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ABSTRACT

In plants, the delivery of the products of photosynthesis is achieved through a hydraulic system labeled as phloem. This semi-permeable plant
tissue consists of living cells that contract and expand in response to fluid pressure and flow velocity fluctuations. The Miinch pressure flow
theory, which is based on osmosis providing the necessary pressure gradient to drive the mass flow of carbohydrates, is currently the most
accepted model for such sucrose transport. When this hypothesis is combined with the conservation of fluid mass and momentum as well as
sucrose mass, many simplifications must be invoked to mathematically close the problem and to resolve the flow. This study revisits such
osmotically driven flows by developing a new two-dimensional numerical model in cylindrical coordinates for an elastic membrane and a
concentration-dependent viscosity. It is demonstrated that the interaction between the hydrodynamic and externally supplied geometrical
characteristic of the phloem has a significant effect on the front speed of sucrose transport. These results offer a novel perspective about the
evolutionary adaptation of plant hydraulic traits to optimize phloem soluble compounds transport efficiency.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151644

I. INTRODUCTION

The transport of soluble organic compounds within plants
from production sites made during photosynthesis (i.e., leaves) to
where sucrose consumption occurs (e.g., stems and roots) is receiv-
ing renewed attention in plant physiology, eco-hydrology, and
earth systems models. The phloem provides the necessary pathway
for this transport mechanism. Its structure and function have been
conjectured to be optimized for efficient transport of photosyn-
thates. The implications of efficient sucrose transport range from
local impact on plant mortality under extreme weather conditions,
such as drought,’ to ecosystem-scale effects on carbon and water
cycling because of the link between photosynthesis and sucrose
transport.”” Many models for phloem transport and their possible
deficiencies have been formulated and discussed.” "' The most
accepted hypothesis of which most of these models rely on is the
so-called pressure-flow hypothesis, commonly known as the
Miinch mechanism.” In the pressure-flow hypothesis, the differ-
ence between the osmotic potential at the source and the sink leads
to a pressure gradient along the phloem pathway necessary to drive
the flow. The water reservoir needed for osmosis is provided by the

xylem system, which is the other hydraulic network delivering
water from roots to leaves under tension.'”

Experimental challenges in measuring mass fluxes and pressure
within the phloem'*'* have led to reliance on theoretical approaches
to predict sucrose transport. However, due to geometrical and hydro-
dynamic complexities of the phloem tissues, many simplifications
have been used to allow mathematical tractability.”'”'” These simplifi-
cations have resulted in models that link the effects of a CO, enriched
climate to plant growth™'® and the effect of environmental factors on
plant hydraulic failure.'>'”** Nevertheless, such models remain silent
on why measured leaf sugar concentrations are comparable to or even
higher in shot crops than in tall trees.”” Another critique is the pres-
ence of sieve plates throughout the phloem that appear to have no
obvious advantage when viewed from the perspective of the Miinch
mechanism. Rather, the sieve plates seem to increase the flow resis-
tance leading to increased pressure gradients to drive the flow that
may not match the measured sugar concentrations in the leaves sug-
gesting that phloem transport in tall trees is either a “miracle” or other
mechanisms and adaptations are needed to compensate for the
increased flow resistance.'”
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New theories have been formulated to add realism and improve
the Miinch mechanism. A recent study showed that the inclusion of
the so-called Taylor dispersion can speed up the front speed.'” In
closed pipes, G.I. Taylor™* showed that the small radial variations in
solute concentration can have an impact on the front speed by adding
an “extra” dispersion to the time evolution of solute mass. In osmoti-
cally driven flows through tubes made of semipermeable walls, the sit-
uation is different because of the radial inflow of water.” In such flows,
there is another effect that arises from osmosis and can be modeled as
an extra advection to the time evolution of solute mass. Another the-
ory also showed that the inclusion of viscosity variations in the radial
and axial direction due to local concentration variation can have an
impact on the front speed independent of Taylor dispersion.’’ This
latter study showed that the overall hydraulic conductivity of sieve ele-
ments is improved with a variable viscosity model especially in long-
distance transport. Other theories have been also formulated by relying
on the existence of sieve plates that connect the sieve tubes where their
role is still not fully understood. One theory assumes that their role
can be used as a “relay” effect where sugars can be exchanged at differ-
ent locations along the phloem forming a relay system to increase effi-
ciency and overcome the pressure gradient requirements brought by
increased resistance.”” While this theory is plausible, there is no clear
evidence of loading and unloading sucrose along the phloem pathway,
although water is exchanged between the phloem and surrounding tis-
sues readily.””*® Another theory addresses the role of sieve plates
from a structural damping perspective where their existence was con-
jectured to improve phloem rigidity and in return increases transport
efficiency by reducing the radial expansion of the elastic conduits.”’

