
1 Abstract

2 Over the first year, infants begin to learn the words of their language. Previous work suggests

3 that certain statistical regularities in speech could help infants segment the speech stream into

4 words, thereby forming a proto-lexicon that could support learning of the eventual vocabulary.

5 However, computational models of word segmentation have typically been tested using language

6 input that is much less variable than actual speech is. We show that using actual, transcribed

7 pronunciations rather than dictionary pronunciations of the same speech leads to worse

8 segmentation performance across models. We also find that phonologically variable input poses

9 serious problems for lexicon building, because even correctly segmented word forms exhibit a

10 complex, many-to-many relationship with speakers’ intended words. Many phonologically

11 distinct word forms were actually the same intended word, and many identical transcriptions

12 came from different intended words. The fact that previous models appear to have substantially

13 overestimated the utility of simple statistical heuristics suggests a need to consider the formation

14 of the lexicon in infancy differently.

15 Keywords: language acquisition, computational modeling, word segmentation,

16 phonological variation
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17 1. Introduction

18 Although infants are born knowing little about their native language, they quickly learn a

19 great deal from the speech they hear. Within months, they become familiar with their native

20 language’s sound categories (Werker & Tees, 1984), as well as the relative frequency of different

21 sequences of speech sounds (Archer et al., 2021; Jusczyk et al., 1993). Beyond learning about

22 their language’s phonology, infants also begin to learn words. Months before their first birthday,

23 they recognize the meanings of some common words, including both concrete nouns (Bergelson

24 & Swingley, 2012) and a little later, more abstract words (Bergelson & Swingley, 2013), and by

25 the second half of the first year, they recognize the spoken form of a variety of words familiar

26 from home experience or laboratory exposure (e.g., Hallé & Boysson-Bardies, 1994; Jusczyk &

27 Aslin, 1995; Jusczyk & Hohne, 1997; Schreiner et al., 2016; Swingley, 2005a; Vihman et al.,

28 2004).

29 An important step in the process of language learning is word segmentation, or pulling

30 out words from the continuous stream of speech. It is easy to understand that this is a difficult

31 problem—one only needs to listen to a parent speaking to an infant in an unfamiliar language to

32 recognize that it is quite hard to infer where one word ends and the next begins. This problem is

33 difficult for infants too, which is why infants learn words more easily when they are presented in

34 one-word utterances than when they are embedded in longer utterances (Brent & Siskind, 2001;

35 Keren-Portnoy et al., 2019; Swingley & Humphrey, 2018). Yet infants do manage to break

36 utterances into parts. Laboratory studies demonstrate that infants can extract words from their

37 phonetic contexts (e.g., Jusczyk and Aslin, 1995), and infants have some knowledge of

38 grammatical words that never appear in isolation (e.g., Shi & Lepage, 2008).
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39 Research into infants’ early discovery of words has taken two forms: experiments that

40 present continuous speech to infants and test which elements they retain, and computational

41 models that evaluate what infants might learn were they to parse and retain speech sequences

42 according to a particular set of computable heuristics. The present paper continues the latter line,

43 but differs from most prior work in examining the consequences of normal phonological

44 variability. When words are realized in more than one way, does the phonological structure of

45 the lexicon still permit simple probabilistic heuristics to succeed in producing the foundation of

46 the early vocabulary?

47 In principle, there are several cues that could be helpful in word segmentation, once the

48 infant has some familiarity with phonological regularities present in the lexicon. For example, in

49 English, strong syllables tend to coincide with word onsets, suggesting that English speakers

50 could learn to use stress patterns or vowel-reduction patterns to detect where an unknown word

51 begins (Cutler & Norris, 1988). Experiments have shown that infants do respond to such

52 prosodic cues (Jusczyk et al., 1999; Nishibayashi et al., 2015; Seidl, 2007; Seidl & Johnson,

53 2006; Sundara & Mateu, 2018). Some consonantal sequences are much more common at word

54 boundaries in English than within words, and infants respond to these phonotactic probabilities

55 too (Mattys et al., 1999; Mattys & Jusczyk, 2001). These studies suggest that infants use the

56 phonetic characteristics of a preliminary stock of words to form generalizations that they then

57 apply in interpreting novel speech sequences.

58 Much of the laboratory research on word segmentation has focused on investigating how

59 the initial stock of words is identified by infants, and what generalizations might follow. In

60 principle, tabulating frequencies of occurrence, and relative frequencies of adjacent units, could

61 be informative about word boundaries. Sequences of units (such as phones or syllables) within
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62 words are expected to co-occur more often than sequences occurring across word boundaries

63 (Harris, 1955). If infants could track this kind of information, they might be able to pull out

64 candidate word forms from the speech stream (e.g., Aslin et al., 1998; Saffran et al., 1996).

