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ABSTRACT
As in the case of a free particle, the initial growth of a broad (relative to lattice spacing) wavepacket placed on an ordered lattice is slow (its
time derivative has zero initial slope), and the spread (root mean square displacement) becomes linear in t at a long time. On a disordered
lattice, the growth is inhibited for a long time (Anderson localization). We consider site disorder with nearest-neighbor hopping on one- and
two-dimensional systems and show via numerical simulations supported by the analytical study that the short time growth of the particle
distribution is faster on the disordered lattice than on the ordered one. Such faster spread takes place on time and length scales that may be
relevant to the exciton motion in disordered systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147359

I. INTRODUCTION

Quantum transport in simple dynamic disordered systems has
attracted much attention from theorists during the last several
decades.1–5 Under strong disorder, Anderson localization implies
that the transport is prohibited beyond a characteristic local-
ization length, with detailed behavior that depends on system
dimensionality.6–12 In a one-dimensional disordered system, Mott
and Twose13 find that all states are exponentially localized, regard-
less of the amount of disorder, which is later confirmed and extended
to two-dimensional systems by Abrahams et al.14 Such low dimen-
sional disordered systems might range from local site energy disor-
der in tight-binding models to those with long-range couplings.15,16

In the case of dynamic disorder that might be induced by the ther-
mal motion of the underlying lattice, short time transport may be
faster than in the ordered lattice and becomes diffusive over time so
that themean square displacement scales as ⟨x2(t)⟩ ∼ t when t →∞.
Closely related are lattice models that describe quantum diffusion
on a linear one-band tight binding lattice with atomic site energies
fluctuating in time.1,2,4,17

Generally speaking, the disorder is expected to inhibit trans-
port, as is most critically realized when localization predominates,

while dynamic disorder, including thermal effects, is a source of
enhanced transport in such systems. The focus of most work on stat-
ically disordered systems is the long time localization issue. Here, we
draw attention to another aspect of transport in disordered systems:
by combining numerical and analytical studies, we show that on
a one-dimensional disordered lattice, the short time spread of an
initially prepared particle (or exciton) wavepacket is faster than the
ballistic growth of the same wavepacket on a perfect monoatomic
chain. Numerical studies in two dimensions show similar
behavior.

An important application of these concepts is found in the field
of exciton dynamics.18 On one hand, exciton transport in static dis-
ordered systems is inhibited by localization.19–21 On the other hand,
it is assisted by exciton-phonon interaction and becomes diffusive
beyond a characteristic coherence length.20–22 Importantly, decay
and recombination imply that considerations of these dynamics are
relevant only within the finite exciton lifetime that also determines
the so called exciton diffusion length of order ∼10–100 nm.23–26

This implies that in such systems, the early time dynamics inves-
tigated here may be more relevant to the observed dynamics than
considerations involving disorder-induced localization. To be spe-
cific, we use below the language of free exciton propagation on a
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lattice of two-level emitters. Obviously, the same model is relevant
for the motion of non-interacting electrons on a disordered lattice of
one-level sites.

The paper is organized as follows. In Sec. II, we introduce the
model and describe numerical simulations that demonstrate this
behavior. In particular, we find that the disorder-induced exciton-
spread enhancement results from the destruction of destructive
interference that is responsible for the initial slowdown of the
wavepacket spread on an ordered lattice. This effect strongly
depends on the width of the excitation zone. Excitation spot-sizes
as small as 20 nm can be achieved by near field excitation sources,27
and we find pronounced enhancement for such initial conditions.
The effect diminishes for smaller initial excitation spot-sizes and
disappears if the exciton is created by a single particle. In Sec. III,
we confirm the numerical observation by providing an analyti-
cal derivation of the short-time behavior of wavepacket width.
Section IV concludes.

