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BACKGROUND: Poststroke recovery depends on multiple factors and varies greatly across individuals. Using machine learning
models, this study investigated the independent and complementary prognostic role of different patient-related factors in
predicting response to language rehabilitation after a stroke.

METHODS: Fifty-five individuals with chronic poststroke aphasia underwent a battery of standardized assessments and
structural and functional magnetic resonance imaging scans, and received 12 weeks of language treatment. Support vector
machine and random forest models were constructed to predict responsiveness to treatment using pretreatment behavioral,
demographic, and structural and functional neuroimaging data.

RESULTS: The best prediction performance was achieved by a support vector machine model trained on aphasia severity,
demographics, measures of anatomic integrity and resting-state functional connectivity (F1=0.94). This model resulted in
a significantly superior prediction performance compared with support vector machine models trained on all feature sets
(F1=0.82, ”<0.001) or a single feature set (F1 range=0.68-0.84, /<0.001). Across random forest models, training on
resting-state functional magnetic resonance imaging connectivity data yielded the best F1 score (F1=0.87).

CONCLUSIONS: While behavioral, multimodal neuroimaging data and demographic information carry complementary information
in predicting response to rehabilitation in chronic poststroke aphasia, functional connectivity of the brain at rest after stroke is
a particularly important predictor of responsiveness to treatment, both alone and combined with other patient-related factors.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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long-term disability! which affects various domains

of social participation? Aphasia, one of the most
devastating consequences of a stroke, affects approxi-
mately one-third of stroke survivors® A personalized
prognosis on the evolution of aphasia not only helps
patients and their relatives plan for the future but also
provides guidance for clinicians to select the appropriate
treatment. However, poststroke aphasia recovery varies

Stroke is a leading cause of severe and complex

widely across individuals* and is influenced by multiple
factors,® which makes a prognosis difficult to determine
for clinicians.

Previous studies have demonstrated that different
factors can partially orindependently explain the degree
of spontaneous or treatment-related language recovery
after stroke.®® Among the most consistent predictors
found in the literature are initial aphasia severity” and
lesion size.®® Specific linguistic or nonlinguistic abilities
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Nonstandard Abbreviations and Acronyms

AQ aphasia quotient

FA fractional anisotropy

LS lesion size

MRI magnetic resonance imaging

RF random forest
rs-fMRI or RS resting-state functional magnetic
resonance imaging

SVM support vector machine

at baseline assessment'®'" and demographic informa-
tion® may also play a role in the amount of language
abilities recovered over time. However, the role of
demographic data in therapy outcomes did not reach a
consensus in the literature.'” Furthermore, better brain
structural integrity®'®'* and functional local activity and
connectivity'®'® are positively related to the degree of
spontaneous and treatment-related language recov-
ery. Importantly, most of these studies investigated the
value of individual variables or combined only a few of
them. Therefore, it remains unclear (1) how each of
the aforementioned factors comparatively predict natu-
ral language recovery and recovery after rehabilitation
and (2) whether a combination of multiple factors is
superior in prediction relative to a single type of factor.
This question is important because clinicians need to
know which types of data are necessary to provide an
accurate prognosis to patients.

Recent advances in machine learning have allowed
the application of multivariate analysis methods on
multimodal neuroimaging data to predict language
impairments at a single time point after brain dam-
age'®?? or, in longitudinal studies, to predict natu-
ral language recovery over time after stroke.'®1623:24
However, these studies present several limitations:
the period of recovery investigated varied across par-
ticipants,'3?® the amount of rehabilitation received by
each individual was not controlled,'®'%2% and only one
type of imaging data was included (ie, functional or
structural).13.162324

In this study, we sought to identify the indepen-
dent and cumulative importance of behavioral, demo-
graphic, and multimodal structural and functional
imaging data to predict treatment-related language
recovery in chronic poststroke aphasia. Building on
our pilot work,?® we investigate the efficacy of 2 differ-
ent machine learning models, support vector machine
(SVM) and random forest (RF), to predict the improve-
ment in language ability after 12 weeks of rehabili-
tation. We hypothesized that model accuracy will be
improved by the combination of behavioral, demo-
graphic, structural and functional imaging variables
compared with single modality models.
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METHODS

This study has been conducted in adherence to the TRIPOD
guidelines (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis; see the checklist in
the Supplemental Material). Data can be shared upon request
based on a formal data sharing agreement. Figure 1 presents
the methodological framework of the study.