65 Many laboratory experiments have confirmed that infants are sensitive to the statistical

66 cohesiveness of sub-word units. Most of these studies involve familiarizing infants with an

67 unknown, usually artificial, language, whose words are defined as the consistent phonological

68 strings that were concatenated to create the listening sequence. Differences in infants’

69 subsequent listening times to isolated words and nonwords show that infants must have

70 computed, in some form, the probability differences among phone or syllable transitions between

71 words and nonwords. The original findings by Saffran et al. (1996) have since been extended to

72 other language learning populations (e.g., Mersad & Nazzi, 2012) and to infants as young as 5

73 months (E. K. Johnson & Tyler, 2010). In general, these experimental designs are well equipped

74 to demonstrate which information sources are theoretically accessible to infants, and to reveal

75 whether infants’ strategies appear to have been shaped by the characteristics of the language they

76 are learning.

77 However, laboratory experiments are not well equipped to show whether a particular cue

78 is sufficient to support language acquisition given its actual availability in the language

79 environment. For example, even if co-occurrence frequencies are sufficient to segment the small

80 artificial languages that are typically used in experiments (though see Pelucchi et al., 2009), it is

81 not necessarily the case that they can be used to successfully segment spontaneous natural

82 language (e.g., Gambell & Yang, 2005; Swingley, 2005b; Yang, 2004). As a result, as a

83 complement to experimental work, computational models can be deployed over language
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84 corpora to test whether a proposed cognitive ability would be sufficient to account for the

85 documented behavioral accomplishments of infants (e.g., Ludusan et al., 2022).

86 Computational models of word segmentation illustrate which word forms could be

87 learned given different assumptions about the algorithm at work and the language input that the

88 learner receives. Broadly speaking, a model is provided with a textual representation of speech

89 without word boundaries, and returns as output the same text with the hypothesized word

90 boundaries inserted, for example, in places where the transitional probability or conditional

91 probability of two units (phones or syllables) occurring next to each other is relatively low (e.g.,

92 Saksida et al., 2017). This segmentation output can then be compared to the actual (gold-

93 standard) words, to assess the model’s performance. To make these comparisons, previous

94 modeling work has typically focused on information retrieval metrics that compare the number

95 of correct and incorrect segmentations, or, less commonly, on how psychologically plausible the

96 errors seem (e.g., Daland & Pierrehumbert, 2011; Lignos, 2011). Relatively few studies have

97 examined in detail what sort of language-learning foothold the output of a segmentation

98 procedure would grant the infant.

99 Regardless of the particular model in question, most previous studies have made similar

100 assumptions about the nature of the input to word segmentation. Specifically, the input to the

101 model has typically been generated by taking an orthographic transcription of speech and

102 replacing each word with its pronunciation according to a dictionary (e.g., Brent & Cartwright,

103 1996; see, for example, Börschinger et al., 2013; Elsner et al., 2013 for exceptions). This

104 procedure tacitly assumes that any given orthographic word is always pronounced in the same

105 canonical way. In real speech, however, this is not the case. Whole phones and even syllables

106 can be dropped or added, or changed to incorporate features of nearby sounds (e.g., Ernestus &
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107 Baayen, 2011; K. Johnson, 2004). It is well known that speech can vary in “non-contrastive”

108 acoustic and phonetic dimensions (like pitch, amplitude, and creakiness, in English) where

109 differences are usually not relevant to word identity. Here we highlight a different kind of

110 variability—in the phones that are present or absent in a word form—which infants cannot

111 reasonably disregard in trying to learn and recognize words. Providing computational models

112 with dictionary pronunciations instead of a direct phonological transcription ignores this kind of

113 variability and thus overestimates the clarity of the language input.

114 To address this potential limitation, the present study tested several existing models of

115 word segmentation using two different phonological transcriptions of the same speech: a

116 “dictionary pronunciations” version, derived using an orthographic transcription and a

117 pronunciation dictionary, and a more realistic “transcribed pronunciations” version, or direct

118 phonological transcription of the speech. This served two purposes. First, we wanted to assess

119 how the performance of existing models would be affected by using more realistic input that

120 incorporated phonological variation. If the models’ previous successes relied on certain

121 unrealistic features of dictionary-derived phonological transcriptions, then we would expect to

122 see a substantial decrease in performance on the transcribed pronunciations version of the

123 corpus. Similar performance on both versions of the corpus, on the other hand, would suggest

124 that the models are robust to phonological variation, in line with infants’ own learning, which

125 proceeds despite the phonological variation present in actual speech. (We acknowledge that such

126 a result would still leave open the question of whether infants’ representation of spoken language

127 resembles that of hand-transcribed corpora, a point we will return to later.)

128 Second, in addition to quantifying numerical differences in performance, we wanted to

129 investigate what concrete effects more realistic input might have on the learner’s developing
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130 lexicon. Given input in which the same word can be pronounced in multiple ways, what kind of

131 word knowledge could the learner achieve according to current proposed solutions to word

132 segmentation? The typical view of word learning supposes that the output of word segmentation

133 serves as the input to the process by which children map meanings to words (e.g., Graf Estes et

134 al., 2007), but the present work highlights the fact that even when segmentation is successful, the

135 resulting word forms can be difficult to link to word types.

136 We will begin by reviewing several recent models of statistically driven word

137 segmentation. Next, we describe the corpus that we used as input to test how robust these models

138 are to phonological variability, and present the performance results. Finally, we explore the

139 nature of the segmented word forms under conditions of phonologically variable input and its

140 broader implications for word learning.

