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ABSTRACT
We determine the zero-frequency charge current noise in a metal–molecule–metal junction embedded in a thermal environment, e.g., a sol-
vent, dominated by sequential charge transmission described by a classical master equation, and we study the dependence of specific model
parameters, i.e., the environmental reorganization energy and relaxation behavior. Interestingly, the classical current noise term has the same
structure as its quantum analog, which reflects a charge correlation due to the bridging molecule. We further determine the thermodynamic
uncertainty relation (TUR) defininig a bound on the relationship between the average charge current, its fluctuation, and the entropy pro-
duction in an electrochemical junction in the Marcus regime. In the second part, we use the same methodology to calculate the current noise
and the TUR for a protoype photovoltaic cell in order to predict its upper bound for the efficiency of energy conversion into useful work.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125086

I. INTRODUCTION
Classical thermodynamics deals with general laws govern-

ing the dynamics of a macroscopic system, e.g., a heat engine
or a refrigerator, which exchanges heat, energy, and matter with
an environment to produce useful work. As a central result of
the second law, total entropy production is found to be never
negative in any such process, which leads to fundamental limits on
the system’s efficiency in transforming energy into useful work.1,2

Miniaturizing heat engines down to nanoscale have become a topic
of wide interest in recent years.3 An open nanosystem driven out
of its thermal equilibrium can also be characterized by fluxes of
energy, heat, and matter between the system and environment.
At the nanoscale, one needs to consider the dynamics of indi-
vidual microstates, where a significant progress has been achieved
in the last three decades. Stochastic thermodynamics relates the
changes of the systemmicrostates described by an ensemble of single
fluctuating trajectories to macroscopic observables like heat, work,
and entropy production.4–8 Since the fluctuations are ubiquitous in
nanosystems away from thermal equilibrium, it is central to identify
universality in their behavior. It is desirable for a nanoscale engine to
have both a low entropy production rate (mostly dissipated as heat)
and small noise in the measurable observables.

A remarkable result in this field is the thermodynamic uncer-
tainty relation (TUR).9–11 The TUR is a dimensionless bound

involving the averaged current ⟨J⟩, e.g., of particle number or
energy, its variance ⟨δJ2⟩,12 and the average entropy production σ̇
at temperature T, which may be written in the form

⟨δJ2⟩
2⟨J⟩2

σ̇T ≥ 2kBT. (1)

The TUR is a cost–noise trade-off relation between entropy pro-
duction (cost) and relative fluctuation (noise). Loosely speaking, the
TUR reveals that beyond a certain threshold, noise reduction can
only be obtained by increasing entropy production. Therefore, the
TUR can be used to obtain bounds on the entropy production of a
system without a detailed knowledge about its microscopic struc-
ture.13 Systems that obey this inequality satisfy the TUR, which
has been demonstrated in multiple realizations, e.g., biomolecular
processes,9,14,15 heat transport,16 and Brownian clocks17 to cite some
of many. Violations of the TUR inequality have been predicted,
e.g., in certain kinetic models with unidirectional transitions18 or
underdamped dynamics in pendulum clocks.19 In quantum systems,
breaking TUR bounds has been noted due to coherence20,21 or parti-
cle correlation.22 In this context, a multitude of theoretical studies
of quantum molecular junctions have reported a violation of the
TUR.23–25 It has been shown that single and double quantum dot
junctions in certain parameter regimes, when the charge transmis-
sion function is structured in the bias window, do not satisfy the
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inequality in Eq. (1) and break the bound.23,25 However, a recent
experiment of realistic molecular junctions in thermal environment
reports that the TUR bound holds.26

Molecular junctions immersed in a thermal and fluctuation
environment are often described by the Marcus theory.27–29 Charge
transmission in this regime occurs by successive electron hop-
ping between the molecule and the metal leads. The overall con-
ductance in this case is determined by metal–molecule coupling,
solvent induced stabilization (administered by the reorganization
energy), and solvent fluctuations needed to overcome the localiza-
tion barrier.30–32 The other extreme limit, where solvent induced
relaxation is ineffective, molecular charge transmission corresponds
to coherent tunneling transport as described by the Landauer
theory.33,34 A detailed investigation of statistical current fluctua-
tions, thermodynamic properties, and possible bounds of realistic
electrochemical junctions based on electron hopping kinetics is still
lacking.

The aim of the present work is to study the current noise in elec-
trochemical junctions described by electron hopping, the entropy
production rate, and the related minimal bound in thermodynamic
cost–noise relation by the TUR. We investigate these properties in
dependence of the junction parameters, e.g., energy level spacing,
environmental relaxation, and its reorganization energy and dis-
tinguish similarities and differences of the current noise and the
TUR with the coherent electron tunneling case. In several recent
works, the TUR inequality has been used to establish bounds on
thermodynamic performances based on fluctuations in experimen-
tally easily accessible measures, e.g., the charge current.13,14 We use
a similar analysis to examine the implication of the TUR for the
performance of energy conversion to useful work in a protoype
photovoltaic cell.

The paper is organized as follows: First, in Sec. II, we deter-
mine the current noise by a Markovian master equation for a
metal–molecule–metal junction in the sequential hopping limit and
compare it to the charge transmission by coherent tunneling. Uti-
lizing the Marcus charge transfer rates in Sec. III, we calculate
the current noise and its dependence on the environmental reor-
ganization energy and the molecular energy gaps. In Sec. IV, we
determine the TUR relation for an electrochemical junction in
the hopping regime and determine thermodynamic bounds in the
current fluctuation–entropy production relation given the specific
parameters of the model, i.e., by the energy difference of the system’s
state, by the reorganization energy, and finite relaxation of the
environment. Finally, in Sec. V, we apply the concept of current
fluctuation and thermodynamic cost (entropy production) to a pro-
totype photovoltaic cell. Exploiting the TUR, we establish a bound
of the performance in energy conversion of the cell into useful
work by means of current fluctuations. Section VI concludes this
paper.

II. CURRENT NOISE
The charge motion in molecular systems coupled to bath(s)

such as a solvent or electronic leads is often dominated by sequential
hopping described by classical master equations.We note that such a
description can be shown as a limiting case of the quantum dynamics
derived from a microscopic Hamiltonian35,36 when the interaction
between the system and bath is small. A general master equation

describes the molecule by its “microstates” i, e.g., different molecular
energy states as used below [Eq. (3)], whose probability distribution
evolves according to

d
dt
Pi(t) =∑

j
kjiPj(t), (2)

where kji are the transition rates from state j to i and Pi(t) is the
probability of system state i at time t. The transition rates depend
on the temperature and chemical potential (determined by the bath)
and satisfy the property of local detail balance reminiscent of the fact
that the bath(s) always remain at thermal equilibrium. Each change
of themolecular system state can be related to the exchange of energy
(heat) or particles (electrons) with the bath(s). Stochastic thermody-
namics provides a theoretical framework to connect the dynamics of
the molecular system by stochastic variables, e.g., the (continuous)
change of particle number measured by a current, to the thermo-
dynamics of the environment, e.g., its energy change.5,6,37 In this
context, the second law of thermodynamics specifies that when a
molecular system is driven out of its thermal equilibrium, entropy
is continuously produced.38–40 The entropy production rate will be
discussed in Sec. IV.

We now apply such a kinetic scheme to a
metal–molecule–metal conduction where the bridging molecule
couples to two electronic leads to calculate the charge current and
its zero-frequency noise. An applied voltage gradient drives the
molecular system out of thermal equilibrium and induces a charge
current. This central molecule can have at most one extra electron
at any given time. We denote by states a and b the molecule with
and without an extra electron. The transitions between these states
is described by the following master equation:

⎛
⎜
⎝

Ṗa

Ṗb

⎞
⎟
⎠
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(kRa→b + k
L
a→b) (kRb→a + k

L
b→a)

(kRa→b + k
L
a→b) −(kRb→a + k

L
b→a)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎝

Pa

Pb

⎞
⎟
⎠
, (3)

with the charge transfer rates kKa(b)→b(a) to the left or right leads,
K = R,L.

We can determine the charge current and its (zero-frequency)
noise by counting the number of charges nK of charge e (the abso-
lute magnitude of electron charge) interchanging with a given, say
the right K = R, lead in a given time interval t. This can be seen as
biased random walk with forward kRa→b and backward k

R
b→a rate. The

number of charges nR becomes a stochastic variable of a statistical
process. In the stationary state, the average particle (charge) cur-
rent associated with average particle number ⟨nR⟩ = t−1∫

t
0 dt

′nR(t′)
interchanging with the right lead during a time period t, in limit
t →∞ for a stationary process, is defined as

⟨JR⟩ = lim
t→∞

e⟨nR⟩/t. (4)

The zero-frequency noise reads12 (see Appendix A)

⟨δJ2R⟩ ≡ 4e
2
∫

∞

0
dt⟨(JR(t) − ⟨JR⟩)(JR(0) − ⟨JR⟩)⟩

= 4e2∫
∞

0
dt⟨δJR(t)δJR(0)⟩

= lim
t→∞

2e2(⟨n2R⟩ − ⟨nR⟩
2
)/t, (5)
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where ⟨n2R⟩ = t
−1
∫

t
0 dt

′n2R(t
′
) is the second moment of the particle

number in time interval t.
We exploit the elegant expression obtained by Koza41,42 to

determine the average charge current ⟨JR⟩ and zero-frequency
noise ⟨δJ2R⟩ by the charge transfer rates. After Fourier transform-
ing the master equation Eq. (3) by P(wR,wL, t) = ∑nR ,nL exp(wRnR
+wLnL)P(nL,nR, t), one can formulate a modified generator, which
is a 2D square matrix Λ(wR,wL) whose elements, accounting for
charge exchange with the right and left lead (see Appendix B for
more details), read