II. NUMERICAL SIMULATIONS
A. Model and simulation procedure

We consider a linear chain of two-level emitters with nearest-
neighbor coupling J. The Hamiltonian is

Ĥ =∑
n
ϵnĉ†nĉn + J∑

n
(ĉ†nĉn+1 + ĉnĉ†n+1), (1)

where ĉ†n and ĉn, respectively, create and destroy an excitation on site
n, and the coupling J moves it between nearest-neighbor sites. The
site energies are sampled from aGaussian distribution with ⟨ϵn⟩E = 0
and ⟨ϵnϵn′⟩E = ⟨ϵ2n⟩Eδnn′ ≡ σ2δnn′ . Here, ⟨. . .⟩E denotes the ensem-
ble average, while ⟨. . .⟩ is used below for the quantum mechanical
expectation value. The chain is long enough so that boundary effects
are not relevant for the simulated time and length scales. In the
reported simulations, we have used emitter chains of 2.5 × 104 sites
and have ascertained that further increase of the chain length did
not affect the computed dynamics. The initial state was taken to be a
Gaussian wavepacket with width D,

Ψ(x, t = 0) = ∑n e
−
(na)2
D2 ϕ(x − na)√
∑n e

−2( na
D )

2
, (2)

where ϕ(x) is the orbital wavefunction at position x and a is the
lattice spacing, and the site wavefunctions ϕ(x − na) are assumed
to be localized at site x = na such that ⟨ϕ(x − na)∣ f (x̂)∣ϕ(x −ma)⟩
= f (x − na)δnm for an arbitrary function of position f (x), and δnm
is the Kronecker delta. In the simulations reported below, the initial
values of the Gaussian width were taken to be D = a, 5a, and 20a,
which corresponds to an initial wavepacket with ⟨x2(t = 0)⟩
= ∑n(na)2 exp(−n2a2/D2)/∑n exp(−n2a2/D2). The width at time
t is calculated as the square root of ⟨δx2(t)⟩ ≡ ⟨x2(t)⟩ − ⟨x(t)⟩2,
where for any operator Â,

⟨A(t)⟩ = ⟨Ψ(x, t = 0)∣eiĤ t/̵hÂe−iĤ t/̵h∣Ψ(x, t = 0)⟩. (3)

This calculation was repeated over many realizations of the disorder
lattice, and the final result was obtained as an ensemble average over

the disorder. The time evolution was calculated by diagonalizing the
Hamiltonian.

We consider multiple cases: (1) an ordered system with ϵn = 0
for all n; (2) a system with a static disorder characterized by a
Gaussian random distribution of site energies with ⟨ϵn⟩E = 0 and
σ = ⟨ϵ2n⟩1/2E ranging between 0.01 and 0.5J; (3) for completeness,
we also show results for a dynamic disorder model where values
of the site energies were resampled at time intervals τ that in turn
are sampled (unless otherwise stated) from a Poisson distribution
characterized by an average renewal time ⟨τ⟩. In all simulations,
we calculated the width of the wavepacket as a function of time,
averaged over trajectories. We have found that averaging over more
than 64 trajectories for nearly all simulation parameters does not
noticeably change our results.

B. Numerical results
In an ordered lattice, the time evolution of the rootmean square

displacement (RMSD) from the origin is similar to the free particle
behavior,

√
⟨δx2⟩ = 1

2

√
D2 + h̵2t2

4m2D2 ,

→ h̵t
4mD

, as t →∞, (4)

where the particle mass m is related to the coupling J of Eq. (1) and
the lattice constant a by

J = h̵2

2ma2
. (5)

Following an initial time of order 2mD2/h, in which the wavepacket
width increases only slowly, the expansion peaks up and becomes

ballistic-like,
√
⟨δx2⟩ ∼ t over a long time. The initial incubation

periodmay be discussed in terms of destructive interference between
quantum trajectories originating from different sites.

In the simulations described below, unless otherwise noted, the
intersite coupling was taken at 0.5 eV, which corresponds to a band-
width of 1 eV in one dimension. The lattice spacing was a = 1 nm,
and the initial excitation spot-size (i.e., the width D of the Gaussian
wavepacket) is varied. Excitation spot-sizes as small as ∼20 nm27 can
be achieved using near-field excitation sources, and we have simu-
lated processes with smaller initial widths as a way to support the
proposed origin of the observed behavior.

Figure 1 shows our results for the increase in the averaged
width,

Δx ≡
√
⟨δx2(t)⟩ −

√
⟨δx2(t = 0)⟩, (6)

for several choices of initial wavepacket width D, with different
panels displaying results for D/a = 1, 5, and 20 (for the increase in
wavepackets of broader widths, see Fig. S1 in the supplementary
material). If we accept the picture according to which the slow initial
spread reflects destructive interference, this interference appears to
erode upon the introduction of site disorder, leading to a significant
increase in the spreading rate in this regime. Indeed, when the ini-
tial wavepacket width is 20 nm, the expansion rate in the disordered
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FIG. 1. The root mean square displacement Eq. (6) calculated from numerical
simulations shows for ordered (black lines) and static disordered (red lines) cases.
The hopping parameter is J = 0.5 eV, and the disorder parameter is σ = 0.05 eV.
The widths of the initial wavepacket are (a) D = 1 nm, (b) 5 nm, and (c) 20 nm.
Inset panels are dynamics for a longer time.