141 1.1 Segmentation Algorithms

142 Building on experimental work using transitional-probability-based stimuli (Aslin et al.,

143 1998; Saffran et al., 1996), several authors have implemented transitional-probability-based

144 computational models of word segmentation (e.g., Gervain & Guevara Erra, 2012; Saksida et al.,

145 2017; Yang, 2004). These models compute the transitional probability of each pair of units XY,

146 which can be defined as the probability of XY divided by either the probability of X (forward

147 probability), the probability of Y (backward probability), or their product (mutual information; in

148 this case, the resulting fraction is also log-transformed). Then, the models insert word boundaries

149 either wherever the transitional probability is lower than the transitional probability of the pairs

150 around it (relative threshold) or wherever the transitional probability is lower than the corpus

151 average (or some other absolute threshold). Work by Saksida et al. (2017) suggests that different

152 variations of this transitional probabilities (TP) model may be more effective in different
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153 languages, although overall performance was relatively high across languages and model

154 variations.

155 The diphone-based segmentation model (DiBS) of Daland and Pierrehumbert (2011) also

156 tracks the co-occurrence frequencies of sub-word units, in order to explicitly estimate the

157 probability of a word boundary given a particular diphone. The key insight is that infants might

158 detect through observation that some sounds are unusually common at the beginnings and ends

159 of utterances (compared to their overall co-occurrence frequency). In the absence of any word

160 boundary information, infants could use the utterance boundaries instead and treat these sounds

161 as especially likely beginnings and ends of words. This is what DiBS does in its unsupervised

162 instantiation. More specifically, DiBS estimates the probability of a word boundary occurring

163 between two phones using the observed frequencies with which the first phone ends utterances

164 and the second phone begins utterances, along with their co-occurrence frequency. If the

165 estimated probability is greater than 0.5, a word boundary is deterministically inserted. Daland

166 and Pierrehumbert (2011) found that DiBS was somewhat robust to phonological variation,

167 although their focus was on the relative rates of different types of segmentation errors rather than

168 absolute performance metrics.

169 As in the DiBS model, units that occur at the beginning and end of utterances play an

170 important role in the PUDDLE (Phonotactics from Utterances Determine Distributional Lexical

171 Elements) model of Monaghan and Christiansen (2010). PUDDLE is a subtractive algorithm that

172 pulls out known chunks (previous utterances, to start) from new utterances, creating new chunks.

173 However, this segmentation only occurs if the resulting new chunks start and end with n-grams

174 (diphones by default) that the model has already learned as legal onsets and offsets. Thus, n-

175 grams that occur next to utterance boundaries, which always get stored as legal onsets and
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176 offsets, greatly inform the model’s subsequent decisions. Monaghan and Christiansen (2010)

177 tested the PUDDLE model on a phonological corpus derived by passing an orthographic corpus

178 through a speech synthesizer. As they point out, this phonologization process is more realistic

179 than most pronunciation dictionaries, since the speech synthesizer allows the same orthographic

180 word to be pronounced differently in different part-of-speech contexts (e.g., “uses” as a verb

181 versus “uses” as a noun). Still, this model does not incorporate all of the phonological variation

182 present in actual speech.

183 These three models of word segmentation, along with a number of other models, continue

184 to be used to investigate questions about children’s early word learning. While such models are

185 not necessarily seen as mechanistic explanations of what infants actually do, they are at least

186 taken to demonstrate what information is potentially available to infants in different kinds of

187 language input. Recent studies (Cristia et al., 2019; Fibla et al., 2021) highlight that a range of

188 models can be used in parallel to better identify results that are stable across models. To facilitate

189 this kind of multiple-model investigation, Bernard et al. (2020) developed the WordSeg software

190 package, a coordinated collection of several different word segmentation algorithms, including

191 TP, DiBS, and PUDDLE. So far, the WordSeg implementations have been used to compare the

192 segmentability of adult-directed and child-directed speech (Cristia et al., 2019), to assess the

193 segmentability of bilingual language input (Fibla et al., 2021), to test the value of prosodic

194 breaks (Ludusan et al., 2022), and to measure the effects of morphological complexity on word

195 segmentation (Loukatou et al., 2022). Given the importance of these and other questions to

196 which these models can be applied, it seems especially crucial to investigate the consequences of

197 the assumptions that such modeling efforts usually make about phonological variation.

198 2 Materials and Methods
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199 2.1 Corpus

200 We used the Buckeye corpus (Pitt et al., 2007) because it is a large corpus that already

201 has both a direct phonological transcription and also a phonological transcription derived via

202 lookup of orthographic words in a pronunciation dictionary. The Buckeye corpus contains

203 spontaneous speech from 40 American English-speaking adults living in Columbus, Ohio.

204 Speech was recorded during one-on-one interviews about a variety of local issues, and then

205 orthographically and phonologically transcribed. In the present study, we analyzed a subset of

206 the Buckeye corpus composed of speech from four female talkers under 40 years of age. These

207 speakers were selected so as to better approximate infant-directed speech, an issue taken up in

208 more detail in the Discussion. In total, the smaller corpus used in this study included 30,910

209 words from 1,425 conversational turns. (Our rationale for collapsing across these four speakers

210 when constructing the corpus can be found in the Supplementary Materials.)