The focus of this work is to explore these theories and conjectures
using a two-dimensional numerical model. The model allows includ-
ing membrane elasticity in a straightforward manner as well as a con-
centration dependent viscosity in contrast with previous models that
span simplified one-dimensional cases with constant viscosity to two-
dimensional cases that include variable viscosity but exclude elastic-
ity.” This model enables the effect of membrane elasticity to be
revealed beyond prior experiments studied elsewhere.”” In addition,
the model can be used to quantify the interactive effects of membrane
elasticity and viscosity variations. The system of equations that
describe the physics of sucrose transport in a semi-permeable elastic
membrane is first presented in Sec. II. Next, the results that focus on
the effect of membrane elasticity (prescribed via control parameters)
and variable viscosity will be discussed in Sec. III. Finally, concluding
remarks based on the modeling results are offered in Sec. I'V regarding
the evolutionary adaptation of plant hydraulic traits to maximize the
phloem carbohydrate transport efficiency.

Il. MODEL DEVELOPMENT
A. Problem setup

To develop the two-dimensional model for osmotically driven
laminar flow within an elastic tube, certain assumptions are still
required. The phloem is approximated as a long slender tube with
length L and time-evolving radius h(t) (ie., ¢ = h/L < 1) where t
is time and t = 0 being the initial loading of sucrose into the
phloem. The initial radius commences at h = a and expands radi-
ally in time (with no variability in the length). Since the radial
inflow and outflow of water (due to osmosis as discussed later) is
slow, the axial variations in the membrane radius h are assumed to
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be negligible. This assumption appears to be valid when images
from published experiments on osmotically driven flows in an elas-
tic tube have been analyzed.”” The maximum radius that the mem-
brane can attain is 2a. The presence of sieve plates is not explicitly
treated to remove any geometrical complexity. However, their
impact on phloem transport can be included in two ways: reducing
the elasticity of the membrane and increasing frictional losses. The
focus here is on the first effect as the second effect appears to be
small as discussed elsewhere® though there remains some disagree-
ment on the significance of this loss.'”

The sap is considered as an incompressible Newtonian fluid
where the density p = 1000 kg m > does not depend on the
sucrose concentration c¢. Theoretically, p depends on ¢; however,
this variation is small and is assumed to be negligible for simplic-
ity. On the other hand, the sap viscosity u dependence on c is
included since this dependence does impact the flow velocity."" For
an order of magnitude illustration, increasing ¢ from 10% wt/wt to 50%
wt/wt increases p by a factor of 1.2, whereas p increases by a factor
of 4. The flow can be approximated as a low Reynolds number with
Re = pau/u < 1 where u is the longitudinal velocity component.
For mass transport, the molecular Schmidt number Sc is defined
here as Pe/Re, where Pe = va/D is the radial Peclet number and v
and D are the radial velocity component and molecular diffusion
coefficient, respectively. It is assumed throughout that Sc is very
large. These two properties of the flow imply that: (i) the inertial
forces in the momentum balance can be neglected while keeping the
advective transport terms in the solute mass balance and (ii) the
momentum balance can be assumed to be steady, while the solute
mass balance is transient.

Dealing with a moving domain (expanding tube) adds complex-
ity to the numerical scheme that is accommodated using a coordinate
transformation. The equations are expressed in cylindrical coordinates
where only x, being the longitudinal direction, and r, being the radial
direction, are considered because of cylindrical symmetry. Since radi-
ally r goes from zero (at the center of the tube) to h(t) (membrane’s
radius), the domain is radially increasing in time. In this case, to trans-
form the domain into a fixed one, the following change of variable is
used: y = r/h, where y now goes from zero to unity. Since the h only
depends on time ¢ and not x, the derivatives in the new coordinate sys-
tem are related to the original coordinate system through the chain
rule,

9 10 9 9 9 9 ydno 0

or  hdy’ 0x Ox’ Ot Ot hdtdy

These relations can now be used to develop the required equations for
the numerical model. Figure 1 shows a schematic representation of the
flow and the coordinate systems. Since the nondimensional form of
the equations will be used, the normalized variables are defined as fol-
lows: x = LX, r = aR, h = aH, and y = H (where the last scaling
arises from its definition). The use of nondimensional form is neces-
sary to simplify the problem into its leading order result as discussed
later.

