq. (8) as well. As shown below, this
harmonic approximation leads to the ballistic character of phonon
transport along a stretched chain. In principle, wemay retain the dif-
fusive contribution to heat conductance along the stretched chain by
including anharmonic terms into the chain Hamiltonian, but such a
case was not considered in the present work. Note that temperature
profile along the chain is also controlled by the matrix T(N) as shown
in Appendix B.

To clarify the physical meaning of the coefficients tL,R, we con-
sider the limit when scattering effects are omitted. In this limit, the

phonon transmission does not depend on N and may be presented
as

Ξ ≡ Ξb =
t2Lt

2
R

(2 − tLtR)2
. (13)

This result should agree with the expression for Ξb(ω) given by
Eq. (3). Assuming that tL = tR = t and comparing Eqs. (3) and (14),

we get the relationship t2 = 2
√

Ξb(ω)
(1+
√

Ξb(ω))
, which enables us to express

matrix elements T(N)l,m in terms of the Green’s function for the chain
given by Eq. (4).

The heat current flowing along the chain provided that the
walls are kept at different temperatures may be computed based on
phonon transmission as follows:12,13,38

I =
̵h
2π∫

∞

0
dωΞ(ω)(nL − nR). (14)

In this expression, nL,R = (exp( h̵ω
kBTL,R
) − 1)

−1
are Bose–Einstein dis-

tribution functions for the phonons in the walls and kB is the
Boltzmann constant. We suppose that TL > TR, so the heat current
flows to the right. When the difference between the wall temper-
atures, ΔT, is small (ΔT ≪ TL,R), the phonon heat conductance
κ(T) = J

ΔT may be approximated by

κ(T) =
̵h2

2πT2∫

∞

0
dωω2Ξ(ω)

exp( h̵ω
kBT
)

(exp( h̵ω
kBT
) − 1)

2 , (15)

where T = 1
2(TL + TR). Our further analysis is based on this

expression.

III. RESULTS AND DISCUSSION
We start from exploring phonon heat conduction in the case

when the effects of scattering could be neglected (M = 0). In this
case, the phonon transmission Ξ(ω) shows several Lorentzian-type

FIG. 2. Phonon transmission for the ballistic transport through a chain made out of identical atoms (left) and dependencies of the ballistic phonon thermal conductance on the

elastic properties of the chain plotted at several values of temperature (right). Curves are plotted at N = 10, ωD = 0.04 eV; Ω0 =
√

k
m
= 0.03 eV, η = 5 (right panel). The

inset in the right panel illustrates the dependencies of the phonon heat conduction κ on the chain length at different temperatures.
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resonances occurring at the eigenfrequencies of the chain (ωi) cor-
responding to vibrational modes. This is illustrated in Fig. 2. Note
that the transmission line shapes may be noticeably affected by the
coupling of vibrational phonons to the phonon baths associated with
the walls.

Characteristics of heat transport along the chain depend on
atom mass m and the elastic constant k. These material parameters
along with the number of atoms N determine the eigenfrequen-

cies ωi. Accordingly, phonon conductance depends on Ω0 =

√

k
m .

When Ω0 varies, the eigenfrequencies appear one by one within the
frequency range around ωD where γ(ω) takes on nonzero values,
thus giving rise to a sequence of peaks in the phonon conductance
superimposed upon a smoothly fading background, as shown in
Fig. 2 (right panel). Note that for sufficiently long chains (N ≥ 3),
the phonon heat conductance remains nearly independent of the
chain length, in agreement with the corresponding results of earlier
works.10,12

The nature of heat conduction in solids was theoretically stud-
ied in several works.43–47 It was established that in crystalline solids,
ballistic transport is associated with independent motion of phonons
whereas diffusive transport results from strong phonon scattering.
This simple description cannot be applied to disordered solids and
glasses where the standard phonon gas model fails and heat transfer
should be described as a motion of specific vibrational modes that
are neither plane-wave-like nor localized. Interplay between vari-
ous mechanisms controlling heat conductance in one-dimensional
systems has also been discussed in several works.23,24,48

