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ABSTRACT

We determine the zero-frequency charge current noise in a metal-molecule-metal junction embedded in a thermal environment, e.g., a sol-
vent, dominated by sequential charge transmission described by a classical master equation, and we study the dependence of specific model
parameters, i.e., the environmental reorganization energy and relaxation behavior. Interestingly, the classical current noise term has the same
structure as its quantum analog, which reflects a charge correlation due to the bridging molecule. We further determine the thermodynamic
uncertainty relation (TUR) defininig a bound on the relationship between the average charge current, its fluctuation, and the entropy pro-
duction in an electrochemical junction in the Marcus regime. In the second part, we use the same methodology to calculate the current noise
and the TUR for a protoype photovoltaic cell in order to predict its upper bound for the efficiency of energy conversion into useful work.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125086

I. INTRODUCTION

Classical thermodynamics deals with general laws govern-
ing the dynamics of a macroscopic system, e.g., a heat engine
or a refrigerator, which exchanges heat, energy, and matter with
an environment to produce useful work. As a central result of
the second law, total entropy production is found to be never
negative in any such process, which leads to fundamental limits on
the system’s efficiency in transforming energy into useful work."”
Miniaturizing heat engines down to nanoscale have become a topic
of wide interest in recent years.” An open nanosystem driven out
of its thermal equilibrium can also be characterized by fluxes of
energy, heat, and matter between the system and environment.
At the nanoscale, one needs to consider the dynamics of indi-
vidual microstates, where a significant progress has been achieved
in the last three decades. Stochastic thermodynamics relates the
changes of the system microstates described by an ensemble of single
fluctuating trajectories to macroscopic observables like heat, work,
and entropy production.” * Since the fluctuations are ubiquitous in
nanosystems away from thermal equilibrium, it is central to identify
universality in their behavior. It is desirable for a nanoscale engine to
have both a low entropy production rate (mostly dissipated as heat)
and small noise in the measurable observables.

A remarkable result in this field is the thermodynamic uncer-
tainty relation (TUR).”!"" The TUR is a dimensionless bound

involving the averaged current (J), e.g., of particle number or
energy, its variance (6J2),'> and the average entropy production &
at temperature T, which may be written in the form

(o)
2(J)?

The TUR is a cost-noise trade-off relation between entropy pro-
duction (cost) and relative fluctuation (noise). Loosely speaking, the
TUR reveals that beyond a certain threshold, noise reduction can
only be obtained by increasing entropy production. Therefore, the
TUR can be used to obtain bounds on the entropy production of a
system without a detailed knowledge about its microscopic struc-
ture.!” Systems that obey this inequality satisfy the TUR, which
has been demonstrated in multiple realizations, e.g., biomolecular
processes,” " heat transport,'® and Brownian clocks'” to cite some
of many. Violations of the TUR inequality have been predicted,
e.g., in certain kinetic models with unidirectional transitions'® or
underdamped dynamics in pendulum clocks.'” In quantum systems,
breaking TUR bounds has been noted due to coherence’””' or parti-
cle correlation.”” In this context, a multitude of theoretical studies
of quantum molecular junctions have reported a violation of the
TUR.” " It has been shown that single and double quantum dot
junctions in certain parameter regimes, when the charge transmis-
sion function is structured in the bias window, do not satisfy the

6T > 2kgT. (1)
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inequality in Eq. (1) and break the bound.”””’ However, a recent
experiment of realistic molecular junctions in thermal environment
reports that the TUR bound holds.”®

Molecular junctions immersed in a thermal and fluctuation
environment are often described by the Marcus theory.” >’ Charge
transmission in this regime occurs by successive electron hop-
ping between the molecule and the metal leads. The overall con-
ductance in this case is determined by metal-molecule coupling,
solvent induced stabilization (administered by the reorganization
energy), and solvent fluctuations needed to overcome the localiza-
tion barrier.”” *” The other extreme limit, where solvent induced
relaxation is ineffective, molecular charge transmission corresponds
to coherent tunneling transport as described by the Landauer
theory.””" A detailed investigation of statistical current fluctua-
tions, thermodynamic properties, and possible bounds of realistic
electrochemical junctions based on electron hopping kinetics is still
lacking.

The aim of the present work is to study the current noise in elec-
trochemical junctions described by electron hopping, the entropy
production rate, and the related minimal bound in thermodynamic
cost-noise relation by the TUR. We investigate these properties in
dependence of the junction parameters, e.g., energy level spacing,
environmental relaxation, and its reorganization energy and dis-
tinguish similarities and differences of the current noise and the
TUR with the coherent electron tunneling case. In several recent
works, the TUR inequality has been used to establish bounds on
thermodynamic performances based on fluctuations in experimen-
tally easily accessible measures, e.g., the charge current.'”'" We use
a similar analysis to examine the implication of the TUR for the
performance of energy conversion to useful work in a protoype
photovoltaic cell.

The paper is organized as follows: First, in Sec. II, we deter-
mine the current noise by a Markovian master equation for a
metal-molecule-metal junction in the sequential hopping limit and
compare it to the charge transmission by coherent tunneling. Uti-
lizing the Marcus charge transfer rates in Sec. III, we calculate
the current noise and its dependence on the environmental reor-
ganization energy and the molecular energy gaps. In Sec. IV, we
determine the TUR relation for an electrochemical junction in
the hopping regime and determine thermodynamic bounds in the
current fluctuation-entropy production relation given the specific
parameters of the model, i.e., by the energy difference of the system’s
state, by the reorganization energy, and finite relaxation of the
environment. Finally, in Sec. V, we apply the concept of current
fluctuation and thermodynamic cost (entropy production) to a pro-
totype photovoltaic cell. Exploiting the TUR, we establish a bound
of the performance in energy conversion of the cell into useful
work by means of current fluctuations. Section VI concludes this

paper.

Il. CURRENT NOISE

The charge motion in molecular systems coupled to bath(s)
such as a solvent or electronic leads is often dominated by sequential
hopping described by classical master equations. We note that such a
description can be shown as a limiting case of the quantum dynamics

7’% when the interaction

derived from a microscopic Hamiltonian™
between the system and bath is small. A general master equation
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describes the molecule by its “microstates” i, e.g., different molecular
energy states as used below [Eq. (3)], whose probability distribution
evolves according to

9 Bi(t) = Ship (1), @)
j

where kj; are the transition rates from state j to i and P;(¢) is the
probability of system state i at time ¢. The transition rates depend
on the temperature and chemical potential (determined by the bath)
and satisfy the property of local detail balance reminiscent of the fact
that the bath(s) always remain at thermal equilibrium. Each change
of the molecular system state can be related to the exchange of energy
(heat) or particles (electrons) with the bath(s). Stochastic thermody-
namics provides a theoretical framework to connect the dynamics of
the molecular system by stochastic variables, e.g., the (continuous)
change of particle number measured by a current, to the thermo-
dynamics of the environment, e.g., its energy change.”””” In this
context, the second law of thermodynamics specifies that when a
molecular system is driven out of its thermal equilibrium, entropy
is continuously produced.” "’ The entropy production rate will be
discussed in Sec. I'V.

We now apply such a kinetic scheme to a
metal-molecule-metal conduction where the bridging molecule
couples to two electronic leads to calculate the charge current and
its zero-frequency noise. An applied voltage gradient drives the
molecular system out of thermal equilibrium and induces a charge
current. This central molecule can have at most one extra electron
at any given time. We denote by states a and b the molecule with
and without an extra electron. The transitions between these states
is described by the following master equation:

5,6,3

Pa) | =Champ ki) (kg ki) ([Pa)
Pb (kgﬂb + kfll—>b) _(kﬁﬂu + klbd—»a) b, ’

with the charge transfer rates kf(h)_,b(a) to the left or right leads,
K=R,L.

We can determine the charge current and its (zero-frequency)
noise by counting the number of charges nx of charge e (the abso-
lute magnitude of electron charge) interchanging with a given, say
the right K = R, lead in a given time interval . This can be seen as
biased random walk with forward k%, and backward kj._,, rate. The
number of charges ng becomes a stochastic variable of a statistical
process. In the stationary state, the average particle (charge) cur-
rent associated with average particle number {ng) = ¢~ fotdt'nR(t')
interchanging with the right lead during a time period ¢, in limit
t — oo for a stationary process, is defined as

(Jr) = lim e(nz)/t. (4)
The zero-frequency noise reads'” (see Appendix A)
(@98 = 4¢” [ de{ (1) = () U(0) = )
-4 fo  dt(67r(1)87 (0))

lim 2¢*((nk) = (nr)*)/1, ®)
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where (ng) = t™' [/dt'nz(t') is the second moment of the particle
number in time interval t.