B. Hydrodynamics

Three conservation laws are needed to develop the hydrodynam-
ics model: (i) conservation of fluid mass (ie., continuity equation),
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FIG. 1. A schematic representation of osmotically driven laminar flows within an
elastic membrane. The terms u, v, X, and h are the axial and radial velocities, front
position, and membrane radius, respectively. The x and r are the longitudinal and
radial directions, and y is the radial direction in the new coordinate system with a
fixed domain.

(ii) conservation of momentum in the axial and radial directions only
due to cylindrical symmetry, and (iii) conservation of solute mass
(i.e., advection—diffusion equation). As mentioned earlier, these equa-
tions will be expressed in a nondimensional form to enable further
simplifications for model development. The normalized variables
defined by u=uU, v=wV, u= i, p=pP, ¢ =¢cC, and
t = tyt are introduced, where ug, vy, ly> Po» o> and £, are the charac-
teristic axial velocity, radial velocity, dynamic viscosity, pressure, con-
centration, and time, respectively.

The characteristic concentration ¢ is set to be in grams, and  is
determined from ¢, (converted into mol m~3) and temperature T fol-
lowing a typical relation between concentration and dynamic viscosity
for sucrose.’’ The characteristic radial velocity v, is determined from
osmosis (the driving force for this type of flow) as later discussed, and
uy is related to vy by the aspect ratio ¢ as ug = vp/¢. The characteristic
pressure is set by the viscous pressure scale as py = Liyupa 2 (since
the flow is at low Reynolds and Miinch numbers'’) and the character-
istic time is the radial diffusion timescale, which is the fastest physical
process in this case, as {, = a*/D.

For an incompressible Newtonian fluid, the nondimensional form
of the continuity equation in the new coordinate system (ie., x — y
system) is

ou 10

X + Y@Y(YV) =0, (2)
where H, U, and V are the membrane radius and axial and radial
velocity in a nondimensional form, respectively. Equation (2) is true
when the viscosity is allowed to vary with solute concentration or
when it is assumed to be constant, set by the loading concentration.
Both cases will be analyzed to allow the effect of membrane elasticity
alone (by assuming a constant viscosity) and the interactive effects of
both to be evaluated. However, only the momentum conservation
equations of the constant viscosity case will be shown for simplicity.
The full Navier-Stokes equations for the variable viscosity case can be
derived and is featured elsewhere.'' Here, only the leading order
results are shown.

The flow of water in the tube is described by the momentum bal-
ance in the axial and radial directions, which are shown here in a non-
dimensional form as

pubs.aip.org/aip/pof

¢ |OU Y dHOU ou  Vou
+ eRe|U +

Scldr  Hdt oy X ' HOY
op LU 1 0 [ U
“Tax T oxe ma—y<Ya—y) (3)
i{a_v_zd_Ha_V] 3R {Ua_VJrZa_V}
Sc|l0t Hdt 0Y 0X HOIY
1op  ,0*V , 1 9 (_ 0V , vV
T THoy " ax2 EWW( W)%W’

where Re = pugay, ' and Sc = Pe/Re are the Reynolds and Schmidt
numbers, respectively, as before. Equation (3) assumes that there are
no external forces on the fluid and that gravitational forces are negligi-
ble.” As in the lubrication theory, when the reduced Reynolds number
tends to zero (ie, ¢éRe — 0) and for high Schmidt number (ie.,
Sc > 1), the leading order terms in Eq. (3) satisfy

1o (ouy_op vop_ “
YH20Y \" 0Y) 90X’ HOIY
The boundary conditions needed to obtain the leading order terms of
the velocity field from Eq. (4) are as follows:

ou

=0, V(y=0)=o. (5)
Y=0

The first boundary condition in Eq. (5) states a no-slip condition at
the membrane. The second and third boundary conditions are derived
from symmetry considerations alone at the center of the pipe.
Combining Egs. (4) and (2), the axial and radial velocities are given by

y_Hop
40X

-1, v=-"-—515- 6)

H? %P {W }
From Eq. (6), one can see that the formulation is the same as the
Hagen-Poiseuille formulation with two differences: (i) The pressure
gradient 9P/0X is not constant because osmosis dictates a finite radial
velocity at the membrane leading to 9*P/9X? # 0 and (ii) the mem-
brane radius is not constant and appears as a new variable H to be cal-
culated from a separate equation discussed later on that
accommodates wall elasticity and permeability. The velocity field for a
variable viscosity can be derived in a similar manner where the full
details are shown in Ref. 11 with the derivation in the new coordinate
systems not differing from the case of constant viscosity. The velocity
field can be determined from

_OU Y ,0P

“or T2 ox -
0—U+li(w):o.