211 During pre-processing, we removed all non-speech codes (e.g., VOCNOISE for non-

212 speech vocalizations) and words containing non-speech codes from the corpus. We also replaced

213 instances of syllabic consonants with a schwa vowel followed by that consonant. Before running

214 the segmentation algorithms, we modified the corpus to include more frequent utterance

215 boundary codes. The Buckeye corpus only marks conversational turn boundaries and not other

216 utterance boundaries, so we probabilistically inserted additional utterance boundaries between

217 words according to the rate observed in child-directed speech (the Brown (1973) files in the

218 CHILDES database (MacWhinney, 2000)).

219 2.2 Syllabification

220 Some of the segmentation algorithms that we tested use syllables as the basic unit. To

221 prepare the corpora for these algorithms, we used the program tsylb2 developed at the National
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222 Institute of Standards and Technology (Fisher, 1996). This program syllabifies words using

223 information about which consonant clusters can begin and end words in English, in combination

224 with the principle of maximal onset (intervocalic consonants are maximally assigned to syllable

225 onsets).

226 2.3 Segmentation

227 We employed three proposed segmentation algorithms, TP, DiBS, and PUDDLE

228 (described above), on both versions of the corpus using the WordSeg software package (Bernard

229 & Cristia, 2018). (See the Supplementary Materials for a description of the parameters.) Since

230 which unit, the phone or the syllable, is more appropriate to consider as the basic unit has been

231 debated in the literature (e.g., Gambell & Yang, 2005; Swingley, 2005b), we tested both phone-

232 based and syllable-based versions of each algorithm, with the exception of DiBS, for which we

233 only tested the unsupervised phone-based version. Note that providing syllable boundaries rather

234 than phone boundaries is much closer to providing the true word boundaries already, because

235 English has many monosyllabic words. As a result, it is not meaningful to compare the

236 performance of the phone-based algorithms to the performance of the syllable-based algorithms.

237 Instead, their performance can be compared to the performance of two different baseline

238 algorithms. As the syllable-based baseline, we used the WordSeg (Bernard & Cristia, 2018)

239 baseline algorithm, which identifies every syllable as a word. As the phone-based baseline, we

240 coded an implementation of the Possible Word Constraint (Norris et al., 1997), according to

241 which all segmentations should contain at least one vowel. To achieve this constraint, this

242 baseline algorithm considers each pair of consecutive vowels in each utterance in the corpus and

243 inserts a word boundary somewhere between them (with the location chosen at random)

11



244 according to the oracle probability of a word boundary occurring between two consecutive

245 vowels within an utterance, across the corpus.

246 2.4 Performance Evaluation

247 To quantitatively evaluate the performance of each algorithm, we computed the standard

248 information-theoretic measures of (token) precision, recall, and F-score. In the context of word

249 segmentation, precision measures how many of the segmented words were correctly segmented

250 (matched the gold text, i.e. [correct segmentations] / [all segmentations]), while recall measures

251 how many of the words in the gold text were successfully extracted ([correct segmentations] /

252 [all word tokens in the gold text]). In line with previous work (e.g., Cristia et al., 2019), we focus

253 on token F-score, which is the harmonic mean of precision and recall. Results of analyses

254 considering precision and recall separately are provided in the Supplementary Materials.

255 3 Results

256 3.1 Model Performance

257 Fig. 1 shows the relative performance of each algorithm on the dictionary pronunciations

258 versus the transcribed pronunciations version of the corpus. The error bars represent two

259 standard deviations across ten different runs of the procedure that probabilistically inserted

260 additional utterance boundaries into the corpus. These pseudo-confidence intervals provide an

261 estimate of the within-corpus noise introduced by different utterance boundary randomizations.

262 Across algorithms, performance on the transcribed pronunciations version of the corpus

263 was lower than performance on the dictionary pronunciations version (as evidenced by the

264 downward slope of the lines in Fig. 1), with the exception of the baseline algorithms. The

265 average decrement in token F-score for the non-baseline algorithms was 12%, ranging from

266 3.65% to 22.5%. Using transcribed pronunciations also changed how performance varied
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Figure 1. Segmentation performance on dictionary pronunciations versus transcribed pronunciations of the same
speech. Each connected pair of points represents a particular word segmentation algorithm, and error bars show
empirical 95% confidence intervals over different utterance boundary randomizations.

267 between algorithms, practically eliminating the differences observed on the dictionary

268 pronunciations version of the corpus (phone-based algorithms) or even reversing the previous

269 pattern (syllable-based algorithms).

