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Abstract

Owing to the random nature of heterogeneity, damage and fracture behavior of quasi-brittle materials exhibits a considerable
egree of uncertainty. Computational modeling of stochastic fracture in quasi-brittle materials has become an indispensable tool
or analysis and design of engineering structures. To this end, we present in this paper a computational framework to capture
robabilistic fracture in heterogeneous quasi-brittle solids by combining the random field theory and the phase-field cohesive
one model (PF-CZM). The spatial variation of the material strength and fracture energy is represented by a cross-correlated
ivariate random field generated by the Karhunen–Loève expansion. The recently proposed PF-CZM is employed to simulate the

stochastic crack nucleation and propagation in quasi-brittle solids. The objectivity of the Monte-Carlo simulation is achieved
by imposing a specific condition on the phase-field length scale parameter and the correlation length of the random field.
In particular, upon this condition the width of the fracture process zone (FPZ) is considerably smaller than the correlation
length of the random field such that the material inside the FPZ does not exhibit significant spatial variations of mechanical
properties. As the fracture energy is intrinsically incorporated in the PF-CZM, it is unnecessary in this case to explicitly consider
the FPZ width. The resulting probabilistic PF-CZM together is applied to the Monte-Carlo simulations of fracture in concrete
structures of different geometries. It is shown that the stochastic simulation results are insensitive to both the phase-field length
scale parameter and the finite element mesh discretization as in the previous deterministic analyses. Enhanced with the specific
condition on the involved characteristic lengths, the PF-CZM provides a viable tool for stochastic simulations of damage and
fracture in quasi-brittle structures.
© 2023 Elsevier B.V. All rights reserved.
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Mesh objectivity

1. Introduction

Quasi-brittle materials are often composed of brittle matrix and randomly distributed inhomogeneities. Typical
xamples include concrete, tough ceramics, rocks, and particulate composites. The random nature of the material
icrostructure inevitably causes a considerable degree of uncertainty in the macroscopic mechanical behavior,
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such as the ultimate load capacity and the fracture pattern. These uncertainties have important implications for
the reliability and safety of built structures. Therefore, it is of great significance to develop robust computational
methods in prediction of the stochastic fracture behavior for reliability-based analysis and design of quasi-brittle
structures.

The stochastic finite element method (SFEM) provides a versatile tool for probabilistic analysis of structural
behavior. The SFEM requires a realistic representation of the spatial variation of the random material properties. If
we consider that the size of finite element is sufficiently large compared to the correlation lengths of the random
material properties, we can treat the random material properties of each finite element as a set of independent and
discrete random variables, which are sampled directly from the corresponding cumulative distribution functions
(CDFs). In a general setting, a more versatile approach is to represent the spatial variation of the mechanical
properties by random fields [1], which are characterized by the CDFs of material properties and the covariance and
cross-covariance functions. With the advances of experimental techniques, such as X-ray computed tomography
(XCT) [2,3], destructive testing [4,5], non-destructive testing [6,7], etc., for replicating the micro-structure and
identifying the statistical information of mechanical parameters, the random field representation of material
properties has been increasingly used for heterogeneous solids [8–10].

Stochastic fracture in quasi-brittle solids often involves crack nucleation at random locations and propagation
along arbitrary directions. The specimen could also exhibit different prevailing failure patterns. In the literature,
both the continuous and discontinuous approaches to deterministic fracture [11] have been applied to modeling the
stochastic fracture process in heterogeneous materials. For instance, the cohesive crack model has been extended
to stochastic analysis of concrete structures [12,13]. Though the cohesive crack model provides a straightforward
means for modeling the fracture behavior, it lumps the fracture process zone (FPZ) into a line, ignoring the effect of
multiaxial stress state on the fracture process even for a single dominant fracture mode [14]. Meanwhile, the cohesive
crack model also suffers from the notorious mesh bias, to overcome which one would need a robust algorithm to
track the crack path. Carmeliet and Hens [15] proposed a probabilistic nonlocal damage model with a bivariate
random field to simulate the stochastic behavior of strain-softening materials. Castillo et al. [16] recently applied
the nonlocal damage model to fracture of concrete materials, with Young’s modulus and the failure strength being
treated as two independent random fields. However, one fundamental and unsolved issue of nonlocal damage model
is the treatment of nonlocal interaction at the structural boundaries [17–19]. This issue has important implications
for modeling the crack propagation, during which new boundaries are created.

An important issue in computational modeling of quasi-brittle fracture is the spurious mesh sensitivity arising
from the localization instability. This issue has been investigated extensively for deterministic simulations. A class of
methods, called the localization limiters, which include the crack band model and nonlocal models, were developed
to mitigate the issue of mesh dependence. Recent studies have shown that, in stochastic simulations, the mesh
sensitivity is not only related to energy regularization but also is affected by the sampling of the random constitutive
properties [20,21]. A mechanism-based sampling method was recently proposed in the context of continuum damage
constitutive model [21]. The method was formulated for the case where the mesh size is chosen to be larger than
the FPZ width and the correlation lengths of the random constitutive properties, a typical scenario for the analysis
of large-scale structures.

Over the past decade, the variational phase-field approach has attracted significant attention for computational
modeling of fracture in solids [22–24]. It is able to deal with those complex fracture processes, e.g., crack nucleation,
propagation, and branching, in a standalone variational framework without relying on any crack tracking schemes.
The earlier development of the phase-field models, e.g. AT1 [25,26] and AT2 [23,27], focused on brittle fracture.
These models have recently been extended to simulations of stochastic fracture in heterogeneous solids; see [28–
32] among others. However, the AT1 and AT2 models rely on the fracture energy only. In order to capture the
material’s failure strength, one needs to consider the phase-field length scale as a material property which could be
large for quasi-brittle materials (e.g. 300 mm for concrete). Consequently, the energy dissipation would be severely
over-estimated.

In a series of recent studies [33–35], the phase-field cohesive zone model (PF-CZM) was proposed for brittle
and quasi-brittle fracture. Compared to the aforementioned AT1/AT2 models, in the PF-CZM the material strength
is introduced directly as a material property and the phase-field length scale is treated as a numerical parameter
that can be chosen to be arbitrarily small or a physical parameter so long as it is small enough. In this way, the

model takes into account both strength and fracture parameters, which is able to capture both strength and fracture

2



J.-Y. Wu, J.-R. Yao and J.-L. Le Computer Methods in Applied Mechanics and Engineering 416 (2023) 116332

t
v
b
(
c
c

energy governed failure mechanisms. It has been shown that the PF-CZM is insensitive to the phase-field length
scale and independent of the mesh discretization [33,35,36]. Furthermore, the model is able to reproduce different
types of strain-softening behavior for quasi-brittle materials, such as linear softening, exponential softening, and
hyperbolic softening [37] and so on. The model has recently been combined with the XCT imaging technique [38]
for modeling fracture of heterogeneous continua. Subsequently, Huang et al. [39] constructed the random field
for the mechanical properties based on the XCT image, nevertheless, with the cross-correlation between material
parameters ignored. Hai and Li [40] applied the PF-CZM to stochastic fracture in concrete assuming full correlation
between the failure strength and the fracture energy.

The recent study by Le and co-workers [20,21] showed that the sampling method of the random constitutive
properties in the finite element has profound implications for the objectivity of stochastic finite element (FE) simu-
lations. In the random field representation of constitutive properties the essential length parameter is the correlation
length. Another length parameter in FE analysis is the mesh size. Regarding the crack band method [20,21,41] have
investigated the interaction between these different length scales for stochastic simulations and the consequences
for the results of the stochastic FE simulations. It was found that inappropriate choices of these length parameters
could lead to spurious mesh dependence in the simulations and special cares are needed to guarantee the numerical
objectivity. The same conclusion also holds for other deterministic models with strain softening. In particular, those
deterministic nonlocal approaches, e.g., the phase-field fracture models like the PF-CZM with an extra intrinsic
length scale parameter, cannot be directly applied to stochastic fracture simulations unless some conditions are
fulfilled. Recently, in [42] it was suggested that the phase-field length scale parameter be much smaller than the
correlation length of the random field such that the predicted probabilistic characteristics are not affected by the
former. However, so far no specific conditions between these two length parameters, to the best knowledge of the
authors, have been addressed before.