0X ' YOY

The first equation of (7) results from the axial momentum balance
equation that differs from Eq. (4) by having a concentration-
dependent viscosity multiplying the term on the left-hand side and a
new term that includes the first derivative of the viscosity 0t /0Y mul-
tiplied by the first derivative of the axial velocity JU/JY as shown in
Ref. 11. After re-arranging these terms together in a similar manner as
in Eq. (4) (where i appears inside the derivative), one can integrate
this equation in the Y direction to arrive at the result in Eq. (7)
while imposing the second boundary condition of Eq. (5). Inspecting
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Eq. (7), it is noted that when the viscosity is constant, the result in Eq.
(6) can be derived from Eq. (7) as expected.

The third conservation law, the conservation of solute mass, is
derived using the Reynolds transport theorem. The transport of solutes
(here sucrose) in the axial and radial directions follows from advection
and molecular diffusion. The equation for the conservation of solute
mass in a nondimensional form can be expressed as (in the X — Y
coordinate system)

oC_YdHOC ., ,0C , VOC
ot Hdroy ' CUoX CHOY
0*C 1 0 oC
_ 27~ - el
o T ym oy <Y8Y>’ ®

where Pe = vyhoD ™! is the radial Peclet number as discussed earlier.
Equation (8) describes the conservation of solute mass for the constant
and variable viscosity cases. The new term on the left-hand side is the
result of a radially expanding membrane where the nondimensional
membrane radius H is a function of dimensionless time 7.

As discussed earlier, osmotically driven flows differ from the
Hagen-Poiseuille formulation because of the radial inflow and outflow
of water. In this case, the membrane is semi-permeable and allows
water molecules to enter and exit the tube, but it conserves the solute
molecules within the tube. The radial inflow/outflow of water along
the tube boundaries arises from a pressure difference across the mem-
brane due to osmosis. It is best formulated as a boundary condition (in
a nondimensional form) using a Darcy-type flow expression”” as

C 1 dH

where M = kuyL*a=3 is the Miinch number defined as the ratio of
axial to radial resistance,”'” and o is a constant related to membrane
properties. The membrane permeability k is assumed constant in space
and time (i.e., no permeability variations due to membrane expansion)
for simplicity. Theoretically, k is not constant (especially in time),
where the membrane’s pores distribution and size are varying because
of the membrane expansion. This assumption is especially invalid if
the membrane is allowed to reach its plastic regime where the material
is deformed. However, to reduce the number of model parameters that
must be a priori specified, the membrane is assumed to be ideally elas-
tic with a constant k. Equation (9) is evaluated at Y = 1 and describes
the driving force in this type of flow where the radial velocity scale
vy = kRcho(MWnL)71h52 is obtained [R; = 8.3145] (mol K)7',
T = 293K, and M,, = 342.3 g mol " are the ideal gas constant, tem-
perature, and sucrose molecular weight, respectively]. The last term on
the right-hand side of Eq. (9) arises due to changing the coordinate
system. This term describes the work done against the membrane to
expand it.”” In this case, V becomes the relative velocity in the moving
frame of reference and V — odH /dt describes the absolute velocity
needed for osmosis. The choice for the constant «; and its effect on
the flow will be discussed in Sec. I11.

C. Membrane elasticity

To understand the time evolution of the membrane radius, speci-
fication of the membrane physics is necessary. This specification can
be accomplished by considering the fluid-solid interface interactions
and analyzing the stresses and deformation within the membrane.

ARTICLE pubs.aip.org/aip/pof

However, since the main concern here is to analyze the effect of mem-
brane elasticity on osmotically driven flow numerically, a simpler
approach will be adopted. From independent experiments on elastic
permeable tubes,”” the membrane radius appears to evolve in a near
exponential manner with increasing t. For this reason, a differential
equation that leads to an exponential shape will be externally supplied
so that

dh

— h=ay, 10

at +a az, (10)
where a; and a, are two constants that both depend on membrane
properties (rigidity and elastic properties). The nondimensional form
of Eq. (10) can now be written as

H
d_+E1H:E2, (11)
dr

where E; = ajty = 1/r, and E, = ayty/hy = m/r, are two nondi-
mensional numbers related to the rate of expansion factor r, (ie., if
r, = 2, the rate of expansion is 2¢;) and the maximum radius factor m
(i.e., if m =2, the maximum radius is 2a). These two constants
describe two separate features of the membrane, which we label as
elasticity and rigidity. Here, elasticity describes the temporal rate of
membrane expansion (higher rate of expansion means lower elastic-
ity), whereas rigidity refers to the maximum radius that can be
achieved by the membrane tube before plastic behavior dominates.
That is, a higher maximum radius factor means a lower rigidity. It is
noted that imposing such a representation on h or H weakens the cou-
pling between fluid pressure and expansion rates. This coupling may
be added by allowing a; to be transient and vary with fluid pressure in
the tube. For simplicity, this addition was not included and only the
magnitude of a constant a; is considered. To be clear, a; dictates the
rate of tube expansion, but the final tube radius (maximum volume)
that can be attained is set by a,. Including a dependency between a,
and fluid pressure will act to alter the time at which the maximum
expansion is reached, but not its magnitude.

