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Abstract

Eunotia is the largest and most diverse genus within the family Eunotiaceae, a primarily freshwater group of diatoms often 
found in dilute, acidic and humic-stained environments.  Species in this genus are characterized by being asymmetric along 
their apical axis, symmetric about the transapical axis, and with a simple and reduced raphe system situated largely on the 
mantle and restricted to the apical ends of the valve. In addition, Eunotia taxa have one or more rimoportula per valve, 
usually close to the apex. Because of their reduced raphe system, coupled with the presence of rimoportulae, Eunotia and its 
relatives are often viewed as the oldest lineage of raphe-bearing diatoms. To date, the oldest remains of Eunotia species have 
been reported from the early to middle Eocene, including from the Giraffe Pipe locality, an ancient Eocene fossil site located 
in northern Canada near the Arctic Circle.  Rocks from this site contain a large and diverse assemblage of Eunotia taxa. The 
purpose of this study is to begin to characterize this assemblage with descriptions of three new species, Eunotia giraffensis 
sp. nov., E. petasum sp. nov. and E. pseudonaegelii sp. nov. The new species, representing the longest specimens found at the 
Giraffe Pipe locality, each possess characteristics common to Eunotia making them easily assigned to this genus. Because 
the Eunotia lineage was well established by the early part of the Eocene, it is likely to be significantly older.
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Introduction

Eunotia Ehrenberg (1837: 45) is a large genus of mostly freshwater diatoms that overwhelmingly inhabit acidic 
waterbodies (Camburn & Charles 2000, Siver & Hamilton 2011, Costa et al. 2017). Eunotia is in the family Eunotiaceae 
Kützing 1844 within the subclass Eunotiophycidae Mann (in Round et al. 1990), the latter characterized by a reduced 
raphe and the presence of rimoportulae. The family Eunotiaceae consists of 13 genera, and of the 773 recognized 
species, 663 belong to Eunotia (Guiry & Guiry 2022). The closely related genus, Actinella Lewis (1864: 343), has 52 
species and many of the remaining species in the family were originally described under Eunotia.
	 Frustules of Eunotia are asymmetric about the apical axis, symmetric about the transapical axis, and most species 
possess a dorsiventral lunate shape (Round et al. 1990). The short raphe branches are situated on the ventral mantle, 
with the distal ends curving up onto the valve face at the apices. Internally, the distal end of the raphe terminates 
within a well-formed helictoglossa. Striae cross the valve face and are most often continuous on both the ventral and 
dorsal mantle, including between the raphe branches. As a result, a central nodule is lacking.  Unlike other raphe-
bearing diatoms, species in the subclass Eunotiophycidae possess rimoportulae, and most Eunotia species have a 
single rimoportula per valve located on one of the valve apices, typically on the mantle (Mayama & Kobayasi 1991, 
Williams & Reid 2006, Siver & Hamilton 2011).
	 Based on most fossil evidence, the earliest freshwater diatoms are found in the Late Cretaceous (Chacón-Baca et 
al. 2002, Ambwani et al. 2003, Singh et al. 2006, Siver et al. 2018), and by the middle to end of the Eocene numerous 
sites and lineages are documented (Lohman & Andrews 1968, Sims et al. 2006, Siver & Wolfe 2007, Benson et al. 
2012). However, the potential that freshwater diatoms being considerably older than Cretaceous can’t be ruled out. 
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Siemińska (2000) provided an excellent review of earlier reports of fossil diatoms from Mesozoic, Paleozoic and even 
in Proterozoic rocks, many of which illustrate freshwater taxa clearly linked to modern lineages, including those of 
Eunotia from the Upper Triassic (Zanon 1929). Siemińska (2000) noted that many of these reports were considered 
by other researchers to be the result of contamination. Still, the finding of diatom remains from Proterozoic marbles 
(Siemińska & Kwiecińska 2000), and multiple freshwater diatoms from the Early Permian (295 Ma) Manjir Formation 
in India (Farooqui et al. 2015), both including nitzschioid forms with complex raphe systems, is certainly intriguing.
	 Besides the report by Zanon (1929), the oldest known fossil records for Eunotia are from early to middle Eocene 
localities, including the 51 Ma Horsefly deposit in British Columbia, Canada (Benson et al. 2012), the 48 Ma Giraffe 
Pipe site situated near the Arctic Circle in northern Canada (Siver & Wolfe 2007), and the 45 Ma Dewey beds in Idaho, 
USA (Benson et al. 2012). Only a few specimens (mostly fragmented pieces) were uncovered from the Horsefly and 
Dewey beds localities, whereas numerous, well-preserved specimens were reported from the Giraffe Pipe site. In 
addition to Eunotia, species of the closely related genus Actinella have also been uncovered from Giraffe Pipe (Siver 
et al. 2010). 
	 Since the Siver & Wolfe (2007) report of Eunotia from the Giraffe Pipe locality, further investigation of rocks 
from this locality have been undertaken and numerous species of chrysophytes (Siver 2018a, 2018b), euglyphid testate 
amoebae (Barber et al. 2013), sponges (Pisera et al. 2013, 2016), rotosphaerids (Siver & Skogstad 2022), and additional 
diatoms (Wolfe & Siver 2009, Siver et al. 2010, Siver 2019, 2021) have been reported. In addition, an 18 m section of 
an extensive core from Giraffe Pipe has been found to be dominated by an extensive number of eunotioid diatoms. The 
objective of this paper is to begin to describe members of Eunotia from this Eocene locality, with descriptions of three 
of the more common species.