Λ(wR,wL) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−kRa→b − k
L
a→b kRb→ae

wR + kLb→ae
−wL

kRa→be
−wR + kLa→be

wL −kRb→a − k
L
b→a

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

The characteristic polynomial associated with Λ(wR,wL) defines a
set of coefficients Cn(wR,wL) via

det(λ1̂ −Λ(wR,wL)) =∑
n
Cn(wR,wL)λn = 0, (7)

where 1̂ represents the identity matrix. In terms of these coefficients,
which are functions of the transition rates, the current and its zero-
frequency noise between molecule and right lead, K = R, can be
written as41 (see Appendix B)

⟨JR⟩ = −eC′0/C1, (8)

and

⟨δJ2R⟩ = −2e
2
(C′′0 + 2C

′

1⟨J⟩ + 2C2⟨J⟩2)/(C1), (9)

where Cn ≡ Cn(wR = 0,wL = 0) and the primes denote derivatives
with respect to wR for the right (wL for the left lead) taken at
wR = wL = 0. The related average charge current according to Eq. (8)
and zero-frequency noise according to Eq. (9) can be determined
to be equal on both sides ⟨JR⟩ = ⟨JL⟩ = ⟨J⟩ and ⟨δJ

2
R⟩ = ⟨δJ2L⟩ = ⟨δJ2⟩

(see Appendix B).
We find that

⟨J⟩ = e
kRb→ak

L
a→b − k

R
a→bk

L
b→a

kRb→a + k
L
a→b + k

R
a→b + k

L
b→a

= e[⟨JR→L⟩ − ⟨JL→R⟩], (10)

where ⟨JR(L)→L(R)⟩ = ek
R(L)
b→a k

L(R)
a→b /C1 with C1 = kRb→a + k

L
a→b

+ kRa→b + k
L
b→a, and that (see Appendix B)

⟨δJ2⟩ = ⟨δJ21⟩ − ⟨δJ
2
2⟩, (11)

where

⟨δJ21⟩ = 2e
2 kRb→ak

L
a→b + k

R
a→bk

L
b→a

(kRb→a + k
L
a→b + k

R
a→b + k

L
b→a)

= 2e[⟨JR→L⟩ + ⟨JL→R⟩], (12)

⟨δJ22⟩ = 2e
2 2(kRb→ak

L
a→b − k

R
a→bk

L
b→a)

2

(kRb→a + k
L
a→b + k

R
a→b + k

L
b→a)

3

= 4e[⟨JR→L⟩ − ⟨JL→R⟩]
2
/C1. (13)

It is interesting to compare these results to (a) the chemical
reaction model based on a biased random walk without an inter-
mediate step via a bridging molecule9 and (b) the corresponding
quantum expression34 for coherent electron transmission. In the
simplest example of a nonequilibrium chemical reaction, the authors
of Ref. 9 have proposed a biased random walk where a single step is
interpreted as successful completion of a reaction. This is mathe-
matically equivalent to a junction in which charge transfer between
the left and right leads takes place directly and not via an inter-
mediate (dot or molecule) state and the probability for a charge e
to jump from left to right and from right to left during time Δt
is given by k+Δt and k−Δt, respectively. In this case, it is found
that the average charge current and its noise (zero frequency) are
given by

⟨J⟩ = e(k+ − k−)
= ⟨JR→L⟩ − ⟨JR→L⟩, (14)

⟨δJ2⟩ = 2e(k+ + k−)
= 2e[⟨JR→L⟩ + ⟨JR→L⟩], (15)

where we set ⟨JR→L⟩ = ek
+ and ⟨JL→R⟩ = ek

−. Note that ⟨J⟩ [Eq. (14)]
is equivalent to Eq. (10) and ⟨δJ2⟩ [Eq. (15)] to the first term ⟨δJ21⟩
in Eq. (11), while no equivalent to the second term ⟨δJ22⟩ in Eq. (11)
can be identified.

For the coherent electron transmission, the general quantum
noise result43 has been recently recast in the form22,25

⟨δJ2⟩ = ⟨δJ2⟩cl − ⟨δJ
2
⟩qu, (16)

where

⟨δJ2⟩cl =
2e2

h ∫
∞

−∞

dϵT (ϵ){ fL(ϵ)[1 − fR(ϵ)] + fR(ϵ)[1 − fL(ϵ)]}

= 2e∫ dϵ(JL→R(ϵ) + JR→L(ϵ)), (17)

⟨δJ2⟩qu =
2e2

h ∫
∞

−∞

dϵT 2
(ϵ)[ fL(ϵ) − fR(ϵ)]2

= 2e∫ dϵ(JL→R(ϵ) − JR→L(ϵ))2, (18)

where JR→L = T (ϵ)fR(ϵ)[1 − fL(ϵ)] and JL→R = T (ϵ)fL(ϵ)
[1 − fR(ϵ)], with T (ϵ) being the transmission coefficient and the
Fermi functions fK(ϵ) [Eq. (21)] of lead K = L,R.

The authors of Refs. 22 and 25 have identified the first term
(17) in Eq. (16) as the “classical” noise reminiscent of the continuous
particle transfer between two classical reservoirs like in the chemical
reaction model but where the additional Fermi functions account
for the exclusion principle.22,25 The second term (18) in Eq. (16) is
associated with the pure “quantum” noise related to the correlated
transfer of two particles.22,25 It is notable that the components of
the quantum noise term Eq. (16) can be rewritten in very similar
forms to those of noise in the classical sequential tunneling regime
Eq. (11). Indeed, ⟨δJ2⟩cl in Eq. (17) is equivalent to our determined
term ⟨δJ21⟩ [Eq. (12)] and ⟨δJ2⟩qu in Eq. (18) is similar to our calcu-
lated ⟨δJ22⟩ [Eq. (13)]. We see that not only the term ⟨δJ2⟩cl [Eq. (17)]
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but also ⟨δJ2⟩qu [Eq. (18)] has a clear classical analog arising from
sequential charge transmission via the intermediate molecule. In the
classical consideration of a particle current between two reservoirs
without any intermediate state, see Eq. (15), such a term is lacking.
This observation leads to the conclusion that the additional term
(13) and its quantum analog (18) reflect particle correlations. The
classical correlation arises from the fact that only one electron can
occupy the molecule (dot) at any given time.

More insight about these results can be obtained by consider-
ing the high-bias limit, eΔΦ≫ kBT, where shot noise dominates.
In this case, the current proceeds mainly in one direction, e.g.,
⟨JR→L⟩≫ ⟨JL→R⟩. For classical transmission without intermediate
molecule, Eq. (15) becomes ⟨δJ2⟩ = 2e⟨J⟩ in agreement with the
shot noise result obtained by Schottky.44 In contrast, the quan-
tum result, Eq. (16), yields in this limit ⟨δJ2⟩ = 2e⟨J⟩(1 − T ) for
an energy independent transmission coefficient T .43,45 This repro-
duces the classical result in the poor transmission limit, while for
larger T the shot noise is suppressed and vanishes when T = 1.43
For an electrochemical junction with electron hopping via a bridging
molecule, we obtain ⟨δJ2⟩ = 2e⟨J⟩[1 − 2kRb→ak

L
a→b/(k

R
b→a + k

L
a→b)

2
]

in the high-bias limit, when one current direction dominates in
Eqs. (11)–(13), e.g., ⟨JR→L⟩≫ ⟨JL→R⟩. Noise suppression, result-
ing from occupation exclusion on the intermediate state as argued
above, is also seen here, albeit not the full extent obtained in the
quantum expression. Notably, the case with the same rate on both
sides, kRb→a = k

L
a→b, leads to the maximal suppression by a factor

1/2, which is equivalent to the quantum result with transmission
T = 1/2. The latter is seen in the quantum case for single-dot junc-
tions in the weak-coupling limit and equal transmission rates to both
sides.23

III. APPLICATION TO AN ELECTROCHEMICAL
JUNCTION IN THE MARCUS REGIME

In the following, we apply the general result for zero-frequency
noise to an electrochemical metal–molecule–metal junction assum-
ing that the electron transfer kinetics is given by Marcus “hopping”
rates. The rates for charging (b→ a) and de-charging (a→ b) the
molecule are given by

kKa→b = ΓK

√
βs

4πEr ∫
∞

−∞

dϵ[1 − fK(βK , ϵ)] exp[−
βs
4Er
(ϵ + Er − ϵd)

2
],

(19)

kKb→a = ΓK

√
βs

4πEr ∫
∞

−∞

dϵfK(βK , ϵ) exp[−
βs
4Er
(ϵd + Er − ϵ)

2
],

(20)

where ΓK = 2π/h∣VK ∣
2ρK are the golden rule rates for electrons mov-

ing between a discrete molecular level and a continuum of single
electronic states of the left and right electrodes K = L,R with the
density of states ρK , which we assume to be independent of the
energy ϵ. The level–lead coupling is denoted by VK . βs = (kBTs)

−1

is the thermal energy of the environment, Er is the reorganization
energy associated with relaxation of the nuclear environment follow-
ing electron hopping events, and ϵd is the energy difference between
the equilibrium states of the charged and uncharged molecule.

The Fermi distribution of the electronic states in the metal leads K
at bias potential ΔΦK reads

fK(βK , ϵ) =
1

exp[βK(ϵ − μK − eΔΦK)] + 1
, (21)

where the thermal energy of the electronic reservoirs is
βK = (kBTK)

−1 and their chemical potential μK . In what follows,
we assume that μL = μR and set our energy scale so that μR = μL = 0.
Therefore, the difference between the left and right lead stems from
the applied bias. Furthermore, we express the applied bias in terms
of ΔΦL and ΔΦR of the left and right leads, taking ΔΦK = 0 at the
molecule, while the state difference ϵd is positive and lays above the
Fermi energies of the leads at zero bias.

