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e Drivers of global air-sea CO, flux Abstract The global air-sea CO, flux (F) impacts and is impacted by a plethora of climate-related processes
anomaly also dominate the regional
variability, particularly in the
mid-high latitude oceans factors such as the air-sea partial pressure difference (ApCO,), gas transfer velocity, sea surface temperature,

operating at multiple time scales. In bulk mass transfer formulations, F is driven by physico- and bio-chemical

and salinity—all varying at multiple time scales. To de-convolve the impact of these factors on variability in F

Supporting Information: at different time scales, time-resolved estimates of F were computed using a global data set assembled between

Supporting Information may be found in 1988 and 2015. The F anomalies were defined as temporal deviations from the 28-year time-averaged value.

the online version of this article. Spectral analysis revealed four dominant timescales of variability in F-subseasonal, seasonal, interannual, and
decadal with relative amplitude differences varying across regions. A second-order Taylor series expansion was

Correspondence to: then conducted along these four timescales to separate drivers across differing regions. The analysis showed

Y. Gu, that on subseasonal timescales, wind speed variability explains some 66% of the global F anomaly and is the

yuanyuan.gul @hotmail.com dominant driver. On seasonal, interannual, and decadal timescales, the ApCO, effect controlled by the ApCO,

anomaly, explained much of the F anomaly. On decadal timescales, the F anomaly was almost entirely governed
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Multiscale temporal variability of the . . .
global air-sea CO, flux anomaly. Journal effect was closely connected with the relative strength of atmospheric pCO, and the nonthermal component of

by the ApCO, effect with large contributions from high latitudes. The main drivers across timescales also
dominate the regional F anomaly, particularly in the mid-high latitude regions. Finally, the driver of the ApCO,

of Geophysical Research: Biogeosciences, oceanic pCO, anomaly associated with dissolved inorganic carbon and alkalinity.
128, €2022JG006934. https://doi.

ore/10.1029/20221G006534 Plain Language Summary The number of carbon dioxide (CO,) molecules per unit surface area

Received 19 APR 2022 per unit time that enter the ocean surface from the atmosphere is quantified by the air-sea CO, flux (F). These

Accepted 29 MAY 2023 CO, molecules impact many chemical and biological properties within the ocean. Yet, the direct controls on
how many molecules can possibly be exchanged between the atmosphere and the ocean surface depend on
several environmental factors such as wind speed at some reference height, the amount of CO, molecules in the
atmosphere and in the water (or their imbalance ApCO,), the wave height, and sea surface temperature. These
environmental factors vary on many time scales such as daily, monthly, seasonal, annual, inter-annual, and
decadal. The work demonstrates that the CO, gas exchange is dominated by the wind effect on subseasonal time
scales, while on longer time scales, the ApCO, term, closely related to the variability of both atmospheric and
oceanic CO,, emerges as a leading driver.

1. Introduction

The global ocean currently absorbs some 25% of the annual anthropogenic CO, emissions and exerts a first-order
control on atmospheric CO, and climate (Friedlingstein et al., 2020). However, significant variability as well as
uncertainties in annual global net oceanic CO, uptake have been reported ranging from 1.19 to 2.59 Pg C yr~!
(lida et al., 2021; Roobaert et al., 2018). Regionally, temperate and northern high-latitude oceans are generally
associated with large net CO, uptake, while equatorial oceans represent major sources of CO, to the atmosphere
(Chau et al., 2022; Takahashi et al., 2009). Temporally, variability in air-sea CO, fluxes (F, mol m~2y~1) occurs
at multiple time scales ranging from fractions of seconds (where viscosity dissipates kinetic energy in eddies) to
decades and centuries (climate-related processes). To average out the effects of fast processes such as turbulence
and wave breaking, the CO, gas exchange at the air-sea interface is generally quantified by a bulk mass exchange
parameterization presumed to be valid on time scales much longer than turbulence and wave breaking and is
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Climatology ~ ApCO, driven by temperature and DIC
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De Verneil et al. (2022)
Roobaert et al. (2019)

Wrobel (2017)

Climatology ~Wind speed and ApCO,

Model
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Arabian Sea

Oceanic pCO, and temperature
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Observation
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Climatology Temporal scale: wind speed
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Arctic

Spatial scale: ApCO,

Arruda et al. (2015)
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Climatology

Model

Seasonal

South western Atlantic

Global

Landschiitzer et al. (2014)
Doney et al. (2009)

1998-2011  Oceanic pCO,

Observation
Model
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Oceanic pCO, driven by DIC

1979-2004
1958-2004
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19822011
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Global

Lovenduski et al. (2007)
Le Quéré et al. (2000)
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Southern Ocean

Model

Interannual
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Equatorial Pacific

Global

Landschiitzer et al. (2016)

Subtropical: CO, solubility driven by temperature; high-latitude: DIC and

Observation

ALK

Couldrey et al. (2016)

Interannual and shorter timescale: ApCO, and k; pentadal to multidecadal:

Model 1950-2099

Interannual to multidecadal

North Atlantic

ApCO,

Sitch et al. (2015)

1990-2009  Temperature; atmospheric pCO,

Model

Trend

Global

F=kXx Koy X ApCOz =k X Ky X (pCOzo - pC02u), (1)

where a positive (negative) F represents out- (in-) gassing of CO,. The K|, is
the solubility of CO, (mol L~! atm™') and varies with sea surface temper-
ature (SST) and salinity (Weiss, 1974), k is the gas transfer velocity (cm
h~!) and encodes all the complexity of the air-water mass exchange process
due to turbulence and wave breaking related processes, and ApCO, (patm)
is the difference in partial pressures of CO, between the ocean (pCO,,) and
the atmosphere (pCO,,). The k term is regulated by turbulence intensity
near the air-sea interface arising from wind stresses and buoyancy effects
among other factors (Jihne et al., 1985; Komori et al., 1993; Sarmiento &
Gruber, 2006). For simplicity, climate models typically parameterize k
as a function of readily accessible parameters, the common one being the
mean wind speed at 10 m above the water surface (McGillis et al., 2004;
Nightingale et al., 2000; Prytherch et al., 2010; Wanninkhof, 1992, 2014).
Other processes such as waves, breaking waves, bubbles, and sea spray can
also mediate the magnitude of k and their effects have been accommodated to
some extent in other wind-wave parameterizations of k£ (Brumer et al., 2017a;
Brumeret al., 2017b; Deike & Melville, 2018; Goddijn-Murphy et al., 2011;
Staniec et al., 2021; Zhao & Toba, 2001).