Material & methods

Site and Core Description
Detailed descriptions of the Giraffe Pipe locality are given in Siver et al. (2015), Wolfe et al. (2017), and references therein. 
Briefly, the Giraffe Pipe locality (64o44’ N, 109o45’ W) is located within a crater formed as a result of emplacement of 
a kimberlite diatreme into the Slave Craton, situated in the Northwest Territories, Canada. The emplacement occurred 
approximately 47.8 Ma between the Ypresian (56–47.8 Ma) and Lutetian (47.8–41.2 Ma) of the Eocene (Siver & Wolfe 
2005a, Wolfe et al. 2006). Post emplacement, the diatreme crater harbored an aquatic environment that remained for 
what has been estimated to be thousands of years, eventually transitioning to a terrestrial environment, and later capped 
by Neogene glacial deposits (Siver & Wolfe 2005a, Wolfe et al. 2006). 
	 A 163 m long core, drilled at a 47º angle, was recovered from the Giraffe maar in 1999 by BHP Billiton Inc. (Wolfe 
et al. 2006, Siver & Wolfe 2009). The lower 113 m of the core contains 68 m of lacustrine mudstones, overlain with 45 
m of peaty and terrestrial remains. The lake and terrestrial sediments underwent little to no post-deposition alteration, 
yielding exceptionally preserved and abundant concentrations of fossils.  The core is archived at the Geological Survey 
of Canada’s core and cuttings repository in Calgary, Alberta, Canada.  All samples taken from the core and used in this 
study are archived at the Connecticut College core facility, New London, Connecticut, U.S.A.
	 The core was cut on site and stored in core boxes. Each core box contains 4.5 meters of core material, divided 
into three 1.5 meter-long sections stored in separate channels. Samples from the core are identified with a three part 
number (Siver 2015). The first number indicates the core box, numbered sequentially from the surface down to the 
bottom of the core. Eighteen boxes, numbers 11 through 27, contain the remains of the lacustrine mudstones, with box 
11 representing the termination (most recent) of the aquatic environment. The second number represents the channel 
within the box. The third number is a measurement in cm along a length of core within a given channel.