In this study, we present a computational framework to capture probabilistic fracture in heterogeneous quasi-
brittle solids by combining the random field theory and the PF-CZM. The framework uses the Karhunen–Loève
(K-L) expansion method to generate a cross-correlated bivariate random field of the material strength and the
fracture energy. For each sample of the spatial random material strength and fracture energy, the PF-CZM is used to
simulate the fracture behavior of the structure. A specific condition on the phase-field length scale parameter and
the correlation length of the random field is, for the first time, proposed to guarantee objectivity of the stochastic
FE simulations. Upon this condition the material inside the FPZ does not exhibit significant spatial variations of
mechanical properties such that it is unnecessary to explicitly consider the FPZ width in the resulting probabilistic
PF-CZM. Note that only tension-dominated fracture in heterogeneous solids is considered in this work in order
to avoid the complexity in modeling the spatial variation of extra mechanical properties. Moreover, though 3D
probabilistic analysis might be more realistic, only 1D and 2D problems are considered here for the sake of
simplicity. However, as both the K-L expansion method and the probabilistic PF-CZM are not dimension limited,
extension of the present study to 3D problems are straightforward so long as the computational cost brought by
Monte-Carlo simulations is acceptable.

The paper is organized as follows. Section 2 presents the phase-field cohesive modeling of stochastic fracture
in heterogeneous solids by combining the PF-CZM with the random field theory. Section 3 discusses the numerical
implementation of the PF-CZM in context of the stochastic finite element method. Section 4 is devoted to validation
of the resulting probabilistic PF-CZM. The effect of various length parameters (the correlation length, the phase-
field length scale parameter, the mesh size of the FE and the grid size of the random field, etc..) on the stochastic
fracture characteristics, e.g., crack patterns, failure modes and global responses, etc., are studied. In Section 5 the
probabilistic PF-CZM is applied to the modeling of stochastic fracture in several representative numerical examples.

2. Computational framework to capture probabilistic fracture

The computational framework is anchored by the theory of random field [1] and the phase-field cohesive zone
model (PF-CZM). As shown in Fig. 1(a), let Ω ⊂ Rndim be the reference configuration of a cracking solid, with
he external boundary denoted by ∂Ω ⊂ Rndim−1 and the outward normal vector by n. The body forces (per unit
olume) b are distributed within the whole domain Ω and the prescribed tractions t∗ are applied to the part of
oundary ∂Ωt ⊂ ∂Ω . The resulting deformation of the solid is described by the displacement field u(x) and the
infinitesimal) strain field ϵ(x) := ∇

symu(x), for the symmetric gradient operator ∇sym(·) with respect to the spatial
oordinate x. For the well-posedness of the boundary value problem, given displacements u∗ are imposed on the
omplementary boundary ∂Ωu = ∂Ω\∂Ωt . All the sharp cracks in the solid are collected in the set S ⊂ Rndim−1,
with the normal vector of the crack surfaces signified by nS .
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Fig. 1. A cracking solid with sharp cracks and the geometric regularization.

2.1. Phase-field cohesive zone model

In this study, the fracture behavior is simulated by the PF-CZM recently developed by Wu [33], Wu [34] and Wu
and Nguyen [35]. As shown in Fig. 1(b), in phase-field models for fracture [24,43], the sharp crack S is regularized
over a localization band B ⊆ Ω , in which the crack phase-field or damage field d(x) : B → [0, 1] localizes. The
damage field satisfies the irreversibility condition ḋ(x) ≥ 0, where ẋ denotes the time derivative of quantity x .

In the phase-field model, a length parameter b is introduced to measure the width of the damage band. When it
vanishes (b → 0), a sharp crack is recovered. The external boundary of the localization band B is denoted by ∂B
and the outward unit normal vector by nB . Note that the localization band is neither prescribed a priori nor fixed
all along, but rather, it is automatically updated during the crack propagation. Proper Dirichlet boundary conditions,
e.g., d(x) = 1 for pre-existing cracks, can be imposed as well.

For solids under pure mechanical loading, the phase-field model is described by the following set of equations{
∇ · σ + b = 0 in Ω

σ · n = t∗ on ∂Ωt
(2.1a){

∇ · q + Q ≤ 0 in B
q · nB ≥ 0 on ∂B

(2.1b)

for the crack phase-field flux vector q and the source term Q

q =
2b
cα

Gf ∇d, Q = −Ȳ
dω(d)

dd
−

Gf

cαb
dα(d)

dd
(2.1c)

here Gf = fracture energy, Ȳ = crack driving force, α(d) = geometric crack function, ω(d) = damage function,
nd cα = 4

∫ 1
0

√
α(d) dd.

Though more complicated damage models can be adopted (see [44]), the following isotropic one is usually
sufficient

σ = ω(d)σ̄ , Ȳ =
1

2E0
⟨σ̄1⟩

2 (2.2)

where σ̄ = E0 : ϵ is the effective stress tensor, with E0 being the fourth-order elasticity tensor; E0 is Young’s
odulus of the material, respectively; σ̄1 denotes the major principle value of the effective stress σ̄ ; Macaulay

brackets ⟨·⟩ are defined as ⟨x⟩ = max
(
x, 0

)
.

The damage function ω(d) describes the stiffness degradation, which has to be monotonically decreasing with
damage variable d. By contrast, function α(d), which characterizes homogeneous evolution of the crack phase-
field, is a monotonically increasing function with d. Based on the previous studies [33–35], we adopt the following
4
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Fig. 2. Typical softening curves and the phase-field approximations.

expression for α(d) and ω(d):⎧⎨⎩α(d) = 2d − d2

ω(d) =
(1 − d)p

(1 − d)p + a1d · P(d)
P(d) = 1 + a2d + a3d2

+ · · ·
(2.3)

for the parameters p ≥ 2, and a1, a2 and a3

a1 =
4
π

·
ℓch

b
, a2 = 2β

2/3
k −

(
p +

1
2

)
, a3 =

⎧⎨⎩0 p > 2
1
2
β2

w −
(
1 + a2

)
p = 2

(2.4)

here the Irwin internal length ℓch := E0Gf/ f 2
t is related to the length of the FPZ, with ft being the failure strength

f the material; the ratios βk and βw compare the initial slope k0 < 0 and the ultimate crack opening wc of the
raction – separation law against those of the linear softening curve, i.e.,

βk :=
k0

−
1
2 f 2

t /Gf
≥ 1, βw :=

wc

2Gf/ ft
(2.5)

For instance, the linear softening law for brittle fracture and the Cornelissen et al. [37] softening curve for concrete
can be reproduced or approximated as shown in Fig. 2 with the following parameters (see Remark 2.1){

Linear softening curve: p = 2, a2 = −
1
2 , a3 = 0

Cornelissen’s softening curve: p = 2, a2 = 1.3868, a3 = 0.9106
(2.6)

or fracture in homogeneous solids, it is exactly the incorporation of the parameter a1 ∝ ℓch/b in the degradation
unction ω(d) that ensures the predicted crack patterns, failure modes and global responses to be insensitive to the
hase-field length scale parameter b, as long as the latter is small enough; see Remark 2.2.

emark 2.1. At the first glace, Fig. 2(b) exhibits some “apparent discrepancy” between the Cornelissen et al. [37]
oftening curve and the PF-CZM approximation with the parameters in Eq. (2.6)2. However, this so-called “apparent
iscrepancy” does not present real issues since: (i) the Cornelissen softening curve is neither a universal law nor a
nique expression, but is just a fitting curve of experimental data applicable for normal concrete; (ii) generally it
s not the specific expression of a softening curve, but the associated characteristics, i.e., the failure strength ft, the
racture energy Gf, the initial slope k0 and the ultimate crack opening wc, that determine the fracture pattern and
ailure behavior of brittle and quasi-brittle solids; see Bažant and Planas (1997); (iii) it is not difficult for the above

F-CZM to approximate the Cornelissen softening curve with better precision by using a higher-order polynomial
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P(d) in Eq. (2.3)2; see Appendix. Note that in [45], upon a particular relationship between the degradation function
ω(d) and the geometric one α(d), an integral transform was proposed to determine explicitly the characteristic
functions for a given softening curve. However, this scheme does not necessarily guarantee the irreversibility of
crack evolution (spurious thinning of the crack band) for general softening curves. □

Remark 2.2. In order to guarantee the capability of phase-field models in reproducing the energy dissipation
during fracture, the length scale parameter b had better be as small as possible. Practically, this requisite is fulfilled
with the following condition [34,46]

b ≤ min
(

8
3π

ℓch,
1

100
L ∼

1
50

L
)

(2.7)

for the characteristic size L of the structure. Upon the above condition, the analytical result and extensive numerical
studies have verified that the above PF-CZM is insensitive to the phase-field length scale for brittle and cohesive
racture [33–35]. In this work we will demonstrate that this length scale insensitivity also holds for stochastic
racture in heterogeneous solids upon an extra condition. □

2.2. Cross-correlated bivariate random field for the mechanical fracture properties

Modeling tensile fracture of quasi-brittle materials requires both the material’s tensile strength and mode I fracture
energy. The material strength determines whether and where crack nucleation occurs, and the fracture energy governs
the crack propagation. Therefore, stochastic simulations of quasi-brittle fracture should at minimum account for the
spatial randomness of these two mechanical properties [20,21,47]. The spatially variation in Young’s modulus is
not considered in this work.