Prior work on the processes driving variability in F has been restricted to
regional scales or limited by specific timescales. Moreover, owing to the rela-
tively sparse observations of pCO, in time and space, prior studies generally
relied on global or regional model simulations to assess the modes of variabil-
ity in F and the processes that control them. A complete review of all the rele-
vant literature goes beyond the scope of a single study, but a few studies are
summarized in Table 1. Typically, both model- and observation-based studies
underscore that the seasonal cycles of F in regional oceans (e.g., low lati-
tude oceans in both hemispheres, high-latitude North Pacific, Atlantic Ocean,
Southern Ocean, and Indian Ocean) are primarily driven by oceanic pCO,
associated with temperature and dissolved inorganic carbon (DIC) under the
impact of biogeochemical and physical processes or factors such as photosyn-
thesis, temperature, and upper water mixing (Landschiitzer et al., 2014, 2018;
Lerner et al., 2021; Long et al., 2013; Takahashi et al., 1997, 2002). On inter-
annual timescales, both ApCO, and k are needed to explain the variability
in F (Couldrey et al., 2016). The variability of the oceanic physical environ-
ment (e.g., SST, wind stress, ocean circulation, and water column mixing)
at this timescale has a significant impact on the ApCO, and k. For example,
the oceanic pCO,, a main driver of ApCO, (Takahashi et al., 2002), has been
shown to be primarily affected by DIC concentration associated with ocean
circulation (Doney et al., 2009; Long et al., 2013; Lovenduski et al., 2007).
For variations on longer timescales, F is mainly controlled by ApCO, with
k contributing modestly (e.g., 25% in the North Atlantic; Landschiitzer
et al., 2016; Couldrey et al., 2016; Mckinley et al., 2011).

The objective here is to identify the mechanisms driving the global air-sea CO,
flux variability at multiple timescales (i.e., subseasonal, seasonal, interannual,
and decadal timescales) derived from a recent global data product that allows
the estimation of F. The work builds on the studies presented in Table 1 using
new observation-based products with the goal to discern to what extent under-
studied processes or factors such as wave breaking, SST, wind speed, and
pCO, individually and jointly (i.e., act in coordination with other processes)
shape F anomalies at multiple scales over time. To this end, recently compiled
temporally resolved global data sets from 1988 through 2015 assembled on
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F=kxK,x ApCO,
| Eq.(6) and (s1)

[ Term 1 | Term 2 ~ [Term3 [Term 4 | Term 5,6...
Wind effect ApCO, effect i
@ av) (5iogs; 4pCO)
Eq.(10) Eq.(11)
ApCO,*dU dApCO,
(pCO,,"-pCO2,")
Eq.(12)
pCO,, pCO,,’
(pCOZa'pCOZa) (pCOZO'pCOZU)
[
Eq.(14) ] } Eq.(15)
Thermal Nonthermal
component component

Figure 1. Schematic diagram illustrating the physical mechanisms, procedures, and associated equations to be considered in
quantifying the variability in F. The SST effect, wave effect, and higher order terms are shown in gray because of their minor
contributions to the F anomaly (Figure S1 in Supporting Information S1). The diagram is further described in the following
sections.

a spatial resolution of 0.5° x 0.5° are used. These data sets enable the computation of F at multiple time scales
(monthly to decadal) using models for k forced by different mechanisms. At first-order, variability in F at different
time scales and regions must reflect the strength and variability of its dominant drivers. Addressing this question
opens up new perspectives about global climate model evaluation, guiding efforts to undertake field campaigns
and long-term monitoring initiatives, and perhaps offering a new categorization of regional oceans in terms of
their controls on F variability at differing time scales. The manuscript is organized as follows: the data sources
and methods are introduced in Section 2. In Section 3, a second order Taylor series expansion is applied to sepa-
rate the drivers (effect of wind speed, ApCO,, SST, and wave height) of CO, flux variability on four spectrally
energetic timescales while including all the joint effects of the drivers. The main procedures and related equa-
tions are schematically illustrated in Figure 1. Limitations and conclusions are presented in Sections 4 and 5,
respectively.

2. Data and Method
2.1. Data Product and Processing Method

Wind speed (U), SST, significant wave height (H), sea surface salinity, and ApCO, data are applied to estimate
the CO, flux and evaluate the drivers of its variability over a period from 1988 to 2015. All data products are
linearly interpolated onto a spatial resolution of 0.5° X 0.5°.

To reduce the uncertainty sourced from wind product when using the wind-dependent parameterization from
Wanninkhof (2014), monthly 0.25° x 0.25° Cross-Calibrated Multi-Platform (CCMP) V2.0 wind speed data at
10-m height (Atlas et al., 2011; Hoffman et al., 2013) are obtained from Remote Sensing System. The monthly
SST and H data at a resolution of 0.5° X 0.5° are obtained from the European Centre for Medium-Range Weather
Forecasts (ECMWF) fifth generation ERAS reanalysis products (Hersbach et al., 2018), a globally complete and
consistent data set combining model data with observations across the world. The empty values of H_ in polar
regions (mainly in ice-covered regions) are set to zero. The monthly ApCO,, atmospheric pCO, and oceanic pCO,
data at a resolution of 1° X 1° are from SOM-FEN (Self-Organizing Map-Feed-Forward Network) products, and
the oceanic pCO, data set is developed using a neural-network method (Landschiitzer et al., 2016, 2017). This
product is based on observational oceanic pCO, from the Surface Ocean Carbon Atlas (SOCAT) version 2 data-
base (Bakker et al., 2014). However, the spatial-temporal smoothing in the SOM-FFN pCO, product filters out
high-frequency variability in some regions, potentially leading to an underestimation of subseasonal timescales.
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For this reason, all the analyses here have been repeated using an ensemble pCO, product-SeaFlux data set
(Gregor & Fay, 2021). It was found that the main results are unaltered (as shown in Supporting Information S1).
The monthly climatological sea surface salinity data at 1° X 1° resolution is from the World Ocean Atlas 2009
(WOAO09) described elsewhere (Antonov et al., 2010).