Laboratory methods
We examined 175 samples distributed over the 68 m lacustrine section of the core for remains of Eunotia specimens. 
Mudstone fragments (0.5–1.0 g) from each sample were oxidized using 30 % H2O2 under low heat for a minimum of 
1–3 hr, rinsed multiple times with distilled water, and the resulting slurries stored in glass vials at ~4 ºC. This mild 
oxidation procedure resulted in separation of numerous microfossil specimens from the majority of mudstone samples. 
A few samples were treated more aggressively with a sulfuric acid-potassium dichromate solution after the procedure 
of Marsicano & Siver (1993), in addition to treatment with H2O2.
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	 Aliquots of each slurry were used to prepare samples for observation with scanning electron microscopy (SEM) 
and light microscopy (LM). For SEM, an aliquot was diluted and air dried onto a piece of heavy duty aluminum foil, 
trimmed, and attached to an aluminum SEM stub with Apiezon® wax. Samples were coated with a mixture of gold 
and palladium for 2 min with a Polaron Model E sputter coater, and examined with a Leo (Zeiss) 982 FESEM or a 
FEI Nova NanoSEM 450 FESEM. For LM, aliquots were air dried onto coverslips, mounted onto glass slides using 
Naphrax, and examined at 1000× magnification using Differential Interference Contrast optics with either an Olympus 
BH51 microscope (N.A. 1.35) coupled with a SONY DKC-ST5 digital camera, or a Leica DMR microscope (N.A. 1.4) 
coupled with a Zeiss Axiocam 503 digital camera. 
	 Terminology used to describe the new species is based on Ross et al. (1979) and Siver & Hamilton (2011). 
Measurements of valve sizes and striae densities were made directly from the SEM or LM images, with the latter 
measured at the center of the valve. Except for material submitted and archived at the Canadian Museum of Nature, all 
slurry and slide preparations, and SEM stubs, used in the study are stored in Siver’s research laboratory at Connecticut 
College. 

Results

Seventy-one of the 175 core sections examined contained specimens of either Eunotia, Actinella or both. The genus 
Eunotia was especially abundant over a 13 m section ranging in depth from 122–109 m along the core, and contained 
in boxes 14–16. This section is estimated to contain over 20 species of Eunotia, and we now have examined a sufficient 
number of specimens to make formal species descriptions for three taxa.    

Taxonomic results

Division Bacillariophyta
Class Bacillariophyceae
Subclass Eunotiophycidae
Order Eunotiales
Class Eunotiacea
Genus Eunotia

Eunotia giraffensis Siver, Oddsund & Lott sp. nov. (LM Figs 1–8, SEM Figs 9–14)
Description:—Valves are slightly dorsi-ventral, elongate, with broadly rounded and obliquely rostrate apices that are 
deflected slightly towards the dorsal margin (Figs 1–8). Valves range in length from 26–68 µm with a mean of 39 µm, 
and in diameter from 3.2–6.5 µm with a mean of 3.7 µm (n = 40). The ventral margin is slightly concave, becoming 
almost linear on smaller valves, and is more or less parallel with the dorsal margin, and of equal diameter throughout 
except at the apices. Small spines may be present on the virgae between the striae on the valve margin. Striae range 
from 16–25 per 10 µm, with a mean of 22. Striae are evenly spaced, parallel over most of the valve, becoming more 
closely spaced towards the apices (Figs 1–8). Striae are continuous from the valve face onto the mantle on both the 
ventral and dorsal sides (Figs 10, 12–14). Areolae are small, circular, closely spaced, and open on both the external 
and internal valve surfaces. The mantle is deep, approximately 3.5–4 µm, and forms a right angle with the valve 
margin on both the ventral and dorsal sides (Figs 11–14). The margin of the mantle is thickened around each apex 
(Figs 10, 12). The proximal end of the raphe commences midway down the mantle (Figs 13–14). From this point, the 
raphe rises slowly until it reaches the valve margin, then turns approximately 45º up onto the valve face, terminating 
midway across the valve face close to the apex. The portion of raphe on the valve face is straight and the distal end 
is not curved or recurved (Figs 9, 11). A distinct hyaline zone extends approximately 3 µm from the proximal end of 
the raphe towards the center of the valve (Figs 13–14), is continuous along the lower side of the raphe, and extends 
up onto the valve face terminating near the apex. The striae are more closely spaced on the mantle below the raphe 
(Figs 13–14), and a discontinuity zone is often observed midway along the raphe. Internally, the distal raphe fissure 
terminates within a thick and well-formed helictoglossa (Figs 10, 12), which in turn is surrounded by a hyaline zone. 
A single rimoportula is found at one of the valve apices (Fig. 12).
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FIGURES 1–8. LM micrographs of Eunotia giraffensis sp. nov. from the Giraffe Pipe fossil locality. Figure 5 is the isotype specimen 
circled on slide “GP 16-3-42 C” in P. Siver’s collection. Figure 7 corresponds to the type specimen circled on slide “GP 16-3-42 B” (CANA 
129307).  Scale bar = 10 µm. 