270 The observed decrease in performance on the transcribed pronunciations can be

271 explained by the underlying statistics of this version of the corpus. Let us consider the phone-

272 based algorithms for simplicity. In the dictionary pronunciations version of the corpus, there are

273 some pairs of phones that are extremely reliable cues to the presence or absence of word

274 boundary. For example, when /h/ is followed by any other phone, the probability of a word

275 boundary occurring between them is 0, since /h/ cannot end words in English. Conversely, any

276 phone followed by /h/ is a fairly reliable cue to the presence of a word boundary (P(word

277 boundary) = 0.887), since these can only belong to the same word if that word is multisyllabic

278 (e.g., “clubhouse”). However, because /h/ is often deleted in conversational speech (e.g., “im”
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279 instead of “him”), these helpful cues are less frequent in the transcribed pronunciations version

280 of the corpus (1,358 instead of 1,635 occurrences). As another example, /u/, which never starts

281 words in the dictionary pronunciations version of the corpus and so always attaches to the phone

282 before it, occurs 2,622 times in the dictionary pronunciations but less than half that often (1,196

283 times) in the transcribed pronunciations because of frequent vowel reduction.

284 In addition to cases like these, some phone pairs that are reliable cues in the dictionary

285 pronunciations become less reliable in the transcribed pronunciations. For instance, /ɪ/, /ɛ/, and

286 /ʌ/ never directly precede word boundaries in the dictionary pronunciations but do so about 10%

287 of the time in the transcribed pronunciations due to final consonant deletion. On the whole then,

288 the statistical landmarks that help in the dictionary pronunciations version of the corpus have

289 been eroded in the transcribed pronunciations, leading to worse segmentation performance across

290 models.

291 Despite the decrease we observed moving from dictionary pronunciations to transcribed

292 pronunciations, the algorithms’ absolute performance on the transcribed pronunciations version

293 of the corpus was still relatively high in the case of the syllable-based algorithms and well above

294 the relevant baseline for the phone-based algorithms (Fig. 1). This suggests that at least in terms

295 of numerical performance, these models of word segmentation are somewhat robust to the

296 phonological variation present in actual speech, though of course they leave open the question of

297 how infants identify the phones or locate the syllable boundaries.

298 3.2 Proto-Lexicon of Word Forms

299 In addition to calculating the standard performance metrics, we also examined the nature

300 of the word forms that appeared in the segmentation output when the models were given

301 phonologically variable input. Since the typical view assumes that the output of word
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302 segmentation gives rise to a proto-lexicon of word forms whose meanings are discovered during

303 word learning, we wanted to assess the correspondence between segmented word forms and

304 orthographic words, using orthographic words as a proxy for word meanings.

305 To visualize the relationship between correctly segmented phonological word forms and

306 orthographic words, we can think of phonological word forms and orthographic words as the two

307 kinds of nodes in a bipartite (or bimodal) network. In this network, an edge exists between two

308 nodes A and B if that phonological word form A was ever correctly segmented when B was the

309 speaker’s intended orthographic word. With dictionary pronunciations as input, this network is

310 guaranteed to consist of one-to-one links, or pairs of nodes that are only connected to each other

311 (with the exception of homophones, where two phonological word forms would be linked to the

312 same orthographic word). With phonologically variable input, however, such one-to-one

313 correspondences are not guaranteed. Instead of one-to-one links where the meaning of each

314 phonological word form is well defined, we could instead see a complex many-to-many

315 relationship, where each orthographic word has several different pronunciations and these

316 pronunciations overlap with the pronunciations of other orthographic words. In this case,

317 learning which meaning to attach to a phonological word form would pose a problem with no

318 clear solution.

319 For example, consider an English-learning child who has isolated [sɪd] (“sid”) as a

320 potential word, based on its statistical cohesiveness. The child might observe that this word’s

321 contexts of use are compatible with notions conveyed by “sit” and “said.” Given this evidence,

322 the child might suppose that these two meanings are, in fact, both members of some larger

323 semantic category than previously hypothesized (e.g., LaTourrette & Waxman, 2020); or might

324 guess that [sɪd] is a homophone. Similarly, a child who has isolated [kɔl] (“call”) and [kɔ]
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325 (“caw”) as separate forms whose contexts of use (instances of the intended orthographic word

326 “call”) seem identical might suppose that “call” has more than one pronunciation, or that the

327 phonological categories of [kɔl] and [kɔ] should actually be collapsed into one. Resolving these

328 possible errors, even if multiplied over many items in the lexicon, seems tractable. But there are

329 also many-to-many cases where any solutions would seem to be overwhelmed with ambiguity.

330 Imagine, for instance, a child who has isolated [kɪd] as a potential word. While canonically this is

331 simply the single pronunciation of the word “kid”, in actual speech, “kid” and “could” are both

332 frequently pronounced as [kɪd]. Furthermore, “kid” can also be pronounced [kɪ], as can “could”,

333 and other pronunciations of each word overlap with yet more orthographic words (e.g., “kit”,

334 “good”, “can”, etc.). This scenario is clearly much less tractable, even given perfect knowledge

335 of each word form’s context of use. (For a visual example of a small, many-to-many mapping,

336 see Fig. 2).

[ hil] [ hɪl]

heel he’ll hill

Figure 2. Example many-to-many mapping. Edges between phonological word forms (shaded) and orthographic
words (white) represent attested pronunciations. In this network, the same orthographic word (“he’ll”) can have
multiple pronunciations ([hil] and [hɪl]), and a single phonological word form can map onto multiple orthographic
words and thus meanings (e.g., [hil] maps onto both “heel” and “he’ll”).