systems exceeds that in the ordered lattice until an excess spread of
order 10 nm, which is of the order of diffusion lengths of excitons
in bulk heterojunction photovoltaic cells. This is a short time effect:
in the present one-dimensional site-disordered model with nearest-
neighbor coupling, all wavefunctions are localized, and expansion
eventually stops, as seen in the insets.

Figure 2 displays the dependence of the spread enhancement on
the magnitude of the disorder. Two observations can be made. First,
the disorder has a larger absolute effect on the spread enhancement
for a larger initial wavepacket width, as can be realized by compar-
ing the results of Figs. 1 and 2 (see also Fig. S1). It should be kept
in mind, however, that experimental observation of this effect may
be easier when the initial excitation spot-size is smaller. Second, the
competition between short-time spread enhancement and long-time
localization results in the apparent existence of an “optimal” disor-
der for observing this effect: σ = 0.03 eV for the parameters used
in Fig. 2. Finally, note that the enhancement can persist through a
substantial fraction of typical exciton lifetimes.

A possible explanation of the behavior seen in Fig. 2 is
that static disorder has two effects on short-time quantum trans-
port: (a) destroying destructive interference that otherwise inhibits
wavepacket propagation, and (b) reducing the effect of coherent
transport. The observation that the effect of a smaller disorder
amplitude persists longer than that of a larger one implies that
removing interference between quantum trajectories initiated on
different lattice sites is the more important short time effect, at least
for our present choice of parameters.

Our interpretation of the observed effect should not be dimen-
sionality dependent. Indeed, Fig. 3 shows a similar effect in a two-
dimensional calculation. In addition, while the Gaussian form of the
initial exciton wavepacket is a natural choice for this study, we show
(see Fig. S2 in the supplementary material, an initial p-like state) that
the observed effect does not depend on this choice. These obser-
vations suggest that the static disorder can cause enhancement of

FIG. 2. The wavepacket spread Δx, Eq. (6), displayed as a function of time for
different magnitudes of the disorder. The initial wavepacket width is D/a = 40, and
the intersite coupling is 0.05 eV. The black line shows Δx(t) on an ordered lattice,
while the purple, green, blue, red, and magenta lines correspond, respectively, to
σ = 0.1, 0.07, 0.05, 0.03, and 0.005 eV.
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FIG. 3. The root mean square displacement Eq. (6), calculated from numerical
simulations in two-dimension, shows ordered (blue line) and static disordered (red
line) cases. The hopping parameter is J = 0.5 eV, and the disorder parameter is
σ = 0.1 eV. The width of the initial wavepacket is D = 10 nm.

exciton diffusion in realistic systems as well, which motivates future
studies in this direction.

A direct observation of the predicted short time behavior would
require the excitation of a small spot-size and zero linearmomentum
in the observed direction (as may be achieved by exciting a surface
exciton using an incident field normal to the surface). Nevertheless,
we have also studied the time evolution of an initially prepared exci-
ton wavepacket with a finite linear momentum, and Fig. S3 in the
supplementary material shows the results of such a study. The effect
of the initial linear momentum on the spread of the wavepacket
appears to be minimal.

As detailed in the introduction, dynamic disorder has long
been connected with the acceleration of transport in disordered
systems. Recent work on exciton transport has similarly discussed
phonon-assisted exciton transport.18,20,28–30 Figure 4 shows the effect
of static and dynamic disorder on carrier mobility in comparison
with the underlying ordered lattice. Both the static and dynamic
disorders are seen to accelerate the expansion rate of an initially
formed wavepacket relative to the disordered system; however, the
ballistic dynamics on the ordered lattice takes over after a long
time. Expansion under dynamic disorder remains faster than on
the ordered lattice for a considerably longer time than that under
static order, but given that moving carriers are subjected to compet-
ing short time processes (emission and charge separation at nearby
interfaces for excitons, recombination, and absorption at surfaces
for electrons), the very short time dynamics where static disorder
also has a significant effect are relevant to the operation of many
such systems.