We analyze this issue starting from the case where a single atom
treated as a harmonic oscillator is sandwiched between the walls
(N = 1) and attached to a scatterer (M = 1). Results are shown in
Fig. 3. We see that when coupling between the atom and the scat-
tering reservoir is weak and the heat transport is nearly ballistic, the
term Ξ1(ω) gives a predominating contribution to phonon trans-
mission whereas the term Ξ2(ω) brings only a small correction. The
relation between Ξ1(ω) and Ξ2(ω) changes when the coupling of
the atom to the scatterer strengthens and the diffusive component
in the heat transport becomes more pronounced. In the limit of

strong coupling (λ≪ η; α≪ 1), the probability for a phonon to be
scattered (β2) approaches 1. In this limit, the “diffusive” contribu-
tion to the transmission Ξ2(ω) exceeds the “ballistic” one, indicating
the diffusive nature of heat conduction. In Fig. 3, we also show
“diffusive” and “ballistic” components of the phonon transmission
κ1 and κ2 along with the total transmission κ = κ1 + κ2. Note that its
behavior depends on ωD. Varying ωD, we change the relationship
between the diffusive and ballistic contributions to heat transport.
As a result, κ becomes either an increasing or decreasing function of
the parameter α.

Now, we consider the chain ofN atoms assuming thatM out of
N atoms are put in weak contact with scattering reservoirs. For sim-
plicity, we assume that each scatterer attached to an atom is coupled
to it with the same strength λ (λ≪ η). Although each scatterer by
itself cannot significantly influence heat transport, their combined
effect gets stronger as their number increases. This situation is illus-
trated in the left panel of Fig. 4 for a short chain (N = 3). Again,
in the ballistic limit (M = 0),Ξ1(ω) takes on maximum values and
Ξ2(ω) vanishes. As the number of attached scatterers rises, the
“nearly ballistic” contribution to phonon transmission diminishes
whereas the “diffusive” contribution enhances.

These results help to explain the phonon conductance depen-
dencies on the relative number of atoms (MN ) in contact with the
scatterers displayed in the right panel of Fig. 4. When sufficient
number of atoms contact the scatterers (MN >

1
2), the “diffusive” con-

tribution to heat conduction strongly exceeds the “nearly elastic”
contribution and controls heat transport along the chain. As the
ratio M

N decreases below a certain value, the effect of scatterers
sharply reduces. The diffusive component rapidly approaches zero
and the transport becomes nearly ballistic. Thus, we conclude that
the predominating transport mechanism changes when the rela-
tive number of attached scatterers falls below some threshold value.
The effect is more pronounced in longer atomic chains. It is worth
mentioning that in the ballistic limit, phonon conductance takes
on the same value regardless of the chain length, thus confirm-
ing the results reported in earlier works.10,12 Moreover, the effect
is sensitive to the coupling between the chain end atoms and the
walls as well as to those between atoms, as shown in Fig. 5, and

FIG. 3. Left panel: “Ballistic” Ξ1(ω) (main body) and “diffusive” Ξ2(ω) (inset) contributions to phonon transmission computed for N = M = 1, ωD = 0.04 eV, Ω0 = 0.02 eV,
η = 0.4. Right panel: “Ballistic” κ1 and “diffusive” κ2 contributions to heat conduction computed for N = M = 1 assuming that ωD = 0.08 (main body) and ωD = 0.04 eV (inset)
at T = 120 K. The remaining parameters take on the same values as in the left panel.
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FIG. 4. Left panel: Contributions Ξ1(ω) (main body) and Ξ2(ω) (inset) to the phonon transmission computed for N = 3 and several numbers of scatterers weakly coupled to
the atoms. Right panel: Dependencies of phonon conductance through long chains on the number of scatterers M for two different chain lengths. Inset shows contributions
to phonon conductance originating from Ξ1(ω) and Ξ2(ω) for the chain of 80 atoms. Curves are plotted assuming that ωD = 0.04 eV, Ω0 = 0.02 eV, η = 0.4, λ = 0.11, and
T = 120 K (right panel).