Participants

Participants were 55 individuals (37 male) with chronic post-
stroke aphasia due to a single left-hemisphere stroke (mean
age =b8.8 years, mean time poststroke onset =59.0 months,
mean education =15.8 years). For individual demographic data
and aphasia severity (Table S1). Participants were selected
from a larger sample (n=81) who were enrolled in a multi-site
study between 2015 and 2018 examining neurobiological fea-
tures of aphasia recovery (https://cnlrnorthwestern.edu/). Of
the full sample, 55 participants were included based on data
availability of all input features of interest for this investiga-
tion (see flowchart in Figure S1). The participants included in
this study were recruited at Boston University (N=30), Johns
Hopkins University (N=16), and Northwestern University (N=9).
Figure 2 presents the lesion distribution of all participants.
Exclusion criteria included premorbid neurological disease,
history of multiple left-hemisphere strokes, and contraindica-
tions for magnetic resonance imaging (MRI). All participants
provided written informed consent before study participation.
The study protocol was approved by the institutional review
boards at Boston University, Massachusetts General Hospital,
Northwestern University, and Johns Hopkins University.

Behavioral Assessment and Treatment

Participants completed a battery of standardized assessments at
baseline. The Western Aphasia Battery—Revised®® was used to
assess aphasia severity per the aphasia quotient (AQ). The Doors
and People test?” the Wechsler Adult Intelligence Scale Digit
Span,?® the Raven's Coloured Progressive Matrices?® the Corsi
block-tapping test?® and the Serial Reaction Time Task®® were
used to assess overall cognitive function. Participants at 3 sites
received different types of language treatments (see Methods
in the Supplemental Material). The treatment protocols and the
successful results of these treatments have been reported else-
where."15317%¢ For the purposes of this study, data for these
patients are collapsed as we examine responsiveness to overall
language rehabilitation (and not to any treatment type in particular).

MRI Data Acquisition

MRI was completed on a Siemens 3T Skyra with a 20-channel
head/neck coil at the Martinos Center in Charlestown, MA, for
Boston University; on a Siemens TIM Trio with a 32-channel
head coil or a Siemens Prisma with a 64-channel head/neck
coil at the Center for Translational Imaging in Chicago, IL, for
Northwestern University; and on a Philips Intera with a 32-chan-
nel head coil at Johns Hopkins University. Imaging protocols
were harmonized across sites to ensure similar quality and timing
and these protocols have been reported in previous papers.®*-7
Structural imaging included a T1-weighted sagittal sequence
(voxel size=1x1x1 mm?®), and a high-resolution whole-brain
cardiac-gated diffusion-weighted imaging sequence (voxel
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Figure 1. Methodological framework of the study.

A, Behavioral, demographic, and neuroimaging data were collected before the commencement of the treatment. Neuroimaging data were
preprocessed and feature selection was performed on feature sets with a high number of variables. B, All combinations of feature sets

(N=255) were tested as input to the support vector machine (SVM) and random forest (RF) models to classify participants into responders and
nonresponders. F1 score was used to rank models’ performance. AAL indicates Automated Anatomical Labeling atlas; DEM, demographics; DWI,
diffusion weighted-imaging; FA, fractional anisotropy; GM, gray matter; LOOCYV, leave-one-out cross-validation; PCA, principal component analysis;
ROI, region of interest; RS-fMRI, resting-state functional MRI; and WM, white matter.

size=1.983%x1.983%x2.000 mm?, 72 interleaved slices with 60
gradient directions and 10 nondiffusion weighted (b=0) vol-
umes, b value=1500 s/mm?). Whole-brain functional images
were collected using a gradient-echo T2"-weighted sequence
(voxel size=1.72x1.72x3 mm?®). Complete imaging sequence
parameters are provided in the Supplemental Material.