Figures 1–3 show the steady state zero-frequency noise, com-
puted from Eq. (11), for the Marcus model using the rates of
Eqs. (19) and (20). Here, we have taken a uniform temperature of
leads and solvent, TS = TK = T, and equal rates, ΓL = ΓR = Γ, to the
left and right electrode. The voltage bias is applied symmetrically
ΔΦR = −ΔΦL = ΔΦ/2 while keeping the energy of the molecular
orbital ϵd fixed (at a value that may be changed independently,
reflecting the effect of a gate potential). The following observations
are noteworthy:

(a) In the limit of zero bias ΔΦ = 0, the system is in equilib-
rium and the net charge current vanishes. The (charge) current
noise in Fig. 1 is the Johnson–Nyquist thermal noise46–48

⟨δJ2⟩ = 4kBTG, where G is the conductance,49 given by

G = lim
ΔΦ→0

d⟨J⟩/dΔΦ

=
e2

kBT
kRb→a(0)k

L
a→b(0)

kRb→a(0) + k
L
a→b(0) + k

R
a→b(0) + k

L
b→a(0)

. (22)

(b) The zero bias noise reflects the dependence of the conductance
G on junction parameters. Specifically, it is maximal for ϵd = 0

FIG. 1. Zero-frequency noise ⟨δJ2
⟩ plotted against different applied bias poten-

tial ΔΦ for several values of the energy difference ϵd between the charged and
uncharged states. Inset: ⟨δJ2

⟩ for a smaller voltage regime. The temperature is
T = 300 K and kBT ≃ 26 meV. The reorganization energy Er = 200 meV.
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FIG. 2. Zero-frequency noise ⟨δJ2
⟩ plotted against different applied bias poten-

tial ΔΦ for several reorganization energies Er . Inset: ⟨δJ2
⟩ vs ΔΦ for a smaller

voltage regime about ΔΦ = 0. The difference of equilibrium energy between the
charged and uncharged state is ϵd = 150 meV. The temperature is T = 300 K
and kBT ≃ 26 meV. Note that for Er = 0, we set the rate (19) to kK

a→b = ΓK

[1 − fK(βK , ϵd)] and the rate (20) to kK
b→a = ΓK fK(βK , ϵd), where ΓK ≡ Γ.

FIG. 3. Total zero-frequency noise, its contributions ⟨δJ2
1⟩, and ⟨δJ2

2⟩ [see Eq. (11)]
as well as the “thermal” part ⟨δJ2

⟩ − e⟨J⟩ plotted against bias potential for ϵd = 0.
Inset: Smaller voltage regime. The temperature is T = 300 K and kBT ≃ 26 meV.
The reorganization energy Er = 200 meV.

(Fig. 1) and decreases with increasing reorganization energy
Er (Fig. 2) as implied by Eq. (22) and investigated in Ref. 49.
Increasing ϵd or Er shifts the transmission window [given by
the Gaussian term in the rates of Eqs. (19) and (20)] out of
the range to find a metal state occupied or empty [given by
the Fermi functions in Eqs. (19) and (20)], such that at least
one rate for molecular state occupation (kKb→a) or deoccupa-
tion (kKa→b) decreases and so does their product in Eq. (22),
which reduces the conductance G.

(c) As ΔΦ increases, the noise increases above the (thermal)
Johnson–Nyquist value and saturates when eΔΦ≫ kBT (see

Figs. 1 and 2) at the value that is determined by the satura-
tion current ⟨J⟩ = e(ΓRΓL)/(ΓR + ΓL) = eΓ/2 for ΓR = ΓL = Γ. In
this limit, Eq. (11) reduces to ⟨δJ2⟩ = e⟨J⟩ for the single inter-
mediate level model. Note that the Schottky result 2e⟨J⟩ is
suppressed by a factor 2 as explained at the end of Sec. II.

(d) Figure 3 portrays the two components ⟨δJ21⟩ [Eq. (12)]
and ⟨δJ22⟩ [Eq. (13)] as well as the total noise ⟨δJ2⟩ = ⟨δJ21⟩
− ⟨δJ22⟩ Eq. (11). For the small voltage limit eΔΦ≪ kBT, the
total noise is captured by the first component, ⟨δJ2⟩→ ⟨δJ21⟩,
while ⟨δJ22⟩ does not contribute. In this regime, ⟨δJ2⟩ = ⟨δJ21⟩
is associated with the thermal noise. Away from thermal
equilibrium, for finite bias potential, the second term ⟨δJ22⟩,
associated with charge correlation, must also be considered,
which leads to a reduction of the total noise by ⟨δJ2⟩ = ⟨δJ21⟩
− ⟨δJ22⟩ = 2e⟨J⟩[1 − 2kRb→ak

L
a→b/(k

R
b→a + k

L
a→b)

2
]. We see a

maximal reduction of a factor not smaller than 2 for equal
transfer rates, kRb→a = k

L
a→b (see discussion end of Sec. II).

However, for highly asymmetric rates, the ⟨δJ22⟩ term becomes
very small also for ΔΦ > 0, so ⟨δJ21⟩ dominates.

(e) Figure 3 also shows the difference ⟨δJ2⟩ − e⟨J⟩ (see green line
Fig. 3) between the total noise and its higher bias (shot noise)
limit. The difference ⟨δJ2⟩ − e⟨J⟩ might be associated to the
thermal noise for finite bias potential. For zero temperature,
this term vanishes and the current and its noise would show a
sharp onset when potential energy equals the molecular level
eΔΦ = 2ϵd. For finite temperature, as shown in Fig. 3, ⟨δJ2⟩
− e⟨J⟩ smoothly goes to zero in the voltage regime eΔΦ ∼ 2kBT.

Finally, we note that the temperature dependence of the cur-
rent noise can be used as a temperature monitoring device. Indeed,
Spietz et al.50 presented an electronic thermometer where they read
off the temperature from equilibrium Johnson–Nyquist noise at zero
voltage.

IV. ENTROPY PRODUCTION AND THERMODYNAMIC
UNCERTAINTY RELATION

For a system whose state dynamics is described by the mas-
ter equation of Eq. (2), the entropy production rate σ̇ can be
derived from the Boltzmann–Gibbs expression51,52 for the total
system entropy S(t) = −kB∑i Pi(t) ln Pi(t) (see Appendix C)53
given by

σ̇(t) =
kB
2 ∑ij
[kjiPj(t) − kijPi(t)] ln

kjiPj(t)
kijPi(t)

. (23)

Expression (23) meets two important properties: (i) It is non-
negative because each term in the summation is of the form
(x − y)ln(x/y) > 0 and (ii) it vanishes for thermal equilibrium, when
microscopic reversibility or detailed balance condition, kjiPj = kijPi,
is obeyed and no entropy is produced.

At (nonequilibrium) steady state with the respective Pi station-
ary probability distribution the entropy production reduces to the
expression39,40 (see Appendix C)

σ̇ =
kB
2 ∑ij
[kjiPj − kijPi] ln

kji
kij

=
kB
2 ∑ij

JijAij, (24)
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where Jij = kjiPj − kijPi = −Jji is the current between states i and j,
which is driven by the corresponding force or affinity Aij = ln kji/kij.

With the entropy production rate σ̇ at steady state, define the
product

Q ≡ σ̇T⟨δJ2⟩/2⟨J⟩2, (25)

where ⟨J⟩, Eq. (8), is the average charge current and ⟨δJ2⟩, Eq. (9),
the related zero-frequency noise. The inequality Q ≥ 2kBT [Eq. (1)]
is the thermodynamic uncertainty relation (TUR). This inequality
has been shown to be satisfied for a large variety of systems.9,11,54 Q
will be henceforth referred to as the TUR product.

By identifying the entropy production rate as Joule heating,
σ̇ = ΔΦ⟨J⟩/T,Q in our metal–molecule–metal junction may be writ-
ten in other physically appealing forms. In terms of g ≡ ⟨J⟩/ΔΦ,
Eq. (25) can be recast as

Q =
⟨δJ2⟩
2g

, (26)

while in terms of the Fano factor, F = ⟨δJ2⟩/⟨J⟩, Q takes the form

Q = ΔΦ
F
2
, (27)

which will be used later.
Using Eqs. (19) and (20), the TUR product in Eq. (25) yields

Q = Q1 −Q2, (28)

with

Q1 = eΔΦ
kRb→ak

L
a→b + k

R
a→bk

L
b→a

kRb→ak
L
a→b − k

R
a→bk

L
b→a

, (29)

= eΔΦ coth[βeΔΦ/2], (30)

and

Q2 = 2eΔΦ
kRb→ak

L
a→b − k

R
a→bk

L
b→a

(kRb→a + k
L
a→b + k

R
a→b + k

L
b→a)

2 . (31)

The form for Q1 in Eq. (30) is obtained by using the detailed
balance relation of the forward and backward hopping rates [see
Eq. (D3), Appendix D]. Q1 is equal to the total TUR product
obtained for a rate process described by a simple one-dimensional
biased random walk that underlines hopping without an interme-
diate reaction center,9 see Sec. II. It is easy to show form Eq. (30)
that Q1 ≥ 2kBT as expected.9 Moreover, it is easily realized that the
term Q2 ≥ 0 since kRb→ak

L
a→b > k

R
b→ak

L
a→b for ΔΦ > 0 and kRb→ak

L
a→b

< kRb→ak
L
a→b for ΔΦ < 0 in Eq. (31), which holds the positivity of

the TUR product. For the particular case where (a) ΓL = ΓR, (b)
TK = TS = T, and (c) ϵd = 0 (i.e., ϵd is equal to the unbiased left and
right Fermi energies), it follows from Eqs. (D3), (D8), and (D10) in
Appendix D, for the relation between the transfer rates, that Q2 of
Eq. (31) can be written in the from

Q2 = eΔΦ
1
4
[tanh[βeΔΦ/4] − tanh[−βeΔΦ/4]]

=
eΔΦ
2

tanh[βeΔΦ/4]. (32)

Since Q2 ≥ 0, it can potentially lead to violation of the inequality
formulated in Eq. (1) for Q = Q1 −Q2; however, we show in the fol-
lowing discussion that this is not the case in our classical hopping
model.