Finally, we point out that the effect of dynamic disorder has
its roots in the properties of the underlying static disorder. This is
seen in Fig. 5, which shows the wavepacket expansion process in a
system where dynamic disorder is made by a sequence of disorder
updates made at constant time intervals τ, at which the site energies
are resampled from their distribution. Each such update is seen to be
followed by the enhanced expansion that subsides as the wavepacket
explores its new localization region. Together, these updates lead to
a long-time diffusive expansion that reflects the series of transiently
accelerated expansions that follow each update.

FIG. 4. The root mean square displacement Eq. (6) calculated from numerical
simulations shows ordered (black line), static, and dynamic disordered cases. The
hopping parameter is J = 0.5 eV, and the disorder parameters are σ = 0.05 eV
(red line) and σ = 0.2 eV (blue line) for the static disorder and σ = 0.2 eV for the
dynamic disorder (green line), in which random renewal kicks are performed at
time intervals τ sampled from a Poisson distribution with ⟨τ⟩ = 52 fs. The width of
the initial wavepacket is D = 10 nm.

FIG. 5. The root mean square displacement Eq. (6) calculated from numerical
simulations shows for ordered (black line), static disordered (red line), and dynamic
disordered (blue line; disorder is updated at every τ = 100 fs) cases. The hopping
parameter is J = 0.5 eV, and the disorder parameter is σ = 0.5 eV. The width of
the initial wavepacket is D = 10 nm.

III. ANALYTICAL EVALUATION
Here, we attempt to rationalize the main observation made

above that the speed of an excitonic wavepacket is initially accel-
erated by static disorder by looking at the short time evolution
under the Hamiltonian (1). Our goal is to calculate the evolution
of the mean size Δx(t) of an initially prepared wavepacket for a
one-dimensional site-disorder model. In what follows, we describe
a short time approximation for this evolution that is able to describe
its initial trend.

We start, following Ref. 2, with a more general Hamiltonian
given in the site representation by

H = 1
2∑m,n

αmn{∣m⟩⟨n∣ + ∣n⟩⟨m∣} +
1
2∑m,n

βmn{∣m⟩⟨n∣ + ∣n⟩⟨m∣}, (7)
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where n and m denote sites on a one-dimensional periodic lattice
and αmm and βmn denote the deterministic and randomparts, respec-
tively, of the Hamiltonianmatrix. Specifically, we assume that Eq. (7)
represents an ensemble of identical tight binding systems, each of
which is characterized by the tight binding parameter J, so that

αmn = Jδ∣m−n∣,1, (8)

and by a particular realization of the parameters βmn, which we take
to be Gaussian random variables specified by the ensemble average
⟨βmn⟩E = 0 and

⟨βmnβm′n′⟩E = g(m − n)(δmm′δnn′ + δmn′δm′n − δmnδm′n′δnn′). (9)

Here, g(m − n)measures the strength of the disorder. For thermally
induced disorder (i.e., phonons), g reflects the carrier-phonon cou-
pling strength and generally depends on temperature. In particular,
we will focus on the case of site-diagonal disorder, as described by
g(m − n) = g(0)δmn.

In what follows, we follow the approach of Refs. 2 and 31,
adapting it for the short time dynamics under static disorder. The
density matrix satisfies the quantum Liouville equation,

∂ρ
∂t
= − i

h̵
[H, ρ], (10)

which corresponds to

∂ρl,r
∂t
= − i

h̵
J(ρl+1,r + ρl−1,r − ρl,r+1 − ρl,r−1)

− i
2h̵∑n

[(βln + βnl)ρn,r − (βnr + βrn)ρl,n]. (11)

For convenience, we set the lattice spacing to a = 1. Taking the
(spatial) Fourier transformation, f̃ (k1, k2) = ∑lr e

−ik1 l+ik2r f l,r on both
sides, as well as the ensemble average over the distribution of the β
parameters, we obtain

∂⟨ρ̃(k1, k2; t)⟩E
∂t

= −2Ji
h̵
(cos (k1) − cos (k2))⟨ρ̃(k1, k2; t)⟩E

− i
2πh̵∫

π

−π
∫

π

−π
dqdq′⟨[β̃(k1, q)δ(q′ − k2)

− β̃(q′, k2)δ(q − k1)]ρ̃(q, q′; t)⟩E. (12)