Recent studies have shown that the tensile strength of quasi-brittle materials can be described by a Gaussian–
Weibull grafted distribution [19,48,49]. This distribution function was derived from the atomistic fracture mechanics
and a statistical multiscale model. In this study, a bivariate stationary random field

{
χ (x, θ ); x ∈ Ω ⊆ Rndim

}
of

lognormal distribution is used to model the variations of the tensile strength ft and fracture energy Gf, where θ is
a set of random variables and ndim = 1, 2, 3 is the geometrical dimension of the spatial domain Ω . The reasons
or choosing lognormal distributions are two-fold: (1) for the given mean and variance, the lognormal distribution
ives a similar prediction of the cumulative distribution as the Gaussian–Weibull grafted distribution except for
ar left and right tails; nevertheless, for stochastic FE analysis, the focus is placed on the prediction of the mean
nd variance of the response, which in most cases are minimally affected by the tail behavior; (2) as compared
o the Gaussian–Weibull grafted distribution, it is more straightforward to general random fields with lognormal
istributions.

Let the bivariate random field be denoted by χ (x, θ ). At a given point xi , the random field χ (xi , θ ) degenerates
to a random variable χ , with the cumulative distribution function (CDF) denoted by Fχ (χ ). In order to represent
the non-Gaussian random field χ , a common strategy is to generate an underlying Gaussian random field χ̃ and
then transform it via the isoprobabilistic (memoryless) transformation

χ (x, θ ) = F−1
χ

[
Φ(χ̃ (x, θ ))

]
(2.8)

where Φ(·) is the CDF of the Gaussian random field χ̃ . Specifically, for the lognormal bivariate random field χ , we
introduce a random field χ̃ = lnχ , i.e. χ̃1 = ln ft and χ̃2 = ln Gf. Both χ̃1 and χ̃2 follow a Gaussian distribution,
with the mean and variance given by

µ̃i = ln µi −
1
2

ln
(
1 + δ2

i

)
, σ̃ 2

i = ln
(
1 + δ2

i

)
(2.9)

where δi (i = 1, 2) = σi/µi are the coefficients of variation (CoV) of ft and Gf, respectively; µi , σi = the mean
values and standard deviations of ft and Gf.

The standardized Gaussian variable of χ̃ i is denoted by χ̄ i , i.e. χ̄ i =
(
χ̃ i − µ̃i

)
/σ̃i . Clearly, χ̄ i have a zero mean

and unit standard deviation. The covariance function Cχ̄ i of χ̄ i (x) is given by

Cχ̄ i (x j , xk) = σχ̄ i (x j ) σχ̄ i (xk)Rχ̄ i (x j , xk) = Rχ̄ i (τ ) (2.10)

In the above equation, we used the fact that σχ̄ i (x) = 1 at any given point x and the random field is homogeneous

and isotropic. The auto-correlation function Rχ̄ (τ ) defines the statistical dependence between two random variables,
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with τ = |x j − xk | being the distance between two spatial points x j and xk . In order to be differentiable at zero
and separable along various dimensions, the auto-correlation function of Gaussian distribution is adopted [1]

Rχ̄ i (τ ) =
ndim∏
n=1

exp
[
−

π

4

( τn

ℓn

)2
]
= exp

[
−

π

4

(τ

ℓ

)2
]

(2.11)

where τn is the distance along the spatial direction 1 ≤ n ≤ ndim, and the correlation length ℓn characterizes
the spatial variation along that direction. Here an identical auto-correlation length ℓn = ℓ is considered in all
spatial dimensions. Here we consider that χ̄1 and χ̄2 have the same correlation functions Rχ̄ (τ ). Accordingly, the
cross-correlated structure can be represented by the following correlation function matrix CR

CR =

[
Cχ̄1 Cχ̄1χ̄2

Cχ̄1χ̄2 Cχ̄2

]
=

[
Cχ̄ ρ̄12Cχ̄

ρ̄12Cχ̄ Cχ̄

]
= Cχ̄Cρ (2.12)

for the correlation coefficient matrix Cρ

Cρ =

[
1 ρ̄12

ρ̄12 1

]
(2.13)

Note that, as the transformation (2.8) distorts the correlation structure of the field χ , the correlation coefficient
ρ12 of the field χ1 and χ2 needs to be modified accordingly by, e.g., the Nataf transformation [50,51] such that
ρ12 ̸= ρ̄12 .

In this study, the random field is generated by the Karhunen–Loève (K-L) expansion method [52–54]. In this
method, the random field is expressed as a direct sum of orthogonal projections in the Hilbert space. In particular,
a zero-mean, homogeneous Gaussian random field χ̄ (x, θ) can be represented by

χ̄ (x, θ ) =
∞∑

k=1

√
λk ζk(θ )φk(x) ≈

K∑
k=1

√
λk ζk(θ )φk(x) (2.14)

where ζ (θ ) =
{
ζk(θ )

}
is a set of independent standard Gaussian variables of zero mean and unit variance; λk and

φk(x) are the eigenvalues and the eigenfunctions of the auto-covariance function matrix C χ̄ =
[
Cχ̄

]
, given by the

ollowing homogeneous Fredholm integral equation of the second kind∫
C χ̄ (xi , x j ) φk(xi ) dx j = λkφk(xi ) (2.15)

here the eigenfunctions φk form a set of orthogonal bases [54].
The truncated K-L expansion with a finite number of terms is usually adopted in practical applications [55]. It

uffices to consider only K eigenmodes corresponding to the largest eigenvalues of interest, with the summation
K
k=1 λk larger than 99% of the trace of the covariance function matrix C χ̄ [56]. Specifically, in order to generate

he discretized samples of the random fields χ̄1 and χ̄2, we first need two sets of independent standard Gaussian
ariables ζ 1(θ ) =

{
ζ1k (θ )

}
and ζ 2(θ ) =

{
ζ2k (θ )

}
. The following three cases can be considered:

• If χ̄1 is independent of χ̄2, i.e., ρ̄12 = 0, the stochastic samples can be generated separately by the truncated
K-L expansion (2.14)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ̄1 ≈

K∑
k=1

√
λk ζ1k (θ ) φk(x)

χ̄2 ≈

K∑
k=1

√
λk ζ2k (θ ) φk(x)

(2.16)

• If χ̄1 is fully dependent on χ̄2, i.e., ρ̄12 = 1, the stochastic samples of χ̄1 are first generated by the truncated
K-L expansion (2.14) and then the samples of χ̄2 are given by χ̄2 = cχ̄1, i.e.,⎧⎪⎨⎪⎩χ̄1 ≈

K∑
k=1

√
λk ζ1k (θ ) φk(x)

χ̄2 = cχ̄1

(2.17)

where c = the proportionality coefficient between χ̄ and χ̄ .
1 2
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• If χ̄1 and χ̄2 are cross-correlated, i.e., ρ̄12 ∈ (0, 1), the stochastic samples of χ̄1 and χ̄2 have to be generated
in pairs. We first introduce the spectral decomposition of the correlation coefficient matrix Cρ

Cρ =

[
1 ρ̄12

ρ̄12 1

]
=

[
η11 η12
η21 η22

] [
ρ̂1 0
0 ρ̂2

] [
η11 η12
η21 η22

]T

(2.18)

where
{
η11 , η21

}T and
{
η12 , η22

}T represent the eigenvectors of the correlation coefficient matrix Cρ , associated
with the eigenvalues ρ̂1 and ρ̂2, respectively. Accordingly, the cross-correlated Gaussian random fields χ̄1 and
χ̄2 are generated in pairs as[

χ̄1
χ̄2

]
≈

2K∑
k=1

√
λ̄k

[
ζ1k (θ ) 0

0 ζ2k (θ )

]
φ̄k(x) (2.19)

where the eigenvalue matrix λ̄ = Diag
[
λ̄k
]

and the eigenfunction matrix φ̄(x) =
[
φ̄k(x)

]
of the correlation

matrix (2.12) are expressed as [56]

λ̄ = Diag
[
ρ̂1λ1, . . . , ρ̂1λk, . . . , ρ̂1λK , ρ̂2λ1, . . . , ρ̂2λk, . . . , ρ̂2λK

]
(2.20a)

φ̄ =

[
η11φ1 . . . η11φk . . . η11φK η12φ1 . . . η12φk . . . η12φK
η21φ1 . . . η21φk . . . η21φK η22φ1 . . . η22φk . . . η22φK

]
(2.20b)

for the zero matrix 0 of K by K .