D. Model calculation

1. Numerical scheme

A brief description of the numerical scheme is presented. In
plants, the radial Peclet number Pe is small thus characterizing a pre-
dominately diffuse flow and for the results presented in Secs.
11T A-III C, the Pe was chosen to be less than unity. For this reason, a
central difference approximation was used to develop the numerical
scheme with 50 nodes in both directions (axial and radial). For the
time marching scheme, an iterative approach was used to calculate the
concentration and membrane radius from Egs. (8) and (11). At each
time step, the velocity and pressure fields are solved by discretizing the
equations while using the previous concentration field and membrane
radius. For the constant viscosity model, Eq. (9) is used to solve the
pressure field in the domain while noting that V|,,_; can be related to
P from the second equation of (6) and dH/dt can be obtained from
Eq. (11). For the variable viscosity model, Eqs. (7) and (9) are used.
Then, the concentration field and membrane radius are solved using
Egs. (8) and (11) using the explicit scheme. Within each time step, the
following recurrence scheme is used Fyiy = fFii + (1 — f)Fy. That
is, from Fj, an Fj;; is determined and a weighing scheme between
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these two values is employed to re-determine Fy ;. Fx+; on the right-
hand side is an estimate to be adjusted based on the weight . This
recurrence scheme has been used to accommodate the non-linearity of
including a concentration-dependent viscosity. (For consistency, it is
also used for the constant viscosity model.) In this case, at each itera-
tion, the viscosity is solved using the concentration at iteration k + 1
and the velocity and pressure fields are solved the same as before.
Once convergence is achieved (ie., the root mean square error
between k + 1 and k for C and H), the numerical model goes into the
new time step. The f§ is a constant ranging from zero to unity describ-
ing the weight taken from each new iteration. For example, if f = 0,
the scheme becomes the common explicit scheme in time with no iter-
ation within each time step. If f = 1, the scheme behaves like an
implicit scheme in time. For the set of conditions chosen and pre-
sented later, f = 0.1 and the non-dimensional time increment was set
to dt = 0.001. The scheme was tested using multiple values of f5, and
the solution was shown to be independent dt or beta in the vicinity of
those selected values. For boundary conditions, closed pipe boundary
conditions (i.e, U(X = 0) = U(X = 1) = 0) were chosen for the lon-
gitudinal velocity fields beside the ones in Eqgs. (5) and (9).
Additionally, the closed tube assumption with no sinks requires the
solute to be conserved within the tube so that

oc|  _oc|
X |y OX|p, W
ac
PeH(VC)ly_; — 5o =0

Symmetry considerations at the center of the tube 9C/JY|,_, were
enforced here. For initial conditions, sucrose was released as an axially
smooth function (ie, C(X,7 = 0) = f(X)) with no radial variation
and the membrane radius was set to unity (ie., starting at the initial
radius a).

2. Front position

The front position x; can be used to assess the transport effi-
ciency for different cases. This front position can be calculated numeri-
cally from maximal |0C(X) /0X| where the overline operator denotes
area-averaging in the radial direction. Based on previous studies,””’
the evolution of the front position follows an approximate exponential
profile given by

xf=L— (L—1)exp(-0t), (13)

where [ = 0.2 is the initial sucrose front location, L = 1 is the length
of the tube, and xf is the front position all in non-dimensional form.
From Eq. (13), one can obtain a linear relation between t and
In[(L — x¢)/(L — 1)]. Hence, linear regression can be used to calculate
the constant 0 describing the rate of evolution of the front position
away from the entrance boundary condition. For reference, this evalu-
ation was conducted when the front reaches around 50% of the
domain (ie., maximum distance away from the imposed boundaries
longitudinally).

lll. RESULTS AND DISCUSSION

The results presented here highlight the effect of having an ideal-
ized elastic membrane (ie., uniformly expanding in the radial

ARTICLE pubs.aip.org/aip/pof

direction) instead of a rigid one on osmotically driven laminar flows
for both constant and variable viscosity models. The analysis can be
divided into three parts. In the first part, the analysis will focus on
varying the rate of expansion factor r, that describes the elasticity of
the membrane. In the second part, the analysis will focus on varying
the maximum radius factor m that describes the rigidity of the mem-
brane. Finally, the analysis will focus on the interconnected effect
between having a concentration dependent viscosity and the mem-
brane elasticity and rigidity.