2.2. Calculation of the Gas Transfer Velocity (k)

To assess the robustness of the results, two different parameterizations are used to estimate k. The widely used
wind-only relation (labeled as ky,,,) is from Wanninkhof (2014) and is expressed as

kwis = aU?(Sc/660)7/2, )

where a = 0.251 in unit of (cm hr=") (m s7!)72, and Sc is the molecular Schmidt number for CO, assumed to be
a function of SST only (Wanninkhof, 2014).

The second expression depends on both wind and wave conditions (Deike & Melville, 2018). This parameteriza-
tion (labeled as k) explicitly considers the bubble effect and is given as

kpis = u. [ANB<6S?CO)4]/2 + %i((u*cwhz)Q/S)]. 3)

In this equation, u, is the air-side friction velocity, which is estimated from a quadratic drag force relation u,. = U
Cp,'2, where U (m s™!) is the near-neutral mean wind speed at 10 m and Cj, is a drag coefficient defined at 10 m
height above the water surface, which can be estimated from C, = (2.7U~" +0.142 + 0.076U) x 10~3 (Large, 2006).
The Ay is a dimensionless constant given as 1.55 X 107, Ay = 1 £ 0.2 X 107> m~2 s%, W, is the dimensionless
Ostwald solubility coefficient, expressed as W, = K RT, R is the ideal gas constant (Keeling, 1993), cun = \/ﬁ
is the ballistic speed, g is the gravitational acceleration (g = 9.8 m s2), and H, is the significant wave height that
must be externally supplied here. Ice-covered and coastal oceans within 1° of the coastline were not included
in the calculations because the spatial coverage of the SOM-FFN pCO, product is coarse in these regions. The
global averaged CO, flux is computed to be around —1.39 Pg C yr~! from Ky, and —1.58 Pg C yr~! from K, ,
and both estimates are within the range reported in the literature (Ilida et al., 2021; Roobaert et al., 2018).

2.3. Fourier Spectral Analysis of the Air-Sea CO, Flux (F)

Variability in F at multiple time scales is analyzed using Fourier spectral analysis. Both power spectrum E(f) and
energy spectrum f E(f) as a function of frequency f are presented. The power spectrum satisfies the normalizing
property f0°° E(f)d f = or, where oy is the temporal standard deviation of F. Because E(f) measures the vari-
ability per unit frequency, f E(f) measures variability (or activity) adjusted by frequency or inverse time scale
at f. In typical time-series where high frequency contains small E(f) and low frequency contains high E(f), the
product f E(f) is intended to measure variability or activity adjusted by size or inverse time scale. This so-called
“pre-multiplied” spectrum f E(f) is routinely used in geophysical flows (e.g., Stull, 1988) to discern transitions
between white-noise (i.e., E(f) ~ f°) and power-laws (E(f) ~ f~%, a > 1) as this transition frequency corresponds
to the peak (or maximum) in the product f E(f). Moreover, under certain conditions (e.g., a Lorentzian spec-
trum), this peak is connected to the “memory” (or integral time scale) in the series. The spectral analysis here
is conducted in two ways. The first approach, which we call “mass-preserving” approach, computes a global
monthly F by averaging across all 0.5° x 0.5° grid cells thereby resulting in a single monthly globally averaged
F time-series over the entire 28-year record. Spectral analysis can then be conducted on this spatially averaged F
record so as to identify dominant energetic time scales in such a spatially averaged F time-series. This approach
preserves the overall computed global CO, mass flux between the ocean and the atmosphere. A drawback of
this approach is that spatial averaging across grid cells dampens F temporal variability originating from space
that may have some memory effects (or legacy) at later times. For this reason, a second approach is introduced
and is labeled as “variance-preserving.” In this second approach, spectral analysis on the time-series of F for
each 0.5° x 0.5° grid cell is first conducted. At each frequency, the squared Fourier amplitudes are computed
for each grid cell and their mean across space for each f'is tracked. Because variances are additive, this approach
preserves the spatial variability at each frequency and when integrated across frequencies, preserves the overall
(space-time) variance in F. A drawback of this approach is that the local spectra at each 0.5° X 0.5° grid cell are
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computed after removal of local means in time. As such, information about the overall global F sinks or sources is
partially lost. For this reason, both approaches are used and compared to assess whether the dominant time scales
are robust to the spectral method of analysis.

Once these dominant time scales are identified, the variability in F and driving factors are analyzed at those indi-
vidual time scales. To extract specific timescales of these time-series, the original monthly F and the associated
driving factor time-series in each 0.5° X 0.5° grid was first transformed into the frequency domain using Fast
Fourier Transforms. Squared Fourier amplitudes not associated with the target frequency (or range of frequen-
cies) to be studied are set to zero. However, all phase angles derived from the Fourier transform are unaltered. An
inverse Fourier transform is then applied to reconstruct the real part of the time-series at this target time scale.
The relations between F and its drivers constructed at this target time scale are then studied. It should be noted
that Fourier decomposition method may induce some biases at the edges (beginning and end) of the time-series
as is the case for the reconstruction of any finite series. Fourier analysis assumes periodic boundary conditions,
which can be problematic when the original time-series shows some long-term trends (e.g., atmospheric pCO,).
Other methodological approaches such as wavelets and empirical mode decomposition (EMD) can also be used
to extract the temporal signal of CO, flux and assess modes of variability (Landschiitzer et al., 2016; Zhang
et al., 2022). Understandably, each method does have its strengths and limitations. For example, the selection of
a wavelet basis function also incurs uncertainty at edges depending on the assumptions used in the wavelet trans-
form (periodic boundaries, mirror-image, etc.). Depending on the time-frequency localization of the analyzing
wavelet, energy leakages across scales are unavoidable when precise frequencies are also sought. The EMD is
also sensitive to both—the record length and edge effects. Because EMD is utilized entirely in the time domain,
multiple periodicities that are adjacent to each other in the frequency domain lead to “mode-mixing,” which can
be problematic for the application here. Differences among these methods are certainly a topic that warrants
inquiry and is better kept for the future.