The cross-correlated bivariate random fields of the tensile strength and fracture energy are then given by

χ (xi , θ ) =
{

ft (xi , θ )
Gf (xi , θ )

}
≈

{
exp

[
µ̃1 + σ̃1χ̄1(xi , θ )

]
exp

[
µ̃2 + σ̃2χ̄2(xi , θ )

]} (2.21)

for the material parameters ft(x, θ ) and Gf(x, θ) at the point xi .
Fig. 3 presents the samples of the failure strength ft and the fracture energy Gf with various correlation

coefficients ρ12 ∈ (0, 1). It can be observed that as the correlation coefficient increases, the failure strength varies
in a more consistent manner with the fracture energy at the same position.

Remark 2.3. For any heterogeneous solid with inhomogeneous micro-structure, the usual mechanical properties
on the macroscopic level, e.g., the failure strength Gf and fracture energy ft, etc., become vague in the physical
meaning, when they are treated either as random fields or by mesoscopic compositions. However, though the
material cannot be treated as a macroscopically homogeneous continuum, the mechanical properties still have
definite physical meanings on the mesoscopic level. The above fact justifies the PF-CZM with the phase-field length
scale b chosen as an arbitrarily small numerical parameter. □

2.3. Stochastic and deterministic length scales

The random field representations of material properties naturally introduce an important length scale, i.e. the
correlation length ℓ, to the model. The correlation length ℓ characterizes the spatial variation of the mechanical
properties over the computational domain. For a specific auto-correlation function Rχ̄ (τ ), a larger correlation length
ℓ indicates a less spatial randomness of the material properties, i.e. the material is more homogeneous. Meanwhile,
fracture of quasi-brittle materials is featured by a FPZ of finite size. The length of the FPZ is related to the Irwin
characteristic length ℓch, whereas the width of FPZ ℓb represents another length scale. It has been suggested that
ℓb can be measured as the minimum possible spacing of parallel cracks when cracks are not localized [57]. The
relation between ℓ and ℓb has important implications for stochastic modeling of quasi-brittle fracture [19–21]; see
Remark 2.4.

For the PF-CZM introduced in Section 2.1, it is noted that the parameter a1 ∝ ℓch/b given in Eq. (2.3) is derived
from the 1-D analytical result for homogeneous solids [33]. This implies that, to directly use the model, we consider
that the material inside the crack band does not exhibit significant spatial variation of material properties. In other
words, the FPZ width ℓb is considerably smaller than the correlation length ℓ of the random field. In this case, it
is unnecessary to explicitly consider the FPZ width as long as the fracture energy is incorporated. This is exactly
8
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Fig. 3. Samples of the cross-correlated random field ft and Gf with different correlation coefficients ρ12 (Here the parameters µ1 = 3 MPa,
µ2 = 0.12 N/mm and δ1 = δ2 = 0.1 are adopted). As expected, the larger the cross-correlation coefficient ρ12 is, the failure strength varies
patially in a more consistent trend with the fracture energy.

he case of the PF-CZM, where the length parameter b is a numerical parameter that can be chosen to be arbitrarily

mall.
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Fig. 4. The upper bound condition between the phase-field length scale parameter b and the correlation length ℓ (here Ns = 3 for illustration).
hen the condition πb ≤ ℓ/Ns is fulfilled as in Fig. 4(a), only a single material is contained within the crack band such that the latter can

e still treated as a macroscopic homogeneous solid; otherwise, several materials co-exist as in Fig. 4(b) and in this case special cares need
o be introduced to guarantee objectivity of the stochastic simulation results.

In this study, we specifically require the material in the simulated crack band of width ℓb = πb to be locally
omogeneous. In the context of PF-CZM, this transforms into the following condition

πb ≤ ℓ/Ns (2.22)

here Ns = parameter such that the spatial randomness of material properties over the distance ℓ/Ns essentially
anishes, and typically Ns ≈ 2 − 4 is adopted. In other words, Ns represents the number of different materials
ithin the spatial distance of a single correlation length ℓ with its value related to the grid size discretizing the

andom field; see Section 3.1 for the details. Upon this condition, the FPZ contains only a single material as shown
n Fig. 4(a). Otherwise, multiple materials co-exist as in Fig. 4(b), invalidating the model parameter a1 ∝ ℓch/b
iven in Eq. (2.3) for homogeneous solids. Moreover, this is justified and also consistent with Remark 2.3.

Eq. (2.22) imposes an upper bound for the phase-field length scale parameter b. In the PF-CZM, this condition
an always be fulfilled for a fixed correlation length ℓ since the length scale b is a numerical parameter that can be
rbitrarily small. In this case, the results of the stochastic simulation are insensitive to the length scale parameter
nd the mesh size; see Sections 4 and 5 for the numerical validation.

emark 2.4. It should be emphasized that the FPZ width ℓb represents an essential length scale governing the
tatistical size effect on the failure behavior. It needs to be explicitly considered in stochastic analyses [19,21], if
b is not so small compared to the correlation length ℓ. As a consequence, the material properties inside each finite
lement would unavoidably exhibit considerable spatial randomness. In this case special cares need to be introduced
s in the crack band method [20,21] such that objectivity of the numerical stochastic responses with respect to the
E discretization can be guaranteed. □

. Numerical implementation

To implement the above computational framework, we first generate the cross-correlated bivariate random field
f tensile strength and fracture energy, and the random field is then projected to the finite elements for Monte-Carlo

imulation (MCS) of the fracture behavior of the structure.

10
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3.1. Generation of sample structures

As discussed in Section 2.2, the cross-correlated bivariate random field of lognormal distribution is generated
by the K-L expansion method. For the given probability distribution of the tensile strength ft and fracture energy
Gf, the eigenvalues λ̄ and eigenfunctions φ̄(x) of the correlation function matrix CR in Eq. (2.12) are calculated.
In accordance with Eq. (2.19) and (2.21), N samples of the cross-correlated bivariate random field of lognormal
distribution are generated as the material properties necessary for subsequent finite element simulations.

For the MCS, the random field has to be spatially discretized into stochastic elements and transformed into
a set of random variables. In this study, we use the local projection method to map the random field onto the
finite element mesh. The strength and fracture energy used for the constitutive behavior of each finite element are
extracted by using the values of the underlying random fields at the centroid of the finite element. This mapping
method requires that the material properties are almost uniform inside the finite element. The random field is
generated over a grid, where the grid size is chosen to capture the essential characteristics of the spatially varied
mechanical properties. Previous studies suggested the optimal grid size hs for the random field to be in the range
hs =

1
Ns

ℓ ≤
( 1

4 ∼
1
2

)
ℓ [15,58–60]. If the grid size is too large, it will not capture the correlation feature of the

random field. If it is too small, there could be numerical instability in decomposing the covariance matrix C χ̄ .