FIG. 5. Heat conduction of an N = 80 atom chain plotted as a function of the fraction of scatterers at T = 120 K, ωD = 0.04 eV, Ω0 = 0.02 eV, η = 0.4, λ = 0.021 (insets).
Left panel: Effect of coupling of chain atoms to the scatterers (main body) and to the phonon baths associated with the walls (inset) on the phonon heat conductance. Right
panel: Effect of material parameters of the chain (main body) and temperature (inset) on the phonon conductance.

is consistent with the MD simulation results of Ref. 24. This is an
obvious consequence of the part taken by phonon baths in con-
trolling characteristics of the heat conduction along the chains. The
effect of temperature originates from temperature dependencies of
Bose–Einstein distribution functions appearing in the expression for
heat current. However, these factors do not give rise to qualitative
changes in heat conduction.

IV. CONCLUSIONS
The present work was motivated by MD based calculations of

phonon thermal conductance along single polymer chains whose
configurations were varied by mechanical strain.24 It was shown that
when an initially compressed chain is straightened by a mechanical
strain, a threshold-like configuration transition from the diffusive to
the ballistic phonon transport occurs. To explain this peculiar behav-
ior of phonon conductance, it was suggested24 that random bends
formed in the compressed chain may act as scattering centers for

phonons. When the chain end-to-end distance R is small, the chain
is a tangle of randomly distributed atoms. Many of them interact
not only with their nearest neighbors but with other atoms located
nearby due to the presence of multiple bends. When R increases, the
chain untangles and the number of scattering centers gradually fades
away, thus reducing their effect on phonon transport.

To better visualize this process, we employ a model simulat-
ing a single polymer chain or a long molecule by an atomic chain
including N atoms with nearest neighbor interactions placed in
between two walls. We mimic the wire compression by introducing
M scattering phonon reservoirs attached to a few atoms (M ≤ N).
Moreover, we assume that the coupling between a single atom and
the attached scatterer is weak (λ≪ η)whereas their combined effect
on the heat transport may be significant provided that M ∼ N. The
chain untangling resulting from its stretching is simulated by reduc-
ing the number of scatterers. As long as the chain remains highly
disordered and the relative number of scatterers (MN ) is close to 1,
the diffusive transport mechanism predominates, making the heat
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conductance almost insensitive to (MN ) value. However, when the
chain straightens up and fewer scatterers remain, a transition from
diffusive to nearly ballistic transport occurs. In sufficiently long
chains, the transition shows a threshold-like character. Thus, the
model gives means to reproduce and explain the heat conduction
behavior earlier predicted based on MD simulations.24

The proposed explanation may need further development and
improvement in view of the analysis of heat transfer in disordered
solids and/or glasses, which suggests that the diffusive nature of
phonon transport in such materials may originate from more com-
plex mechanisms.43–47 As mentioned before, for many amorphous
systems thermal transport is carried by specific vibrational modes
(called diffusons) that are neither plane-wave-like nor localized.
Modes of this nature have been found for perfluoronated alkanes.48
Perhaps, similar modes could appear in crumpled polymer chains
and significantly affect the heat conduction. This possibility as well
as the effect of anharmonicities and the case when Debye frequen-
cies of the walls and those of the scatterers strongly differ41 could be
a subject of future studies.
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APPENDIX A: EXPRESSIONS FOR THE SCATTERING
MATRIX ELEMENTS

To derive the expression for matrix S, we start from the case
when a single atom represented by a harmonic oscillator is placed
between the walls. The relationships between the amplitudes bL, b′L
and b1, b′1 and between the amplitudes b2, b′2 and bR, b

′
R correspond-

ing to the phonon transfer from the left wall to the atom and from
the atom to the right wall shown in Fig. 1 could be presented as
follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1

b′1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
1
tL

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −rL

rL 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

bL

b′l

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; (A1)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b′R
bR

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
1
tR

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −rR

rR 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b′2
b2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (A2)