	 Type:—CANADA. Lac de Gras kimberlite field region, Northwest Territories: Rock specimen sub sampled from 
section 16-3-42 of the Giraffe Pipe core (holotype circled specimen on slide “GP 16-3-42 B” Canadian Museum of 
Nature CANA 129307 = Fig. 7. Isotype circled specimen on slide “GP 16-3-42 C” P. Siver’s personal collection = Fig. 
5).
	 Etymology:—The species epithet refers to the type locality. 
	 Eunotia petasum Siver, Oddsund & Lott sp. nov. (LM Figs 15–21, SEM Figs 22–27)
	 Description:—Valves are dorsi-ventral, elongate, widest in the middle of the valve, and becoming tapered and 
drawn out at the apices forming protracted ends (Figs 15–21). The ventral margin is concave, becoming slightly linear 
at the apices. The dorsal margin is more convex relative to the concave ventral margin such that the valve becomes 
progressively narrower from the center to the apices (Figs 24–27). Valves range in length from 19.6–57.6 µm with 
a mean of 38 µm, and in diameter at the valve center from 2.9–5.1 µm with a mean of 3.8 µm (n=25). At the apices, 
valve width ranges from 1.5–2.2 µm, with a mean of 1.8 µm. The margins of the valve face, especially along the ventral 
side, are slightly thickened and form right angles with the mantle (Figs 23–24). Striae are parallel, widely spaced with 
13.5–19 per 10 µm, a mean of 16 µm, and consist of small, circular areolae that are opened on both the external and 
internal valve surfaces. Striae are continuous from the valve face onto the dorsal mantle, but may be interrupted and 
discontinuous with those on the ventral mantle (Figs 23–24). On smaller valves, the areolae on the ventral mantle may 
become more randomly spaced, especially below the raphe branches (Fig. 23). The mantle is shallow, approximately 
1.5–2 µm, and the margin slightly thickened around each apex. The proximal end of the raphe commences near the 
middle of the mantle approximately 1/4 to 1/3 of the valve length from the apex, rises slowly on a linear path to the 
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valve margin, and then bends up and onto the valve face terminating close to the end of the valve (Figs 23, 25). The 
proximal and distal raphe fissures both terminate as small round pores (Figs 23–25). On most specimens, the portion of 
the mantle below the raphe consists of short striae composed of a few pores, but on some valves the pores are randomly 
spaced and not organized into distinct striae. Internally, the distal raphe fissure terminates within a small helictoglossa 
positioned about 1/3 the distance across the valve face (Figs 26–27). A single rimoportula is found on one of the valve 
apices.