Typical phloem conditions were used to generate the results
for comparison: initial membrane radius a = 10 um, tube length
L = 0.1 m, membrane permeability k = 1072 m (Pa s)~!, molecular
diffusion of sucrose in water D = 4 x 107" m?* s, loading sucrose
concentration ¢y = 107> g, and dynamic viscosity y, calculated from
¢o and T based on a neural network model.”" For these conditions, the
nondimensional numbers are Re = 0.0632, ¢Re = 6.3183 x 1079,
M = 0.0359, Pe = 0.0566, and Sc = 8.9637 x 10°. Clearly, the order
of magnitude of these nondimensional numbers will have an impact
on the flow as shown in previous studies.”'”!" However, since the
main concern here is the effect of membrane elasticity and its relation
with variable viscosity, only the results of this set of conditions are
shown.

For membrane properties, there is substantial uncertainty (ie.,
order of magnitude is not known) on the rigidity of the membrane.
Another complication to describing membrane rigidity in real trees is
that rigidity will also depend on the turgor of the surrounding cells.”
For this reason, the constants r,, m, and a; were chosen as constants
and sensitivity analyses around those values conducted. For the rate of
expansion, two cases were chosen: r, = 5 and r, = 10. For the maxi-
mum radius factor, also two cases were chosen: m = 1.5 and m = 2.
For o, the values were chosen depending on the average pressure in
the membrane. Based on previous experiments,”” the axially averaged
pressure follows the profile of the radius evolution in time. By averag-
ing Eq. (9) in the longitudinal direction, one can see that the average
pressure is close to the average osmotic potential minus the rate of
expansion of the membrane. This finding is theoretically consistent
with the findings in Ref. 29 (since [ VdX = 0 because of the closed
boundary conditions at both end of the membrane). For r, = 5 and
ra =10, oy =1 and a; = 2 were chosen, respectively, that lead to
necessary exponential profile of the average pressure evolution in time
as shown in Fig. 2(a). The choice of a; did not have any primary
impact on the front speed, where the case of , = 10 and o; = 1 was
assessed for the constant and variable viscosity models (not shown).
However, it did have an impact on the average pressure profile where
there was an initial drop in the pressure (again not shown) because it
followed the average osmotic potential, which is decreasing as shown
in Eq. (9) (because H is increasing). Theoretically, o; should not have
an impact on the front speed because the axial velocity depends on the
pressure gradient and not on the absolute pressure. If one differenti-
ates Eq. (9), the rate of expansion of the membrane radius term disap-
pears because of the assumption H # f(X) as discussed in Sec. [T A.
Finally, the rigid case was chosen when E; = 0 and E, = 0 leading to
five cases in total for each model.

A. Effect of membrane’s rate of expansion

As discussed in Sec. 11 C, the rate of expansion parameter r, is
related to the membrane elasticity. When r,, decreases, the elasticity of
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FIG. 2. (a) The time evolution of average pressure in the tube and (b) the time evo-
lution of the pressure gradient along the domain. Square and up-pointing triangle
denote the constant and the variable viscosity model with high elasticity (r, = 5),
respectively. Circle and down-pointing triangle denotes the constant and the vari-
able viscosity models with low elasticity (r, = 10), respectively. Solid black line
denotes the constant viscosity model for a rigid membrane. Different colors denote
different maximum radius (i.e., different m).