337 With these possibilities in mind, we turn to our results. We observed a variety of

338 outcomes, including both unambiguous one-to-one links and larger many-to-many components.
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339 For simplicity, we focus here on the correct segmentations under the phone-based transitional

340 probabilities model, but the overall pattern of results was similar using other models (see

341 Supplementary Materials). As Fig. 3 shows, most of the phonological nodes or postulated word

342 types (65%; 86% of tokens) ended up in a single giant component of phonological and lexical

343 overlaps. By contrast, only 21% (7% of tokens) belonged to a one-to-one link.1 Many of the one-

344 to-one links were of extremely low frequency (just two or three occurrences), making it hard to

345 say how many of these perfect correspondences would persist given a larger corpus.

346 This network of orthographic words and phonological word forms was very different

347 from the equivalent network generated under the unrealistic simplifying assumption of no

348 phonological variation from the dictionary pronunciations. The network generated from

349 transcribed real pronunciations had a higher density (number of observed edges / total possible

350 edges given the number of nodes). This increase in density was expected because when the

351 dictionary pronunciations version of the corpus is used as input, the number of observed edges is

352 bounded by the number of (correctly segmented) orthographic word types (i.e., each

353 orthographic word has no more than one pronunciation). This is not true when the transcribed

354 pronunciations are used. However, in addition to an increase in density, we also observed a giant

355 component composed of overlaps, including a large number of many-to-many connections, and

356 encompassing the majority of the postulated word types. In other words, it is not merely the case

357 that each orthographic word had a few different pronunciations that would need to be grouped

358 together by the learner. A given phonological word form was also ambiguous as to the intended

359 orthographic word, indicating much more widespread homophony than is typically assumed.

1 These estimates excluded segmentations that occurred only once (5% of the tokens). If these hapax legomena are
included, the analogous proportions are 53% of types (84% of tokens) and 24% of types (6% of tokens).
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Figure 3. Network visualization of the correctly segmented words under the TP model. Each shaded node represents
a segmented word or phonological word form, which is linked to one or more intended orthographic words (white
squares). Node size represents frequency, though any segmentations that occurred only once were excluded. For
simplicity, only a few representative examples are plotted for the smaller components (“intermediate links” and
“one-to-one links”). The bar graph shows the percentage of phonological word forms that ended up in each kind of
component.

360 It is possible that our use of a binary edge condition, in which we ask whether the

361 phonological word form A either was ever, or was never, an instance of the orthographic word B,

362 overestimates the messiness of the input by weighting very infrequent pronunciation variants as

363 strongly as frequent ones. If, for example, 9/10 instances of “rain” were segmented as [ɹeɪn] and

364 1/10 as [ɹeɪ] (which could also be “ray”), the child might be in a different position than if the

365 proportions were 5/10 and 5/10. To incorporate frequency information, let us consider a

366 weighted network, where each edge in the network has a weight representing how many times

367 each orthographic word was realized as a particular phonological word form. Then, a
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368 phonological word form and an orthographic word can be said to be in a close to one-to-one

369 relationship if the weight of the edge between them is high relative to the weighted degree (total

370 frequency = sum of weights of direct edges) of either node. Borrowing a measure from

371 information theory, this is equivalent to saying that the (pointwise) mutual information (PMI) of

372 the two nodes A and B (i.e., log[freq(A and B) / (freq(A)*freq(B)]) is high, or that the

373 normalized pointwise mutual information (NPMI = PMI / -log[freq(A and B)]) is close to 1,

374 where 1 indicates perfect correlation. In Fig. 4, we show what happens to the giant component

375 from the original network when edges between nodes with NPMI close to 0 (where 0 indicates

376 statistical independence) and edges with a weight of 1 (correspondences that occurred only once)

377 have been pruned using oracle knowledge of the intended orthographic word. Taking frequency

378 information into account in this way resolves some of the ambiguities, creating some one-to-one

379 links and intermediate-size components where before there was only a single, densely connected

380 component.
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Figure 4. Giant component after pruning. Edges linking phonological word forms (shaded circles) and intended
orthographic words (white squares) were removed if the two were only weakly informative about each other (NPMI
≤ 0.25) or if the correspondence occurred only once among the correct segmentations. For the components at the top
of the figure, the orthographic nodes are labeled in gray (e.g., “his”), and the phonological nodes in black (e.g., ihz
([ɪz] in IPA)). For clarity, labels are not presented for the smaller components at the bottom of the figure.

381 The sparser network formed by pruning links with less tight an evidential connection

382 shows that if children could identify and ignore infrequent phonological and lexical

383 correspondences, or simply forget them, this would reduce the number of words involved in

384 intractable many-to-many overlaps. Nevertheless, even after this pruning, some large connected

385 components remained. For example, “as”, “has”, “his”, “just”, “is”, “it’s”, “that’s”, “this”,

386 “was”, and “us” all belonged to the same connected component. Such many-to-many

387 relationships challenge the assumption that statistically driven word segmentation provides the

388 learner with a strong lexicon-building foundation. In other words, considering word types and

20



R
e

m
a

in
in

g
O

rt
h

o
g

ra
p

h
ic

 W
o

rd
s

389 phonological word forms separately reveals a hidden learning challenge that unsupervised

390 statistics computed over a phonological transcription cannot untangle.