We exploit the elegant expression obtained by Koza'"** to
determine the average charge current (Jz) and zero-frequency
noise (8J%) by the charge transfer rates. After Fourier transform-
ing the master equation Eq. (3) by P(wr,wr,t) = ¥, ., exp(wrnr
+ wrng )P(nr, nr, t), one can formulate a modified generator, which
is a 2D square matrix A(wg,w;) whose elements, accounting for
charge exchange with the right and left lead (see Appendix B for
more details), read

R L R w L —w
_ka—>b - kaab kb—»ae et kbaae '
A(wR,wL) = (6)
kR —wp L wy R k
a—b€ + ka—»be _kbau b—a

The characteristic polynomial associated with A(wg,w) defines a
set of coefficients Cy, (wg, wr) via

det(M - A(wr,wr)) = > Cu(wr, wi)A" =0, (7)

where 1 represents the identity matrix. In terms of these coefficients,
which are functions of the transition rates, the current and its zero-
frequency noise between molecule and right lead, K = R, can be
written as*! (see Appendix B)

(Jr) = —eCy/Cx, (®)
and
(012) = 267 (Cy +2C1(J) + 2Ga(J)*)/(Cv), )

where C, = Cy(wr = 0,wr = 0) and the primes denote derivatives
with respect to wr for the right (w; for the left lead) taken at
wg = wr = 0. The related average charge current according to Eq. (8)
and zero-frequency noise according to Eq. (9) can be determined
to be equal on both sides (Jz) = (J;) = (J) and (8]%) = (8]1) = (6]%)
(see Appendix B).

We find that

<]> kb—»ukaﬂb ku—»bkbﬂa

Ry TR, R,
=e[(Jror) = (Jior)], (10)
where  (Jayory) = ke KB /Cp with G = kR, + KL,
+ kR, +kL_ ., and that (see Appendix B)
(81°) = (8]%) — (012), (11)
where
(6]12) 2 kb—»akL—>h + kfzz bké—m
(kR AL+ KR K )
=2e[(Jr-1) + (Ji>r)] (12)
(8]2> = 2¢ 2 z(khaa a—b — aab b—»a)z
’ (khﬂa + kﬁﬁh + kgﬁb + kiﬂa)3
= de[(Jrr) — (Ji-r)]*/Cr. (13)
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It is interesting to compare these results to (a) the chemical
reaction model based on a biased random walk without an inter-
mediate step via a bridging molecule’ and (b) the corresponding
quantum expression® for coherent electron transmission. In the
simplest example of a nonequilibrium chemical reaction, the authors
of Ref. 9 have proposed a biased random walk where a single step is
interpreted as successful completion of a reaction. This is mathe-
matically equivalent to a junction in which charge transfer between
the left and right leads takes place directly and not via an inter-
mediate (dot or molecule) state and the probability for a charge e
to jump from left to right and from right to left during time At
is given by k*At and k™ At, respectively. In this case, it is found
that the average charge current and its noise (zero frequency) are
given by

e(k" —k7)
(Jrsr) = (JroL)» (14)

0

(61%) = 2e(k* + k)

=2e[{Jr-r) + (Jr-1)]s (15)

where we set (J_,; ) = ek" and (J;_,z) = ek™. Note that (J) [Eq. (14)]
is equivalent to Eq. (10) and (6J?) [Eq. (15)] to the first term (&J7)
in Eq. (11), while no equivalent to the second term (8J;) in Eq. (11)
can be identified.

For the coherent electron transmission, the general quantum
noise result’’ has been recently recast in the form”**’

(1) = (81")a = (0T Y qu» (16)

where

@)a =2 [ " deT(@ U1 - ()] + @)1 - file)]}
= 2¢ [ de(i-(e) + Jr(€)), (17)

()= 22 [T aeT L) )T
- 2 f de(Ji—r(e) ~ Jaoi (€))%, (18)

where  Jror = T(€)fr(e)[1-fi(e)] and  Jior=T(e)fr(e)
[1-fr(e)], with T (e) being the transmission coefficient and the
Fermi functions fx(€) [Eq. (21)] oflead K = L, R.

The authors of Refs. 22 and 25 have identified the first term
(17)in Eq. (16) as the “classical” noise reminiscent of the continuous
particle transfer between two classical reservoirs like in the chemical
reaction model but where the additional Fermi functions account
for the exclusion pr1nc1ple *>*> The second term (18) in Eq. (16) is
associated with the pure “quantum” noise related to the correlated
transfer of two particles.”””” It is notable that the components of
the quantum noise term Eq. (16) can be rewritten in very similar
forms to those of noise in the classical sequential tunneling regime
Eq. (11). Indeed, (6] Yo in Eq (17) is equivalent to our determined
term (8J7) [Eq. (12)] and (8]*)qu in Eq. (18) is similar to our calcu-
lated (873) [Eq. (1 n)]. We see that not only the term (8]%); [Eq. (17)]
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but also (8]2)qu [Eq. (18)] has a clear classical analog arising from
sequential charge transmission via the intermediate molecule. In the
classical consideration of a particle current between two reservoirs
without any intermediate state, see Eq. (15), such a term is lacking.
This observation leads to the conclusion that the additional term
(13) and its quantum analog (18) reflect particle correlations. The
classical correlation arises from the fact that only one electron can
occupy the molecule (dot) at any given time.

More insight about these results can be obtained by consider-
ing the high-bias limit, eA® > kT, where shot noise dominates.
In this case, the current proceeds mainly in one direction, e.g.,
(Jror) > (Jigr). For classical transmission without intermediate
molecule, Eq. (15) becomes (8]%) = 2¢(J) in agreement with the
shot noise result obtained by Schottky.”" In contrast, the quan-
tum result, Eq. (16), yields in this limit {8/%) = 2¢(J)(1 - 7) for
an energy independent transmission coefficient 7."* This repro-
duces the classical result in the poor transmission limit, while for
larger 7 the shot noise is suppressed and vanishes when 7 = 1.*
For an electrochemical junction with electron hopping via a bridging
molecule, we obtain (8]%) = 2e(J)[1 - 2k;, k=, / (ki + K=o p)?]
in the high-bias limit, when one current direction dominates in
Egs. (11)-(13), e.g, (Jrwr) > (J1_r). Noise suppression, result-
ing from occupation exclusion on the intermediate state as argued
above, is also seen here, albeit not the full extent obtained in the
quantum expression. Notably, the case with the same rate on both
sides, ki, = k. leads to the maximal suppression by a factor
1/2, which is equivalent to the quantum result with transmission
T =1/2. The latter is seen in the quantum case for single-dot junc-
tions in the weak-coupling limit and equal transmission rates to both
sides.”

lll. APPLICATION TO AN ELECTROCHEMICAL
JUNCTION IN THE MARCUS REGIME

In the following, we apply the general result for zero-frequency
noise to an electrochemical metal-molecule-metal junction assum-
ing that the electron transfer kinetics is given by Marcus “hopping”
rates. The rates for charging (b — a) and de-charging (a — b) the
molecule are given by

K, =Tk p: [:de[l — fx (Bk,€)] exp[—f—};r(e +E - ed)z],

4nE,
(19)
kf_,a =Tk / 45%1 /::defx(ﬁK,e) exp[—ﬁ; (€4 +Er - 6)2],
(20)

where Tk = 27/h|V|*p, are the golden rule rates for electrons mov-
ing between a discrete molecular level and a continuum of single
electronic states of the left and right electrodes K = L, R with the
density of states p,, which we assume to be independent of the
energy e. The level-lead coupling is denoted by V. s = (ksTs)™
is the thermal energy of the environment, E, is the reorganization
energy associated with relaxation of the nuclear environment follow-
ing electron hopping events, and ¢, is the energy difference between
the equilibrium states of the charged and uncharged molecule.

ARTICLE scitation.org/journalljcp

The Fermi distribution of the electronic states in the metal leads K
at bias potential A®x reads

1
exp[Bk(e - px — eADk)] + 1’

where the thermal energy of the electronic reservoirs is
Bx = (ksTx)™" and their chemical potential 4. In what follows,
we assume that y; = yp and set our energy scale so that y, = u; = 0.
Therefore, the difference between the left and right lead stems from
the applied bias. Furthermore, we express the applied bias in terms
of A®; and A®y of the left and right leads, taking A®x = 0 at the
molecule, while the state difference €, is positive and lays above the
Fermi energies of the leads at zero bias.