MRI Data Preprocessing

Several brain structural and functional measures were calcu-
lated including (1) lesion volume extracted through in-house
MATLAB scripts® from lesion masks manually drawn using
MRIcron software®® and normalized to MNI space, (2) the integ-
rity of gray and white matter regions calculated by computing
the percentage of spared tissue in 69 left-hemisphere gray
matter regions of the Automated Anatomical Labeling atlas,®
and 36 white matter tracts of the BCBToolKit*® probabilistic
atlas, respectively, (3) average fractional anisotropy (FA) in 12
tracts of interest, computed from diffusion tensor imaging data
preprocessed using the Advanced Diffusion Preprocessing
Pipeline*' and the Northwestern University Neuroimaging Data
Archive,*? and converted to tracts using the Automated Fiber

Quantification software (deterministic tractography),** and (4)
resting-state functional MRI (rs-fMRI) connectivity, involving
the rs-fMRI data first preprocessed in fMRIPrep version 1.4.1,
a Nipype-based tool,** and then through the CONN toolbox*®
to extract bivariate Fisher-transformed Pearson correlations
between 50 bilateral anatomic regions of interest specified
using the Automated Anatomical Labeling atlas 3,6 resulting
in 625 pairwise correlations per individual.

Methodological details on the MRI preprocessing are avail-
able in the Supplemental Material.

Model Development and Evaluation

The construction and comparison of classification models
predicting treatment response included several steps detailed
in the Supplemental Material. First, responsiveness to reha-
bilitation was determined by calculating the change in accu-
racy percentage on the treatment probes. Participants were
classified into responders (n=33) and nonresponders (n=22)
based on a cutoff of 25 percentage points change in accuracy
(Figure 3 and Supplemental Material). Second, given the large
number of variables in the feature sets (Table), dimensionality

40

Figure 2. Lesion overlay for all participants.
Z coordinates: —40 —30 —20 —10 0 10 20 30 40.
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Figure 3. Change in accuracy on the treatment probes with accuracy measured as a percentage.
Participants were classified into responders (R) and nonresponders (NR) to treatment based on a cutoff at 0.25. The different shades correspond
to each participant's site: Boston University (BU; dark), Johns Hopkins University (JHU; dark gray), and Northwestern University (NU; light gray).

reduction methods were used. The total scores of the 6
neuropsychological tests assessing overall cognitive func-
tion were entered in a varimax-rotated principal component
analysis, performed in R, version 3.4.3.” Two components
(hereafter, cognitive composite scores), representing visuo-
spatial processing and verbal working memory, were selected
and explained 63% of the variance of the data (Table S2 and
Supplemental Material). Additionally, some neuroimaging fea-
ture sets, namely percentage spared in white matter regions,
percentage spared in gray matter regions, FA, and resting-
state fMRI (RS) data, had dimensions much larger than any of
the rest: 36, 69, 12, and 625, respectively. Therefore, super-
vised feature selection*® was performed on these variables
and Pearson correlation coefficients between all selected

Table. List and Dimensions of Feature Sets (Before Feature
Selection)
Feature
sets Brief description Dimensions
DM Demographic information: age, education level, | 3
and time poststroke onset
AQ Aphasia quotient 1
CS Cognitive composite (ie, principal component) 2
scores
LS Lesion size 1
PSw Percentage of spared tissue in white matter 36
regions
PSg Percentage of spared tissue in gray matter regions | 69
FA Average fractional anisotropy for bilateral white 12
matter tracts
RS Resting-state functional connectivity data for 625
50 ROIs

ROl indicates region of interest.

Stroke. 2022;53:1606-1614. DOI: 10.1161/STROKEAHA.121.036749

features were computed (Figure 4 and Tables S3 and S4 and
Figure S2).