Note that the result in Eq. (28) resembles the functional form
obtained by Liu and Segal25 for the quantum resonance model that
can be also written as Qqu

= Qqu
1 −Q

qu
2 , where Qqu

1 = Q1 [Eq. (30)],
while for certain resonance transmission models—i.e., a resonant
single-dot or a serial double-dot junction23,25—we have

Qqu
2 = eΔΦ

Θ
2
[tanh[βeΔΦ/4] − tanh[−βeΔΦ/4]], (33)

where Θ ≡ ∫ dϵT(ϵ)2/∫ dϵT(ϵ). In order to check a possible vio-
lation of TUR, the authors25 have investigated the condition Qqu

− 2kBT ≤ 0 and found Θ > 2/3 for violating TUR. The result in the
sequential hopping regime [Eq. (31)] is the same except the Θ is
replaced by 1/2 for the symmetrical hopping regime (ΓR = ΓL). This
case yields the maximum value of Q2 and it therefore follows that
the TUR bound of 2kBT cannot be violated in the classical hopping
regime.

Examples of the behavior of the TUR product, Eq. (28), in
our model molecular junction by sequential hopping are shown in
Figs. 4–6, where we have used expressions (19) and (20) (Marcus
expression) for the kinetic rates. We assume again a uniform tem-
perature TS = TK = T as well as equal rates ΓL = ΓR = Γ and apply the
voltage symmetrically ΔΦR = −ΔΦL = ΔΦ/2. Figure 4 portrays the
bias voltage dependence of the TUR product Q plotted for different
values of ϵd. For a vanishing voltage ΔΦ→ 0 (thermal equilibrium),
all curves are bounded by 2kBT. With increasing voltage,Q increases
as both the entropy production σ̇ = ΔΦ⟨J⟩/T and the relative fluctu-
ation ⟨δJ2⟩/⟨J⟩2 increase. The result for ϵd = 0 (red curve in Fig. 4)
was obtained both from the general expressions Eqs. (29) and (31)
and from the analytic results in Eqs. (30) and (32), which is inde-
pendent of the reorganization energy Er of the solvent. We prove

FIG. 4. The TUR product Q displayed against the applied bias potential ΔΦ for
several values of the energy difference ϵd between the charged and uncharged
state. The black line represents Q calculated within the high-friction model (see
text). Inset: g = ⟨J⟩/ΔΦ for the same choices of ϵd . The temperature is T = 300 K
and kBT ≃ 26 meV. The reorganization energy Er = 200 meV.
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FIG. 5. ΔQ = Q − eΔΦ[coth[βeΔΦ/2] − tanh[βeΔΦ/4]/2] against different
applied bias potential ΔΦ for several reorganization energies Er . The temperature
is T = 300 K and kBT ≃ 26 meV. The difference between equilibrium energies
between the occupied and unoccupied states is ϵd = 150 meV. Note that for
Er = 0, we set the rate (19) to kK

a→b = ΓK[1 − fK(βK , ϵd)] and the rate (20) to
kK

b→a = ΓK fK(βK , ϵd), where ΓK ≡ Γ.

FIG. 6. Zero-frequency noise to current ratio plotted against entropy produc-
tion rate for several values of the energy difference ϵd between the charged
and uncharged state. The black dotted line represents the minimal TUR bound
⟨δJ2
⟩/⟨J⟩2 = 4kBT/σ̇T . The black solid line represents Q calculated within the

high-friction model (see text). The temperature is T = 300 K and kBT ≃ 26 meV.
The reorganization energy Er = 200 meV.

that Qϵd=0
2 ≥ Qϵd≠0

2 (see Appendix E) such that the TUR product
Q = Q1 −Q2, Eq. (28), is minimal for ϵd = 0 for a junction of equal
temperature in leads and solvent. This intriguing result yields a min-
imal bound on the product of entropy production σ̇ and relative
fluctuation ⟨δJ2⟩/⟨J⟩2.

From the inset to Fig. 4, it appears that Q is mostly domi-
nated by the strong dependence of g = ⟨J⟩/ΔΦ on ΔΦ [seeQ written
in the form of Eq. (26)]. This in turn implies that Q is smaller at

ϵd = 0 than at finite ϵd and also (since g is maximal at ϵd = 0) that
Q increases faster with ΔΦ when ϵd = 0 than when ϵd is larger.
Note that the dependence of ⟨δJ2⟩ on Q [Eq. (26)] is relatively
weak since the dependence of ⟨δJ2⟩ on ΔΦ and different values
of ϵd is only visible in the thermal noise regime (see eΔΦ≪ kBT
in Fig. 1).

The use of Marcus rates in the sequential electron trans-
fer process considered above relies on the assumption of fast
relaxation of the solvent in between each electron hop. In our
recent studies,55,56 we have accounted for finite solvent relaxation
where the transfer rates (19) and (20) becomes explicitly time-
dependent (see details in Refs. 55 and 56). The black line in Fig. 4
portrays the TUR result for finite solvent relaxation described
by an overdamped solvent coordinate (here damping γ = 10ω0,
see details in Ref. 55). We have shown that the Fano factor
F = ⟨δJ2⟩/⟨J⟩ is larger for slower solvent relaxation.55 Since Q∝ F
[Eq. (27)], Q grows even faster for increasing bias potential ΔΦ
in this case than in the Marcus regime (compare black and red
lines in Fig. 4). The increased Fano factor (F > 1) and the related
increase in (relative) current fluctuation for finite solvent relax-
ation can be understood as correlated (non-Poissonian) electron
transfer.

Equations (30) and (32) have led to the observation that
Q = eΔΦ[coth[βeΔΦ/2] − tanh[βeΔΦ/4]/2] for a junction with
uniform temperature T, ΓR = ΓL = Γ, and ϵd = 0, regardless of the
value of Er . Next, we examine the dependence of Q on Er for a
similar junction except with ϵd ≠ 0. Figure 5 portrays the differ-
enceΔQ = Q − eΔΦ[coth[βeΔΦ/2] − tanh[βeΔΦ/4]/2 ]].ΔQ grows
with higher values of Er . This can be understood by the smaller
g(ΔΦ) for increased reorganization energy Er , which dominates
and increases Q = ⟨δJ2⟩/2g [Eq. (26)]. This lower rise of g(ΔΦ)
(see Fig. 10 in Appendix F) can be understood as part of the
applied bias potential is used to overcome the reorganization
energy.49

A recent experimental study26 of a realistic single atomic junc-
tion confirms that the TUR product has a minimal bound of 2kBT in
the presence of a thermal environment. For a prototype underwater
junction at uniform temperature governed by the Marcus transfer
kinetics, our analytic result of Q1 in Eq. (30) together with Q2 in
Eq. (32) for ϵd = 0 serves as minimal cost–fluctuation bound for
different applied bias potentials.

Another perspective on the TUR is to consider the rela-
tive fluctuation ⟨δJ2⟩/⟨J⟩2 against the consumed power given by
σ̇T = ΔΦ⟨J⟩, see Fig. 6. Both relative fluctuation and consumed
power depend on the applied bias potential and on the transfer
model specific parameters, which leads to the following obser-
vations: For the same (possibly small) relative fluctuations, the
minimal power consumed increases with ϵd and is bound from
below by the (red) curve of ϵd = 0 in Fig. 6. This can be under-
stood: More energy is consumed per time to measure the same
⟨δJ2⟩/⟨J⟩2 since the equilibrium energy difference between the unoc-
cupied and occupied molecular states needs to be overcome for
each charge transferred. Even more energy needs to be consumed
to remain at a given small relative fluctuation (current noise to
current), see solid black line in Fig. 6, when the solvent relaxes
slowly in between the sequential charge hops (beyond Marcus the-
ory) and the charge transfer dynamics becomes strongly correlated
(see discussion above). All fluctuation–cost curves are bound by
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the curve ⟨δJ2⟩/⟨J⟩2 = 4kBT/σ̇T (black dotted line in Fig. 6), which
corresponds to Q = 2kBT in Eq. (28).

In summary, we have seen that the voltage dependence of
the TUR product Q reflects mainly the dependence of g(ΔΦ)
= ⟨J⟩/ΔΦ on the bias potential for the specific junction parameters
(Er and ϵd). The zero-frequency noise ⟨δJ2⟩ is less sensitive (in
relative values) to these parameters and shows sensitivity only for
the bias potential in the thermal noise regime (eΔΦ≪ kBT), see
discussion in Sec. II. As it is often the case, we find that reduc-
tion in relative fluctuation is most readily achieved by increasing
the signal ⟨J⟩, while our control of the noise ⟨δJ2⟩ is relatively
limited. As noted above, it is only near ΔΦ = 0 (where thermal
noise dominates) that the excess noise ⟨δJ2⟩ΔΦ − ⟨δJ2⟩ΔΦ=0 is sen-
sitive to system parameters. In particular, it is easy to show by
the same arguments as for the minimal bound of the term Q that
the change d(⟨δJ2⟩/⟨J⟩2)/dΔΦ∣ΔΦ=0 (which is positive) is smallest
for ϵd = 0.

V. APPLICATION: PROTOTYPE PHOTOVOLTAIC CELL
We next calculate the stationary charge current, its fluctua-

tion, and the resulting TUR product of the prototype photovoltaic
cell studied earlier by Rutten, Esposito, and Cleuren.57 This device
model, see Fig. 7, is composed of two single particle levels of energy
EL and ER(>EL), which define the bandgap ΔE = ER − EL. The
Coulomb repulsion is assumed to restrict the possible system states
to 0,L and R with occupation zero or one electron on level EL or
ER, respectively. The leads are at the same temperature TL = TR = T,
where we assume that level EK can exchange electron only with
lead K (K = L,R). As before, we define our origin of single electron
energy by setting the Fermi energy of the unbiased lead to EF = 0.
Under bias, the leads then have different chemical potential eΔΦK
= ±eΔΦ/2 (positive when the chemical potential is higher on the
left). Electron transition between ER and EL are induced by the
incoming “sun” radiation, which is assumed to be at resonant
energy ΔE = hν. The dynamics of this cell is described by using
the master equation for the probabilities Pj( j = 0,L,R) to be in the
corresponding states, which reads

FIG. 7. Model of the photovoltaic cell.