Figures 1-3 show the steady state zero-frequency noise, com-
puted from Eq. (11), for the Marcus model using the rates of
Egs. (19) and (20). Here, we have taken a uniform temperature of
leads and solvent, T's = Tx = T, and equal rates, I', = T'g =T, to the
left and right electrode. The voltage bias is applied symmetrically
ADp = —A®; = AD/2 while keeping the energy of the molecular
orbital ¢; fixed (at a value that may be changed independently,
reflecting the effect of a gate potential). The following observations
are noteworthy:

fx(Bk,€) = (21)

(a) In the limit of zero bias A® =0, the system is in equilib-
rium and the net charge current vanishes. The (charge) current
noise in Fig. 1 is the Johnson-Nyquist thermal noise™ **
(8J%) = 4kp TG, where G is the conductance,"® given by

G= lim d(])/dA®

_ @ Kiaa (0)k55(0) @2)
ksT kY (0) + KL, (0)+kR ,(0) +Kk: (0)

(b) The zero bias noise reflects the dependence of the conductance
G on junction parameters. Specifically, it is maximal for €; = 0

0.6 : :
g4=0meV ——
£d=50meV — e<d>
eg=100meV ——rw
£g=150meV ——
04 | 1
—
[aV)
(0]
A
a
]
Y
0.2 L ]
0
0 25 50

0 200 400 600 800 1000 1200
AD [mV]

FIG. 1. Zero-frequency noise (8J2) plotted against different applied bias poten-
tial A® for several values of the energy difference e, between the charged and
uncharged states. Inset: (8J2) for a smaller voltage regime. The temperature is
T =300Kand kgT ~ 26 meV. The reorganization energy E, = 200 meV.
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Figs. 1 and 2) at the value that is determined by the satura-
tion current (J) = e(Trl')/(Tr + Tr) = e[/2forTr =y =T.In

0.6 ‘ ‘ ‘ ‘
E,=0meV E,=100meV
E,=50meV E,=150meV
O 0.4
3V
()
x
o
2
v
0.2
0 ! ! ! ! !
0 200 400 600 800 1000 1200
A®D [mV]

FIG. 2. Zero-frequency noise (dJ?) plotted against different applied bias poten-
tial A® for several reorganization energies E;. Inset: (8J2) vs A® for a smaller
voltage regime about A® = 0. The difference of equilibrium energy between the
charged and uncharged state is ¢ = 150 meV. The temperature is T = 300 K
and kgT ~ 26 meV. Note that for E, = 0, we set the rate (19) to k;‘_)b =Tk

(d)

this limit, Eq. (11) reduces to (8]%) = e(J) for the single inter-
mediate level model. Note that the Schottky result 2e(J) is
suppressed by a factor 2 as explained at the end of Sec. II.
Figure 3 portrays the two components {8J7) [Eq. (12)]
and (8J7) [Eq. (13)] as well as the total noise {6J2) = (8J7)
—(8J5) Eq. (11). For the small voltage limit eAd < kpT, the
total noise is captured by the first component, (8/*) — {dJ1),
while (875) does not contribute. In this regime, (8J°) = (8J7)
is associated with the thermal noise. Away from thermal
equilibrium, for finite bias potential, the second term (8]3),
associated with charge correlation, must also be considered,
which leads to a reduction of the total noise by (87%) = (8J7)
- (8]§> = 26<]>[1 - Zkazaaké%h (kf—m + kzgﬂb)z]' We see a
maximal reduction of a factor not smaller than 2 for equal
transfer rates, ki = k-, (see discussion end of Sec. II).
However, for highly asymmetric rates, the (6J7) term becomes
very small also for A® > 0, so (6/7) dominates.

Figure 3 also shows the difference (6J2) — e{J) (see green line
Fig. 3) between the total noise and its higher bias (shot noise)

[1 - fc(Bx, €s)] and the rate (20) to k&

1/ T

= I"KfK(/BK, €d), where Tk =T.

b—a

1 ‘
<602 ——
08| <> —— 1
<6.J22> e

0.6 ,<8J2>-e<J>

0.4

0.2

100,
1000

200
1200

600 800
AD [mV]

0 200 400

FIG. 3. Total zero-frequency noise, its contributions (6Jf), and (6J§) [see Eq. (11)]
as well as the “thermal” part (8J2) — e(J) plotted against bias potential for ¢; = 0.
Inset: Smaller voltage regime. The temperature is T = 300 K and kg T ~ 26 meV.
The reorganization energy E, = 200 meV.

()

(Fig. 1) and decreases with increasing reorganization energy
E, (Fig. 2) as implied by Eq. (22) and investigated in Ref. 49.
Increasing e, or E, shifts the transmission window [given by
the Gaussian term in the rates of Egs. (19) and (20)] out of
the range to find a metal state occupied or empty [given by
the Fermi functions in Egs. (19) and (20)], such that at least
one rate for molecular state occupation (kj ) or deoccupa-
tion (kX ,) decreases and so does their product in Eq. (22),
which reduces the conductance G.

As A® increases, the noise increases above the (thermal)
Johnson-Nyquist value and saturates when eA® > kgT (see

limit. The difference (6J2) — e(J) might be associated to the
thermal noise for finite bias potential. For zero temperature,
this term vanishes and the current and its noise would show a
sharp onset when potential energy equals the molecular level
eA® = 2¢,. For finite temperature, as shown in Fig. 3, (8]%)
— ¢(J) smoothly goes to zero in the voltage regime eA® ~ 2kpT.

Finally, we note that the temperature dependence of the cur-
rent noise can be used as a temperature monitoring device. Indeed,
Spietz et al.”" presented an electronic thermometer where they read
off the temperature from equilibrium Johnson-Nyquist noise at zero
voltage.

IV. ENTROPY PRODUCTION AND THERMODYNAMIC
UNCERTAINTY RELATION

For a system whose state dynamics is described by the mas-
ter equation of Eq. (2), the entropy production rate ¢ can be
derived from the Boltzmann-Gibbs expression’”” for the total
system entropy S(t) = —ksY; Pi(t) InP;(t) (see Appendix C)>*
given by

. k kjipj(t
a(t) = ?BZ[kj,‘Pj(t) - kiiPi(t)]In k]gTJIEt;

ij

(23)

Expression (23) meets two important properties: (i) It is non-
negative because each term in the summation is of the form
(x = y)In(x/y) > 0 and (ii) it vanishes for thermal equilibrium, when
microscopic reversibility or detailed balance condition, k;iP; = kiP;,
is obeyed and no entropy is produced.

At (nonequilibrium) steady state with the respective P; station-
ary probability distribution the entropy production reduces to the
expression”*’ (see Appendix C)

0= ij[kjin - kijpi] In %
ij 1
k
= *BZ]szz'j: (24)
25
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where Jij = kjiP; — kijP; = —Jji is the current between states i and j,
which is driven by the corresponding force or affinity A;; = In kji/k;;.

With the entropy production rate ¢ at steady state, define the
product

Q=aT(8]%)/2(J), (25)

where (J), Eq. (8), is the average charge current and (8J°), Eq. (9),
the related zero-frequency noise. The inequality Q > 2kgT [Eq. (1)]
is the thermodynamic uncertainty relation (TUR). This inequality
has been shown to be satisfied for a large variety of systems.”'"”" Q
will be henceforth referred to as the TUR product.