Here, the coefficients tL,R describe the effect of driving the atom by

the phonon mode coming from the left/right and rL,R = i
√

1 − t2L,R.
If the atom is put in contact with a scatterer, the outgoing

amplitudes from the scatterer amplitudes b′1, b
′
2, a

′
1, a

′
2 are related

to the incoming amplitudes b1, b2, a1, a2 (see Fig. 1) by the 4 × 4
matrix32

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′1
b′2
a′1
a′2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 α β 0

α 0 0 β

β 0 0 −α

0 β −α 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1

b2

a1

a2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A3)

where the dimensionless parameter α =
√

1 − β2 gives the probabil-
ity for the transferred phonon to avoid contact with the scatterer.
Using Eqs. (A1) and (A2), we eliminate the amplitudes b1, b2, b′1, b

′
2

from Eq. (A3) and get the relationship

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′L
b′R
a′1
a′2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= S(1)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bL

bR

a1

a2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A4)

In this expression, the 4 × 4 scattering matrix S(1) has the form35

Z(1)S(1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−rL − α2rR αtLtR βtL −αβtLrR

αtLtR −rR − α2rL −αβrLtR βtR

βtL −αβrLtR −β2rL −αrLrR + α

−αβtLrR βtR −αrLrR + α −β2rR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(A5)
where Z(1)

= 1 − α2rLrR.
Now, we derive recursive relations that should be used to find

the expression for the scattering matrix S(N) corresponding to the
chain including N atoms following the same way as was used in the
case of incoherent electron transport along a multisite bridge.34,35

The matrix S(N) has 2N + 2 × 2N + 2 dimensions and its elements
depend on parameters αi, βi (1 ≤ i ≤ N). To bring into correla-
tion the scattering matrices S(N−1) and S(N), we split the considered
system into two parts. The first subsystem includes the left wall and
N − 1 atoms and the second one includes a single extra atom at the
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right end of the chain and the right wall. The relationship between
outgoing and incoming amplitudes for this subsystem has the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′L
b′N
a′1
a′2
⋮

a′2N−1
a′2N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= S̃ (N−1)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bL

bN

a1

a2

⋮

a2N−1

a2N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A6)

The right side of the first subsystem is transparent, so the expres-
sion for S̃ (N−1) could be obtained by putting tR = 1, rR = 0 in the
expression for the matrix S(N−1). Specifically,

S̃ (1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−rL α1tL β1tL 0

α1tL −α21rL −α1β1rL β1

β1tL −α1β1rL −β21rL α1

0 β1 α1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A7)

For the second subsystem whose left side is transparent (tL = 1),
we get

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bN

b′R
0

⋮

0

a′2N+1
a′2N+2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= U(N)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′N
bR

0

⋮

0

a2N+1

a2N+2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A8)

where both vectors have dimensions 2N + 2 × 1 and 2N + 2 × 2N + 2
matrix U equals

Ũ (N) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−α2NrR αN tR 0 ⋅ ⋅ ⋅ βN −αNβNrR

αN tR −rR 0 ⋅ ⋅ ⋅ 0 βN tR

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

βN 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 −αN

−αNβNrR βN tR 0 ⋅ ⋅ ⋅ −αN −β2NrR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A9)

Using Eqs. (A8) and (A9) to eliminate the amplitudes b′N and bN , we
get the following recursive relations for the matrix elements of S(N):

S(N)i,n = U
(N)
i,n +

U(N)i,1 S̃(N−1)2,2 U(N)1,n

ZN
, (A10)

where i,n = 2, 2N + 1, 2N + 2;

S(N)k,l = S̃
(N−1)
k,l +

U(N)1,1 S̃(N−1)k,2 S̃(N−1)2,l

ZN
, (A11)

where k, l = 1, 3, 4, . . . , 2N − 1, 2N; and

S(N)i,k =
U(N)1,i S̃(N−1)2,k

ZN
. (A12)

In these expressions, ZN = 1 −U(N)11 S̃(N−1)22 ≡ 1 − (ΠN
i=1α

2
i )rLrR.