⎛
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⎜
⎜
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⎟
⎟
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, (34)

where kji denotes the transition from state j to i. The rates describing
the exchange of electrons with the leads are given by

k0L = ΓL f (xL); kL0 = ΓL(1 − f (xL)), (35)

k0R = ΓR f (xR); kR0 = ΓR(1 − f (xR)), (36)

where f (x) = [exp(x) + 1]−1 is the Fermi distribution where
xL = β(EL − eΔΦ/2) and xR = β(ER + eΔΦ/2) with the inverse
temperature β−1 = kBT. We assume again equal transfer rates
ΓL = ΓR = Γ to both leads. The rates describing the transition
between energy level EL and ER due to sun photons are given by

kLR = ΓSn(xS), (37)

kRL = ΓS[1 + n(xS)], (38)

where n(x) = [exp(x) − 1]−1 is the Bose–Einstein distribution with
xS = βSΔE with the inverse temperature β−1S = kBTS. Note that the
ratio between forward and backward transition rates in Eqs. (35)
and (36) as well as (37) and (38) satisfy the detailed balance condi-
tion. For simplicity, we neglect nonradiative transitions between the
molecular levels ER and EL. We utilize again the formalism of Ref. 41
and use the modified generator of the master Eq. (34) to determine
the average current and its zero-frequency noise. This procedure (see
Appendix G) leads to

⟨J⟩ = −e
kL0kRLk0R − k0LkLRkR0

C1
(39)

and

⟨δJ2⟩ = 2e2
(kL0kRLk0R + k0LkLRkR0)

C1

− 2e2
(k0L + k0R + kL0 + kLR + kR0 + kRL)

C3
1

× 2(kL0kRLk0R − k0LkLRkR0)2, (40)

where C1 = kR0(kL0 + kLR + k0L) + kRL(k0L + k0R + kL0) + k0RkL0
+ kLR(k0L + k0R).

The affinity A for the device reads

A = ln[
k0LkLRkR0
kL0kRLk0R

]

= −β[−eΔΦ − ΔE] − βSΔE (41)

and the related entropy production rate σ̇ determined by Eq. (24)
yields

σ̇ = ⟨J⟩[−T−1[−ΔΦ − ΔE/e] − T−1S ΔE/e]. (42)
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In this cell model, we assume that the “sun” is a monochro-
matic light source of energy ΔE such that the net heat flux from the
“sun” is Q̇S = (ΔE/e)⟨J⟩, where ⟨J⟩ is the average charge current in
Eq. (39). The heat flux dissipated at the left and right electrode is
Q̇L = (EL/e − ΔΦ/2)⟨J⟩ and Q̇R = −(ER/e + ΔΦ/2)⟨J⟩, respectively.
Away from Voc, at (nonequilibrium) steady state the power gen-
erated by the cell obtained from the first law is P = −ΔΦ⟨J⟩
= Q̇S + Q̇L + Q̇R (P < 0 for Voc > ΔΦ > 0). At steady state, the
entropy production rate is equal to the entropy flux into the thermal
environments σ̇ = −[Q̇S/TS + Q̇L/T + Q̇R/T].

Figure 8 shows the characteristic behavior for photovoltaic
devices. The scaled current ⟨J⟩/eΓ is zero at the stopping voltage
Voc = −(1 − T/TS)ΔE/e (hereVoc = −35meV), which is determined
by the condition that the two drivings associated with the voltage
ΔΦ and with the thermal “sun” light (determined by the difference
between T and TS) balance each other. For ΔΦ > Voc and ΔΦ < Voc,
the electronic current flows in the positive (left to right) and negative
direction (right to left), respectively. The current becomes voltage-
independent for ΔΦ −Voc much smaller or larger than zero, where
the saturation current on the negative ΔΦ side exceeds that on the
positive side as another manifestation of the presence of two driv-
ing mechanisms that can join or oppose each other (see also later
discussion on shot noise).

Next, consider the zero-frequency current noise at steady
state in these voltage regimes. At the stopping voltage, ΔΦ
→ Voc, the current noise at zero frequency has the same
form as the Johnson–Nyquist result ⟨δJ2⟩oc = 4kBTGoc; however,
Goc = d⟨J⟩/dΔΦ∣ΔΦ=Voc is a function of voltage and the two tem-
peratures. Notably, in this truly nonequilibrium situation of two
drivings, ⟨δJ2⟩oc is not the minimum noise as usually expected at
zero current in the absence of a driving (or, like in the present

FIG. 8. Q/kBT = σ̇k−1
B ⟨δJ2

⟩/2⟨J⟩2 (black), stationary charge current ⟨J⟩ (red),
and the zero-frequency noise ⟨δJ2

⟩ (blue) against the applied bias potential ΔΦ.
Inset: ⟨J⟩ and ⟨δJ2

⟩ against a larger range of applied bias potential ΔΦ. The
temperature is T = 300 K and kBTK = 26 meV, the “sun” temperature TS = 461 K
and kBTS = 40 meV. The energy difference of the upper and lower levels is chosen
to be ΔE = 100 meV = 100hΓ, where Γ is the electron transfer rate to each lead
while we set h ≡ 1. We choose the transfer rate between the two energy levels to
ΓS = Γ. The open circuit voltage is Voc = −(1 − T/TS)ΔE/e = −35 mV.

case, when both effectively compete with each other) as in Sec. II.
We find ⟨δJ2⟩min at ΔΦ = 48 mV for our choice of parameters
(see Fig. 8).

Away from the stopping voltage, the shot noise is reached in
two limiting cases: either when (a) ∣ − eΔΦ − eVoc∣≫ kBT or when
(b) eΔΦ − eVoc ≫ kBT. Interestingly, the limiting shot noise val-
ues are different in the two limits. In case (a), where the hops
R→ ER → EL → L are all downhill, we find in the limit ΔE≫ kBTS
(strongly reduced transfer from EL to ER) that ⟨δJ2⟩ = 2e∣⟨J⟩∣[1
− 2(2Γ + ΓS)Γ2ΓS/(2ΓSΓ + Γ2)2]. The shot noise has the value ⟨δJ2⟩
= 2e∣⟨J⟩∣/3 when Γ = ΓS (see inset in Fig. 8) and is reduced in com-
parison to the classical noise obtained by Schottky by a factor of 3.
In case (b), when the hops L→ EL and ER → R are downhill while
the hop EL → ER is uphill, the total rate is dominated by the single
EL → ER hop and we obtain the value of the classical shot noise44
⟨δJ2⟩ = 2e⟨J⟩ (see inset in Fig. 8), which is independent of the rates Γ
and ΓS. The reduction of the classical shot noise for downhill transfer
stems from the fact of two intermediate levels between the left and
right electrode, which is reminiscent of a “correlated” electron trans-
fer as discussed in Sec. II for one intermediate level with a maximal
reduction factor of 2. For the uphill transfer, however, the transfer is
strongly reduced and the shot noise shows its classical limit 2e⟨J⟩ like
in charge transmission between two electrodes without intermediate
state.

Interestingly, when considering the TUR product normal-
ized by temperature [defined by Eq. (25)] Q/kBT = σ̇k−1B ⟨δJ2⟩/2⟨J⟩2
[where σ̇, ⟨δJ2⟩ and ⟨J⟩ are taken from Eqs. (42), (40), and (39)
respectively], Q/kBT ≥ 2 while equality is reached when ΔΦ = Voc
(see Appendix H). Note that since the TUR is satisfied for the charge
current, a similar TUR inequality holds also for the energy current
associated with photon absorption and emission where the current
and noise have to bemultiplied by the energyΔE (or squared), which
cancels each in the TUR product Q while the entropy production
remains the same (see also Ref. 9 for related currents in multicycle
networks).

From a thermodynamic viewpoint, the solar cell is a heat engine
converting heat input from a hot reservoir, the “sun,” into work
by moving electrons from a lower to a higher chemical potential
against an applied bias potential. We now determine the ther-
modynamic efficiency at which energy conversion from sun pho-
tons to useful work takes place.58 The thermodynamic efficiency
reads7,13

η ≡
−⟨J⟩ΔΦ
Q̇S

=
−⟨J⟩ΔΦηC
Tσ̇ − ⟨J⟩ΔΦ

, (43)

where we have used the relation Q̇S = (Tσ̇ − ⟨J⟩ΔΦ)/ηC with the
Carnot efficiency ηC = 1 − T/TS.

Often, the “internal” structure of the engine, i.e., the actual
bandgap ΔE, and the resulting heat flows are difficult to determine.
Following the consideration of Ref. 13 and given the uncertainty
relation [Eq. (25)], we can determine a bound for the entropy
production rate, σ̇ ≥ 4kB⟨J⟩2/⟨δJ2⟩, and find a bound for the heat
supplied by the sun by Q̇S = (Tσ̇ − ⟨J⟩ΔΦ)/ηC ≥ (4kBT⟨J⟩2/⟨δJ2⟩
− ⟨J⟩ΔΦ)/ηC.

This relation inserted in Eq. (43) yields an upper bound for the
efficiency,
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FIG. 9. Output power P = −⟨J⟩ΔΦ against thermodynamic efficiency η (black)
and the predicted bound on efficiency ηTUR using TUR (red). The temperature
is T = 300 K and kBT = 26 meV, the “sun” temperature TS = 4610 K and kBTS
= 400 meV. The Carnot efficiency for the photovoltaic cell 1 − T/TS = 0.935. The
open circuit voltage is Voc = −280.5 mV. The energy difference of the upper and
lower level is chosen to be ΔE = 300 meV = 300hΓ, where Γ is the electron trans-
fer rate to each lead while we set h ≡ 1. We choose the transfer rate between the
two energy levels to ΓS = Γ.