By identifying the entropy production rate as Joule heating,
¢ = A®(J)/T, Q in our metal-molecule-metal junction may be writ-
ten in other physically appealing forms. In terms of g = (J)/A®,
Eq. (25) can be recast as

Q= , (26)

while in terms of the Fano factor, F = (8]%)/(J), Q takes the form

Q= ACD; 27)

which will be used later.
Using Eqgs. (19) and (20), the TUR product in Eq. (25) yields

Q=Q-Q; (28)
with
| A Y
Ql = eAD b—a"™a—b a—b b—»a, (29)
k}b{—mkéeh - kfl{ebki—m
= eAD coth[feAd/2], (30)
and

R L R L
Q2 =2eAD_— Kimsakamsy = k}g’_’bkbﬁ“ .
(kKL + KR+ )2
a— a— —a

b—a

(31)

The form for Q, in Eq. (30) is obtained by using the detailed
balance relation of the forward and backward hopping rates [see
Eq. (D3), Appendix D]. Q; is equal to the total TUR product
obtained for a rate process described by a simple one-dimensional
biased random walk that underlines hopping without an interme-
diate reaction center,” see Sec. II. It is easy to show form Eq. (30)
that Q; > 2kgT as expected.” Moreover, it is easily realized that the
term Q, > 0 since kﬁﬂakﬁﬂb > kfﬂakﬁﬂb for A® >0 and kﬁﬂakéﬂb
< kfﬁuk{;_,b for A® <0 in Eq. (31), which holds the positivity of
the TUR product. For the particular case where (a) I'y =T, (b)
Tk =Ts =T, and (c) ¢; = 0 (i.e., €4 is equal to the unbiased left and
right Fermi energies), it follows from Egs. (D3), (D8), and (D10) in
Appendix D, for the relation between the transfer rates, that Q, of
Eq. (31) can be written in the from

Q= eA(Di [tanh[BeA®/4] — tanh[—BeAd/4]]

= ? tanh[BeAd/4]. (32)
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Since Q, > 0, it can potentially lead to violation of the inequality
formulated in Eq. (1) for Q = Q; — Q,; however, we show in the fol-
lowing discussion that this is not the case in our classical hopping
model.

Note that the result in Eq. (28) resembles the functional form
obtained by Liu and Segal® for the quantum resonance model that
can be also written as Q™ = Q% — QI", where Q" = Q| [Eq. (30)],
while for certain resonance transmission models—i.e., a resonant
single-dot or a serial double-dot junction’”””—we have

Q= eACD%[tanh[ﬂeAd)M] — tanh[-BeAd/4]], (33)

where © = [ deT(€)*/ [ deT(e). In order to check a possible vio-
lation of TUR, the authors” have investigated the condition Q?”
—2kpT < 0 and found © > 2/3 for violating TUR. The result in the
sequential hopping regime [Eq. (31)] is the same except the © is
replaced by 1/2 for the symmetrical hopping regime (I'r = I'1). This
case yields the maximum value of Q, and it therefore follows that
the TUR bound of 2k T cannot be violated in the classical hopping
regime.

Examples of the behavior of the TUR product, Eq. (28), in
our model molecular junction by sequential hopping are shown in
Figs. 4-6, where we have used expressions (19) and (20) (Marcus
expression) for the kinetic rates. We assume again a uniform tem-
perature Ts = Tx = T as well as equal rates I', = Tr = T and apply the
voltage symmetrically AQg = —~A®; = AD/2. Figure 4 portrays the
bias voltage dependence of the TUR product Q plotted for different
values of ;. For a vanishing voltage A® — 0 (thermal equilibrium),
all curves are bounded by 2k T. With increasing voltage, Q increases
as both the entropy production ¢ = A®(J)/T and the relative fluctu-
ation (6J%)/(J)* increase. The result for €; = 0 (red curve in Fig. 4)
was obtained both from the general expressions Eqs. (29) and (31)
and from the analytic results in Egs. (30) and (32), which is inde-
pendent of the reorganization energy E, of the solvent. We prove

1000
— 8x10
>
800 | £
=
2
2
600 | ©
e}
400 |
e4=0meV
200 £4=100meV 1
£4=200meV ——
‘ ¥=100, £4=100meV
0 200 400 600 800 1000

A® [mV]

FIG. 4. The TUR product Q displayed against the applied bias potential A® for
several values of the energy difference ¢4 between the charged and uncharged
state. The black line represents Q calculated within the high-friction model (see
text). Inset: g = (J)/A® for the same choices of 4. The temperature is T = 300 K
and kgT ~ 26 meV. The reorganization energy E; = 200 meV.
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FIG. 5. AQ = Q — eA®[coth[feAd/2] — tanh[feAd/4]/2] against different
applied bias potential A® for several reorganization energies E,. The temperature
is T=300 K and kgT ~ 26 meV. The difference between equilibrium energies
between the occupied and unoccupied states is e; = 150 meV. Note that for
E, = 0, we set the rate (19) to kf_,b =TIk[1-fk(Bk, eq)] and the rate (20) to
kK = FKfK(ﬁK, €q), where T = T.

b—a —

100 £=0meV
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<8J%5T/<J>?
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FIG. 6. Zero-frequency noise to current ratio plotted against entropy produc-
tion rate for several values of the energy difference ¢4 between the charged
and uncharged state. The black dotted line represents the minimal TUR bound
(8J%)/(J)? = 4kgT /5 T. The black solid line represents Q calculated within the
high-friction model (see text). The temperature is T = 300 K and kgT ~ 26 meV.
The reorganization energy E, = 200 meV.

that QZFO > QZ‘**O (see Appendix E) such that the TUR product
Q=Q, - Q,, Eq. (28), is minimal for €; = 0 for a junction of equal
temperature in leads and solvent. This intriguing result yields a min-
imal bound on the product of entropy production ¢ and relative
fluctuation (87%)/(J)*.

From the inset to Fig. 4, it appears that Q is mostly domi-
nated by the strong dependence of g = (J)/A® on A®D [see Q written
in the form of Eq. (26)]. This in turn implies that Q is smaller at
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€4 = 0 than at finite ¢; and also (since g is maximal at ¢; = 0) that
Q increases faster with A® when ¢; = 0 than when ¢, is larger.
Note that the dependence of (8]*) on Q [Eq. (26)] is relatively
weak since the dependence of (8J%) on A® and different values
of ¢4 is only visible in the thermal noise regime (see eA® < kT
in Fig. 1).

The use of Marcus rates in the sequential electron trans-
fer process considered above relies on the assumption of fast
relaxation of the solvent in between each electron hop. In our
recent studies,”””® we have accounted for finite solvent relaxation
where the transfer rates (19) and (20) becomes explicitly time-
dependent (see details in Refs. 55 and 56). The black line in Fig. 4
portrays the TUR result for finite solvent relaxation described
by an overdamped solvent coordinate (here damping y = 10wy,
see details in Ref. 55). We have shown that the Fano factor
F = (8]*)/{J) is larger for slower solvent relaxation.’® Since Q o< F
[Eq. (27)], Q grows even faster for increasing bias potential AD
in this case than in the Marcus regime (compare black and red
lines in Fig. 4). The increased Fano factor (F > 1) and the related
increase in (relative) current fluctuation for finite solvent relax-
ation can be understood as correlated (non-Poissonian) electron
transfer.

Equations (30) and (32) have led to the observation that
Q = eAD[coth[BeAd/2] — tanh[BeAd/4]/2] for a junction with
uniform temperature T, I'r =T =T, and ¢; = 0, regardless of the
value of E,. Next, we examine the dependence of Q on E, for a
similar junction except with e; # 0. Figure 5 portrays the differ-
ence AQ = Q — eA®[coth[feAD/2] — tanh[BeAD/4]/2]]. AQ grows
with higher values of E. This can be understood by the smaller
g(A®) for increased reorganization energy E,, which dominates
and increases Q = (8J%)/2g [Eq. (26)]. This lower rise of g(A®)
(see Fig. 10 in Appendix F) can be understood as part of the
applied bias potential is used to overcome the reorganization
energy.”’

A recent experimental study’® of a realistic single atomic junc-
tion confirms that the TUR product has a minimal bound of 2k T in
the presence of a thermal environment. For a prototype underwater
junction at uniform temperature governed by the Marcus transfer
kinetics, our analytic result of Q; in Eq. (30) together with Q, in
Eq. (32) for ¢; =0 serves as minimal cost-fluctuation bound for
different applied bias potentials.

Another perspective on the TUR is to consider the rela-
tive fluctuation (8J%)/(J)* against the consumed power given by
T = AD(J), see Fig. 6. Both relative fluctuation and consumed
power depend on the applied bias potential and on the transfer
model specific parameters, which leads to the following obser-
vations: For the same (possibly small) relative fluctuations, the
minimal power consumed increases with ¢; and is bound from
below by the (red) curve of ¢; =0 in Fig. 6. This can be under-
stood: More energy is consumed per time to measure the same
(8J%)/(J)? since the equilibrium energy difference between the unoc-
cupied and occupied molecular states needs to be overcome for
each charge transferred. Even more energy needs to be consumed
to remain at a given small relative fluctuation (current noise to
current), see solid black line in Fig. 6, when the solvent relaxes
slowly in between the sequential charge hops (beyond Marcus the-
ory) and the charge transfer dynamics becomes strongly correlated
(see discussion above). All fluctuation-cost curves are bound by
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the curve (8J2)/(J)* = 4kpT/6T (black dotted line in Fig. 6), which
corresponds to Q = 2kgT in Eq. (28).