2.4. Drivers of Air-Sea CO, Flux (F): A Taylor Series Expansion Analysis

To evaluate the contribution of each driver to the interannual variability of F and accommodate any interactions
among them across scales, a second order Taylor series expansion is applied to the annual averaged Fourier recon-
structed time-series in each grid at four target time scales. Annual average salinity in each grid was applied due to
its comparatively small effects on F (Lovenduski et al., 2007; Sarmiento & Gruber, 2006). The F estimated using
the ky,, expression (F,,) is a function of three variables: wind speed, ApCO, and SST, so that

Fwis = f (U, ApCO,, SST). @)

Changes in Fy,,, (=dFy,,,) are the annual averaged F,;,, anomaly estimated by subtracting long-term average Fy, ,
(indicated by overline) from the annual averaged Fy,,, for each grid and is given as

dFwis = Fwis — Fwis. 5)

Using a second order Taylor series expansion, it is related to its drivers via

0Fwia O0Fwi4 0Fw14 1 0*Fwis ,,» . 1 0*Fwua 2
dF = dU + dApCO; + dSST |+ | = dU” + — —dApCO
L BT 9ApCO, “ P2 T GssT 21 oU? 2 9apco P
—_ ) — —_—— ©)
Terml Term2 Term3 Term4 Terms
1 0°Fwis 2 0’Fwi4 0’Fw14 0*Fw1s
= dSST? + —Z Y14 U dApCO, + 24 gUdSST + —2- Y 4 ApCO,dSST].
21 33ST2 9UIApCO; P2 T SUassT 9ApCO,08sT  APCO2455T
“ ~ “ Ve e\ ~ _
Term6 Term?7 Term8 Term9

Here, Term1 + Term4, Term2 + Term5, and Term3 + Term6 represent the effects of wind speed, ApCO,, and
SST, respectively. The sum of mixed terms Term7 4+ Term8 + Term9 signifies “joint effects,” measuring the
nonlinear (i.e., quadratic) contribution impacting dF,,,, (Igarashi et al., 2015). Similarly, for F estimated using
k5 expression (Fp, ), the additional contribution of H, must be considered, so that

Fpis = f(U, ApCO,, SST, Hy), @)
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and
dFpis = Fpis — Fpis. ®
The resulting second order Taylor series expansion is also given (Text S1 in Supporting Information S1).

We focus our analyses on k,, because of the similarity in the results when using ks (see Supporting
Information S1).

3. Results and Discussion

The spectra of the computed monthly F are analyzed to assess the dominant modes of variability in two ways
(mass vs. variance averaging). Once these key energetic modes or frequencies are identified, time-series of F and
its drivers are then reconstructed at those particular time scales. The second order Taylor series expansion is then
applied to analyze the contribution of each driver to F anomaly and its associated variability at those energetic
time scales. The processes leading to the variability of the identified drivers on different time scales are further
analyzed.

3.1. Multiscale Variability of Air-Sea CO, Flux

For simplicity, we refer to E(f) as the power spectrum (i.e., units of variance per unit frequency) and its
pre-multiplied form f E(f) as the energy spectrum (units of variance). The power (averaged energy) and energy
spectra produced by the “mass-preserving” approach are generated from spatially averaging CO, fluxes and
their associated driving variables across all grid cells (Figures 2a and 2b). The spectra are compared against the
“variance-preserving” approach that generates the spectra of F and driving variables for each grid cell and then
spatially averages all spectra for each frequency (Figures 2c and 2d). For the “variance-preserving” approach,
the spatial coefficient of variation (=o/u, where o is standard deviation of the spatial energy, u is the spatially
averaged energy) at each frequency can be determined (Figures 2e and 2f). In all spectral calculations, the Fy,,,
and F;,; results are further compared.

The spectra for Fy,;,, and Fp,,, are almost indistinguishable at all time scales (Figure 2). The power spectra for
all variables from the mass- and variance-preserving approaches are similar though the contained power per
frequency is different (Figures 2a and 2c). In contrast, energy spectra from the two approaches differ in distri-
bution and magnitude (Figures 2b and 2d). However, similar multiscale variability among the two approaches
is evident for F and the driving factors (wind speed, ApCO,, SST, and H). Both mass- and variance-preserving
approaches agree that two peaks on timescales of annual (~12 months) and semiannual (~6 months) are the domi-
nant modes of variability in the F spectra, which is consistent with prior studies (e.g., Wanninkhof et al., 2013).

The power is lowest in subseasonal timescales (<3 months) and highest in decadal (>10 years) or seasonal
(6-12 months) timescales depending on averaging approaches. In contrast, the total energy retained in seasonal
timescales is 12 times higher than that in decadal and subseasonal timescales, and in interannual timescales
(27 years) the retained energy is the lowest for the “mass-preserving” approach. For the “variance-preserving”
approach, though the highest total energy is also observed in seasonal timescales, the subseasonal timescales
contain the second highest energy, which are much larger than the energy in decadal timescales. Therefore,
though the most energetic mode is seasonal variability, the second most energetic mode is decadal or subseasonal
variability depending on the averaging approaches. Because variances from the “variance-preserving” approach
are additive, the integrated energy and power are larger than those from the “mass-preserving” approach. Energy
in “mass-preserving” approach decreases more in the high frequencies than “variance-preserving” approach due
in large part to the regionally generated spatial variability at high frequencies (Fredriksen & Rypdal, 2016),
particularly in the subseasonal timescales. This finding also indicates that aliasing effect has much weaker
signature on the variance-preserving approach when all the spectra are averaged out because aliasing cannot act
identically on each grid cell given the dissimilarity in the finer-scale processes. Interestingly, the coefficient of
variation suggests highest spatial variability occurs on the 6-month time scale (Figures 2e and 2f). In all cases,
the spatial variability exceeds the mean energy content at every frequency analyzed—though the coefficient of
variation is surprisingly bounded within a narrow range (1.2-2.2 for power spectra and 2-3.2 for energy spectra).
Overall, while the mass-preserving and variance-preserving approaches differ in some ways, they both highlight
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Figure 2. Global averaged (a) power spectral density E(f) and (b) energy spectra f E(f) for CO, flux anomaly from both expressions (Fy,,, and Fy,,;) and relevant
variables (anomalies in ApCO,, wind speed, sea surface temperature (SST) and significant wave height (H,)) (from mass preserving approach). (c) Spatially averaged
power spectral density and (d) energy spectra for Fy,,, and F,;; anomalies and relevant factors at each grid (from variance preserving approach). Coefficient of variation
of the spatial variability in (e) power spectra E(f) and (f) energy spectra f E(f) of Fy,,, and Fj,,5 as a function of frequency. For (b) and (d), energy on the y-axis is
estimated by multiplying the power spectral density with the frequency (i.e., pre-multiplied representation). The dashed vertical lines represent the timescales as labeled
and the values are the energy contained (also the variance) in the corresponding timescales. From right to left, the lines represent subseasonal (<3 months), seasonal

(6 months—1 year), interannual (2—7 years) and decadal timescales (>10 years).

dominant energy at subseasonal, seasonal, interannual, and decadal timescales. We therefore interrogate these
specific timescales using the Taylor series expansions. These selected “target” scales also span all the time scales
considered or deemed as significant in Table 1.