η ≤ ηTUR =
−⟨J⟩ΔΦηC

4kBT⟨J⟩2/⟨δJ2⟩ − ⟨J⟩ΔΦ

=
ηC

4kBTg/⟨δJ2⟩ + 1
, (44)

involving experimentally accessible quantities such as the average
current ⟨J⟩, its zero-frequency noise ⟨δJ2⟩, and the temperature
of the leads T only. For the last equality in Eq. (44), we use the
definition g = −⟨J⟩/ΔΦ.59

The power output of the photovoltaic cell P = −⟨J⟩ΔΦ ranges
between zero—when either the average current or the applied bias
potential vanishes—and a maximal value (P > 0 for Voc < ΔΦ < 0).
The efficiency at maximum power is larger under TUR equality (red
line in Fig. 9) than for the actual thermodynamic efficiency. The
maximal efficiency of the cell is the Carnot efficiency ηC = 1 − T/TS
(see Fig. 9). In this case, the stopping voltage ΔΦ = VOC is reached,
the charge current vanishes, and no power will be generated. This is
reminiscent of a Carnot heat engine operating adiabatically slowly
and producing no power.1 Going down in ∣ΔΦ∣ below the stopping
voltage (and hence decreasing η from ηC), we see a linear response
like regime where the increasing power remains only slightly below
the TUR value. At the point of maximum power, ηTUR > η. Away
from this point, when operating at low ΔΦ and therefore at low η,
we see that one can achieve powers higher than the TUR value.

By using experimentally accessible quantities, i.e., temperatures
of electrodes and “sun,” the average current, and its noise, one can
estimate the efficiency of energy conversion without knowing the
energy or bandgap ΔE of the photovoltaic cell.

VI. CONCLUSION
We have investigated fluctuations, thermodynamic properties,

and possible bounds of realistic electrochemical junctions based

on sequential hopping kinetics described by classical master equa-
tions. The zero-frequency noise in a metal–molecule–metal junction
studied over the whole range of potential bias shows two typi-
cal limits: (1) the Johnson–Nyquist thermal noise for eΔΦ≪ kBT
and (2) the shot noise for eΔΦ≫ kBT. Interestingly, we could
identify a component in the noise that can be associated with elec-
tron correlation, analogous to quantum coherent tunneling but
arising here from the fact that a full charge transmission from
one electron to the other always passes via an intermediate state.
For equal transmission rates between the molecule and both elec-
trodes, this correlation term maximizes and reduces the classical
shot noise result by a factor of 2. In general, we see that the clas-
sical correlation term arises from the assumption that only single
site occupation is allowed. In “classical” junctions, this may be due
to strong Coulomb repulsion between charge carriers. In the Mar-
cus regime, the solvent induced stabilization by the reorganization
energy ER and the molecular level ϵd (reflecting the effect of a
gate potential) strongly influence the thermal noise but have no
impact on the shot noise. When considering the TUR in such an
electrochemical junction, its bound by 2kBT is always satisfied in
the equilibrium condition (zero potential bias). An increase in the
reorganization energy Er and molecular level ϵd brings the TUR
even stronger above this bound when a potential bias is applied.
Interestingly for ϵd = 0, uniform temperature of electrodes and sol-
vent and symmetric coupling between molecule and both leads,
we found an analytic expression for the TUR serving as minimal
bound for a finite applied voltage. For a prototype photovoltaic
cell, the TUR bound of 2kBT is reached when applying the stop-
ping voltage where both competing drivings, incoming sun photons
pushing charges “uphill a barrier” and the applied bias, compen-
sate each other. However, the zero-frequency current noise goes
through a minimum as a function of the bias at an applied bias
different from the stopping voltage, reflecting the true nonequilib-
rium due to the presence of two drivings. Interestingly, the shot
noise is smaller by a factor of 3 in comparison to the Schot-
tky noise when the two drivings, by the sun and applied voltage,
lump together. Notably, the efficiency of energy conversion in the
cell predicted by the relative current fluctuation together with the
minimal TUR provides a satisfying upper bound for the thermo-
dynamic efficiency. Extensions to nano-heat engines governed by
electron transmission processes unifying kinetic hopping and coher-
ent tunneling (partial dephasing processes), see possible theoretical
descriptions in Refs. 60 and 61, should be possible and are left for
future research. We defer for a future study the consideration of
further reducing noise if more complex system configurations are
used.
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APPENDIX A: ZERO-FREQUENCY NOISE

The zero-frequency noise is defined by

⟨δJ2⟩ = 2∫
∞

0
dt⟨(J(t) − ⟨J⟩)(J(0) − ⟨J⟩)⟩

= 2∫
∞

0
dt⟨δJ(t)δJ(0)⟩, (A1)

where ⟨J⟩ = t−1∫
t
0 dt

′J(t′) denotes the average over a time trajectory.
We now prove the equality [Eq. (5) in main text]

⟨δJ2⟩ ≡ 2e2(⟨n2R⟩ − ⟨nR⟩
2
)/t

= 2e2⟨(nR(t) − ⟨nR⟩)(nR(t) − ⟨nR⟩)⟩/t, (A2)

where ⟨nR⟩ = t−1∫
t
0 dt

′nR(t′) is the average particle number and
⟨n2R⟩ = t

−1
∫

t
0 dt

′n2R(t
′
) is the second moment of the particle number

in time interval t.
To proceed, we define the total number of charges dur-

ing time t by nR(t) − nR(0) = ∫
t
0 dt

′ṅR(t′) ≡ e−1∫
t
0 dt

′J(t′), where
we set nR(0) = 0. Furthermore, we define δnR(t) = nR(t) − ⟨nR⟩
= e−1∫

t
0 dt

′
(J(t′) − ⟨J⟩) = e−1∫

t
0 dt

′δJ(′t). The average current dur-
ing time t reads ⟨J⟩ = e⟨nR⟩/t. We take the limit of t →∞ and write
the right side of Eq. (A2) as

lim
t→∞

2e2

t
⟨(nR(t) − ⟨nR⟩)(nR(t) − ⟨nR⟩)⟩

= lim
t→∞

2
t ∫

t

0
dt′∫

t

0
dt′′⟨δJ(t′)δJ(t′′)⟩

= lim
t→∞

2
t
2∫

t

0
dt′∫

t′

0
dt′′⟨δJ(t′)δJ(t′′)⟩

= lim
t→∞

4
t ∫

t

0
dt′∫

t′

0
dt′′⟨δJ(t′ − t′′)δJ(0)⟩

= lim
t→∞

4
t ∫

t

0
dt′∫

t′

0
dτ⟨δJ(τ)δJ(0)⟩

= lim
t→∞

4
t ∫

t

0
dτ∫

t

τ
dt′⟨δJ(τ)δJ(0)⟩

= lim
t→∞

4
t ∫

t

0
dτ(t − τ)⟨δJ(τ)δJ(0)⟩

= 4∫
∞

0
dτ⟨δJ(τ)δJ(0)⟩ = 2∫

∞

−∞

dt⟨δJ(t)δJ(0)⟩

≡ ⟨δJ2⟩. (A3)

We use the fact that one can express the double integration as

∫
t
0 dt

′
(∫

t′

0 dt′′ + ∫
t
t′dt

′′
) = 2∫

t
0 dt

′

∫
t′

0 dt′′ and the current correlation
depends only on the time difference τ = t

′′

− t′. We further assume
for long times t →∞ that ⟨δJ(t)δJ(0)⟩→ 0.

APPENDIX B: STATIONARY CHARGE
CURRENT AND ZERO-FREQUENCY
NOISE BY COUNTING STATISTICS

In what follows, we use elegant expressions for the velocity and
diffusion coefficient obtained by Koza41 by means of a modified
generator.

In order to derive that modified generator, we consider the
master equation for the occupation and deoccupation process. The
probability that the molecule is in an electronic occupied state is
denoted by Pa and in an electronic unoccupied state is denoted by
Pb, such that the master equation reads

⎛
⎜
⎝

Ṗa

Ṗb

⎞
⎟
⎠
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(kRa→b + k
L
a→b) (kRb→a + k

L
b→a)

(kRa→b + k
L
a→b) −(kRb→a + k

L
b→a)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎝

Pa

Pb

⎞
⎟
⎠
. (B1)

To proceed, one considers the master equation for Pa and Pb as dif-
fusion along an infinite chain where only nearest neighbor hopping
is allowed, which represents a transition from molecular state a→ b
or b→ a. In this picture, the master equation can be reformulated
for the molecular state l = a, b as

Ṗl(nR,nL, t) = ∑
K=R;L

+1

∑
j=−1
[kKl+j,lPl+j(nR + jδKR,nL + jδKL, t)

− kKl,l+jPl(nR,nL, t)]. (B2)

In this formulation, themolecular state changes when l → l ± 1 while
nK represents a counting index that increases (decreases) by 1 each
time the electron moves to right (left) where we associate the hops
on the lattice with electron exchange with the K = R (L) right (left)
electrode. δKR(δKL) = 1 for K = R(L) in Eq. (B2) is the Kronecker
delta. These electron exchanges are described by the following rules:

a(nR,nL)→ b(nR + 1,nL) : electron given to R,
a(nR,nL)→ b(nR,nL − 1) : electron given to L,
b(nR,nL)→ a(nR − 1,nL) : electron taken fromR,
b(nR,nL)→ a(nR,nL + 1) : electron taken fromL,

(B3)

where a(nK) [b(nK)] corresponds to molecule in state a (b), while
the counting index is nK . In this formalism, all other transition
processes, e.g., a(nR,nL)→ b(nR − 1,nL), are forbidden.

We can now calculate the Fourier transform of Eq. (B2),

Ṗl(wR,wL, t) = ∑
K=R;L

+1

∑
j=−1
[kKl+j,le

jwKPl+j(wR,wL, t)

− kKl,l+jPl(wR,wL, t)], (B4)

where the Fourier transform is defined here with Pl(wR,wL, t)
= ∑nR ∑nL exp(wRnR +wLnL) × Pl(nR,nL, t). Equation (B4) can be
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written in a compact form using a L × Lmatrix, with elementsΛK
lj (k)

referred to as modified generator, such that

ṖK
l (wR,wL, t) =∑

K

+1

∑
j=−1

ΛK
lj (wK)Pj(wR,wL, t). (B5)

The modified generator Λ(wR,wL) = ΛR
(wR) +ΛL

(wL) reads

Λ(wR,wL) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−kRa→b − k
L
a→b kRb→ae

wR + kLb→ae
−wL

kRa→be
−wR + kLa→be

wL −kRb→a − k
L
b→a

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (B6)

The matrix elements ΛK
lj (w

K
) will be eventually used to deter-

mine the charge current and diffusion constant. Koza proved in
a general way for an arbitrary modified generator Λ(w) that the
matrixΛ(0) is irreducible with one eigenvalue λ0(w = 0) = 0, whose
corresponding eigenvector has only positive entries.41 This will be
related to the steady state. All other eigenvalues (real part) are neg-
ative. The steady state has the form P(w, t) = exp(λ0(w)t) while
in our metal–molecular–metal model with two sides P(wR,wL, t)
= exp(λ0(wR,wL)t).