FIGURES 9–14.  SEM micrographs of Eunotia giraffensis sp. nov. from the Giraffe Pipe fossil locality. 9, 11. Close-ups of the end of a 
valve face showing the straight distal raphe end and the closer-spaced striae at the valve apex. 10, 12. Internal views of the helictoglossa 
and distal raphe end. Note the extended hyaline region surrounding the helictoglossa, thickened margin of the valve around the apex, 
densely-spaced striae on the mantle below the raphe, and the presence of a rimoportula. 13, 14. Girdle views of the ventral mantle 
depicting the position of the raphe, hyaline region surrounding the raphe, and the densely-spaced striae on the mantle below the raphe. 
Scale bars = 2 µm (Figs 9–12, 14), 3 µm (Fig. 13).
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FIGURES 15–21. LM Micrographs of Eunotia petasum sp. nov. from the Giraffe Pipe fossil locality. Figure 17 is the type specimen 
circled on slide “GP 15-3-75D, LM5” (CANA 129308). Figure 21 corresponds to the isotype specimen circled on slide “GP 15-3-75 LM4” 
in P. Siver’s collection.  Scale bar = 10 µm.

	 Type:—CANADA. Lac de Gras kimberlite field region, Northwest Territories: Rock specimen sub sampled from 
section 15-3-75 of the Giraffe Pipe core (holotype circled specimen on slide “GP 15-3-75 D, LM 5” Canadian Museum 
of Nature CANA 129308 = Fig. 17. Isotype circled specimen on slide labeled “GP 15-3-75 LM4” P. Siver’s personal 
collection = Fig. 21).
	 Etymology:—The name refers to a hat, whereby smaller specimens give the impression of a hat worn, for example, 
by Napoleon. 
	 Eunotia pseudonaegelii Siver, Oddsund & Lott sp. nov.  (LM Figs 28–35, SEM Figs 36–41)
	 Description:—Valves are long and narrow, linear to slightly lunate, and with slightly protracted apices (Figs 
28–35). Valves range in length from 44–91 µm with a mean of 64, and in diameter from 2.4–4.3 µm with a mean of 3.4 
(n=30). The ventral and dorsal margins are more or less parallel resulting in a similar diameter over most of the valve. 
Small spines are present on the virgae along both valve margins, and often around the apices (Figs 36–38, 40–41). 
Striae are evenly spaced, parallel, continue from the valve face onto the mantle, range in density from 17–20 per 10 µm 
and a mean of 19. Areolae are small, circular, closely spaced, and open on both the external and internal valve surfaces 
(Fig. 36–41). The mantle is shallow, often not more than 1 µm in depth, and forms a right angle with the valve margin 
on both the ventral and dorsal sides (Figs 38–39, 41). The raphe is approximately 6.5–8 µm long. The proximal end 
of the raphe is positioned near the bottom of the ventral mantle, rises on a more or less 45º linear path, curves up onto 
the valve face, and with the distal end terminating in a small pore about 1/3 the distance across the valve face (Figs 36, 
38, 40). Internally, the raphe is slightly elevated from the mantle, especially near the proximal end, and the distal end 
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terminates within a small, well-formed, helicoglossa (Figs 37, 39). The striae below the raphe are typically reduced 
to a single row of pores (Figs 37, 39). Internally, the distal raphe fissure terminates within a thick and well-formed 
helictoglossa, which in turn is surrounded by a hyaline zone (Figs 37, 39). A single rimoportula is found per valve (Figs 
37, 39).

FIGURES 22–27. SEM micrographs of Eunotia petasum sp. nov. from the Giraffe Pipe fossil locality. 22. Dorsal view of a frustule 
showing the continuation of the striae from the valve face onto the mantle. 23. Ventral view of a valve depicting the raphe and reduced 
striae, often consisting of only 1–2 pores. 24. Interior view of a valve showing the continuation of the striae from the dorsal mantle onto the 
valve face. Striae on the ventral mantle are often reduced to random pores. 25. Exterior view of a valve depicting the narrow and protracted 
end and the distal raphe fissure. 26, 27. Internal views showing the striae, the open nature of the pores, the protracted apex, and the small 
rounded helictoglossa. Scale bars = 5 µm (Figs 22–26), 10 µm (Fig. 27). 
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FIGURES 28–35. LM micrographs of Eunotia pseudonaegelii sp. nov. from the Giraffe Pipe fossil locality. Figure 31 corresponds to the 
type specimen circled on slide “GP 16-3-42E” (CANA 129309). Scale bar = 10 µm.