In summary, we have seen that the voltage dependence of
the TUR product Q reflects mainly the dependence of g(A®)
= (J)/A® on the bias potential for the specific junction parameters
(E; and ;). The zero-frequency noise (8]°) is less sensitive (in
relative values) to these parameters and shows sensitivity only for
the bias potential in the thermal noise regime (eA® « kgT), see
discussion in Sec. II. As it is often the case, we find that reduc-
tion in relative fluctuation is most readily achieved by increasing
the signal (J), while our control of the noise (8J%) is relatively
limited. As noted above, it is only near A® =0 (where thermal
noise dominates) that the excess noise (8]2)Aq> - (SJZ)M):O is sen-
sitive to system parameters. In particular, it is easy to show by
the same arguments as for the minimal bound of the term Q that
the change d((é]z)/(])z)/dAd)mq):O (which is positive) is smallest
for ey = 0.

V. APPLICATION: PROTOTYPE PHOTOVOLTAIC CELL

We next calculate the stationary charge current, its fluctua-
tion, and the resulting TUR product of the prototype photovoltaic
cell studied earlier by Rutten, Esposito, and Cleuren.”” This device
model, see Fig. 7, is composed of two single particle levels of energy
Ep and Er(>Er), which define the bandgap AE = Er — E;. The
Coulomb repulsion is assumed to restrict the possible system states
to 0,L and R with occupation zero or one electron on level Ej, or
Eg, respectively. The leads are at the same temperature Ty = Tr = T,
where we assume that level Ex can exchange electron only with
lead K (K = L,R). As before, we define our origin of single electron
energy by setting the Fermi energy of the unbiased lead to Er = 0.
Under bias, the leads then have different chemical potential eA®x
= £eA®D/2 (positive when the chemical potential is higher on the
left). Electron transition between Er and E; are induced by the
incoming “sun” radiation, which is assumed to be at resonant
energy AE = hv. The dynamics of this cell is described by using
the master equation for the probabilities Pj(j = 0,L,R) to be in the
corresponding states, which reads

- m 2%

AD/2

T, \/

)

FIG. 7. Model of the photovoltaic cell.
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Py (1) ~ (ko + kor) kro kro
P(t)|= kor. —(kro + kr) kre
Pr(t) kor krr —(kro + krr)
Po(t)
X PL(t) > (34)
Pr(t)

where kj; denotes the transition from state j to i. The rates describing
the exchange of electrons with the leads are given by

koo =Tof(xe)s ko =Tr(l~f(x1)), (35)

kor = Trf(xr);  kro = Tr(1 - f(xz)), (36)

where f(x) = [exp(x) +1]7" is the Fermi distribution where
xp = f(EL — eA®/2) and xr = f(Er +eA®/2) with the inverse
temperature 7' = kgT. We assume again equal transfer rates
I =Tr=T to both leads. The rates describing the transition
between energy level E; and Er due to sun photons are given by

kir = Tsn(xs), (37)

krr = rs[l + i’l(Xs)], (38)

where n(x) = [exp(x) — 1]7" is the Bose—Einstein distribution with
Xs = ﬁsAE with the inverse temperature /3§1 = kgTs. Note that the
ratio between forward and backward transition rates in Egs. (35)
and (36) as well as (37) and (38) satisfy the detailed balance condi-
tion. For simplicity, we neglect nonradiative transitions between the
molecular levels Eg and E;. We utilize again the formalism of Ref. 41
and use the modified generator of the master Eq. (34) to determine
the average current and its zero-frequency noise. This procedure (see
Appendix G) leads to

<]> _ _ekLOkRLkOR - kOLkLRkRO

39
c (39)
and
() = 26 (krokrrkor + korkrrkro)
G
_2 (kOL + kor + ko + kir + kro + kRL)
a
x 2(krokrrkor — korkirkro)®, (40)
where C1 = kRo(kLo + kLR + k()L) + kRL(k()L + k()R + kLO) + k()RkL()
+ kLR(koL + kOR)-
The affinity A for the device reads
korkrrkro
A= ln[i]
krokrrkor
= —f[-eAD — AE] - BsAE (41)

and the related entropy production rate ¢ determined by Eq. (24)
yields

o= ())[-T"'[-A® - AE/e] - T5 ' AE/e]. (42)
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In this cell model, we assume that the “sun” is a monochro-
matic light source of energy AE such that the net heat flux from the
“sun” is Qs = (AE/e)(J), where (J) is the average charge current in
Eq. (39). The heat flux dissipated at the left and right electrode is
Or = (Erfe — A®/2)(J) and Qr = —(Er/e + AD/2)(]), respectively.
Away from V., at (nonequilibrium) steady state the power gen-
erated by the cell obtained from the first law is P = —A®(])
= Qs+ O + O (P<0 for Vo> AD >0). At steady state, the
entropy production rate is equal to the entropy flux into the thermal
environments ¢ = —[Qs/Ts + Qr/T + Qr/T].

Figure 8 shows the characteristic behavior for photovoltaic
devices. The scaled current (J)/el is zero at the stopping voltage
Voe = —(1 - T/Ts)AE/e (here Vo = —35 meV), which is determined
by the condition that the two drivings associated with the voltage
A® and with the thermal “sun” light (determined by the difference
between T and Ts) balance each other. For A® > V,. and AD < V,,
the electronic current flows in the positive (left to right) and negative
direction (right to left), respectively. The current becomes voltage-
independent for AQ — V, much smaller or larger than zero, where
the saturation current on the negative A® side exceeds that on the
positive side as another manifestation of the presence of two driv-
ing mechanisms that can join or oppose each other (see also later
discussion on shot noise).

Next, consider the zero-frequency current noise at steady
state in these voltage regimes. At the stopping voltage, AD
— Vo, the current noise at zero frequency has the same
form as the Johnson-Nyquist result ((5]2 Yoc = 4kgTGoc; however,
Goc = d(J)/dAD|ae=v, is a function of voltage and the two tem-
peratures. Notably, in this truly nonequilibrium situation of two
drivings, (6]2)05 is not the minimum noise as usually expected at
zero current in the absence of a driving (or, like in the present

oc

5J°>

2
x50 <8J7>;

QlkgT |
<J>lel ——
<5J2>/egr e

2 |
2F
1 o ]
0 2e<d f ]
-8'1 L |
02t ]
o -0.3 b ARTERRET
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FIG. 8. Q/ksT = o3 '(8J%)/2(J)? (black), stationary charge current (J) (red),
and the zero-frequency noise (8J?) (blue) against the applied bias potential A®.
Inset: (J) and (8J%) against a larger range of applied bias potential A®. The
temperature is T = 300 K and kg Tx = 26 meV, the “sun” temperature Ts = 461 K
and kg Ts = 40 meV. The energy difference of the upper and lower levels is chosen
to be AE = 100 meV = 100hT, where T is the electron transfer rate to each lead
while we seth = 1. We choose the transfer rate between the two energy levels to
I's = I. The open circuit voltage is Vo = —=(1 = T/Ts)AE/e = —35mV.
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case, when both effectively compete with each other) as in Sec. II.
We find (8]2)min at A® =48 mV for our choice of parameters
(see Fig. 8).

Away from the stopping voltage, the shot noise is reached in
two limiting cases: either when (a) | — eAD — eVc| > kgT or when
(b) eAD — eV, > kpT. Interestingly, the limiting shot noise val-
ues are different in the two limits. In case (a), where the hops
R — Eg — E; — L are all downhill, we find in the limit AE > kgTs
(strongly reduced transfer from Er to Eg) that (8]%) = 2¢|(J)|[1
—2(2I + T)I*T's/(2LsT + I*)*]. The shot noise has the value (87*)
=2¢|(J)|/3 when T =T (see inset in Fig. 8) and is reduced in com-
parison to the classical noise obtained by Schottky by a factor of 3.
In case (b), when the hops L — E; and Er — R are downbhill while
the hop Er — Eg is uphill, the total rate is dominated by the single
E1 — Eg hop and we obtain the value of the classical shot noise**
(8J%) = 2¢(J) (see inset in Fig. 8), which is independent of the rates T
and I's. The reduction of the classical shot noise for downhill transfer
stems from the fact of two intermediate levels between the left and
right electrode, which is reminiscent of a “correlated” electron trans-
fer as discussed in Sec. IT for one intermediate level with a maximal
reduction factor of 2. For the uphill transfer, however, the transfer is
strongly reduced and the shot noise shows its classical limit 2e(J) like
in charge transmission between two electrodes without intermediate
state.