3.2. Finite element analysis

For each sample of the bivariate random field of tensile strength and fracture energy, the governing equations for
the PF-CZM are then solved numerically. In order to reduce computational cost, the whole structure can be divided
into two sub-domains: the sub-domain Bh where the cracks are expected to present and the remainder Ωh

\Bh that
is cracking free. Those nodes belonging to the sub-domain Bh have degrees of freedom (dofs) of both mechanical
isplacement and crack phase-field. The element within the sub-domain Bh needs to be sufficiently smaller than the
ength scale b such that an accurate estimation of the fracture energy can be guaranteed [24]. Previous studies [33–
5] suggested that the mesh size of finite elements he ≤

1
5 b is usually sufficient. Accordingly, it follows from the

upper bound condition (2.22) that

5πhe ≤ πb ≤ hs ≤

(1
4
∼

1
2

)
ℓ (3.1a)

or, equivalently,

5he ≤ b ≤
hs

π
≤

(1
4
∼

1
2

) ℓ

π
(3.1b)

Comparatively, the nodes within the elastic sub-domain Ωh
\Bh have only displacement dofs and the material is

linear elastic, and therefore larger elements can be used.
As the governing equations of the phase-field model are coupled and strongly nonlinear, it is rather challenging to

numerically solve the resulting discrete equilibrium equations. In particular, for the MCS involving a large number
of deterministic simulations, a robust and efficient solver is needed. In this work, the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) monolithic algorithm with consistent stiffness modification is adopted. As extensively verified
in [61–65], this monolithic algorithm is much (around 10 times) faster than the alternate minimization (AM) or
staggered algorithm [24,34,66] with comparable robustness.

3.3. Monte-Carlo simulations

The MCS is a versatile mathematical tool for the computational modeling of stochastic problems. This method
consists of repeatedly generating samples of the random field and then evaluating the statistical characteristics of
responses from the deterministic finite element simulations. The advantage of MCS is that it can handle complex
problems in a unified manner without relying on analytical solutions. Accuracy of the numerical results can be
simply improved by increasing the number of samples. Due to the limitation of computational cost, practically the
number of samples is considered to be large enough so long as the first- and second-order statistical characteristics of
the stochastic responses, e.g., mean value, standard deviation, etc., converge with an acceptable tolerance. However,
11
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Algorithm 1: Monte-Carlo simulations using the probabilistic PF-CZM
Data: Given statistical parameters of the failure strength ft and fracture energy Gf: The mean values µ, the

coefficients of variations δ, cumulative distribution function Fχ (χ ), auto-correlation function Rχ (τ )
and correlation length ℓ.

Create the finite element model
(a) Discretize the computational domain
(b) Apply the boundary and loading conditions

Generating the samples of the random field
(a) Decompose the correlation function matrix CR with the given statistical parameters
(b) Generate the cross-correlated bivariate random field by the K-L expansion method.

for every sample structure do
(a) Assign the random mechanical parameters to the finite elements in the potential damage sub-domain

and the mean values to those in the remaining elastic regions, respectively
(b) Run the finite element simulation of the sample structure using the PF-CZM upon the condition (3.1)

end
Analyze the statistical information of the stochastic responses

the required number of samples is usually problem-dependent and has to be determined by trial and error. In the
context of the probabilistic PF-CZM this topic will be discussed later in the numerical examples.

Regarding the cross-correlated bivariate random field of lognormal distribution, N number of samples are
generated in the MCS by the K-L expansion method. For each sample, the random material parameters are assigned
to those finite elements within the region Bh , and the mean values of material parameters are given to elements in the
remaining elastic region Ωh

\Bh . These regions can be identified based on either the experimental observation or the
failure pattern simulated by an a priori deterministic model, which uses the mean material properties. The PF-CZM

is used to calculate the structural response for each sample of random fields. The statistical information, including
the mean, the variance and the probability of the random responses (i.e., crack evolution, load–displacement curve,
etc..), is then obtained. A sufficient number of samples are used in the MCS such that the simulated variance of
the peak load capacity converges within a relative error of 5%; see Section 4.2 for more details.

The above numerical algorithm of the MCS for the phase-field cohesive zone modeling of stochastic fracture is
shown in Fig. 5 and Algorithm 1.

. Numerical verification

In this section, two numerical examples are presented to verify the proposed probabilistic PF-CZM. In particular,
e investigate the effects of the length parameters (i.e., phase-field length scale parameter b, correlation length ℓ,
esh size he for finite elements and the grid size hs for random field generation) on the simulated fracture behavior

crack patterns, failure modes and global responses). In order to guarantee the mesh objectivity, sufficiently refined
uadrilateral bilinear elements (he ≤ b/5) are used to discretize the potential damage sub-domain with random
echanical parameters, while the remaining elastic regions are discretized using triangular or quadrilateral elements

f larger mesh sizes with the mean material properties. The plane stress state is assumed in all simulations.

.1. 1-D bar under uniaxial tension

As shown in Fig. 6, a 1-D softening bar of length L = 200 mm and unit cross section under uniaxial traction is
onsidered. The left end of specimen is fixed, and the right end is subjected to an increasing displacement u∗.

The model parameters are taken from [33]. For this 1-D problem, crack nucleation occurs when the tensile
trength of the element is reached and the peak load of the bar is governed only by the tensile strength. Therefore,
e consider tensile strength to be the only random variable, with the mean value ft = 3.0 MPa and the coefficient
f variation (CoV) δ1 = 0.20. Other material properties are assumed to be deterministic, i.e., Young’s modulus

E = 30 GPa, Poisson’s ratio ν = 0.20, and the fracture energy G = 120 J/m2.
0 0 f

12
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Fig. 5. Flowchart for the Monte-Carlo simulation using the probabilistic PF-CZM.

Fig. 6. 1-D bar under uniaxial traction: Geometry, loading and boundary conditions.

This example uses the linear softening law (2.6)1. A total of 500 samples of the random field are generated, and
the resulting responses of the bar are numerically simulated by the PF-CZM. For each sample, the minimal value of
the tensile strength over the entire specimen is denoted by ftmin . The maximum and minimal values of ftmin in all
he 500 samples are denoted by max

(
ftmin

)
, and min

(
ftmin

)
, respectively. For this 1D problem, it is evident that the

eak load of the bar will be attained when the weakest element reaches the its tensile strength. Upon continuing
isplacement-controlled loading, this element will undergo softening damage, and the remaining part of the bar will
ndergo unloading. It should be emphasized that the size of the weakest element is equal to the FPZ width, ℓb, and,
s will be demonstrated later, the tensile strength of this weakest element is not necessarily equal to the minimum
alue ftmin of the random field of tensile strength.

In the analysis, we fix the grid size hs =
1
3ℓ = 10 mm for generation of the random field of ft. Four cases of

different phase-field length scale parameters, i.e., b =
{
30, 10, 10/π, 1

}
mm, and the associated finite element mesh

izes he =
1
5 b, are considered. In Fig. 7 the simulated F∗ versus u∗ curves are compared against those calculated

analytically by prescribing either max
(

ftmin

)
or min

(
ftmin

)
to the strength of the weakest element. Note that the

nalytical calculation of load–displacement curve does not require the knowledge of ℓb as long as the fracture
nergy Gf is explicitly introduced.

It is seen from Fig. 7 that, when the FPZ width (ℓb = πb) is larger than hs (Cases I and II), the upper and lower
xtremes of the simulated load–displacement curves lie above those calculated by using max

(
ftmin

)
and min

(
ftmin

)
,

espectively. To explain this result, we note that the peak load of the bar is governed by the minimum tensile strength
f all the elements. Since ℓb > hs , the tensile strength f̄t of the element can be considered as an average of the
nput random tensile strength over a distance ℓb. Therefore, the minimum value of f̄t would be higher than the
xtreme minimum of the input random field of tensile strength. By comparing Fig. 7(a) and (b), it is found that, as
b become closer to hs , the simulated load–displacement curves move closer to the bounds calculated by max

(
ftmin

)( )

nd min ftmin .

13
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Fig. 7. 1-D bar under uniaxial traction: Load versus displacement curves of MCS for various phase-field length scale parameters. In Cases
I and II, the FPZ width ℓb is larger than the grid size hs of the random field generation, the upper and lower extremes of the simulated
load–displacement curves lie above those calculated by using max

(
ftmin

)
and min

(
ftmin

)
, respectively. Comparatively, in Cases III and IV, ℓb

is smaller than hs , the load–displacement curves based on max
(

ftmin

)
and min

(
ftmin

)
represent the upper and lower bounds of the stochastic

responses.

When the FPZ width is smaller than hs (Cases III and IV), the material tensile strength does not exhibit statistical
variation within the element. Therefore, the minimum tensile strength of the material element in the bar is equal to
ftmin . In this case, the load–displacement curves based on max

(
ftmin

)
and min

(
ftmin

)
represent the upper and lower

bounds of the simulated stochastic load–displacement responses. Note that due to the numerical inaccuracy resulting
from the phase-field approximation with a non-vanishing length scale parameter, some deviations from linearity in
the tails of the curves are exhibited; see [33] for more discussion.