APPENDIX B: TEMPERATURE PROFILE
ALONG THE CHAIN

To find the temperature T̃ associated with the scatterer in the
case of a single atom put between the walls, we assume that there
is no heat exchange between the atom and the scatterer, that is, J1
+ J2 = J′1 + J

′
2 = 0. Expressions for the heat currents J1 and J2 may be

written in the form

J1 = C[(1 − T(1)3,3 − T
(1)
3,4 )(T̃ − TR) − T(1)3,1 (TL − TR)], (B1)

J2 = C[(1 − T(1)4,4 − T
(1)
4,3 )(T̃ − TR) − T(1)4,1 (TL − TR)], (B2)

where C is a constant, T(1)i,k = ∣S
(1)
i,k ∣

2
, and matrix elements S(1)i,k

are determined by Eq. (A5). Note that Eqs. (B1) and (B2) resem-
ble the corresponding expressions for electron currents derived in
Büttiker’s work.32 Using the equation J1 + J2 = 0 and unitary rela-
tions T(1)1,4 + T

(1)
2,4 + T

(1)
3,4 + T

(1)
4,4 = 1 and T(1)1,3 + T

(1)
2,3 + T

(1)
3,3 + T

(1)
4,3

= 1, we get T̃ = μTL + νTR, where

μ =
T(1)1,3 + T

(1)
1,4

T.(1)1,3 + T
(1)
2,3 + T

(1)
1,4 + T

(1)
2,4

; (B3)

ν =
T(1)2,3 + T

(1)
2,4

T(1)1,3 + T
(1)
2,3 + T

(1)
1,4 + T

(1)
2,4

. (B4)

Substituting expressions for the relevant matrix elements Ti,k, we
rewrite these coefficients in the form

μ =
t2L(1 + α2∣rR∣2)

t2L(1 + α2∣rR∣2) + t2R(1 + α2∣rL∣2)
; (B5)

ν =
t2R(1 + α2∣rL∣2)

t2L(1 + α2∣rR∣2) + t2R(1 + α2∣rL∣2)
. (B6)

For a symmetrically coupled system (tL = tR), μ = ν = 1
2 and

T̃ = 1
2(TL + TR).
To find a steady state temperature profile along the chain,

we ascribe the temperature T̃i (1 ≤ i ≤ N) to the place were i-th
atom is situated. Thus, the temperature profile is determined by
the set of these temperatures. Assuming for certainty that TL > TR,
we may write TL > T̃1 > . . . > T̃i−1 > T̃i > T̃i+1 > . . . > T̃N > TR.
Suppose that the i-th atom is put in contact with the scatterer by
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means of two channels as in the case of the previously considered
single atom shown in Fig. 1. The heat currents coming from the
scatterer (J2i−1, J2i) may be written in the form

J2i−1 = C(J′2i−1 − J
′′
2i−1) J2i = C(J′2i − J

′′
2i), (B7)

where

J′2i−1 = (1 − T
(N)
2i+1,2i+1 − T

(N)
2i+1;2i+2)(T̃i − T̃i+1), (B8)

J′′2i−1 = T
(N)
2i+1,1(T̃i−1 − T̃i+1), (B9)

J′2i = (1 − T
(N)
2i+2,2i+2 − T

(N)
2i+2;2i+1)(T̃i − T̃i+1), (B10)

J′′2i = T
(N)
2i+2,1(T̃i−1 − T̃i+1). (B11)

Assuming that there is no net heat current flowing from the scatterer
to the chain or back, the heat currents coming from the scatterer
obey the equation J2i−1 + J2i = 0, leading to the set of linear equations
(1 ≤ i ≤ N),

T̃i = T̃i−1
K(1)i
Ri,i
+ T̃i+1

⎛

⎝

1 −
K(1)i
Ri,i

⎞

⎠

, (B12)

where T̃0 = TL and T̃N+1 = TR. Solving these equations, we may find
the temperature profile along the chain.