The energy or activity on interannual timescales may be associated with the El Nifio-Southern Oscillation
(ENSO), with correlation coefficients (R) between the Nifio 3.4 index and average CO, fluxes over the global
ocean and within tropical region being around —0.6 and —0.8, respectively (Figure S2a in Supporting Informa-
tion S1). ENSO, which generally occurs every 2—7 years, governs the interannual variability of CO, flux over
the global ocean though it occurs within the tropical Pacific (Feely et al., 1999; Ishii et al., 2014; McKinley
et al., 2004). During the warm phase of ENSO, trade wind speed reduces, and upwelled DIC decreases due to
the weakened upwelling and deepened thermocline in the eastern Pacific, leading to less CO, outgassing. In
contrast, stronger winds and more DIC transported to the ocean surface drive more CO, outgassing of the ocean.
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Figure 3. Time-series of each terms’ contribution (wind, ApCO,, SST and the sum of the mixed terms) to the CO, flux anomaly based on ky,, from 1988 to 2015. (a)-
(d) show subseasonal, seasonal, interannual, and decadal timescales, respectively. The R terms are calculated using Equation 9. Contributions of SST and the summed
mixed terms are small and indistinguishable from the x-axis.

The Pacific Decadal Oscillation (PDO) is a major driver of decadal variability of physical and biological activ-
ity in the Pacific Ocean. It can modulate regional and even global CO, flux by impacting oceanic pCO, (Feely
et al., 2006; Takahashi et al., 2003). This connection is supported by the correlation coefficients between the
PDO index and global F (R = 0.7) and average F in mid-high latitude regions (R > 0.8) (Figure S2b in Supporting
Information S1). Some energy on scales shorter than 3 months might be linked to the Maddan-Julian Oscilla-
tion (MJO), though correlation between global F and MJO index is low (not shown). The MJO, which reflects
large-scale coupling between tropical deep convection and atmospheric circulation, has a large impact on tropical
wind speeds (Madden & Julian, 1971). An explicit connection between the MJO and global CO, flux is under-
studied compared to PDO and ENSO but the spectra from the variance-preserving approach highlight variability
on subseasonal timescales. Therefore, the subseasonal timescales are included in this analysis. Though other
climate modes (e.g., Atlantic Multidecadal Oscillation, Southern Annular Mode or North Atlantic Oscillation)
do not show a clear relation to the global CO, flux, their influences on the variability of regional CO, flux are
verified by both models and observations (Landschiitzer et al., 2015; McKinley et al., 2017).

3.2. Mechanisms Explaining the CO, Flux Anomaly Across Scales

Wind and ApCO, effects are two major drivers of the variability in the F anomaly. Contributions of SST, H,
and the nonlinear mixed terms appear to be small and are neglected for all four timescales at global spatial
scales (Figure 3; Figure S3 in Supporting Information S1). The negligible contribution of SST and H_ might be
attributable to the small effect of these two terms on F compared with wind speed and ApCO, (Figure S4a in
Supporting Information S1). Though both Sc and CO, solubility vary with SST, the counteracting response of
F to (Sc/660)~%> and solubility dampens the response of F to SST variations (Figure S4b in Supporting Infor-
mation S1). While the direct effect of SST on F is small, its indirect impact on F through oceanic pCO, is large
at regional scales (Lerner et al., 2021; Roobaert et al., 2019). The annual variability of wind speed and ApCO,
effects are consistent for both expressions, though their magnitudes differ by negligible amounts. A dimension-
less ratio is now introduced to evaluate the relative importance of wind speed and ApCO, effects on F variability
for each of the four timescales. The ratio is labeled as R and is given by

R= |wind effect|
" |ApCO; effect| + |wind effect|”

®

where |.| represents the absolute value of each term. For example, the R = 0.5 represents an equal wind and
ApCO, effect, while the closer the ratio is to 0, the more influence the ApCO, effect has, and the closer the ratio
is to 1, the more influence the wind effect has. The quantification of the wind effect on F based on Equation 6 is
expressed as

OFwis 1, | 9*Fwis

U 2! oU2 dU? = 0.502aU (ApCO,)(Sc/660)/*dU + 0.251(ApCO,) dU* (10)
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Table 2
Regional Variations in the Factor (Wind vs. pCO,) That Predominantly Controls Air-Sea CO, Flux (F,,,) Variability at
Four Timescales

Time scales

Zones Subseasonal Seasonal Interannual Decadal
Tropical (15°S-15°N) Windl, _ ¢, Windl, _ 5, ApPCO,lg _ 28 Windl, _ ¢,
Northern temperate (15°N-45°N) Windl, _ e ApCO, | _ 45 ApCO,lg _ 41 ApPCO, |z _ 24
Arctic (45°N-75°N) Windl, _ 45 Windl, _ 53 ApCO, g _ o4 ApCO,lx 05
Southern temperate (15°S—-45°S) Windl, _ s Windl, _ 5, ApCO,lg _ o4 ApCO,lz_y»
Southern Ocean (45°S-75°S) ApCO,lg _ o357 ApCO, |z _ 37 ApCO, | _ o2 ApCO, Mg _ 003
Global oceans Windly, _ 66 ApCO, | _ 47 ApCO,lg _ o3 ApPCO,lr _ 06

Note. The ratio R from Equation 9 for each region is presented.