Fig. 8 presents the simulated cumulative distribution function (CDF) of the peak load Fmax. It is seen that, when
ℓb ≤ hs , the probability distribution of Fmax is independent of the length scale parameter b. Though damage would
ocalize into a material element of size πb, the strengths of material elements over the distance hs is essentially the
ame. Recent studies used a level excursion analysis to show that in this case the essential length scale governing
he probability distribution of the peak load is the correlation length ℓ instead of ℓb [67,68]. By contrast, for Cases
and II (ℓb ≥ hs), the CDF of Fmax depends strongly on the choice of b. In this case, the strengths of adjacent
aterial elements exhibit some degree of statistical variations. Therefore, both ℓb and ℓ play roles in determining

he CDF of Fmax. When the FPZ width is significantly larger than the correlation length, the statistics of Fmax can be

escribed by a finite weakest-link model, in which the FPZ width serves a sole characteristic length scale [19,48,49].

14
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Fig. 8. 1-D bar under uniaxial traction: Probability distributions of the peak load for different phase-field length scale parameters.

The foregoing discussion supports the discussion about the deterministic and stochastic length scales in
ection 2.3. Specifically, when the FPZ width is considerably smaller than the correlation length of the random
eld of tensile strength, the FPZ width does not need to be considered explicitly in the model once the fracture
nergy is directly incorporated in the model. Accordingly, the length parameter b in the PF-CZM can be treated as

a numerical parameter. When the FPZ width is not small compared to the correlation length, the FPZ width has
to be considered explicitly in addition to the direct incorporation of the fracture energy in stochastic analysis of
structural response.

4.2. Unnotched concrete beam under three-point bending

The roles of the length parameter b of the PF-CZM and the correlation length are further demonstrated by
the simulation of probabilistic failure behavior of the unnotched concrete beam under three-point bending tested
by Hoover et al. [69]. As shown in Fig. 9, the specimen has a span of 202 mm, depth of 93 mm, and out-of-plane
thickness of 40 mm. To avoid unstable crack propagation in the post-peak regime, the specimen was loaded by
the crack mouth opening displacement (CMOD), which is defined by the difference in horizontal displacements of
two symmetric points C1 and C2 with the gauge span 59 mm. In a previous study [46], the PF-CZM was used for
deterministic analysis of this beam. It was shown that the simulation results are insensitive to the phase-field length
scale and mesh discretization.

In this study, we analyze the fracture behavior of the beam in a probabilistic setting. A bivariate random field
of lognormal distribution with CoVs δ1 = δ2 = 0.15 is used to describe the randomness in the cross-correlated
tensile strength ft and fracture energy Gf. The correlation coefficient ρ12 between ft and Gf is assumed to be 0.5.

he mean values of these parameters and other deterministic mechanical properties are taken from [46] and listed
n Fig. 9. The Cornelissen et al. [37] softening curve (2.6)2 is used for concrete.

The previous deterministic analysis showed that the failure of this unnotched beam is featured by the initiation
nd propagation of a mode I crack at the center of the bottom surface [46]. In probabilistic analysis, due to the spatial
andomness of strength and fracture properties, there is no guarantee that the crack will initiate at the mid-span and
ropagate vertically upwards. Nevertheless, due to the stress field, it is expected that the damage would occur around
he mid-span region. Therefore, in order to reduce the computational cost, only the middle region of sizes 40 mm

93 mm is selected as the damage sub-domain with random mechanical properties and the remaining part of the
pecimen is considered to be elastic with deterministic material parameters. The correlation length ℓ is chosen to be
0 mm, and the grid size hs for random field is 10 mm. The 1-D numerical results presented in Section 4.1 indicate
hat, the phase-field length scale and finite element mesh discretization have negligible effects on the stochastic

racture behavior provided the condition πb ≤ hs is fulfilled. To confirm this conclusion, we consider five cases
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Fig. 9. Unnotched concrete beam under three-point bending: Geometry, loading, boundary conditions and material parameters.

Fig. 10. Unnotched concrete beam under three-point bending: Finite element discretization.

Table 1
Unnotched concrete beam under three-point bending: Five cases with different length scale
parameters and finite element mesh sizes.

Cases Phase-field length scale parameter b (mm) Finite element mesh size he (mm)

I 1.0 0.20
II 1.0 0.05
III 1.0 0.10
IV 1.5 0.10
V 2.0 0.10

listed in Table 1 with various phase-field length scale parameters b and different finite element mesh sizes he ≤
1
5 b

within the damage sub-domain, all satisfying the condition πb ≤ hs ; see Fig. 10 for the finite element mesh of
Case I.

One important feature of stochastic analysis is that it can simulate different probable crack patterns or even failure
modes. In this example, the crack predicted by deterministic analysis always nucleates at the middle of the bottom
surface, where the principal tensile stress is maximum and propagates vertically upwards; see the first column of
Fig. 11. By contrast, stochastic simulations predict some variations in the crack pattern, as shown in the second and
third columns of Fig. 11. It is seen that a single crack nucleates from the central region of the bottom surface, but
not exactly at the mid-span. The crack propagates upward along a zig-zag path to the top surface. The deviation
from the deterministic analysis arises from the spatial randomness of material properties. Nevertheless, as in the
deterministic analyses, for a given sample of random fields of tensile strength and fracture energy, the predicted
crack path is not affected by the phase-field length scale nor the finite element mesh when the condition πb ≤ hs

is fulfilled.
For Case I, a total of 1000 samples of random fields were generated for fracture simulations. Fig. 12 compares

he simulated force F∗ versus CMOD against the test data [69]. Though we did not calibrate the model parameters,
ost of the simulation results fall inside the experimental bounds. It is interesting to note that the mean response
16
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Fig. 11. Unnotched concrete beam under three-point bending: Simulated crack patterns for various length scales. Left column: Crack paths
given by deterministic analyses; Middle column: Crack paths given by random sample 1; Right column: Crack paths given by random sample
2.

Fig. 12. Unnotched concrete beam under three-point bending: Simulated load versus CMOD curves for Case I (he = 0.2 mm, b = 1.0 mm).

alculated from the MCS is very close to the deterministic result using the mean values of the mechanical properties.
his can be attributed to the fact that the geometry and loading configuration dictate the initial non-uniform stress
eld. The spatial randomness of tensile strength and fracture energy is not significantly large as compared to the non-
niformity of the stress field. Therefore, the various probable crack patterns predicted by the MCS are fluctuating
round from the deterministic result, but the fluctuation is not significant.

The MCS of 1000 samples are rather time-consuming. It is thus useful to determine the minimal number of
amples to achieve the balance between the numerical accuracy and computational cost. To this end, the mean and
tandard deviation of the peak load are depicted in Fig. 13 for different numbers of sample size. It is seen that,
s the number of the MCS increases to around 500, both the first- and second statistical moment converge with
relative difference less than 5%. Therefore, we use 500 samples for MCS for other cases. Fig. 14 compares the

imulated load versus CMOD curves against the test data. The global responses predicted from these cases are very
imilar to Case I. The mean and standard deviation of the global responses for all the five cases are depicted in
ig. 15. As seen, the stochastic responses are also insensitive to the phase-field length scale parameter b and the
nite element mesh discretization.

Fig. 16(a) presents the predicted CDFs of the peak load Fmax for cases I–V. It is seen that the CDF of Fmax is
nsensitive to the length parameter b. As a comparison, we consider the same cases listed in Table 1 but with a
ifferent random field grid size, h = 0.2 mm. In these cases, the condition πb ≤ h is violated. The predicted
s s
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Fig. 13. Unnotched concrete beam under three-point bending: The mean and standard deviation of the peak load (Case I).

Fig. 14. Unnotched concrete beam under three-point bending: Simulated load versus CMOD curves (case II–V).

CDFs of the peak load are shown in Fig. 16(b). It is seen that the CDF of Fmax now depends on parameter b, which

indicates that in such cases the phase-field length parameter needs to be specified as a physical parameter.
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Fig. 15. Unnotched concrete beam under three-point bending: Mean and standard deviation of the load versus CMOD curves.

Fig. 16. Unnotched concrete beam under three-point bending: Calculated probability distributions of the peak load.