The charge current, say to the right side, is then defined as

J = lim
t→∞

e
⟨nR⟩
t
= lim

t→∞
e
∂wRP(wR,wL, t)∣wR=0,wL=0

t
= e∂wRλ(wR,wL)∣wR=0,wL=0, (B7)

with elementary charge e, and the current noise at zero-frequency
reads

⟨δJ2⟩ = lim
t→∞

2e2
⟨n2R⟩ − ⟨nR⟩

2

2t

= lim
t→∞

2e2
∂2
wRP(wR,wL, t)∣wR=0,wL=0

t

−
(∂wRP(wR,wL, t)∣wR=0,wL=0)

2

t
= 2e2∂2

wRλ(wR,WL)∣wR=0,wL. (B8)

We can now determine ⟨δJR⟩ and ⟨δJ
2
R⟩ in an elegant way with-

out explicitly calculating a single eigenvalue only by considering the
characteristic polynomial.

The characteristic polynomial associated with Λ(w) are
det(λ1̂ −Λ(wR,wL)) = ∑n Cn(wR,wL)λn = 0. Since λ0(wR,wL) is a
root of this characteristic polynomial, the following relation holds:
∑n Cn(wR,wL)λ0(wR,wL)

n
= 0.

Taking the derivative with wR(L) (now portrayed with a prime)
and settingwR(L) = 0 leads to the following expression for the current
and diffusion coefficient:

⟨JR⟩ = eλ′ = −e
C′0
C1

(B9)

and

⟨δJ2R⟩ = 2e
2λ′′ = −2e2

C′′0 + 2C
′

1λ′ + 2C2(λ′)2

C1
. (B10)

Using the characteristic polynomial [λ + (kRa→b + k
L
a→b)][λ + (k

R
b→a

+ kLb→a)]−[k
R
b→ae

wR + kLb→ae
−wL][kRa→be

−wR+kLa→be
wL] = 0 resulting

from the modified generator Λ(wR,wL) of Eq. (B6), we can
determine the current and current noise noting that ⟨JR⟩ = e∂wRλ
= ⟨JL⟩ = e∂wLλ = ⟨J⟩ and ⟨δJ

2
R⟩ = 2e

2∂2
wRλ = ⟨δJ

2
L⟩ = 2e

2∂2
wLλ = ⟨δJ

2
⟩

are equal on both sides.
We find the coefficients as

C′0 = k
R
b→ak

L
a→b − k

R
a→bk

L
b→a, (B11)

C1 = kRb→a + k
L
a→b + k

R
a→b + k

L
b→a, (B12)

C′′0 = k
R
b→ak

L
a→b + k

R
a→bk

L
b→a, (B13)

C′1 = 0. (B14)

C2 = 1. (B15)

APPENDIX C: ENTROPY PRODUCTION RATE

The total change in system entropy production Ṡ(t) can be
derived from the Boltzmann–Gibbs expression51,52 for the sys-
tem entropy S(t) = −kB∑iPi(t)ln Pi(t) and the master equation of
Eq. (2) in the main text,53

d
dt
Pi(t) =∑

j
kjiPj(t), (C1)

where the transition rates kji given state i satisfy

∑
i
kji = 0. (C2)

Using Eqs. (C1) and (C2), the entropy change in the system reads

Ṡ(t) = −kB∑
i
Ṗi lnPi

= −kB∑
ij
kjiPj lnPi = −kB∑

ij
kjiPj ln

Pi
Pj

=
kB
2 ∑ij
(kjiPj − kijPi) ln

Pj
Pi

=
kB
2 ∑ij
(kjiPj − kijPi) ln

kjiPj
kijPi

+
kB
2 ∑ij
(kjiPj − kijPi) ln

kij
kji

= σ̇(t) + Ṡe(t). (C3)

The first term in the last line of Eq. (C3) is the entropy produc-
tion rate σ̇(t), which is always positive due to (a − b)ln(a/b) > 0,
and the second term is the entropy flow Ṡe(t) into the bath.

In the nonequilibrium steady state, S(t) is constant, Ṡ(t) = 0,
and all entropy generated is continuously given to the bath, Ṡe(t)
= −σ̇(t), which leads to Eq. (24) in the main text. Note that in most
cases, the bath is idealized as being without internal dissipation, so
that its entropy change only results from the entropy flow from the
system. In the equilibrium state, the detailed balance relation kjiPj
= kijPi is satisfied such that Ṡe(t) = σ̇(t) = 0 in Eq. (C3) and no
entropy is produced.

APPENDIX D: RATIOS OF RATE

One may now transform the integral Eqs. (19) and (20) of the
main text with ϵ→ ϵ + eΔΦK and establish their ratio as follows:
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kKa→b
kKb→a

=
∫ dϵΓK(ϵ + eΔΦK)

exp[βKϵ]
exp[βKϵ]+1

∫ dϵΓK(ϵ + eΔΦK)
1

exp[βKϵ]+1

×
exp[− βs

4Er
(ϵ + eΔΦK + Er − ϵd)2]

exp[− βs
4Er
(ϵd + Er − ϵ − eΔΦK)2]

(D1)

=
∫ dϵΓK(ϵ + eΔΦK)

exp[βKϵ] exp[−βs(ϵ+eΔΦK−ϵd)]
exp[βKϵ]+1

∫ dϵΓK(ϵ + eΔΦK)
1

exp[βKϵ]+1

×
exp[− βs

4Er
(−ϵ − eΔΦK + Er + ϵd)2]

exp[− βs
4Er
(ϵd + Er − ϵ − eΔΦK)2]

. (D2)

If βs ≡ βK ≡ β = (kBT)−1, their ratio reads

kKa→b
kKb→a

= exp[−β(eΔΦK − ϵd)]. (D3)

For later purposes and for Γ(ϵ) ≡ Γ, ϵd = 0, and ΔΦR = −ΔΦL

= ΔΦ/2, the ratio of the rates kRa→b
kLa→b

can be written as

kLb→a
kRb→a

=
∫
∞

−∞
dϵ 1

exp[βϵ]+1 exp[−
β
4Er
(−ϵ + eΔΦ/2 + Er)2]

∫
∞

−∞
dϵ 1

exp[βϵ]+1 exp[−
β
4Er
(−ϵ − eΔΦ/2 + Er)2]

(D4)

=
∫
∞

−∞
dϵ 1

exp[βϵ]+1 exp[−
β
4Er
(ϵ − eΔΦ/2 − Er)2]

∫
∞

−∞
dϵ 1

exp[βϵ]+1 exp[−
β
4Er
(−ϵ − eΔΦ/2 + Er)2]

(D5)

=
∫
∞

−∞
dϵ 1

exp[−βϵ]+1 exp[−
β
4Er
(−ϵ − eΔΦ/2 − Er)2]

∫
∞

−∞
dϵ 1

exp[βϵ]+1 exp[−
β
4Er
(−ϵ − eΔΦ/2 + Er)2]

(D6)

=
∫
∞

−∞
dϵ exp[−β(ϵ+eΔΦ/2)]

exp[−βϵ]+1 exp[− β
4Er
(−ϵ − eΔΦ/2 + Er)2]

∫
∞

−∞
dϵ 1

exp[βϵ]+1 exp[−
β
4Er
(−ϵ − eΔΦ/2 + Er)2]

(D7)

= exp[−βeΔΦ/2]. (D8)

For Γ(ϵ) ≡ Γ and ϵd = 0, the ratio of the rates
kLa→b
kRb→a

can be written as

kLa→b
kRb→a

=
∫
∞

−∞
dϵ exp[βϵ]

exp[βϵ]+1 exp[−
β
4Er
(ϵ + eΔΦ/2 + Er)2]

∫
∞

−∞
dϵ 1

exp[βϵ]+1 exp[−
β
4Er
(−ϵ + eΔΦ/2 + Er)2]

(D9)

=
∫
∞

−∞
dϵ exp[βϵ]

exp[βϵ]+1 exp[−
β
4Er
(ϵ + eΔΦ/2 + Er)2]

∫
∞

−∞
dϵ exp[βϵ]

exp[βϵ]+1 exp[−
β
4Er
(ϵ + eΔΦ/2 + Er)2]

= 1. (D10)

APPENDIX E: BOUND ON Q 2

In order to prove that Q = Q1 −Q2 is minimal for ϵd = 0
for symmetric contacts ΓR = ΓL = Γ and homogeneous tempera-
tures of leads and environments βK = βS = β, we realize that Q1
= eΔΦ coth[βeΔΦ/2] for all junction parameters (see discussion in
main text). For Q = Q1 −Q2 minimal, we need to prove that Q2 is
maximal for ϵd = 0.