and the ApCO, effect in Equation 6 is expressed as

2
MarApco2 +4 mdApCng = 0.251aU%(Sc/660)"/*d ApCOs. (1
0ApCO,

2! 9ApCO,>

The averaged R marginally differ with different k parameterizations for each time scale. Calculations based on
kp, s predict relatively higher ApCO, effect and lower wind effect (Figure S3 in Supporting Information S1). From
subseasonal to decadal time scales, ApCO, effect plays an increasingly important role in determining F variabil-
ity, and conversely the variability in the contribution of wind effect decreases when compared with ApCO, effect.
The wind effect is stronger than ApCO, effect only on subseasonal time scales. Neglecting the contributions from
other factors, the contribution from wind at subseasonal time scales is about twice as large as the ApCO, effect,
with the wind effect accounting for approximately 66% of CO, flux variability, and the ApCO, effect contribut-
ing the remaining 34%. On seasonal timescales, contributions from wind are slightly smaller than ApCO, effect
(R=0.47 for ky,,; R = 0.39 for kp, ). In contrast, the variability of CO, flux is dominated by the ApCO, effect on
interannual timescales (R & 0.3) and is almost entirely driven by ApCO, effect on decadal timescales (R = 0.05).

Considering the possible counteracting regional effects of each factor on global averaged CO, flux anomaly,
Hovmobller diagrams of these drivers on four timescales throughout the study period are now presented (Figure 4;
Figure S5 in Supporting Information S1). The zonal distributions of each factor's effect based on the two k expres-
sions show small differences over years (excluding the contribution of H ). Across the global ocean, wind and
ApCO, effects play a major role in controlling the global variability of CO, flux and the effects of SST and H_ are
negligible. Regionally, the magnitude of wind and ApCO, effects vary with latitude across scales. The dominant
drivers of variability in regional F,,, across scales are summarized (Table 2). To some extent, the main drivers
on global scales also dominate the regional variability in CO, flux anomaly. In tropical regions (15°S—15°N),
wind effect is the main driver of F variability across scales except at interannual scales. In southern temperate
(15°S—-45°S) and Arctic (45°N-75°N) regions, the wind effect dominates the F variability on subseasonal and
seasonal timescales and ApCO, effect is the main driver on interannual and decadal timescales. In northern
temperate oceans (15°N—-45°N), the ApCO, effect is the primary driver across scales except at subseasonal times-
cales, while in the Southern Oceans (45°S—75°S), F variability is predominantly controlled by the ApCO, effect.
On seasonal to decadal timescales, the Southern Ocean is unique and often the main driver of the global patterns
observed in F anomaly. Conversely, on subseasonal timescales, the dominant role of the wind effect on variability
in global F results from regions other than the Southern Ocean, with the largest contribution coming from the
tropical regions (81%). We also note that on decadal time scales, the ApCO, effect, and the resulting F anomalies
at high latitudes (south of 45°S or north of 45°N) experience a dramatic increase from 1988 to 2000, followed by
a reduction to negative after 2005 (Figure 4, bottom).

The results here show some similarities with recent model- and observation-based studies (Table 1). The ocean
general circulation model runs by Couldrey et al. (2016) show that the CO, flux variability in the North Atlantic
Ocean is predominantly produced by the effect of ApCO, rather than gas transfer velocity on pentadal to mutidec-
adal timescales. Landschiitzer et al. (2015) also emphasized the dominant role of ApCO, in the decadal variability
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Figure 4. Hovmoller diagrams of the distribution of each term's contribution to the CO, flux anomaly from 1988 to 2015 at
various timescales for ky,,, (from top to bottom, subseasonal, seasonal, interannual, and decadal timescales). (First column)
flux anomaly; (second column) wind speed effect; (third column) ApCO, effect; (fourth column) SST effect.

of CO, flux in Southern Ocean. These findings are supported by the global analysis here. The seasonal varia-
bility in Arctic air-sea CO, flux dominated by wind speed is in line with the observations from Wrobel (2017).
Regional variations in the relative contribution of wind and ApCO, to the seasonality of F was also revealed by
the modeling study of Lerner et al. (2021). On longer timescales, the dominant role of ApCO, in determining
the interannual and decadal variability in global air-sea CO, flux has been reported based on modeling (Doney
et al., 2009) and observational (Landschiitzer et al., 2016) studies. The observation-based work here corroborates
these earlier results, comprehensively expanding from subseasonal to decadal timescales for the study of air-sea
CO, flux and its drivers at the global and regional scales.

In addition to evaluating these drivers of the air-sea CO, flux variability, it is also necessary to investigate the main
causes for the wind and ApCO, effect. Intuitively, based on Equation 10 and in light of the negligible effect of the
second order term (Figures S1 and S6 in Supporting Information S1), the wind effect on F is determined by the
states of the long-term average U, SST, ApCO,, and dU (where dU is the difference between the annual average U
and long-term average U). The terms U and Sc are positive and only change the magnitude of the wind effect. There-
fore, whether the wind effect induces a positive or a negative anomaly in the CO, flux is controlled by the anomaly
product ApCO, * dU (a form of coordination between the wind anomaly and the concentration gradient with the
atmosphere i.e., implied when these drivers are either in phase or out of phase). As expected, the latitude-time distri-
butions of ApCO, * dU (Figure 5, left) over time are in good agreement with the wind effect (Figure 4, middle left).

Clearly, based on Equation 11 the magnitude of ApCO, effect is determined by the long-term average U, SST,
and the term dApCO,. The dApCO, is estimated by subtracting the long-term average ApCO, from the annual
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Figure 5. Hovmoller diagrams of the distribution of the term ApCO, multiplied by wind anomaly (ApCO, * dU, left) and
dApCO, (right) from 1988 to 2015 at various timescales (from top to bottom, subseasonal, seasonal, interannual, and decadal
timescales).
average ApCO, (i.e., ApCO, — ApCO»). Because of the positive value of U? and Sc, the variability of zonal
distribution ApCO, effect (Figure 4, middle right) over time is governed by dApCO, (Figure 5, right). Simi-
larly, latitude-time distributions of wind and ApCO, effects based on k,, are also dominated by the variation in
ApCO, * dU and dApCO,, respectively (Figure S5 in Supporting Information S1; Figure 5).
3.3. Drivers of dApCO, Across Scales
As shown in the analyses above, the JApCO, has played a particularly significant role in the air-sea CO, flux variabil-
ity over the last 3 decades, especially at longer timescales. To ascertain the mechanisms driving the CO, flux variabil-
ity, it is insightful to investigate the processes governing the variation of JApCO,. Because the relevant term ApCO, is
determined by the imbalance between pCO,, and pCO,, the dApCO, (i.e., ApCO, — ApCOy) is expressed as
dApCO; = pCOso — pCOs — (pc020 Z pCOza> = pCOL’ — pCOL’, )
withpCOz,' = pCOy — pCOs and pCO2," = pCO2, — pCOy,.
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Figure 6. Time-series of the oceanic pCO, anomaly (pCO,,’, green), the atmospheric pCO, anomaly (pCO,,’, pink) and the anomaly of the difference in oceanic pCO,
and atmospheric pCO, (dApCO,, dark blue) from 1992 to 2010 on (a) subseasonal, (b) seasonal, (c) interannual, and (d) decadal timescales. Whole time-series (1988
and 2015) of pCO,, and pCO,, data are not plotted because the secular trend in these variables can lead to spurious extreme values at the beginning and end of the
time-series analyses. The ratio R shown in the figure is calculated using Equation 13.