. Numerical examples

Once verified, the probabilistic PF-CZM is now applied to three numerical examples: (1) a 2-D concrete specimen
nder uniaxial tension, (2) an unnotched concrete beam under four-point bending, and (3) pull-out of anchor bolt
rom a concrete plate. In the first two examples, there exists a large region in the specimen where the initial stress
eld is uniform. Therefore, there is a large uncertainty in the location of crack nucleation and propagation, a scenario

hat stochastic analysis is needed to understand the various probable failure patterns. The third example illustrates
n important practical problem in structural engineering. The concrete plate exhibits an asymmetric cracking pattern
ven though the structure is symmetric. Such a behavior cannot be predicted by deterministic analysis.

Similar to the verification studies, the cross-correlated bivariate random field of the lognormal distribution with
he auto-correlation function Rχ (τ ) of Gaussian type (2.11) is used to describe uncertainties in the failure strength
ft and fracture energy Gf. Refined quadrilateral bilinear elements satisfying the condition (3.1) are used to discretize
the damage sub-domain with random mechanical parameters, while the remaining elastic region is discretized into
triangular or quadrilateral elements of larger sizes with the mean material properties. The Cornelissen et al. [37]
softening curve (2.6) for concrete and plane stress state are adopted in all simulations.
2
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Fig. 17. 2D analysis of concrete bar under uniaxial tension: Geometry, loading and boundary conditions.

Table 2
2D analysis of concrete bar under uniaxial tension: Different phase-field length scale parameters
and finite element mesh sizes.

Cases Phase-field length scale parameter b (mm) Finite element mesh size he (mm)

I 2.0 0.40
II 2.5 0.40
III 2.5 0.50

5.1. 2-D analysis of concrete bar under uniaxial tension

This example is concerned about a 2-D concrete specimen under uniaxial traction. As shown in Fig. 17, the
specimen is of length L = 400 mm and of cross section 40 mm × 40 mm. The left end of the specimen is
fixed, and the right end is stretched by a monotonically increasing displacement u∗. A bivariate random field of
lognormal distribution is used to represent the cross-correlated tensile strength and fracture energy with the mean
values ft = 3.0 MPa and Gf = 120 J/m2; the CoVs of both ft and Gf are δ1 = δ2 = 0.20, and the correlation
coefficient ρ12 = 0.5. The other mechanical properties, i.e., Young’s modulus E0 = 30 GPa and Poisson’s ratio
ν0 = 0.2, are treated as deterministic values.

A correlation length ℓ = 30 mm is used in the simulation with the random field grid size hs = 10 mm. As
the crack may nucleate anywhere, in the numerical simulation the whole specimen is discretized into uniformly
refined quadrilateral bilinear elements with the aforementioned random material properties. We consider three cases
listed in Table 2 with various phase-field length scale parameters b (all satisfying the condition πb ≤ hs) and finite
lement mesh sizes he ≤

1
5 b.

For the deterministic analysis, as the stress field is uniform and the mechanical properties are homogeneous in
the whole specimen, a vertical crack can nucleate anywhere under uniaxial stretching. Numerically, the damage
boundary condition d = 0 is imposed to the nodes located on both edges such that a vertical crack forms at an
interior location (due to round-off errors) as shown in Fig. 18(a). By contrast, in stochastic analysis, due to the
presence of randomness in the mechanical properties, the crack, once formed, may not propagate vertically through
the depth of the specimen as in the deterministic analysis. Rather, various crack patterns are observed from the
MCS; see Figs. 18(b)∼18(d) for some typical ones. For instance, a single crack can form at a random location as
in Fig. 18(b), but the crack path is no longer vertical since the weakest elements are randomly distributed in the
specimen. A second crack pattern is shown in Fig. 18(c), where a major crack and a secondary crack form in the
specimen, but the latter one grows only a little bit and then stops. In Fig. 18(d), two primary cracks nucleate: one
at the bottom surface and the other at the top surface, and they propagate simultaneously to the opposite surfaces.
Fig. 18(e) collects the crack patterns predicted from 50 samples. As expected, the crack can nucleate randomly at
any place and the crack paths are mostly tortuous. Such diverse crack patterns have been frequently observed in
the test of concrete specimens, yet they cannot be reproduced by deterministic simulations.

Fig. 19 presents the load versus displacement curves simulated from the MCS of 500 random samples. The crack
pattern shown in Fig. 18(b) occurs in specimens which exhibit a load–displacement curve with steepest softening
egime. These specimens have a more brittle behavior since the failure is caused by the propagation of a single
rack. The specimens exhibiting a crack pattern shown in Fig. 18(c) tend to have a more ductile post-peak response
f the load–displacement curve. The specimens that experience a crack patten depicted by Fig. 18(d) usually exhibit
higher peak load and a more gentle softening post-peak behavior. It is worth noting that, different from the results
f three-point bend beam in Section 4.2, the mean value of the peak load predicted by the stochastic analysis is
ignificantly lower than that calculated from deterministic analysis. This behavior can be explained by the weakest-
ink effect in a probabilistic setting [19]. Therefore, in this case stochastic analysis is needed even for the purpose

f predicting the mean behavior.
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Fig. 18. 2D analysis of concrete bar under uniaxial tension: Simulated crack patterns (Case I).

Fig. 19(d) presents the numerically predicted CDFs of the peak load Fmax from all the three cases. As can be
seen, so long as the condition πb ≤ hs is fulfilled, the stochastic responses predicted by the PF-CZM are insensitive
to the phase-field length scale parameter and the finite element mesh.

5.2. Unnotched concrete beam under four-point bending

The second numerical example considers an unnotched concrete beam under four-point bending. The specimen
has a span of 450 mm, a depth of 100 mm and an out-of-plane thickness 50 mm (Fig. 20). Two concentrated forces
are applied vertically downward at two points trisecting the span via two monotonically increasing displacements
u∗. The relative displacement between two symmetric points C1 and C2 at a gauge length 200 mm (also denoted
as CMOD for the sake of simplicity) is monitored during the subsequent analysis. The statistics of the random
fields of tensile strength and fracture energy are the same as those used in the foregoing analysis of uniaxial tension
specimen. The mean values of tensile strength and fracture energy and other deterministic material parameters are
also given in Fig. 20.

In the simulations, the middle region of sizes 170 mm × 100 mm is selected as the potential damage sub-domain
nd discretized into quadrilateral elements of uniform sizes, which is modeled by the PF-CZM with the random

mechanical properties, while the remaining part of the specimen is assumed to be elastic with the deterministic
elastic modulus and Poisson’s ratio. The correlation length ℓ = 30 mm and the random field grid size hs = 10 mm
re used as before. As listed in Table 3, three cases with various phase-field length scale parameters b (all satisfying

1 b are considered for the damage sub-domain.
he condition πb ≤ hs) and different finite element mesh sizes he ≤ 5
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t

Fig. 19. 2D analysis of concrete bar under uniaxial tension: Load versus displacement curves and probability distribution of the peak load
calculated by MCS and deterministic analysis.

Fig. 20. Unnotched concrete beam under four-point bending: Geometry, boundary, loading conditions, and material parameters.

The specimen is loaded by two equal displacements u∗ at the loading points, and the sum of the resulting forces

F∗

1 and F∗

2 is denoted by F∗ in the stochastic analysis.

As both the structure geometry and loading conditions are symmetric, the deterministic analysis usually predicts

wo symmetric crack propagating vertically to the top surface of the beam as shown in Fig. 21(a), unless distortions

are introduced to the finite element mesh to break the symmetry. By contrast, in stochastic analysis the symmetry is

broken and cracks can nucleate at any position with weakest failure strengths, even though the initial stress field in
22
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Table 3
Unnotched concrete beam under four-point bending: Three cases with different phase-field length
scale parameters and finite element mesh sizes.

Cases Phase-field length scale parameter b (mm) Finite element mesh size he (mm)

I 2.0 0.25
II 2.0 0.40
III 2.5 0.40

Fig. 21. Unnotched concrete beam under four-point bending: Simulated crack patterns (Case II).

the region of constant moment is uniform. As shown in Fig. 21 (b–d), the beam can exhibit different crack patterns,
including a single crack, a primary crack and a secondary one, and two primary cracks.

The numerical load versus CMOD curves calculated from the MCS of a total of 500 samples are presented in
Fig. 22. Similar to those in the 2-D specimen under traction, various crack patterns lead to different peak loads
and softening regimes, thus resulting in distinct global responses. As expected, the more the cracks form and the
more tortuous the crack path is, the higher peak load and the more ductile post-peak regime is. Similar to the
uniaxial traction discussed in Section 5.1, the mean load versus CMOD curves predicted by the stochastic analysis
is lower than that predicted by the deterministic analysis. However, the difference between the mean peak load and
the deterministic value in this case is smaller than the difference seen in the uniaxial traction case. This is because

the uniaxial tension specimen has a larger uniform stress region compared to the four-point bending specimen.
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Fig. 22. Unnotched concrete beam under four-point bending: Load versus CMOD curves and probability distribution of the peak load
imulated by MCS and deterministic analysis.

onsequently, the four-point bending specimen will exhibit a milder weakest-link effect such that the difference in
he mean peak loads predicted by the stochastic and deterministic analyses is smaller.