	 Type:—CANADA. Lac de Gras kimberlite field region, Northwest Territories: Rock specimen sub sampled from 
section 16-3-42 of the Giraffe Pipe core (holotype circled specimen on slide “GP 16-3-42 E” Canadian Museum of 
Nature CANA 129309 = Fig. 31).
	 Etymology:—The name refers to the similarity in shape with Eunotia naegelii, but reflects the fact they are not 
the same organism.  
	 Co-occurring organisms:—The extensive portion of the core harboring all three of the new Eunotia species 
contained other species of Eunotia, species of the closely related genus, Actinella, and extensive concentrations of 
chrysophyte microfossils. In addition to numerous and many types of chrysophyte cysts, remains of three synurophytes, 
Mallomonas lychenensis Conrad (1938: 1), M. porifera Siver & Wolfe (2005b: 300) and Synura cronbergiae Siver 
(2013: 181) were also dominant throughout this section of the core. Remains of euglyphid testate amoebae and sponge 
spicules were consistently present as well, but in smaller numbers relative to lower sections representing earlier time 
periods in the history of the lake.

Discussion

The Giraffe Pipe fossil locality (Siver & Wolfe 2007), along with the Horsefly deposit in British Columbia (Benson 
et al. 2012), represent the oldest sites harboring remains of Eunotia, confirming that this genus was well established 
by the Ypresian. Other fossil sites containing remains of Eunotia species appear soon after the Ypresian, including 
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the Dewey Beds in Idaho, USA, at 45 Ma (Benson et al. 2012), the Florissant Formation, Colorado, USA, at 34 Ma 
(Benson et al. 2012), and diatomite from Oamaru, New Zealand, at 32–35 Ma (Novitski & Kociolek 2005, Williams & 
Reed 2006). All of these localities represent freshwater sites with the exception of the nearshore marine sediments from 
Oamaru. There remains some question whether the Eunotia specimens uncovered from Oamaru represent marine taxa, 
or if they originated in freshwater habitats and were transported to the marine sediments. Novitski & Kociolek (2005) 
concluded that because other diagnostic freshwater diatoms have not been uncovered from Oamaru, the two Eunotia 
species described from this site were true marine taxa.  Nonetheless, given the abundance and diversity of Eunotia 
specimens from Giraffe Pipe, it is clear this genus was well established in freshwater by the end of the Ypresian. 