To quantify the relative strengths of pCO,,” and pCO,,’, similarly, the ratio R, is introduced and expressed as

_ IpCOs|
|pC020,| + Ipco2a,| .

13)

P

The resulting contribution of globally averaged pCO,," and pCO,,’ are smaller on subseasonal and seasonal time
scales compared with longer time scales (Figure 6). dApCO, varies in opposing direction to pCO,," on subsea-
sonal time scales because of the relatively weak variability of pCO,,’ (R, = 0.4). Conversely, the weak variability
of pCO,’ (R, = 0.65) leads dApCO, to generally follow pCO,,’ on seasonal timescales (Figures 6a and 6b).
Both variabilities of pCOZu' and pCOzO' are amplified at higher latitudes (see the first two rows in Figure 7). The
variation of pCO,,’ generally follows pCO,,’ globally with almost equivalent magnitude (R, ~ 0.5) on interannual
and decadal timescales, resulting in a small variability of global average dApCO, (Figures 6¢ and 6d), with some
higher interannual and decadal variabilities in JApCO, within equatorial and high latitude regions, respectively
(the third and fourth row in Figure 7). The global interannual variability of CO, flux mostly originates from
Tropical Pacific (McKinley et al., 2004; Peylin et al., 2005) and the prominent and negative phase of dApCO,
during 1997/1998 dominated by pCO,’ is associated with El Nifio events (the third row in Figure 7), consistent
with other observation (McKinley et al., 2020).

On decadal timescales, the variability in global dApCO, is mostly driven by processes in high latitude regions
(Figure 7), with the resulting ApCO, effect and flux anomaly reversing from positive to negative after 2005
(Figure 3d; Figures S1 and S3d in Supporting Information S1), explaining the CO, sink reinvigoration in the early
2000s. Specifically, a positive anomaly of ApCO, before 2005 is the result of a higher growth rate of oceanic
pCO, than atmospheric pCO,, especially in high latitude regions (Figures 6d and 7). The reduction of atmospheric
pCO, growth rate relative to the oceanic pCO, is due in part to the volcano-forced SST variability after 1991
(McKinley et al., 2020), and the acceleration of oceanic pCO, growth rate in the Southern Ocean is associated
with enhanced upwelling and meridional overturning circulation due to the southward shift and intensification
of westerlies under the impact of the positive phase of Southern Annular Mode (DeVries et al., 2017; Le Quéré
et al., 2007). After 2005, while the pCO,,’ is increasing sharply under the impact of nonthermal component of
pCO,,’ (Figure 8d, see the discussion in next paragraph), it is increasing slower than pCO,,’, also mainly in high
latitude regions for both northern and southern hemispheres (Figures 6d and 7). In the Southern Ocean, the reduc-
tion of oceanic pCO, growth rate occurred due to weaken overturning circulation, and/or the development of an
asymmetric atmospheric pattern showing cooling in the Pacific sector and reduction of DIC because of enhanced
stratification and reduced upwelling in the Atlantic sector (DeVries et al., 2017; Gruber et al., 2019; Landschiitzer
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Figure 7. Hovméller diagram of the distribution of the oceanic pCO, anomaly (pCO,,’, first column), the atmospheric pCO, anomaly (pCO,,’, second column) and the
anomaly of the difference in oceanic pCO, and atmospheric pCO, (dApCO,, third column) from 1992 to 2010 on various timescales (from top to bottom, subseasonal,
seasonal, interannual and decadal timescales). Note that pCO,,” is uniform in space but variable across years for decadal time scales.
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et al., 2015). In comparison, mechanisms driving changes of oceanic pCO, in the northern hemisphere are less
investigated (Gruber et al., 2023).

In the ocean, pCO,, is a function of DIC concentration, SST, ALK, and salinity (Sarmiento & Gruber, 2006). The
effect of salinity on pCO,, is comparatively small and can be neglected (Landschiitzer et al., 2014; Sarmiento &
Gruber, 2006), though salinity may have regional impacts on short timescales and may delineate distinct bioge-
ochemical regimes. Therefore, the focus here is on nonthermal (DIC and ALK) and thermal components (SST)
as drivers of pCO,,. The nonthermal component is broadly defined to include biological processes at the ocean
surface (photosynthesis and respiration), and the vertical mixing of deep waters with a remineralization signal.

The thermal component induced by variations in SST (pCO ) can be estimated based on the SST sensitiv-

’
Zol thermal

ity following Sarmiento and Gruber (2006) and is given by

pCO| ~ pCOs, % 0.0423 (°C )™ x SST', 14)

!
thermal

where the pCO,, is the annual average oceanic pCO,, SST" is the SST anomaly computed by removing the long-
term average SST from the annual average SST (i.e., SST — SST). The nonthermal component of pCO,, changes
(PCO,, " ontherma) 1 thereby estimated by subtracting the thermal component from the observed annual oceanic
pCO, anomaly (pCO»,")

pCOZO |, = pCOZO, - pCOZ()l, (15)

nonthermal thermal *

Substantial variations in globally averaged thermal and nonthermal components of pCOgo’ and pCOzO' are
observed at all four timescales over the recent three decades (Figure 8). Quantitively, the ratio R, is again used
to evaluate the relative strengths of nonthermal and thermal components of pCOzO'. In this context, the R, is
expressed as

|thermal component |
t |thermal component| + |nonthermal component|

16)