REFERENCES
1S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).
2A. Henry and G. Chen, Phys. Rev. Lett. 101, 235502 (2008).
3A. Henry, G. Chen, S. J. Plimpton, and A. Thompson, Phys. Rev. B 82, 144308
(2010).
4J. He, K. Kim, Y. Wang, and J. Liu, Appl. Phys. Lett. 112, 051907 (2018).
5D. Schwarter, C. Hanish, P. Kutne, and J. Troe, J. Phys. Chem. A 106, 8019
(2002).
6D. Schwarter, P. Kutne, S. Schroller, and J. Troe, J. Chem. Phys. 121, 1754
(2004).
7Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D.
D. Dlott, Science 317, 787 (2007).
8Y. Yue, L. N. Qasim, A. A. Kurnosov, N. I. Rubtsova, R. T. Mackin, H. Zhang,
B. Zhang, X. Zhou, J. Jayawickramarajah, A. L. Burin, and I. V. Rubtsov, J. Phys.
Chem. C 119, 6448 (2015).
9L. N. Qasim, E. B. Atuk, A. O. Maksymov, J. Jayawickramarajah, A. L. Burin, and
I. V. Rubtsov, J. Phys. Chem. C 123, 3381 (2019).

10A. Ozpineci and S. Ciraci, Phys. Rev. B 63, 125415 (2001).
11N. Mingo and L. Yang, Phys. Rev. B 68, 245406 (2003).
12D. Segal, A. Nitzan, and P. Hänggi, J. Chem. Phys. 119, 6840 (2003).
13T. Markussen, A.-P. Jauho, and M. Brandbyge, Phys. Rev. B 79, 035415
(2009).
14J. T. Lü and J.-S. Wang, Phys. Rev. B 76, 165418 (2007).
15J. Zhai, Q. Zhang, Z. Cheng, J. Ren, Y. Ke, and B. Li, Phys. Rev. B 99, 195429
(2019).
16J. C. Klöckner, M. Bürkle, J. C. Cuevas, and F. Pauli, Phys. Rev. B 94, 205425
(2016).
17Y. Xu, D. Kramer, B. Song, Z. Jiang, J. Zhou, J. Loomis, J. Wang, M. Li, H.
Ghasemi, X. Huang, X. Li, and G. Chen, Nat. Commun. 10, 1771 (2010).
18B. Li, L. Wang, and G. Casati, Appl. Phys. Lett. 88, 143501 (2006).
19H. D. Pandey and D. M. Leitner, J. Chem. Phys. 147, 084701 (2016).
20H. D. Pandey and D. M. Leitner, Phys. Chem. Lett. 7, 5062 (2016).
21J. Liu and R. Yang, Phys. Rev. B 81, 174122 (2010).
22T. Zhang and T. Luo, J. Appl. Phys. 112, 094304 (2012).
23J. Liu and R. Yang, Phys. Rev. B 86, 104137 (2012).
24M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020).
25S. Sadasivam, Y. Che, J. Huang, L. Chen, S. Kumar, and T. S. Fisher, Annu. Rev.
Heat Transfer 17(4), 89 (2014).
26J. Mazumdar and W. M. Steen, J. Appl. Phys. 51, 941 (1980).
27A. J. Minnich, G. Chen, S. Mansoor, and B. S. Yilbas, Phys. Rev. B 84, 235207
(2011).
28A. J. Minnich, J. Phys.: Condens. Matter 27, 053202 (2015).
29X.-P. Luo and H.-L. Yi, Int. J. Heat Mass Transfer 114, 970 (2017).
30C. Zhang, Z. Guo, and S. Chen, Int. J. Heat Mass Transfer 130, 1366 (2019).
31M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
32M. Büttiker, Phys. Rev. B 33, 3020 (1986).
33X.-Q. Li and Y. Yan, Appl. Phys. Lett. 79, 2190 (2001).
34X.-Q. Li and Y. Yan, J. Chem. Phys. 115, 4169 (2001).
35N. A. Zimbovskaya and M. M. Kuklja, J. Chem. Phys. 131, 114703 (2009).
36k. Miao, S. Sadasivam, J. Charles, G. Klimeck, T. S. Fisher, and T. Kubis, Appl.
Phys. Lett. 108, 113107 (2016).
37M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter 19, 103201
(2007).
38R. Härtle, C. Benesch, and M. Thoss, Phys. Rev. B 77, 205314 (2008).
39J.-C. Wang, N. Zeng, J. Wang, and G.-K. Gan, Phys. Rev. E 75, 061128 (2007).
40V. Mujika, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101, 6849 (1994).
41M. Dinpajooh and A. Nitzan, J. Chem. Phys. 156, 144901 (2022).
42L. D’Amato and H. M. Pastawski, Phys. Rev. B 41, 7411 (1990).
43R. J. Hardy, Phys. Rev. 132, 168 (1968).
44P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).
45J. L. Feldman, M. D. Kluge, P. B. Allen, and F. Wooten, Phys. Rev. B 48, 12589
(1993).
46M. Simonelli, N. Marzari, and F. Mauri, Nat. Phys. 15, 809 (2019).
47J. Fabian and P. B. Allen, Phys. Rev. Lett. 77, 3839 (1996).
48H. D. Pandey and D. M. Leitner, Chem. Phys. 482, 81 (2017).