FIGURES 36–41. SEM micrographs of Eunotia pseudonaegelii sp. nov. from the Giraffe Pipe fossil locality. 36, 38, 40. Exterior views 
of the end of a valve showing the position of the distal raphe end that extends only a short distance onto the valve face. Note the small 
spines along the dorsal margin and apex. 37, 39. Internal views of the distal raphe end, helictoglossa and position of the well-developed 
rimoportula. Note the shallow depth of the mantle. 41. Internal view depicting continuation of the striae on the valve face onto both the 
ventral mantle and the dorsal mantle. Note the spines along the dorsal valve margin. Scale bars = 2 µm (Figs 36–39, 41), 3 µm (Fig. 40).
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	 All three of the newly described species display clear characteristics found on modern taxa, further emphasizing 
that the genus was not only established by the early Eocene, but supporting the idea that it is likely considerably 
older. The size and long slender shape of E. pseudonaegelii sp. nov. valves are similar to a number of modern species, 
including E. naegelii Migula (1905: 203), E. flexuosa (Brébisson ex Kützing) Kützing (1849: 6), E. desmogonioides 
Metzeltin & Lange-Bertalot (2002: 27), E. juettnerae Lange-Bertalot (in Lange-Bertalot et al. 2011: 127) and E. 
genuflexa Nörpel-Schempp (in Lange-Bertalot & Metzeltin 1996: 50). Distinguishing features between the modern 
species can be slight, and often reflect differences in striae density or valve length and width (Lange-Bertalot et al. 
2011, Siver & Hamilton 2011, Costa et al. 2017). Indeed, isolated valves of this suite of modern species can be difficult 
to identify based on overall shape and size. However, all of these modern species with long slender valves have distal 
raphe fissures that bend backwards 180º on the valve face, forming fish-hook designs. This distinctive, and relatively 
common, feature is also found on species in the E. bilunaris complex (Alles et al. 1991, Lange-Bertalot et al. 2011), 
possibly indicating a close evolutionary relationship between taxa that share this characteristic. However, this feature 
is clearly absent on E. pseudonaegelii sp. nov. valves, and, in fact, we have not observed recurved distal raphe ends on 
any of the numerous Eunotia specimens found in the Giraffe Pipe core. Nor has it been observed on any fossil Eunotia 
species from the Eocene. The advantage of a recurved distal fissure, if any, is not known, but perhaps it aids in the 
motility mechanism. The evidence to date supports the idea that this feature evolved after the Eocene.
	 The overall valve appearance of Eunotia giraffensis sp. nov. is very similar to the modern taxon Eunotia lewisii 
Siver & Hamilton (in Siver et al. 2009: 410), a species described from shallow, dilute, highly acidic and humic-stained 
ponds in the Pinelands of southern New Jersey (Siver & Hamilton 2011). The valve shape, configuration of the raphe 
and striae, hyaline region surrounding the raphe, and the densely packed striae below the raphe are strikingly similar 
on both species. In addition, the stria density on the valve face is also similar on both species, becoming denser at 
the apices. The species differ in the internal structure of the distal raphe end.  On E. lewisii valves, the distal end of 
the raphe ends in a helictoglossa associated with a large, solid, hyaline structure that extends across the valve face. 
This large solid structure is unique among Eunotia species and significantly different from the configuration found on 
valves of E. giraffensis sp. nov. In addition, although there is overlap, valves of E. giraffensis sp. nov. tend to be smaller 
than those of E. lewisii.
	 Other modern Eunotia species that share some similarities to E. giraffensis sp. nov. include E. gustavoi Costa (in 
Costa et al. 2017: 25), E. intricans Lange-Bertalot & Metzeltin (2009: 141) and E. xystriformis Manguin (in Bourrelly 
& Manguin 1952: 49), all known from South America, and E. lapponica Grunow ex A. Cleve (in Cleve [Cleve-Euler] 
1895: 29) first described in Europe. Valves of E. gustavoi have a similar shape, size and pattern of the striae, but have 
very different distal raphe ends and more protracted apices. Eunotia intricans valves are also of similar shape and the 
striae become more closely spaced at the poles, but E. giraffensis sp. nov. valves have a greater striae density and are 
larger. In addition, the striae pattern on the mantle below the raphe differs on both taxa, and the distal raphe ends on 
E. intricans are slightly recurved. Similarities between E. giraffensis sp. nov. and E. xystriformis include valve shape, 
a similar hyaline region surrounding the raphe, and the closer-spaced striae on the mantle below the raphe, but valves 
of E. xystriformis are considerably larger, possess a lower striae density and apical spine, and have a very different 
distal raphe end. Some specimens of E. lapponica illustrated in Lange-Bertalot et al. (2011) also resemble those 