the membrane increases and the membrane reaches its maximum
expanded radius faster. This result can be first shown when one con-
siders the pressure gradient over the domain which is shown in Fig.
2(b). For both cases of m, when the membrane elasticity is lower, the
pressure gradient is higher compared to the higher elasticity case.
Having a higher pressure gradient leads to a higher axial velocity as
predicted from Eq. (6). Here, only the constant viscosity model is
shown since the variable viscosity model has a similar behavior but
with a lower magnitude'" (i.e., higher efficiency). The effect of mem-
brane elasticity can also be shown in Fig. 3 that shows the evolution of
the membrane radius in time. This has an impact on the evolution of
sucrose front, where simulation results show that the front travels
faster when the membrane is less elastic. This result is apparent in Fig.
4(a) that features the evolution of the front position in time. From this
figure, one can see that the front reaches the mid-point of the domain
faster when the membrane has lower elasticity (i.e., higher r,) for both
models. This effect is independent of the maximum radius that the
membrane can reach (i.e., for both cases where m = 1.5 and m = 2),
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FIG. 3. The time evolution of membrane radius. Square denotes the constant vis-
cosity model with high elasticity r, = 5. Circle denotes the constant viscosity model
with low elasticity r, = 10. Solid black line denotes the constant viscosity model for
a rigid membrane. Blue color denotes the case m = 2, and green color denotes the
case m=1.5.
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FIG. 4. (a) The time evolution of the front position X; and (b) the time evolution of
the logarithm of the relative front position. Square and up-pointing triangle denote
the constant and the variable viscosity model with high elasticity (r, = 5), respec-
tively. Circle and down-pointing triangle denote the constant and the variable vis-
cosity models with low elasticity (r, = 10), respectively. Solid black line denotes
the constant viscosity model for a rigid membrane. Dashed black line denotes the
variable viscosity model for a rigid membrane. Different colors denote different max-
imum radii (i.e., different m). Head of the arrow in (a) shows the direction of
increased rigidity.
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which is more apparent in Fig. 4(b) that shows the logarithm of the
relative front position as a function of time as discussed in Sec. II D 2.
Again, Fig. 4(b) shows that for each case (both m and both models), 0
decreases with elasticity. Since the rigid case for each models has the
highest transport efficiency, the ratio 6/6,, where 0, is the 0 for the
rigid case, shows the degree of efficiency. Taking the constant viscosity
model, for example, for m = 1.5, the ratio is equal to 0.3237 when 7,
and 0.3685 when r, = 10 and for m = 2, the ratio is equal to 0.1337
(r, = 5) and 0.146 (r, = 10). As expected, this means that for lower
elasticity, the transport efficiency is higher. The variable viscosity
model had a similar pattern.

B. Effect of membrane’s maximum radius

Having covered the effects of elasticity on front speed for two
prescribed rigidity values, we now turn attention to the rigidity effects
on front speed for two prescribed elasticity values. Recall that the rigid-
ity effects are reflected by the parameter m as discussed in Sec. 11 C.
When m increases, the maximum radius that the membrane can reach
increases as shown in Fig. 3 (as expected from the definition of m).
Simulation results show that increasing m (i.e., decreasing the mem-
brane rigidity) leads to a slower front speed. Figure 2(b) shows this
result where for the same r,, the pressure gradient decreases with
increasing m. This is also shown in Fig. 4(a) where the direction of the
arrow shows the direction of increased rigidity. As expected, the
sucrose front moves faster in a rigid membrane and this speed
decreases whenever the membrane is allowed to expand. Again, the
result is more visible using Eq. (13) to solve for 0 for each case and is
plotted in Fig. 4(b) where 0 is the slope of each plot. As discussed in
Sec. 111 A, the ratio /0, shows the degree of efficiency for each model
when compared to the rigid (most efficient) case. For the constant
viscosity model, when r, =5, this ratio is equal to 0.3237 when
m = 1.5 and 0.13 when m = 0.13. When r, = 10, this ratio is 0.36
when m = 1.5 and 0.15 when m = 2. Again, a similar behavior was
apparent for the variable viscosity model. This finding underscores the
role of membrane rigidity: For higher rigidity, sucrose transport effi-
ciency is higher, as expected. These results are further elaborated upon
when Eq. (9) is the driving force for this type of flow. When m
increases, the maximum H increases leading to a lower osmotic poten-
tial (second term on the right in the equation) that drives the flow. In
this case, the same amount of sugar is attained but in a higher volume
of water. Increasing the volume of water without altering the sugar
mass leads to a lower concentration and concomitant osmotic poten-
tial. This volume increase is in contrast to the rigid case where the
osmotic potential is constant because the same water volume is sus-
tained during the whole simulation. This contrast between the flexible
and rigid membrane leads to the so-called dilution effect already dis-
cussed in laboratory studies.””