Interestingly, when considering the TUR product normal-
ized by temperature [defined by Eq. (25)] Q/ksT = 6k5"(8])/2(J)*
[where &, (6J%) and (J) are taken from Eqs. (42), (40), and (39)
respectively], Q/kgT > 2 while equality is reached when A® =V,
(see Appendix H). Note that since the TUR is satisfied for the charge
current, a similar TUR inequality holds also for the energy current
associated with photon absorption and emission where the current
and noise have to be multiplied by the energy AE (or squared), which
cancels each in the TUR product Q while the entropy production
remains the same (see also Ref. 9 for related currents in multicycle
networks).

From a thermodynamic viewpoint, the solar cell is a heat engine
converting heat input from a hot reservoir, the “sun,” into work
by moving electrons from a lower to a higher chemical potential
against an applied bias potential. We now determine the ther-
modynamic efficiency at which energy conversion from sun pho-
tons g?\useful work takes place.”” The thermodynamic efficiency
reads”

—()Ad _ - ())Adnc

Qs  To-())A®’

n (43)

where we have used the relation Qs = (T — (J)A®)/#c with the
Carnot efficiency . = 1 = T/Ts.

Often, the “internal” structure of the engine, i.e., the actual
bandgap AE, and the resulting heat flows are difficult to determine.
Following the consideration of Ref. 13 and given the uncertainty
relation [Eq. (25)], we can determine a bound for the entropy
production rate, ¢ > 4kg(J)*/(6J?), and find a bound for the heat
supplied by the sun by Qs = (T — (J)AD)/nc > (4ks T{J)*/(]%)
- (NA®) /nc.

This relation inserted in Eq. (43) yields an upper bound for the
efficiency,
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FIG. 9. Output power P = —(J)A® against thermodynamic efficiency # (black)
and the predicted bound on efficiency #;,, using TUR (red). The temperature
is T =300 K and kgT = 26 meV, the “sun” temperature Tg = 4610 K and kgTs
= 400 meV. The Carnot efficiency for the photovoltaic cell 1 — T/Tg = 0.935. The
open circuit voltage is Vo = —280.5 mV. The energy difference of the upper and
lower level is chosen to be AE = 300 meV = 300hT, where T is the electron trans-
fer rate to each lead while we seth = 1. We choose the transfer rate between the
two energy levels to I's = T.

—{/)A®rnc
4kpT(1)*/(3]%) - (J)A®

e
= ks Tg/{07) + 17 (44)

N < HTUR =

involving experimentally accessible quantities such as the average
current (J), its zero-frequency noise (8J), and the temperature
of the leads T only. For the last equality in Eq. (44), we use the
definition g = —(J)/A®.”

The power output of the photovoltaic cell P = —(J)AD ranges
between zero—when either the average current or the applied bias
potential vanishes—and a maximal value (P > 0 for V,c < A® <0).
The efficiency at maximum power is larger under TUR equality (red
line in Fig. 9) than for the actual thermodynamic efficiency. The
maximal efficiency of the cell is the Carnot efficiency . = 1 — T/Ts
(see Fig. 9). In this case, the stopping voltage A® = Vo is reached,
the charge current vanishes, and no power will be generated. This is
reminiscent of a Carnot heat engine operating adiabatically slowly
and producing no power." Going down in |A®| below the stopping
voltage (and hence decreasing # from 7..), we see a linear response
like regime where the increasing power remains only slightly below
the TUR value. At the point of maximum power, #, > #. Away
from this point, when operating at low AQ and therefore at low #,
we see that one can achieve powers higher than the TUR value.

By using experimentally accessible quantities, i.e., temperatures
of electrodes and “sun,” the average current, and its noise, one can
estimate the efficiency of energy conversion without knowing the
energy or bandgap AE of the photovoltaic cell.

VI. CONCLUSION

We have investigated fluctuations, thermodynamic properties,
and possible bounds of realistic electrochemical junctions based
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on sequential hopping kinetics described by classical master equa-
tions. The zero-frequency noise in a metal-molecule-metal junction
studied over the whole range of potential bias shows two typi-
cal limits: (1) the Johnson-Nyquist thermal noise for eA® « kT
and (2) the shot noise for eA® > kpT. Interestingly, we could
identify a component in the noise that can be associated with elec-
tron correlation, analogous to quantum coherent tunneling but
arising here from the fact that a full charge transmission from
one electron to the other always passes via an intermediate state.
For equal transmission rates between the molecule and both elec-
trodes, this correlation term maximizes and reduces the classical
shot noise result by a factor of 2. In general, we see that the clas-
sical correlation term arises from the assumption that only single
site occupation is allowed. In “classical” junctions, this may be due
to strong Coulomb repulsion between charge carriers. In the Mar-
cus regime, the solvent induced stabilization by the reorganization
energy Er and the molecular level ¢; (reflecting the effect of a
gate potential) strongly influence the thermal noise but have no
impact on the shot noise. When considering the TUR in such an
electrochemical junction, its bound by 2kpT is always satisfied in
the equilibrium condition (zero potential bias). An increase in the
reorganization energy E, and molecular level e; brings the TUR
even stronger above this bound when a potential bias is applied.
Interestingly for e¢; = 0, uniform temperature of electrodes and sol-
vent and symmetric coupling between molecule and both leads,
we found an analytic expression for the TUR serving as minimal
bound for a finite applied voltage. For a prototype photovoltaic
cell, the TUR bound of 2kpT is reached when applying the stop-
ping voltage where both competing drivings, incoming sun photons
pushing charges “uphill a barrier” and the applied bias, compen-
sate each other. However, the zero-frequency current noise goes
through a minimum as a function of the bias at an applied bias
different from the stopping voltage, reflecting the true nonequilib-
rium due to the presence of two drivings. Interestingly, the shot
noise is smaller by a factor of 3 in comparison to the Schot-
tky noise when the two drivings, by the sun and applied voltage,
lump together. Notably, the efficiency of energy conversion in the
cell predicted by the relative current fluctuation together with the
minimal TUR provides a satisfying upper bound for the thermo-
dynamic efficiency. Extensions to nano-heat engines governed by
electron transmission processes unifying kinetic hopping and coher-
ent tunneling (partial dephasing processes), see possible theoretical
descriptions in Refs. 60 and 61, should be possible and are left for
future research. We defer for a future study the consideration of
further reducing noise if more complex system configurations are
used.
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APPENDIX A: ZERO-FREQUENCY NOISE

The zero-frequency noise is defined by

() =2 [ ~ar((1(0) - U - )
-2 fo “a(87(1)87(0)), (A1)

where (J) =t _[Ot dt'J(t") denotes the average over a time trajectory.
We now prove the equality [Eq. (5) in main text]

(0%) = 2¢* ((nk) — (n)*) /1
= 2¢"((na (1) = (n=)) (nr(t) = (n)))/1, (A2)

where (ng) =t [Otdt'nR(t') is the average particle number and
(nk) = 7" [, dt'ng(t") is the second moment of the particle number
in time interval t.

To proceed, we define the total number of charges dur-
ing time ¢ by ng(t) — nr(0) = fotdt'hR(t') = e_lfotdt'](t'), where
we set ng(0) = 0. Furthermore, we define dngr(t) = nr(t) — (nr)
=e ' [ldt' (J(t') - (J)) = e”" [;dt'8]("t). The average current dur-
ing time ¢ reads (J) = e(nr)/t. We take the limit of t - oo and write
the right side of Eq. (A2) as

tlirgloz%((HR(t) — (nr)) (nr(t) = (nr)))
dt f " (57(£)o7(¢"))

lim 2/ dtf dt" 5](t )5](t”)>

t—o0

hm dt f " (] (¢ — £)87(0))

t—o0

= hm

Jim dt f dr(8](1)81(0))

Jim © f dr [ dt (91(0)37(0))

lim 5 [ae(-0)(87(2)87(0))

4 /0 dr(8](7)6](0)) = 2 f _di(e1(1)](0))

= (8]%). (A3)
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We use the fact that one can express the double integration as
[’ (fy at” + [ydt") =2 dt’ [ dt" and the current correlation

depends only on the time difference 7 = t" —t'. We further assume
for long times t — oo that (8](¢)8J(0)) — 0

APPENDIX B: STATIONARY CHARGE
CURRENT AND ZERO-FREQUENCY
NOISE BY COUNTING STATISTICS

In what follows, we use elegant expressions for the velocity and
diffusion coefficient obtained by Koza*' by means of a modified
generator.