SVM and RF models were trained, tuned, and tested
using a leave-one-out cross-validation procedure on all pos-
sible combinations of feature sets, including individual feature
sets, to predict treatment response labels. Training and test-
ing steps, hyperparameter values and details of fine-tuning are
provided in the Supplemental Material and Tables Sb and S6.
Prediction performance was evaluated using 4 metrics: accu-
racy, F1 score, precision, and recall, capturing different types
of prediction errors (Supplemental Material). The F1 score was
selected as the primary metric because it is less affected by an
imbalanced class distribution (as is the case in this data set)
than other metrics, and allows researchers to evaluate mod-
els based on a balance between precision and recall. Finally,
distributions of F1 scores were computed for each of these
models using a leave-one-out approach by iteratively removing
one sample and computing the F1 scores based on perfor-
mance on the 54 other samples. These scores were used in
2-tailed Wilcoxon signed-rank tests*® (function wilcox.test in
R version 3.4.3*) to compare the prediction performance of
SVM/RF models based on a single feature set with (1) the
optimal SVM/RF model, that is, the SVM/RF model trained on
the feature set combination that resulted in the highest aver-
age F1 score and (2) the SYM/RF model trained on all feature
sets combined. Statistical comparison was considered signifi-
cant at an alpha level of 0.05.

RESULTS

Figure BA and 5B present all evaluation metrics for each
individual-feature-set model, the all-feature-sets model
and the optimal model (ie, best F1 score). Figure 5C and
5D show the distribution of F1 scores for each of these 3
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Figure 4. Resting-state functional
connectivity features.

Red dot and lines represent functional
regions and connections selected after
feature selection and included in the
machine learning models. Blue dots
represent regions excluded from the
analyses after feature selection. ACC
indicates anterior cingulate cortex; AG,
angular gyrus; FUS, fusiform gyrus; IFG,
inferior frontal gyrus; INS, insula; IPG,
inferior parietal gyrus; ITG, inferior temporal
gyrus; L, left; midTR, middle temporal pole;
MTG, middle temporal gyrus; orb, pars
orbitalis; PCC, posterior cingulate gyrus;
PCG, precentral gyrus; pre, pregenual; R,
right; ROI, region of interest; SFG, superior
frontal gyrus; STG, superior temporal gyrus;
supTP, superior temporal pole; SMA,
supplementary motor area; sub, subgenual;
SMG, supramarginal; SOG, superior
occipital gyrus; SPG, superior parietal
gyrus; and tri, pars triangularis.

input feature

@® ROI not selected

model types. In addition, Tables S7 and S8 show evalua-
tion metrics for (1) the top 20 models trained on the best
combinations of feature sets (ranked by F1 score), (2)
the model trained on all feature sets, and (3) individual-
feature-set models, for both SVM and RF, respectively.
Results of statistical comparisons between these 3 types
of models are presented in Table S9.

Across all models and all evaluation metrics, respon-
siveness to rehabilitation at the chronic stage was best
predicted by SVM models including multiple feature
sets, with maximum accuracy (0.927), F1 (0.941), pre-
cision (0.914), and recall values (0.970). The optimal
SVM model included aphasia severity, demographics,
FA, percentage of spared tissue in gray matter regions
and resting-state fMRI connectivity, and performed sig-
nificantly better than any of the models trained on an
individual feature set (P<0.001). This overall best per-
forming model correctly classified 51/55 participants
as responders and nonresponders to language treat-
ment. All the top 10 SVYM models (F1 scores ranging
from 0.941 to 0.909 and accuracy values from 0.927 to
0.891) included combined information on the structural
integrity of the brain (ie, percentage spared in gray mat-
ter regions, percentage of spared tissue in white matter
regions, or LS) and the neural activity patterns at rest
(ie, RS). Most of these combinations (8/10) also con-
tained information on the behavioral performance (ie,
AQ or cognitive composite scores).