C. Impact of variable viscosity in an elastic membrane

As discussed in Secs. I1T A and 111 B, the variable viscosity model
showed a similar trend in time as the constant viscosity model for all
combinations of m and r, with a minor difference. This difference is,
once again, connected to the front speed. From Figs. 4(a) and 4(b), the
sucrose front travels faster in the variable viscosity model when com-
pared to the constant viscosity model for all m and r, values. This
front speed difference is not expected to be large given the small initial
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concentration ¢y and tube length L used here. In a recent study, it was
shown that this difference in the front speed increases with increasing
¢ and increasing tube length due to viscosity variations.'' However,
the main concern here is the interactive effect between a concentration
dependent viscosity and an elastic membrane and their concomitant
trends on xy. To study this effect, the initial concentration was doubled
(i€, co =2 x 107° g) and the efficiency coefficient 6/6, = {, where
in this case f3, is the calculated f# (approximated from linear regres-
sion) for the constant viscosity model for each case (i.e., different m
and r,), is calculated. In this case, the increase in efficiency due to a
concentration dependent viscosity compared to a constant one set by
co is calculated and compared when the rigidity (i.e., ) and elasticity
(i.e., 7,) are changed. The results of this case are shown in Fig. 5(a) and
demonstrates a similar trend as in Fig. 4(b). Using this analysis, the
sensitivity of the variable viscosity model to both membrane parame-
ters m and r, can be further elaborated. For r, =5, { ~ 1.6 when
m=1.5 and {~ 13 when m =2. For r, =10, { ~ 1.9 when
m = 1.5 and { ~ 1.5 when m = 2. From these results, one can see
that the impact of a concentration dependent viscosity decreases when
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FIG. 5. (a) The time evolution of the logarithm of the relative front position for the
higher concentration case ¢ = 2 x 107> g and (b) the viscosity profile along the
longitudinal direction when the front reaches 50% of the domain. Square and up-
pointing triangle denote the constant and the variable viscosity model with high
elasticity (r, = 5), respectively. Circle and down-pointing triangle denote the con-
stant and the variable viscosity models with low elasticity (r, = 10), respectively.
Different colors denote different maximum radii (i.e., different m).
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the membrane elasticity increases (i.e., decreasing r,) and increases
when the membrane rigidity increases (i.e., decreasing m). This result
is related to the effect of local viscosity variations on the front speed,
which is associated with a push-pull mechanism in osmotically driven
flow as discussed in Ref. 11. Figure 5(b) shows the viscosity profile for
the radially averaged concentration along the longitudinal direction
(x) when the front reaches 50% of the domain. This profile is the same
for all cases since the concentration does not differ from one case to
another in a fixed domain. One can see from this figure that the effi-
ciency of the flow can increase even if the viscosity only increases by a
factor of 2. In summary, when changes in local viscosity are taken into
consideration, the pull of water from the membrane (or the phloem in
this case) to the surrounding water reservoir (or the xylem in this case)
becomes more efficient because of decreased resistance to the flow. In
this case, if the membrane is allowed to expand, more water molecules
are being stored inside the membrane (hence the increase in volume)
and that in return decreases the efficiency of the pull mechanism.

IV. CONCLUSIONS

The derivation of a two-dimensional numerical model for osmot-
ically driven laminar flows within an elastic membrane was presented
and discussed. This model also included local variations of viscosity
due to sucrose concentration variations. The complexity of membrane
elasticity was reduced to an imposed equation for the evolution of the
membrane radius due to the lack of information on membrane elastic
properties. In this case, the interplay between pressure variations and
membrane elasticity, which does not affect front speeds since the driv-
ing force of the flow depends on the pressure gradient and not the
absolute pressure, was not included. Nevertheless, this model captures
the required representation of a fluid flow within an elastic membrane,
which lead to certain implications on osmotically driven laminar flows.
These implications were observed on the front speed, which is the tar-
get variable when studying the transport efficiency especially for this
application (i.e., sucrose transport in the phloem). In summary, when
the membrane is allowed to expand, thus acting as a water reservoir,
the efficiency of the osmotic potential leads to a front that travels at a
slower rate. This reduction in the flow rate is due to the fact that a part
of the osmotic potential was lost because of dilution where more water
was added to the membrane (capacitive effect) while keeping the same
number of sugar molecules. This effect can be directly seen and
assessed in the osmotic equation. The second effect is that a part of the
osmotic potential was lost to expand the membrane. This effect cannot
be explicitly seen in this model. Therefore, a more comprehensive
approach that includes energy conservation and forces on the mem-
brane interface is needed. The local variations in viscosity also act to
increase the transport efficiency. The interesting impact of membrane
elasticity was the decrease in transport efficiency due to local viscosity
variations. These results have specific implication on sucrose transport
within the phloem where they support the theory that the role of sieve
plates is structural leading to hydraulic benefits. In this case, in plants,
sieve plates are adding rigidity to the phloem for two reasons: (i)
decrease the loss of energy due to membrane expansion and (ii)
improve the flow enhancing effect of local viscosity variations. Future
development will be on explicitly representing the sieve plates within
the phloem and study their effect on adding frictional losses to the
flow and improve the membrane equation to further estimate the loss
of osmotic potential due to the work done on the membrane.
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