In order to derive that modified generator, we consider the
master equation for the occupation and deoccupation process. The
probability that the molecule is in an electronic occupied state is
denoted by P, and in an electronic unoccupied state is denoted by
Py, such that the master equation reads

Pﬂ _ (kg—nz + kiau) Py (Bl)

. R L )

Py =(kpa + kipa) |\ Py
To proceed, one considers the master equation for P, and P, as dif-
fusion along an infinite chain where only nearest neighbor hopping
is allowed, which represents a transition from molecular state a - b

or b — a. In this picture, the master equation can be reformulated
for the molecular state [ = a, b as

_(k5—>b + kla‘%b)
(ks p + ki)

+1

Pl(nR,nL, t) = Z Z [kﬁj)ZPlJrj(nR +j5KR,T’1L +j5KL, t)

K=RL j=—1

AT (B2)

In this formulation, the molecular state changes when | — [ + 1 while
ng represents a counting index that increases (decreases) by 1 each
time the electron moves to right (left) where we associate the hops
on the lattice with electron exchange with the K = R (L) right (left)
electrode. dkr(0kr) =1 for K = R(L) in Eq. (B2) is the Kronecker
delta. These electron exchanges are described by the following rules:

a(ng,ny) - b(ng + 1,nz) : electron givento R,
a(ng,ny) = b(ng,ny — 1) : electron givento L,
b(ng,ny) > a(np - 1,n1) :

b(ng,nr) - a(np,np +1) :

(B3)
electron taken from R,

electron taken from L,

where a(nk) [b(nk)] corresponds to molecule in state a (b), while
the counting index is ng. In this formalism, all other transition
processes, e.g., a(ngr, ny) — b(ng — 1,nr), are forbidden.

We can now calculate the Fourier transform of Eq. (B2),

+1 )
Pl(wR,wL,t) = Z Z [kﬁj,le’w"PHj(wR,wL, f)
K=R;Lj=—1

= ki iPr(wr,wi, )], (B4)

where the Fourier transform is defined here with Pj(wg,wr,t)
=Y Xy exp(wrng + wrnr) x Pi(ng, nr,t). Equation (B4) can be
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written in a compact form using a L x L matrix, with elements Aff(k)
referred to as modified generator, such that

+1
PZK(wR,wL, t) = Z Z Af;(wK)Pj(wR,wL, £). (B5)
K j=—1

The modified generator A(wg,wy) = A®(wgr) + AF(wy) reads

R L R w. L —w
_ku%b - ku—»h kbaue t kb—»ae ‘
A(wR,wL) = (B6)
kR —wp kL wy kR L
a—b€  tKgpe “Kpsa ~ Kpoa

The matrix elements Afj (w™) will be eventually used to deter-
mine the charge current and diffusion constant. Koza proved in
a general way for an arbitrary modified generator A(w) that the
matrix A(0) is irreducible with one eigenvalue Ao (w = 0) = 0, whose
corresponding eigenvector has only positive entries.*’ This will be
related to the steady state. All other eigenvalues (real part) are neg-
ative. The steady state has the form P(w,t) = exp(do(w)t) while
in our metal-molecular-metal model with two sides P(wg,wr,t)
= exp(Ao(wr, wr )t).

The charge current, say to the right side, is then defined as

J = lim e@ - lim eawkp(wR,’LUL, 1) lwg=0,w;=0
t—o0 t t—>00 ¢
= Duw MWR, WL ) |wg=0,1,=05 (B7)

with elementary charge e, and the current noise at zero-frequency
reads

2 2
2y 1 2 () — (nr)
(6] ) - [l_l)r;l} 2e t
- lim 262 8i,RP(wR,wL, 1) lwr=0,;=0
t—o00 t
_ (awRP(wR: wr, t)|wR=0,wL=0)2
t
= 2e2812URA(wR, WL)‘wR:O,wL- (Bs)

We can now determine (/) and (6J3) in an elegant way with-
out explicitly calculating a single eigenvalue only by considering the
characteristic polynomial.

The characteristic polynomial associated with A(w) are
det()ti - A(wr,wr)) =¥, Ca(wr, wr)A" = 0. Since Ao(wr, wr) is a
root of this characteristic polynomial, the following relation holds:
> Cu(wr, wr)Ao(wr, wr )" = 0.

Taking the derivative with wg() (now portrayed with a prime)
and setting wg(z) = 0leads to the following expression for the current
and diffusion coefficient:

/
() = el = —e0 (B9)
G
and

> Cy +2CN +2C,(V)?

2 :22 "_ _
(6]R) el Cl

(B10)

Using the characteristic polynomial [A + (KX, + k%) ][A + (Ko,

a—b
k)T e + ke R KR e R kL e ] = 0 resulting
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from the modified generator A(wgr,wr) of Eq. (B6), we can
determine the current and current noise noting that (Jr) = €duw, A
~ (J1) = €D, A = (]) and (O]3) = 26°0%,1 = (O]F) = 26°0%, A = (OF)
are equal on both sides.

We find the coefficients as

Co = kirakisy = KioKas (B11)
Ct = kysa + Koo + Koy + Ky (B12)
Cl =k ke + KRk (B13)
C =0 (B14)

C=1 (B15)

APPENDIX C: ENTROPY PRODUCTION RATE

The total change in system entropy production S(¢) can be
derived from the Boltzmann-Gibbs expression””* for the sys-
tem entropy S(t) = —kg_;Pi(t)In P;(¢) and the master equation of
Eq. (2) in the main text,”

%P,—(t) = S kiP(1), 1)
j

where the transition rates kj; given state i satisfy
> kiji = 0. (C2)
i

Using Eqgs. (C1) and (C2), the entropy change in the system reads
S(t) = —kBZP,‘ lnP,-

P;

= 7k32kﬁpj lnP,‘ = *kBijin ln —_—

j j B

kg P;
= ?;(kjipj - k,'jP,') In FJ,

kg kiP; ks kij
= 7%‘:(kﬂpj - k;jPi) In kJ,]PJ, + jg(k},P} - k,‘jPi) In kT'Z

= (1) + S.(1). (C3)

The first term in the last line of Eq. (C3) is the entropy produc-
tion rate ¢(t), which is always positive due to (a - b)ln(a/b) > 0,
and the second term is the entropy flow S, (t) into the bath.

In the nonequilibrium steady state, S(¢) is constant, $(t) = 0,
and all entropy generated is continuously given to the bath, S,(t)
= —(t), which leads to Eq. (24) in the main text. Note that in most
cases, the bath is idealized as being without internal dissipation, so
that its entropy change only results from the entropy flow from the
system. In the equilibrium state, the detailed balance relation k;:P;
= k;jP; is satisfied such that S.(t) = ¢(¢) =0 in Eq. (C3) and no
entropy is produced.

APPENDIX D: RATIOS OF RATE

One may now transform the integral Eqs. (19) and (20) of the
main text with € = € + eA®g and establish their ratio as follows:
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K<, [ deTx(e+eAd) %
f deFK(e +eADk)

kK
o[ 4

b—a
exp [_ 4’35

- eq)’]
—e- eAdDK)Z]

(D1)

J del(e s cavg) sl e
[ deTk (e + eAD)

exp ﬁKe]H

exp|— L (e — eADk + E, + €y)
x [ A ] (D2)

exp[ff—i(ed +E —€e- eA@K)Z] .