391 Pruning infrequent edges from the network provides a more nuanced characterization of

392 the input but is probably unrealistic as a model of the learner, since infants do not have oracle

393 knowledge of the intended orthographic word. Without this knowledge, the frequency of each

394 correspondence is unlikely to be available. Thus, taking a more psychologically plausible

395 approach, we modeled what would happen if phonological word forms below a certain overall

396 frequency were excluded or forgotten. If we exclude word forms that happened only few times

397 in the corpus, does this help reduce the number of many-to-many mappings? As Fig. 5 shows,

398 thresholding by frequency does reduce the absolute number of orthographic words involved in

399 many-to-many relationships, but their proportion in the proto-lexicon actually increases. In

400 general, the phonological word forms involved in many-to-many relationships are high in overall

401 frequency. As a result, excluding low-frequency word forms hurts the ideal, one-to-one links

402 substantially more than it helps resolve the many-to-many entanglements.

403 So far, the networks we have considered have assumed that the learner tries to link up

n=447 n=374 n=288 n=227 n=183 n=141 n=105 n=58

158                   124                  68                     48                    25                     9                        7                       2

1 2 4 8 16 32 64 128

Relationship Type

many−to−many

one−to−many

many−to−one

one−to−one

Frequency Threshold for Phonological Word Forms

Figure 5. Composition of the proto-lexicon assuming low-frequency word forms are forgotten. For each frequency
threshold, a pie chart shows which orthographic words remain when the phonological word forms at or below that
frequency are excluded. (Note that because the corpus is a sample of the listener’s experience, a frequency of 1 in the
corpus does not necessarily correspond to a frequency of 1 in the listener’s experience.) Including only higher
frequency words forms reduces the absolute number of words involved in many-to-many entanglements (i.e., the
absolute area of the dark red region decreases from left to right), but their proportion increases. By contrast, both the
number (labeled) and the proportion of the ideal, one-to-one words (green, outlined) decrease dramatically as the
frequency threshold increases.
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404 every (correctly) statistically derived word form with a meaning. Even with perfect access to the

405 word’s semantic context (implemented here by identifying it with the corpus’ orthographic

406 transcription), our results demonstrate that this is an extremely hard problem to solve. As an

407 alternative to this exhaustive processing of the input, infants might instead only consider as

408 candidate word forms for their initial proto-lexicon those word forms that seem to have concrete

409 referents. To investigate this possibility, we filtered the network by removing orthographic nodes

410 with concreteness ratings (Brysbaert et al., 2014) below the median, and also removing any

411 edges connected to them. Fig. 6 shows the result.2 This exclusion of less concrete words

412 significantly reduced the density of the network (0.0028) compared to removing the same

413 number of orthographic nodes chosen at random (bootstrap 95% CI = [0.0033, 0.0043]). This

414 happens because more concrete words tend to be phonologically heavier in their specification in

415 the lexicon, and also less affected by reduction processes that would alter their transcription.

416 Therefore, temporarily leaving aside words with less concrete meanings early in the learning

417 process could make the mapping problem more tractable. This solution does not entirely rescue

418 the learner, however, because some many-to-many components persisted after filtering, and

419 because knowledge of the semantic context is not in fact given. In the real world, infants have to

420 contend with variation both in the referential world and in words’ pronunciations. Although

421 some word use instances in parent-infant interaction are semantically transparent (Trueswell et

422 al., 2016) and some demonstrate careful, relatively unambiguous phonetic presentations

423 (Cychosz et al., 2021), these learning opportunities may not be the same ones (CITE BEECH &

424 SWINGLEY ’gems’ paper).

2 As a complement to this simulation, we also used regression analyses to describe whether some kinds of words
(e.g., content versus function words) were more likely to end up in one-to-one or close to one-to-one relationships in
the original network. See the Supplementary Materials for details.
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Figure 6. Entire network with less concrete words excluded. Concreteness norms were used to exclude orthographic
words (white squares) of below average concreteness (2.64 out of 5) and any edges connecting them to phonological
word forms (shaded circles). Despite the significant reduction in density compared to random orthographic node
removal, some complex, many-to-many components persisted.

425 4. Discussion

426 In this study we investigated the effects of phonological variation on models of

427 statistically driven word segmentation. We found that using transcribed pronunciations rather

428 than canonical pronunciations led to consistently lower numerical performance across

429 algorithms. In addition, we showed that phonological variability poses substantial problems for

430 lexicon building. Most of the extracted phonological word forms ended up in a dense web of

431 phonological and lexical overlaps, where phonological identities and differences were not

432 consistent cues to word identity. This finding could explain why toddlers have sometimes failed

433 to apply a mature phonological criterion in word learning experiments (Dautriche et al., 2015;
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434 Stager & Werker, 1997; Swingley & Aslin, 2007). Perhaps they have learned that in real speech,

435 a small phonological difference often does not imply a difference in meaning.