1610  May 2022

Surprisingly, the SVM model using all fea-
ture  sets (accuracy=0.782, F1=0.824, preci-
sion=0.800, and recall=0.848), did not perform
better than aforementioned optimal SVM model (ie,
AQ+demographics+FA+percentage spared in gray mat-
ter regions+RS; A<0.001). Notably, among SVM mod-
els trained on an individual feature set, aphasia severity
(ie, AQ) and rs-fMRI connectivity (ie, RS) independently
provided the best prediction performance scores, with an
accuracy of 0.782 and 0.764 and an F1 score of 0.842
and 0.812, respectively.

Compared with SVM models, the top 10 RF models
resulted in lower prediction performance. Three equally
optimal RF models (accuracy=0.836, F1=0.873, pre-
cision=0.816, and recall=0.939) included RS alone,
LS+RS and AQ+demographics+FA+RS. These top
models correctly classified 46/55 participants as
responders and nonresponders. Most of the top 10 RF
models (9/10) included information on functional con-
nectivity (ie, RS), and some models included informa-
tion about the structural integrity of the brain (ie, LS,
percentage spared in gray matter regions, percentage
of spared tissue in white matter regions, or FA), the
behavioral performance (ie, AQ or cognitive compos-
ite scores), and demographics. Similar to SVM models,
the combination of all feature sets (accuracy=0.709,
F1=0.784, precision=0.707, and recall=0.879) did not
improve the prediction performance compared with the

Stroke. 2022;53:1606-1614. DOI: 10.1161/STROKEAHA.121.036749
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Figure 5. Predictive performance for support vector machine (SVM) and random forest (RF) models trained on a single

feature set, all feature sets or the optimal combination of feature sets (aphasia quotient [AQ], demographics [DM], fractional
anisotropy [FA], percentage spared in gray matter regions [PSg], resting-state [RS] for SVM and RS for RF).

F1 scores of models trained on a single feature set were significantly lower than the models trained on the optimal combination of feature sets
(P<0.001). A, Performance of SVM models on all 55 samples; (B) performance of RF models on all 55 samples; (C) distribution (kernel density
estimation in R with automatic bandwidth selection) of SVM F1 scores computed from all 55 subsets of 54 samples each; and (D) distribution

(kernel density estimation in R with automatic bandwidth selection) of RF F1 scores computed from all 55 subsets of 54 samples each.

optimal models combining a subset of the feature sets
(F<0.001).

Across the top combinations of feature sets ranked
by F1 scores, the cumulative occurrence of each feature
set shows that RS is predominant in both SVM and RF
models, followed by percentage spared in gray matter
regions in SVM models (Figure S3).

DISCUSSION

Previous studies from our group on a subset of these
data showed that brain function data,'®%® brain struc-
ture information®'* and language and cognitive per-
formance''?® independently predict treatment-related
outcomes. This study is the first, to our knowledge, to
investigate the cumulative importance of patient-related
information using a comprehensive data set including
behavioral, demographic, and multimodal neuroimaging
information to predict rehabilitation-induced language

Stroke. 2022;53:1606-1614. DOI: 10.1161/STROKEAHA.121.036749

recovery in individuals with chronic poststroke aphasia.
Our results show that models that combine a subset of
multimodal neuroimaging, behavioral, and demographic
data outperform models trained on a single type of infor-
mation and, more importantly, all the available types of
information. Three types of patient-related data were
consistently important in predicting responsiveness to
language treatment: functional connectivity at rest (ie, rs-
fMRI), the anatomical integrity, and the aphasia severity.
Previous studies that have examined predictors of natu-
ral language recovery over time also demonstrated that
combining information from language tests and struc-
tural MRI®%®" or task-based fMRI'® improved prognosis
accuracy. In this study, we found an additional benefit of
combining both functional and structural MRI informa-
tion with behavioral abilities to predict responsiveness to
language rehabilitation. Interestingly, the present study
also demonstrates that combining all data types may
not provide the best estimates for treatment outcomes.
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Instead, the results show that a combination of features
that provide unique and salient information are sufficient
in the optimal model.