If Bs = fx = B = (ksT) ™, their ratio reads

Z‘I}b = exp[-B(eADk — €4) ] (D3)

b—a

For later purposes and for I'(¢) =T, ¢; = 0, and ADr = —AD;,

R
= A®D/2, the ratio of the rates :2*” can be written as

a—b

ke, Jedesgpan eXp[—%g(—e +eAD/2 + E,)Z]
R oo
ki, ffwdem eXP[_% (—e—eAD/2 + E,)Z]

(D4)

[°° deexp[ﬁs]+l expl:_z;LE, (6 - CA(D/Z - ET)Z]

= (D5)
f exp[ﬁe]+l exp[—%(—e - eAD/2 + E,)Z]

J

kb—mku—»h ka—»bkb—m
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[°° deexp[ —Be]+1 exp[_!%(_e - EA(D/Z - ET)Z]

o 5 (D6)
[—oodeexp[ﬁe]+1 2 P[_TE (—6‘ - eA(D/Z + ET)Z]
S ] fe-woneny]
fﬂx,deexp[ﬁe]+1 exp[—%(—e - eAD/2 + Er)z]
= exp[—feAD/2]. (D8)

L
ForI'(¢) =T and ¢, = 0, the ratio of the rates :,“Cb can be written as

b—a

oy S el o[ ereon By
R
k.. [ d GW exp[—%(—e-v—eA(D/Zﬂ-E,)z]
oo exp[Be] B 2
f expﬁse]ﬂ exp[—ra(e+eA<D/2+E,) ] L o)

[ de 2L exp[- £ (c + eA®/2+ F,)?]

APPENDIX E: BOUND ON Q,

In order to prove that Q= Q; — Q, is minimal for ¢; =0
for symmetric contacts I'r =Ir =T and homogeneous tempera-
tures of leads and environments f, = B¢ = 8, we realize that Q;
= eA® coth[BeAd/2] for all junction parameters (see discussion in
main text). For Q = Q; — Q, minimal, we need to prove that Q, is
maximal for ¢; = 0.

Using the relation in Eq. (D3), we can write the following for
eg #0:

Qs = 2¢AD (E1)
(kbﬂa + k]r;ﬂh + klazﬂh + kiau)z
= 2eAD kli;b - eXiL[_ﬁ eAd] - (E2)
b—a (1 +exp[-f(eAD/2 - ¢4)] + k‘é:" [1+exp[B(—eAD/2 - ed)]])
For ¢; = 0 and “*" =1, see relation (D10), we have
bﬁa
G0 _ 2eAd 1 — exp[—feAD] i
(2 +2 exp[—BeAd/2])
eATCDtanh[ —PeAD/4]. (E3)

We now want to show that Eq. (

K-

a—b

(2+2 exp[—ﬁeA(I)/Z])2

1:3) is larger than or equal to Eq. (E2), which leads to the inequality Q=" > Q,, which can be written as

i (14 exp[-p(eA®/2 ~ e0)] + 5 1 + explB(-ea®/2 - €)]])

<1 (E4)
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We write the ratio

kL
kﬁ*’“ forey; # 0 as

b—a

L
a= ka—»b
= R

b—a

) ]f:odee:;ﬁgfﬂl exp[—%(e +eAD/2 + E, - ed)z]

- ]f:odee:;ﬁgfﬂl exp[—%(e +eAD/2 + E, + ed)z] ’

(E5)

where a > 0. The inequality of Eq. (E4) then reads
a(2 +2 exp[-feA®/2])” < (1+ a+ exp[-PeAd/2][ exp[Be4]
2
+a exp[—ﬁed]]) . (E6)

It is easy to show that the term [exp[Be,] + a exp[—fes]] > 2\/aon
the right-hand side of Eq. (E6). Using this bound, we recast Eq. (E5)
to

a(2 +2 exp[—-feAd/2])* < (1+a+ 2\/Eexp[—[3eA(D/2])2, (E7)
0<1+a" +2(1+a)vaw —2a(1+2W), (E8)

0<(a-1)"+2va(1-a)w, (E9)

with W = 2 exp[—feA®d/2]. Since a > 0 and W > 0, the inequality in
Eq. (E9) is always fulfilled and therefore di:o > ;. Note thata =1
is the case when ¢; = 0 in Eq. (E5) and Q;”’:O = Q; [see analytic form

in Eq. (E3)].

APPENDIX F: g(A®) FOR SEVERAL REORGANIZATION
ENERGIES

We determine g(A®) = (J)/A®, Fig. 10, for different reorgani-
zation energies.

0.0012

0.001 ¢

m
X
o
o
3
)
<

E,=500meV
0.0008

0.0006

g(A®)/T V]

0.0004

0.0002

0 200 400 600 800 1000 1200 1400 1600
A® [mV]

FIG. 10. g(A®) = (J)/A® for different Er (Marcus model) plotted against the
applied bias potential A®. The temperature is T = 300 K (kg T ~ 26 meV) and
eqg = 150 meV. Note that for Egr = 0, we set the transfer rates to kf_,b =Tk[1

= fK(ﬁKred)] and k[i)(aa = rKfK(ﬁK, Sd).
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APPENDIX G: CURRENT AND CURRENT NOISE
IN A PHOTOVOLTAIC CELL MODEL

By following the same procedure as in Appendix B, we first
determine the modified generator for the master Eq. (32) in the main
text to

—(kor + kor) kroe ™" kroe™®
A(’wL,’ll)R) = kore™* —(kLo + kLR) krr
kOR97WR kLR *(kR() + kRL)

(G1)
Using the same procedure as in Sec. II the expression for the current
is given by

(Jy=el = —ec—(’) (G2)
el = el
and the expression for the zero-frequency noise is given by
! /7 \2
(0F) = 261" = 22 QP 20N P20 gy
G
We find the coefficients
Co = krokrikor — korkrkro, (G4)
Ci = kro(kro + krr + kor) + krr (kor + kor + kio)
+ korkzo + krr (ko + kor), (G5)
Cy = —(krokrrkor + korkrrkro)s (Ge)
Ci=0 (G7)
Cy = kor + kor + kro + kir + kro + kgrr. (G8)

APPENDIX H: BOUND ON THE TUR
FOR PHOTOVOLTAIC CELL

We determine the bound on the TUR for the photovoltaic cell.
The TUR product reads

Q/ksT = ok3" (1) /2(1)%, (H1)

=Q-Q
=kg'e[T™'[-A® - AE/e] + T 'AEfe]  (H2)

(krokrokor + korkrrkro)
(krokrrkor — korkrrkro)
_ (koL + kor + kro + krr + kro + kRL)

a

x 2(krokrrkor — kOLkLRkRO)]- (H3)

For A® >V, =—-(1-T/Ts)AEfe, the second term
Q, [Eq. (H3)] vanishes because it is proportional to
1 — exp[B(eAD + AE) — ﬁSAE], which is zero for limA® — V,..
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Define C = k3'e[-T™'[-A® — AE/e] — T5' AE/e], we can write the
remaining Q, in Eq. (H2) as

_ | l+expC|_
Q/ksT = C[il “exp C] = C coth[C/2]
2 & C
- C[c ;W] 22

which fulfills the inequality. For A® — V,, we easily see C — 0 that
Eq. (H4) reads

Q/kBT:C[ZZC] -2, (H5)

Consider Q/kgT in dependence of the coefficient C such that
Eq. (H1) reads

2 & C
ksT = C| = _
Q/ks [c+,; k22 1 (CJ2)?
. (kor + kor + kro + kir + kro + kgr)

a

X ZkLokRLkoR(l — €&Xp C) . (H6)

Near the stopping voltage C — 0, we can expand Eq. (H6) up to
order O[C?] such that Eq. (H6) reads

3

Q/kgT ——

26 | ]
24 r ]
2.2 1

ol i
1.8 r 1

16 1

-80 -70 -60 -50 -40 -30 -20 -10 O 10
AD [mV]

FIG.11. Q/ksT = k5" (8J%)/2(J)? (black line) and the approximation of Eq. (H7)
(red line) against the applied bias potential A®D. The temperature is T = 300 K and
kgTx = 26 meV, the “sun” temperature Ts = 461 K, and kgTs = 40 meV. The
energy difference of the upper and lower levels is chosen to be AE = 100 meV
= 100nT where T is the electron transfer rate to each lead while we seth = 1. We
choose the transfer rate between the two energy levels to I's = I'. The open circuit
voltage is Voc = —(1—T/Ts)AE/e = =35 mV.
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l 3 (ZF + rs(l + Zn(ﬁsAE))
6 C1(Voc)?

Q/ksT ~2+C

x 2k1o(Voc)kor (Voc)Ts(1 + n(BsAE))

=2+C - A=2+[(AD - Vo) /ksT)* -4,  (H?)

with the Bose-Einstein distribution n(B(AE) and the transfer rates
[Egs. (35) and (36) in main text] evaluated at Voc where A > 0.
Figure 11 portrays the case of equal transfer rates I = I's and clearly
shows that the quadratic term in C dominates near Voc. Away from
Voc, the TUR product Q becomes proportional to the applied bias
potential A® such that the minimal value of Q/ksT = 2 is reached
at Voc.
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