436 Traditionally, the fact that infants and toddlers often recognize words less well when the

437 words are realized with phonologically deviant pronunciations has been interpreted as evidence

438 that young children do use a phonological criterion for lexical differentiation, in line with

439 textbook definitions of the function of a formal phonology. For example, two-year-old children

440 learning Catalan, but not two-year-old children learning Spanish, find words harder to identify if

441 their vowel /e/ is realized as /E/—phonetically the same change in the two stimulus sets, but

442 phonologically quite different in the two languages (Ramon-Casas et al., 2009). This is

443 consistent with the idea that “mispronunciation effects” derive from a mismatch signal triggered

444 by the deviant phone, which is much stronger for phonological distinctions. Dietrich et al. (2007)

445 obtained a similar result in a word teaching context, with younger children. But, does this strong

446 mismatch signal, which we measure in experiments, prevail in children’s interpretation of novel

447 words? The answer, at least in the laboratory word-learning contexts we have tested, is no.

448 Swingley and Aslin (2007) tried to teach 19-month-olds novel object labels that were

449 phonologically distinct from familiar words (like “tog” for “dog”), and children failed again and

450 again. Children of this age can hear the difference, but it does not make them posit a new lexical

451 item. Swingley (2016) showed a similar result and eye-tracked the same children. From

452 children’s own eye movement data, it was clear that they noticed deviant realizations of words,

453 but they did not interpret those differences as corresponding to novel words for unfamiliar

454 objects. Why not? Why do children seem so skeptical, when they are confronted with a novel

455 neighbor? Perhaps because their linguistic experience has been replete with tokens of words that

456 often stray beyond their own phonological bounds. Children need to learn the canonical forms of
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457 words, but they also need to learn the phonetic transform that connects reduced forms to one or

458 more distinct canonical forms.

459 One limitation of the present work is the use of a corpus of adult-directed rather than

460 infant-directed speech. Adult-directed and infant-directed speech clearly differ in their content,

461 and a body of work suggests that infant-directed speech may be tailored to promote learning

462 (e.g., Eaves et al., 2016; Kuhl et al., 1997; though see Ludusan et al., 2021). However, it is also

463 clearly not the case that parents speak like dictionaries, producing only canonical forms, when

464 conversing with their children (e.g., Bard & Anderson, 1983; Buckler et al., 2018; Lahey &

465 Ernestus, 2014). In addition, infant-directed speech appears to have only a small and inconsistent

466 advantage in segmentability, at least when the recording contexts for infant-directed and adult-

467 directed speech are similar (Cristia et al., 2019).

468 Although this work introduced more realism in one way (by incorporating phonological

469 variability), it still made simplifying assumptions. For instance, in considering the problem of

470 attaching meanings to words, the orthographic word served both as the linguistic target and as a

471 stand-in for the semantic context. Future investigations could model the semantic context

472 separately, possibly by using a corpus with associated video data.

473 In addition, we have assumed that the statistical word segmentation algorithms operate

474 over phonological categories. It is possible that the phonological units that infants use early in

475 word learning are actually more continuous, in line with automatic speech recognition features

476 derived directly from the acoustic signal. Although this changes the problem space, other

477 computational modeling efforts have explored the feasibility of speech-based segmentation

478 (Dunbar et al., 2020; Räsänen, 2011). It could be that some of the complexity we observed here

479 in mapping variable segmented forms to distinct lexical items would be attenuated by avoiding
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480 the imposition of phonological categories in the first place. For example, if the word “tree” were

481 sometimes realized with an aspirated /t/ ([thɹi]), and sometimes realized with frication ([tʃɹi]),

482 these instances might be phonetically close but transcribed as phonemically distinct. At present,

483 it is impossible to say whether a more “analog” and less “digital” conceptualization of infant

484 speech processing would ameliorate the pervasive ambiguity problem we have identified, or

485 exacerbate it. However, if infants do not adopt a categorical representation of speech one way or

486 another, they also could not compute the same kinds of statistics that are widely presupposed to

487 underlie performance in word segmentation experiments. This is a fruitful ground for further

488 research efforts.

489 Despite these limitations, this study has important broader implications. Specifically, it

490 suggests that the exhaustive parsing models that dominate current thinking about very early

491 language development would, if true, place infants in a difficult position, by leading them to

492 build extremely complex initial lexicons containing a strong proportion of unhelpful

493 categorizations. This provides some impetus for thinking about the problem in another way. In

494 particular, rather than conceptualize infants as trying to fully parse every sentence using

495 rudimentary statistical segmentation heuristics, we might do better to suppose that infants begin

496 language learning by attending primarily to salient islands of reliability in phonetic and semantic

497 space, and building outward from there. If infants initially filter their input, homing in on

498 moments where words are pronounced more clearly or canonically, or the intended meaning is

499 more easily available, this could help them sidestep some of the problems that phonological

500 variability poses for early word learning. Eventually though, young children must contend with

501 speech on a larger scale. How children make this transition and learn to manage the phonological

502 variability in speech remains an open question.
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