The evaluation of a short time solution of Eq. (12) is described
in Sec. III of the supplementary material, where details on the
way the short time assumption is implemented are provided. This
calculation leads, for site diagonal disorder, to the Laplace trans-
form ∫ ∞0 dte−st⟨x2(t)⟩ of the RMSD in the form (see Sec. II in the
supplementary material for more details),

⟨x2(s)⟩ = −[∂
2χ̃(u; s)
∂u2

]
u=0

, (13)

where

χ̃(u; s) ≡ 1
2π∫

π

−π
⟨R̂(p,u; s)⟩Edp =

1
2π∫

π

−π
⟨R̂(q + p,u; s)⟩Edp, (14)

and R̂(p,u; s) ≡ ˆ̃ρ(k1, k2; s) with k1 = p + u/2; k2 = p − u/2. The
function χ̃(u; s) is found (Sec. III in the supplementary material) to
be given by

χ̃(u; s) = I1
1 − 2g(0)I2/h̵2

, (15)

where I1 and I2 are given by

I1(s) =
1
2π∫

π

−π

R(p,u; t = 0)dp
s − i4J sin (p) sin ( u2 )/h̵ + 2g(0)/(sh̵

2)
, (16a)

I2(s) =
1
2π∫

π

−π

dp
s2 − i4sJ sin (p) sin ( u2 )/h̵ + 2g(0)/h̵

2 . (16b)

In Eq. (16), the form R(p,u; t = 0) is obtained from the initial
wavepacket, Eq. (2), and is given by

R(p,u; t = 0) =
√
2πD2e−

D2
4 (2p

2
+

u2
2 ). (17)

Finally, ⟨x2(t)⟩ is calculated as the inverse transform of ⟨x2(s)⟩.
Figure 6 compares the results obtained from this procedure to those
calculated from the numerical simulation (the demonstration on the
equivalence of analytical and numerical approaches for ordered lat-
tices is provided in Sec. IV of the supplementary material). While
the agreement between these results deteriorates as t increases, the
analytical result clearly shows a faster increase in the RMSD for
the disordered case in comparison with the ordered system. Note
that our approximation [using Eq. (S10) instead of Eq. (S9) in the
supplementary material] is rigorously valid only for time shorter
than our time unit h/J (we disregard oscillatory terms that appear
on a longer timescale), as indeed seen in the inset of Fig. 6. At longer

FIG. 6. The time evolution of the spread Δx of the exciton wavepacket calculated
from Eq. (13) (solid lines) and from our numerical simulation (circles and squares).
The initial exciton width is 10. Results of the ordered lattice (g(0) = 0) are shown
in solid black lines and circles, while those corresponding to the disordered case
(g(0) = 0.09J2) are displayed in solid red lines and red squares. The inset shows
the time derivative of the change in RMSD, where the red dashed line is the result
of the interpolation of numerical dots calculated for the disordered system. The
simulation cell contains N = 501 lattice points. An average of n = 60 realizations
is taken, and the estimated error in the numerical collection of the disordered sys-
tem is smaller (<10%) than the size of the point. All numbers are in dimensional
units defined in terms of lattice spacing a(=1) and the nearest neighbor coupling
energy J(=1) so that the time unit is h/J (for the choice J = 0.5 eV, a unit of time
is ∼1.25 fs, and we take h =1).
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times, the analytically calculated spread overestimates the simulation
results. This behavior may be viewed as consistent with our assertion
that the disorder induced spread enhancement is associated with the
erasure of destructive interference, provided that this interference is
manifested through the aforementioned oscillations.

IV. CONCLUSION
Using one- and two-dimensional site disorder models, we have

found that for an initial exciton (or particle) wavepacket whose
width encompasses several sites, the initial spread is accelerated by
the static disorder. Such disorder affects the time evolution in two
ways: first, it disrupts the destructive interference between waves
emanating from different sites (hence the initial speed acceleration),
and second, it inhibits later coherent evolution (causing later local-
ization). For a broad enough initial wavepacket (as may be formed
by optical excitations), the time and length scales of the accelerated
speed may be of the order of the excitonic lifetimes and diffu-
sion lengths. Extending the present findings to three-dimensional
systems will be the subject of future study.

SUPPLEMENTARY MATERIAL

See the supplementary material for examples of the time-
dependent spread of a broader choice of wavepacket with different
initial widths, an initial wavepacket carrying non-zero momentum,
the detailed derivation of the analytical results discussed in Sec. III,
and the demonstration that our analytical approach reproduces the
exact dynamics in the ordered lattice case.
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