Importantly, not all relevant behavioral, demographic
and multimodal neuroimaging variables were equally
important for the prognosis of language recovery after
rehabilitation. In addition to confirming the importance
of aphasia severity in predicting treatment-related lan-
guage recovery® the present study showed that the
status of neural connectivity at rest, even in the chronic
stage, strongly predicts response to language treatment.
Indeed, resting-state connectivity data contributed to all
top performing models, regardless of the algorithm used.
While structural neuroimaging data, such as lesion size
or percentage of spared tissue in brain regions, informed
the model on the extent and location of the initial dam-
age, rs-fMRI connectivity between several undamaged
left-hemisphere and a few right-hemisphere regions
(Figure 4 and Table S4) provided information on the sta-
tus of brain functional (re)organization and potential for
relearning.®? Interestingly, all pairs of functional regions
of interest selected in the models consisted of at least
one region of interest from the language network, and
all white matter tracts retained from the diffusion imag-
ing data set corresponded to ventral or dorsal streams
involved in language processing suggesting the impor-
tance of the left hemisphere in predicting recovery. In
contrast, the regions where the degree of spared tis-
sue was highly correlated with treatment response
and selected as part of the final percentage of spared
tissue feature sets, were not circumscribed to the left
language network. Future studies are needed to draw
specific conclusions on the relative importance of indi-
vidual brain regions.

This study also shows that the choice of machine learn-
ing algorithm can influence the prediction performance.
On our data set, SYM models seemed to better lever-
age complementary information from the patient-related
data than RF models, resulting in higher prediction per-
formance. These differences, however, may be related to
not only the characteristics of each algorithm but also to
the small sample size. Thus, differences between models
should be interpreted with caution and replication stud-
ies are needed to generalize these findings.>®

Importantly, this study demonstrates that language
recovery after rehabilitation is multifactorial. In particular,
language abilities at baseline, brain structural integrity
and functional connectivity comprise unique and com-
plementary information that can improve language treat-
ment prognosis estimations. Machine learning models
presented in this study are a first step towards a more
personalized treatment approach for individuals with
poststroke aphasia. By leveraging behavioral and multi-
modal neuroimaging data, future models trained on data
from a larger sample size and different treatment types
could assist clinicians with targeting the best treatment
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approach for individuals with poststroke aphasia. As a
result of this advanced personalization, stronger evi-
dence of the effectiveness of language treatment at the
chronic stage could also be used to advocate for more
insurance coverage beyond a few months after stroke.

Limitations

Although the sample size of this study was limited due
to the availability of the multimodal MRI data, it was still
representative of the heterogeneity among individuals
with poststroke aphasia in terms of aphasia severity and
treatment response (Table S1). Previous studies demon-
strated that small sample sizes can lead to less accurate
results when using machine learning models on neuroim-
aging data to predict behavior.®* Therefore, we performed
feature selection on all eligible feature sets to improve
learning accuracy and model stability. As part of this
multi-site project, all participants received an impairment-
based treatment of the same intensity, yet targeting a
different language impairment at each site (ie, naming,
syntax, and spelling). Importantly, the goal of this study
was to investigate patient-specific factors that would pre-
dict recovery after language treatment and not to inves-
tigate treatment-related factors (eg, intensity, duration,
and language target). Although differences in treatments
may add noise to the results of this study, the accuracy-
maximizing prediction based on site-information alone is
to predict all participants as responders, irrespective of
the site, as Figure 3 shows. This is so since at each site,
the number of responders either equals or exceeds the
number of nonresponders. Thus, site as a feature may
have only a limited influence on performance.

Ideally, we should use k-fold cross-validation in all com-
puter experiments, but we used leave-one-out cross-val-
idation for both feature selection and model training and
validation steps. Furthermore, the samples used in both
steps should be different, but we used the same set of
samples in both steps. Both decisions were motivated by
the limited total number of samples in the data set. This
approach is commonly used and is particularly appropriate
for small sample sizes.®® Thus, testing models on a larger
and independent data set will be needed in future studies
to improve the generalizability of these results.
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