J. Chem. Phys. 158, 234903 (2023); doi: 10.1063/5.0155486 158, 234903-9

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0155486/18002399/234903_1_5.0155486.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.481208
https://doi.org/10.1103/physrevlett.101.235502
https://doi.org/10.1103/physrevb.82.144308
https://doi.org/10.1063/1.5010986
https://doi.org/10.1021/jp0210576
https://doi.org/10.1063/1.1765092
https://doi.org/10.1126/science.1145220
https://doi.org/10.1021/acs.jpcb.5b03658
https://doi.org/10.1021/acs.jpcb.5b03658
https://doi.org/10.1021/acs.jpcc.8b11570
https://doi.org/10.1103/physrevb.63.125415
https://doi.org/10.1103/physrevb.68.245406
https://doi.org/10.1063/1.1603211
https://doi.org/10.1103/physrevb.79.035415
https://doi.org/10.1103/PhysRevB.76.165418
https://doi.org/10.1103/physrevb.99.195429
https://doi.org/10.1103/PhysRevB.96.205405
https://doi.org/10.1038/s41467-019-09697-7
https://doi.org/10.1063/1.2191730
https://doi.org/10.1063/1.4999411
https://doi.org/10.1021/acs.jpclett.6b02539
https://doi.org/10.1103/physrevb.81.174122
https://doi.org/10.1063/1.4759293
https://doi.org/10.1103/physrevb.86.104307
https://doi.org/10.1063/5.0023085
https://doi.org/10.1615/annualrevheattransfer.2014006986
https://doi.org/10.1615/annualrevheattransfer.2014006986
https://doi.org/10.1063/1.327672
https://doi.org/10.1103/physrevb.84.235207
https://doi.org/10.1088/0953-8984/27/5/053202
https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.127
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.141
https://doi.org/10.1103/physrevlett.57.1761
https://doi.org/10.1103/physrevb.33.3020
https://doi.org/10.1063/1.1407860
https://doi.org/10.1063/1.1392368
https://doi.org/10.1063/1.3231604
https://doi.org/10.1063/1.4944329
https://doi.org/10.1063/1.4944329
https://doi.org/10.1088/0953-8984/19/10/103201
https://doi.org/10.1103/physrevb.77.205314
https://doi.org/10.1103/physreve.75.061128
https://doi.org/10.1063/1.468314
https://doi.org/10.1063/5.0087163
https://doi.org/10.1103/PhysRevB.41.7411
https://doi.org/10.1103/PhysRev.132.168
https://doi.org/10.1103/physrevb.48.12581
https://doi.org/10.1103/physrevb.48.12589
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1103/physrevlett.77.3839
https://doi.org/10.1016/j.chemphys.2016.07.008