of E. giraffensis sp. nov. and both taxa have a similar hyaline region surrounding the raphe, coupled with a greater 
striae density on the mantle below the raphe. However, E. lapponica is significantly larger and most specimens have 
protracted apices that are deflected towards the dorsal side.
	 Only a few modern species, including E. pexii Lange-Bertalot (in Werum & Lange-Bertalot 2004: 155) and E. 
ferefalcata Kulikovskiy & Lange-Bertalot (in Lange-Bertalot et al. 2011: 101), have an overall shape with similarities 
to E. petasum sp. nov. Eunotia pexii differs in being a smaller taxon with a more strongly dorsi-ventral shape, and 
obliquely shaped rostrate apices that are slightly deflected towards the dorsal margin. Valves of E. ferefalcata have a 
similar size range, but have less protracted ends and a slightly higher striae density. Although valves of E. petasum sp. 
nov. do not have undulated dorsal margins and could not be confused with E. longicamelus Costa, Bicudo and Wetzel 
(in Costa et al. 2017: 32), the degree of curvature of the ventral surface and shape of the protracted apices are similar 
on both taxa.
	 Development of the raphe used for movement represents one of the most significant events in the evolution of 
the diatoms (Sims et al. 2006, Medlin 2016). Morphological and molecular data support development of the raphid 
diatoms from araphid pennate ancestors (Sims et al. 2006, Sorhannus 2007). An unsettled question is whether the 
initial raphe was similar to a eunotioid design consisting of a pair of short apical slits on the valve mantle, which later 
migrated to and became incorporated with the central sternum, a hypothesis advanced by Mann (1984) and others. 
This hypothesis is supported by molecular data presented by Sorhannus (2004) and Brown & Sorhannus (2010) who 
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reported the eunotioid clade to be basal within the raphe-bearing Bacillariophyceae. An alternative, and essentially 
reverse hypothesis, was that the eunotioid raphe system was derived within the raphid clade, moving from a central 
position on the valve face to a marginal position on the mantle.  Molecular works of Medlin & Kaczmarska (2004) 
and Sorhannus (2007) placed the eunotioid lineage in a derived position within the raphid clade, lending support to the 
alternative hypothesis. Unfortunately, the Eunotia species we describe herein do not present any new data in support 
of either hypothesis. On the other hand, our findings clearly show that the characteristics, including those of the raphe, 
that define Eunotia were well established by 48 Ma and that we need to dig deeper in the geologic record for fossil 
evidence that can help determine the full evolutionary history of the formation of the raphe. 
	 The section of the Giraffe core containing abundant numbers of Eunotia remains, including the three new species, 
most likely represents the remains of a shallow, acidic and humic-stained pond. Species of Eunotia are common 
elements of such waterbodies, and this genus is known as one of the most acidophilic diatom genera reported from 
freshwater environments (Camburn & Charles 2000, Gaiser & Johansen 2000, Siver & Hamilton 2011, Wetzel et al. 
2011, Costa et al. 2017). Indeed, a large number of acidic ponds and lakes, mostly with elevated dissolved colored 
organic matter, stretching from the Atlantic Coastal Plain to the Adirondack Mountains along the eastern portion of the 
U.S.A. were found to contain high numbers and diversities of Eunotia, with weighted mean pH estimates for almost all 
of the species below 6 (Camburn & Charles 2000, Gaiser & Johansen 2000, Siver et al. 2005, Siver & Hamilton 2011). 
Similar findings have been reported for the Neotropical region of South America, also known to harbor numerous 
acidic and darkly-stained ponds and lakes containing a high diversity of Eunotia species (Metzeltin & Lange-Bertalot 
1998, 2007, Burliga et al. 2007, Wetzel et al. 2011).
	 Other organisms found with the Eunotia remains further support the idea that the waterbody was shallow, acidic 
and humic-stained. For example, the section also contains multiple species of Actinella and Oxyneis Round (in Round 
et al. 1990: 402, 673), two additional diatom genera almost exclusively reported from these types of waterbodies 
(Flower 1989, Kociolek & Rhode 1998, Sabbe et al. 2001, Kingston 2003, Melo et al. 2010, Siver et al. 2010, 2015). In 
addition, the presence of high concentrations of chrysophyte cysts, synurophyte species associated with acidic ponds, 
and testate euglyphids (Siver et al. 2020) further supports a shallow, acidic, and humic-stained hypothesis.
	 In summary, the Giraffe Pipe fossil locality harbors an extensive diversity of Eunotia diatoms, indicating that the 
genus was well established by the early to middle Eocene and clearly well distributed in freshwater habitats at northern 
latitudes.
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