Remarkably, as shown in Fig. 22(d), the predicted CDF of the peak load Fmax is insensitive to both the phase-field
ength scale parameter and the finite element mesh discretization so long as the condition πb ≤ hs is satisfied.

.3. Pull-out of anchor bolt from concrete plate

The last example is concerned with the pull-out failure of an anchor bolt from a concrete plate, which was
xperimentally tested by Vervuurt et al. [70] and reported by Vervuurt et al. [71] in the RILEM Technical Committee
0-FMA. This test has been simulated recently by deterministic analysis [72,73] and stochastic analysis [74–76].

As shown in Fig. 23(a), a T-shaped steel anchor is embedded in a concrete plate with an embedded depth of
50 mm, and the concrete square plate is of length 900 mm and out-of-plane thickness 100 mm. Two supports are
evised on the top of concrete panel to prevent the rigid motions. The span of support is 300 mm. As the vertical
oad F∗ applied upward to the center of an anchor-tail increases, cracks would develop in the concrete plate and
onsequently the anchor is pulled-out from the specimen. In order to simplify the modeling of the structure and the
omputation process, in the numerical simulation the contact between the both sides of anchor-head and concrete

s assumed to be fully bonded to each other, while other contacts are ignored [75]; see Fig. 23(b).
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Fig. 23. Pull-out of an anchor bolt from concrete plate: (a) geometry (b) loading condition.

Fig. 24. Pull-out of an anchor bolt from concrete plate: Symmetric crack pattern predicted by the deterministic analysis.

The mean values of the material properties are taken from [70], i.e., Young’s modulus E0 = 30 GPa, Poisson’s
atio ν0 = 0.2, tensile strength ft = 3.0 MPa and fracture energy Gf = 100 J/m2. The spatial randomness of
he tensile strength and fracture energy is described by a lognormal bivariate cross-correlated random field. The
tatistics of the random field are identical to those used in the previous two numerical examples.

In order to reduce the calculation cost, the upper concrete plate of dimensions 900 mm × 300 mm is selected
s the damage-subdomain with random mechanical properties, while the remaining part is assumed to be elastic
ith deterministic material properties. In this example, the correlation length ℓ and the random field grid size hs

re taken to be 60 and 24 mm, respectively. The phase-field length scale parameter b = 7.5 mm (satisfying the
ondition πb ≤ hs) and the mesh size he = b/5 = 1.5 mm are considered in the damage sub-domain.

As shown in Fig. 24, the deterministic analysis predicts a symmetric conical crack pattern in this pull-out test.
owever, asymmetric failure modes were observed in the test [70,71]: the specimens test-10G028, test-02G003

nd test-07G017 exhibited three typical asymmetric crack patterns in Fig. 25. Cracks nucleate at both sides of
nchor-head and propagate further, rather irregularly, to the left or right fixing support and edge of plate.

In stochastic analysis, the symmetry of structure is broken by incorporating random mechanical properties. As
hown in Fig. 26, various crack patterns are predicted by the probabilistic PF-CZM. Fig. 26(a) shows that the

symmetric crack propagates from one side of the anchor-head towards the fixing support while on the opposite
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Fig. 25. Pull-out of an anchor bolt from concrete plate: Experimentally observed crack patterns.

Fig. 26. Pull-out of an anchor bolt from concrete plate: Simulated crack patterns.

side of the anchor-head the crack grows tortuously in an almost horizontal direction towards the plate edge, which
is similar to the observed crack pattern I presented in Fig. 25(a). Fig. 26(b) presents another crack pattern: on one
side a diagonal crack propagates from the anchor head towards one of the fixing supports, and on the other side the
crack propagates downward to the plate edge, resembling the observed crack pattern II shown in Fig. 25(b). The
crack pattern depicted in Fig. 26(c) is nearly symmetric and the symmetry is broken once the crack branches on
both sides as in Fig. 25(c).

Fig. 27(a) compares the load–displacement curves simulated by the MCS of 200 samples against the experimental
results [70]. It is seen that the ascending regime and the peak load can be well captured by the probabilistic PF-CZM.
Some discrepancies are observed in the post-peak behavior [73] due to the large scatters of loading processes
reported in the test. The mean load–displacement curve is slightly lower than that the result of deterministic analysis.
The numerically predicted CDF of the peak load is plot in Fig. 27(b). It is alarming to note that the peak load
predicted by the deterministic analysis corresponds to a failure probability of 78%, which is unacceptably large for
engineering design.

6. Conclusions

In this study, a computational framework by combining the random field and phase-field cohesive zone model
is proposed for stochastic fracture in heterogeneous quasi-brittle solids. A cross-correlated bivariate random field
26
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o

Fig. 27. Pull-out of an anchor bolt from concrete plate: Simulated load–displacement curves and cumulative distributions of peak load.

f lognormal distribution and the Karhunen–Loève expansion method are adopted to represent the spatial variation
and the correlation between the failure strength and fracture energy. The phase-field cohesive zone model (PF-CZM)
is then employed to deal with the resulting arbitrary crack nucleation and complicate propagation in heterogeneous
quasi-brittle solids.

The model applies to the scenarios in which the fracture process zone (FPZ) width is significantly smaller than
the correlation length of the random field of the material properties. In other words, the material properties inside
the FPZ are locally homogeneous. In this case, the random field of the material properties can be locally projected
to the finite element mesh and the objectivity of the stochastic numerical results is guaranteed. In the PF-CZM,
this condition imposes an upper bound on the phase-field length scale parameter. The requirement can always be
fulfilled since the phase-field length scale is a numerical parameter, which can be as small as possible.

The probabilistic PF-CZM is applied to the Monte-Carlo simulation of stochastic fracture in heterogeneous solids.
Several representative numerical examples with non-uniform and uniform initial stress field are considered. It is
confirmed that, upon the upper bound condition, the probabilistic PF-CZM is also insensitive to the phase-field length
scale parameter and independent of the finite element mesh discretization, similarly to its deterministic counterpart.
As the failure strength and fracture energy are intrinsically incorporated as two cross-correlated random material
properties, the probabilistic PF-CZM is able to capture random crack nucleation, arbitrary crack propagation and
multiple failure modes in heterogeneous quasi-brittle solids.

These numerical examples also indicate that the conventional deterministic analysis is often unable to predict
and explain the experimentally observed complex crack patterns. Meanwhile, the deterministic analysis would also
over-predict the mean load capacity. This finding highlights the important role of stochastic analysis in engineering
designs.
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Fig. A.28. PF-CZM approximation of the Cornelissen et al. [37] softening law with the fourth-order polynomial P(d).

Appendix. Approximation of the Cornelissen et al. [37] softening curve with higher polynomial P(d)

As stated in Remark 2.1, the PF-CZM approximation of the Cornelissen et al. [37] softening curve shown in
ig. 2(b) can be improved by introducing a higher-order polynomial or another type of function P(d). For instance,

et us consider the following fourth-order polynomial

P(d) = 1 + a2d + a3d2
+ a4d3

+ a5d4
+ · · · (A.1)

here the parameter a2 is given from Eq. (2.4)2 as before, while the parameters a3, a4 and a5 satisfy the identity

a3 + a4 + a5 + · · · =
1
2
β2

w −
(
1 + a2

)
(A.2)

for the normalized ultimate crack opening βw defined in Eq. (2.5)2. In order to determine the parameters a3, a4 and
5 uniquely, two extra characteristics of the softening curve σ (w), e.g., the ultimate slope kc at the failure crack
pening wc, the values (wa, σa) at the articulate point, etc., can be considered. Alternately, they can be determined by
he least-square fitting method or the simpler trial–error scheme. In Fig. A.28, the resulting PF-CZM approximation
s shown for the following parameters

a3 = 1.25, a4 = 6.75, a5 = −7.09 (A.3)

As can be seen, the discrepancy from the Cornelissen et al. [37] softening curve is negligible and it will continue
diminishing for higher-order polynomials.
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