Using the relation in Eq. (D3), we can write the following for
ϵd ≠ 0:

Q2 = 2eΔΦ
kRb→ak

L
a→b − k

R
a→bk

L
b→a

(kRb→a + k
L
a→b + k

R
a→b + k

L
b→a)

2 (E1)

= 2eΔΦ
kLa→b
kRb→a

1 − exp[−βeΔΦ]

(1 + exp[−β(eΔΦ/2 − ϵd)] +
kLa→b
kRb→a
[1 + exp[β(−eΔΦ/2 − ϵd)]])

2 . (E2)

For ϵd = 0 and
kLa→b
kRb→a
= 1, see relation (D10), we have

Qϵd=0
2 = 2eΔΦ

1 − exp[−βeΔΦ]
(2 + 2 exp[−βeΔΦ/2])2

=
eΔΦ
2

tanh[−βeΔΦ/4]. (E3)

We now want to show that Eq. (E3) is larger than or equal to Eq. (E2), which leads to the inequality Qϵd=0
2 ≥ Q2, which can be written as

kLa→b
kRb→a

(2 + 2 exp[−βeΔΦ/2])2

(1 + exp[−β(eΔΦ/2 − ϵd)] +
kLa→b
kRb→a
[1 + exp[β(−eΔΦ/2 − ϵd)]])

2 ≤ 1. (E4)

J. Chem. Phys. 157, 184304 (2022); doi: 10.1063/5.0125086 157, 184304-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

We write the ratio kLa→b
kRb→a

for ϵd ≠ 0 as

a =
kLa→b
kRb→a

=
∫
∞

−∞
dϵ exp[βϵ]

exp[βϵ]+1 exp[−
β
4Er
(ϵ + eΔΦ/2 + Er − ϵd)2]

∫
∞

−∞
dϵ exp[βϵ]

exp[βϵ]+1 exp[−
β
4Er
(ϵ + eΔΦ/2 + Er + ϵd)2]

, (E5)

where a ≥ 0. The inequality of Eq. (E4) then reads

a(2 + 2 exp[−βeΔΦ/2])2 ≤ (1 + a + exp[−βeΔΦ/2][ exp[βϵd]

+ a exp[−βϵd]])
2
. (E6)

It is easy to show that the term [exp[βϵd] + a exp[−βϵd]] ≥ 2
√
a on

the right-hand side of Eq. (E6). Using this bound, we recast Eq. (E5)
to

a(2 + 2 exp[−βeΔΦ/2])2 ≤ (1 + a + 2
√
a exp[−βeΔΦ/2])2, (E7)

0 ≤ 1 + a2 + 2(1 + a)
√
aW − 2a(1 + 2W), (E8)

0 ≤ (a − 1)2 + 2
√
a(1 −

√
a)2W, (E9)

withW = 2 exp[−βeΔΦ/2]. Since a ≥ 0 andW ≥ 0, the inequality in
Eq. (E9) is always fulfilled and therefore Qϵd=0

2 ≥ Q2. Note that a = 1
is the case when ϵd = 0 in Eq. (E5) and Qϵd=0

2 = Q2 [see analytic form
in Eq. (E3)].

APPENDIX F: g(ΔΦ) FOR SEVERAL REORGANIZATION
ENERGIES

We determine g(ΔΦ) = ⟨J⟩/ΔΦ, Fig. 10, for different reorgani-
zation energies.

FIG. 10. g(ΔΦ) = ⟨J⟩/ΔΦ for different ER (Marcus model) plotted against the
applied bias potential ΔΦ. The temperature is T = 300 K (kBT ≃ 26 meV) and
ϵd = 150 meV. Note that for ER = 0, we set the transfer rates to kK

a→b = ΓK[1
− fK(βK , ϵd)] and kK

b→a = ΓK fK(βK , ϵd).

APPENDIX G: CURRENT AND CURRENT NOISE
IN A PHOTOVOLTAIC CELL MODEL

By following the same procedure as in Appendix B, we first
determine themodified generator for themaster Eq. (32) in themain
text to

Λ(wL,wR) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(k0L + k0R) kL0e−wL kR0ewR

k0LewL −(kL0 + kLR) kRL

k0Re−wR kLR −(kR0 + kRL)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(G1)
Using the same procedure as in Sec. II the expression for the current
is given by

⟨J⟩ = eλ′ = −e
C′0
C1

(G2)

and the expression for the zero-frequency noise is given by

⟨δJ2⟩ = 2e2λ′′ = −2e2
C′′0 + 2C

′

1λ′ + 2C2(λ′)2

C1
. (G3)

We find the coefficients

C′0 = kL0kRLk0R − k0LkLRkR0, (G4)

C1 = kR0(kL0 + kLR + k0L) + kRL(k0L + k0R + kL0)
+ k0LkL0 + kLR(k0L + k0R), (G5)

C′′0 = −(kL0kRLk0R + k0LkLRkR0), (G6)

C′1 = 0 (G7)

C2 = k0L + k0R + kL0 + kLR + kR0 + kRL. (G8)

APPENDIX H: BOUND ON THE TUR
FOR PHOTOVOLTAIC CELL

We determine the bound on the TUR for the photovoltaic cell.
The TUR product reads

Q/kBT = σ̇k−1B ⟨δJ
2
⟩/2⟨J⟩2, (H1)

= Q1 −Q2

= k−1B e[T−1[−ΔΦ − ΔE/e] + T−1S ΔE/e] (H2)

× [
(kL0kRLk0R + k0LkLRkR0)
(kL0kRLk0R − k0LkLRkR0)

−
(k0L + k0R + kL0 + kLR + kR0 + kRL)

C2
1

× 2(kL0kRLk0R − k0LkLRkR0)]. (H3)

For ΔΦ→ Voc = −(1 − T/TS)ΔE/e, the second term
Q2 [Eq. (H3)] vanishes because it is proportional to
1 − exp[β(eΔΦ + ΔE) − βSΔE], which is zero for limΔΦ→ Voc.
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Define C = k−1B e[−T−1[−ΔΦ − ΔE/e] − T−1S ΔE/e], we can write the
remaining Q1 in Eq. (H2) as

Q/kBT = −C[
1 + exp C
1 − exp C

] = C coth[C/2]

= C[
2
C
+
∞

∑
k=1

C
k2π2 + (C/2)2

] ≥ 2, (H4)

which fulfills the inequality. For ΔΦ→ Voc, we easily see C → 0 that
Eq. (H4) reads

Q/kBT = C[
2 + C
C
] = 2. (H5)

Consider Q/kBT in dependence of the coefficient C such that
Eq. (H1) reads

Q/kBT = C[
2
C
+
∞

∑
k=1

C
k2π2 + (C/2)2

+
(k0L + k0R + kL0 + kLR + kR0 + kRL)

C2
1

× 2kL0kRLk0R(1 − exp C)]. (H6)

Near the stopping voltage C → 0, we can expand Eq. (H6) up to
orderO[C2

] such that Eq. (H6) reads

FIG. 11. Q/kBT = σ̇k−1
B ⟨δJ2

⟩/2⟨J⟩2 (black line) and the approximation of Eq. (H7)
(red line) against the applied bias potential ΔΦ. The temperature is T = 300 K and
kBTK = 26 meV, the “sun” temperature TS = 461 K, and kBTS = 40 meV. The
energy difference of the upper and lower levels is chosen to be ΔE = 100 meV
= 100hΓ where Γ is the electron transfer rate to each lead while we set h ≡ 1. We
choose the transfer rate between the two energy levels to ΓS = Γ. The open circuit
voltage is Voc = −(1 − T/TS)ΔE/e = −35 mV.

Q/kBT ≃ 2 + C2
[
1
6
−
(2Γ + ΓS(1 + 2n(βSΔE))

C1(VOC)2

× 2kL0(VOC)k0R(VOC)ΓS(1 + n(βSΔE))]

= 2 + C2
⋅ A = 2 + [(ΔΦ −Voc)/kBT]2 ⋅ A, (H7)

with the Bose–Einstein distribution n(βSΔE) and the transfer rates
[Eqs. (35) and (36) in main text] evaluated at VOC where A > 0.
Figure 11 portrays the case of equal transfer rates Γ = ΓS and clearly
shows that the quadratic term in C dominates near VOC. Away from
VOC, the TUR product Q becomes proportional to the applied bias
potential ΔΦ such that the minimal value of Q/kBT = 2 is reached
at VOC.

REFERENCES
1S. Carnot, Réflexions sur la Puissance Motrice du feu et sur les Machines Propres à
Développer Cette Puissance (Bachelier, Paris, 1824).
2R. Clausius, Ann. Phys. Chem. 93, 12 (1854).
3G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep. 694, 1 (2017).
4C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
5U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
6C. Van den Broeck and M. Esposito, Physica A 418, 6 (2015).
7M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).
8U. Seifert, Annu. Rev. Condens. Matter Phys. 10, 171 (2019).
9A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101 (2015).
10T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England, Phys. Rev. Lett.
116, 120601 (2016).
11J. Horowitz and T. Gingrich, Nat. Phys. 16, 15 (2020).
12Note that ⟨δJ2⟩ has the dimensionality charge squared per unit time. Usually the
TUR is defined by 2σ̇D/J2. These quanteties are related to our notation of average
charge current by ⟨J⟩ = eJ and charge current noise at zero frequency by ⟨δJ2⟩
= 2e2(⟨n2⟩ − ⟨n⟩2)/t = 4e2D.
13P. Pietzonka, A. C. Barato, and U. Seifert, J. Stat. Mech.: Theory Exp. 2016,
124004.
14P. Pietzonka and U. Seifert, Phys. Rev. Lett. 120, 190602 (2018).
15M. W. Jack, N. J. López-Alamilla, and K. J. Challis, Phys. Rev. E 101, 062123
(2020).
16S. Saryal, H. M. Friedman, D. Segal, and B. K. Agarwalla, Phys. Rev. E 100,
042101 (2019).
17A. C. Barato and U. Seifert, Phys. Rev. X 6, 041053 (2016).
18A. Pal, S. Reuveni, and S. Rahav, Phys. Rev. Res. 3, 013273 (2021).
19P. Pietzonka, Phys. Rev. Lett. 128, 130606 (2022).
20L. M. Cangemi, V. Cataudella, G. Benenti, M. Sassetti, and G. De Filippis, Phys.
Rev. B 102, 165418 (2020).
21A. A. S. Kalaee, A. Wacker, and P. P. Potts, Phys. Rev. E 104, L012103
(2021).
22K. Brandner, T. Hanazato, and K. Saito, Phys. Rev. Lett. 120, 090601 (2018).
23B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018).
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