On subseasonal timescales, the magnitude of the thermal component is comparable with the nonthermal compo-
nent (R, ~ 0.5) and the two variables tend to change in opposite directions, leading to a relatively stable pCO,,’.
In contrast, on longer timescales, R, is smaller than 0.5 and decreases as timescales become longer, indicating that
the nonthermal component becomes increasingly important compared to the thermal component. The consist-
ent variability of nonthermal component and pCO,,’ suggests a dominant role of the nonthermal component in
controlling the pCO,,’ distribution and variation over the global ocean on interannual (R, = 0.23) and decadal
(R, = 0.17) timescales (Figures 8 and 9). It is worth noting that the pCO,’ signal on decadal timescales switches
from negative to positive in year 2000 likely because of the enhancement in the thermal component resulting
from the increasing SST and nonthermal component over the polar regions (see bottom panels of Figure 9). The
sharp increase in pCO,,’ since the year of 2005 (Figure 8d) is likely produced by the prominent enhancement of
the nonthermal component over the global ocean (Figure 9, bottom).

4. Limitations and Future Work

Air-sea CO, flux estimates carry uncertainties associated with the gas transfer velocity parameterizations, data
products, poor spatial and temporal coverage of CO, data, thermal and haline effects and the non-linearity in wind
dependence functions, to name a few (Bakker et al., 2014; Chiodi et al., 2019; Roobaert et al., 2018; Takahashi
et al., 2014; Wanninkhof et al., 2002; Ward et al., 2004; Woolf et al., 2016, 2019). Among these, there is general
agreement that data products and gas transfer velocity expressions remain important sources of uncertainties in
air-sea CO, flux (Roobaert et al., 2018; Woolf et al., 2019). Similar results were obtained using two independent
(wind-only and wind-wave) k parameterizations suggesting that the conclusions are insensitive to the choice of
the gas transfer velocity expression. Though wave height is included in the wind-wave parameterization, wind
speed and ApCO, effect remain the key drivers of CO, flux across temporal scales (Figure S3 in Supporting
Information S1). To test the impact of using a different data product, we repeated the analyses using a pCO, data
ensemble of six observation-based products from SeaFlux (Fay et al., 2021). These products include a mixed layer
scheme product, a multiple linear regression, a machine-learning ensemble and three neural-network-derived
products. The zonal distribution and the overall magnitude of driving factors exhibit a fundamental consistency
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Figure 9. Hovméller diagram of the distribution of thermal component (left) and nonthermal component (middle) of pCO, " and observed pCO, " (right) from 1992 to
2010 on various timescales (from top to bottom, subseasonal, seasonal, interannual, and decadal timescales).

across products, albeit with minor differences (Figures S7-S10 in Supporting Information S1). However, the
results from these two pCO, products are not independent because they are both produced based on the SOCAT
database. The increasing number of observations since the beginning of the 21st century have led to an improved
characterization of the interannual and long-term variability of CO, fluxes. However, uncertainties in recon-
structed pCO, products remain because of sparse sampling in some regions and at some times of the year (e.g.,
Southern Ocean austral winter). For example, the airborne observations by Long et al. (2021) challenge the profil-
ing floats estimates of annual mean CO, uptake in the Southern Ocean (Bushinsky et al., 2019; Gray et al., 2018).
This is partly attributable to aliasing associated with current sampling efforts often not capturing synoptic pertur-
bations (1-10 days) such as storms (Djeutchouang et al., 2022; Nicholson et al., 2022). Considering the poten-
tial aliasing issues impacting the conclusions, the mass-preserving and variance-preserving approaches are both
employed to analyze the multiscale temporal variability of CO, flux. The identical variability in the spectra for
both approaches might indicate that the conclusions drawn from this work seem to be robust to the aliasing effect.
However, this agreement is necessary but not sufficient. Caution must be maintained because the impact of these
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synoptic events on subseasonal, and longer timescales carbon budgets remains an active area of research that
cannot be settled with such comparisons between variance and mass preserving approaches.

5. Conclusions

The work presented here identifies and quantifies the factors (wind speed, ApCO,, SST, and H) driving global
air-sea CO, flux variability at a range of timescales (i.e., subseasonal, seasonal, interannual, and decadal times-
cales) using a data set from 1988 to 2015. Among other things, the results here can be used to evaluate and refine
the representation of air-sea CO, flux in earth system models. On subseasonal timescales, the magnitude of
CO, flux anomalies appeared lowest (Figure S1) and the variability is mainly driven by wind speed variability
(~66%). On longer timescales (i.e., seasonal, interannual, and decadal timescales), the CO, flux variability was
primarily controlled by the ApCO, effect. At all four timescales, the pattern of wind effect results from the prod-
uct of a wind speed anomaly and ApCO,. In contrast, the distribution of the ApCO, effects was primarily driven
by the ApCO, anomaly (dApCO,). The ApCO, anomaly itself was controlled by atmospheric pCO, variations
and oceanic pCO, variations that are mainly driven by a nonthermal component, particularly on longer times-
cales. The lower growth rate of oceanic pCO, compared to atmospheric pCO,, particularly in the high latitude
regions after the year 2005, leads to an increased oceanic CO, sink on decadal timescales, which may be asso-
ciated with variability in ocean circulation, biology and atmospheric forcing such as the Northern and Southern
Annular Mode (DeVries, 2022; Gruber et al., 2019; Landschiitzer et al., 2016; Le Quéré et al., 2007; Lovenduski
et al., 2008).

While wind is of second-order importance in controlling air-sea CO, flux at longer timescales, it may have a
substantial indirect impact through its effect on vertical mixing and exchange with CO,-rich deep waters. This
is especially the case in the Southern Ocean, where air-sea CO, flux is impacted by wind location and speed on
decadal timescales (Gruber et al., 2019; Keppler & Landschiitzer, 2019; Landschiitzer et al., 2015; Le Quéré
et al., 2007; Lovenduski et al., 2008). In light of polar amplification of climatic changes, and the fact that the
global patterns we observed at multiple temporal scales often stem from the Southern Ocean, increasing the
number of air-sea CO, flux observations is urgently needed in polar regions. Their central role in the global
carbon budget stands in sharp contrast with the limited observations currently available.
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