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Abstract

Over the first year, infants begin to learn the words of their language. Previous work suggests
that certain statistical regularities in speech could help infants segment the speech stream into
words, thereby forming a proto-lexicon that could support learning of the eventual vocabulary.
However, computational models of word segmentation have typically been tested using language
input that is much less variable than actual speech is. We show that using actual, transcribed
pronunciations rather than dictionary pronunciations of the same speech leads to worse
segmentation performance across models. We also find that phonologically variable input poses
serious problems for lexicon building, because even correctly segmented word forms exhibit a
complex, many-to-many relationship with speakers’ intended words. Many phonologically
distinct word forms were actually the same intended word, and many identical transcriptions
came from different intended words. The fact that previous models appear to have substantially
overestimated the utility of simple statistical heuristics suggests a need to consider the formation
of the lexicon in infancy differently.

Keywords: language acquisition, computational modeling, word segmentation,

phonological variation
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1. Introduction

Although infants are born knowing little about their native language, they quickly learn a
great deal from the speech they hear. Within months, they become familiar with their native
language’s sound categories (Werker & Tees, 1984), as well as the relative frequency of different
sequences of speech sounds (Archer et al., 2021; Jusczyk et al., 1993). Beyond learning about
their language’s phonology, infants also begin to learn words. Months before their first birthday,
they recognize the meanings of some common words, including both concrete nouns (Bergelson
& Swingley, 2012) and a little later, more abstract words (Bergelson & Swingley, 2013), and by
the second half of the first year, they recognize the spoken form of a variety of words familiar
from home experience or laboratory exposure (e.g., Hallé & Boysson-Bardies, 1994; Jusczyk &
Aslin, 1995; Jusczyk & Hohne, 1997; Schreiner et al., 2016; Swingley, 2005a; Vihman et al.,
2004).

An important step in the process of language learning is word segmentation, or pulling
out words from the continuous stream of speech. It is easy to understand that this is a difficult
problem—one only needs to listen to a parent speaking to an infant in an unfamiliar language to
recognize that it is quite hard to infer where one word ends and the next begins. This problem is
difficult for infants too, which is why infants learn words more easily when they are presented in
one-word utterances than when they are embedded in longer utterances (Brent & Siskind, 2001;
Keren-Portnoy et al., 2019; Swingley & Humphrey, 2018). Yet infants do manage to break
utterances into parts. Laboratory studies demonstrate that infants can extract words from their
phonetic contexts (e.g., Jusczyk and Aslin, 1995), and infants have some knowledge of

grammatical words that never appear in isolation (e.g., Shi & Lepage, 2008).
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Research into infants’ early discovery of words has taken two forms: experiments that
present continuous speech to infants and test which elements they retain, and computational
models that evaluate what infants might learn were they to parse and retain speech sequences
according to a particular set of computable heuristics. The present paper continues the latter line,
but differs from most prior work in examining the consequences of normal phonological
variability. When words are realized in more than one way, does the phonological structure of
the lexicon still permit simple probabilistic heuristics to succeed in producing the foundation of
the early vocabulary?

In principle, there are several cues that could be helpful in word segmentation, once the
infant has some familiarity with phonological regularities present in the lexicon. For example, in
English, strong syllables tend to coincide with word onsets, suggesting that English speakers
could learn to use stress patterns or vowel-reduction patterns to detect where an unknown word
begins (Cutler & Norris, 1988). Experiments have shown that infants do respond to such
prosodic cues (Jusczyk et al., 1999; Nishibayashi et al., 2015; Seidl, 2007; Seidl & Johnson,
2006; Sundara & Mateu, 2018). Some consonantal sequences are much more common at word
boundaries in English than within words, and infants respond to these phonotactic probabilities
too (Mattys et al., 1999; Mattys & Jusczyk, 2001). These studies suggest that infants use the
phonetic characteristics of a preliminary stock of words to form generalizations that they then
apply in interpreting novel speech sequences.

Much of the laboratory research on word segmentation has focused on investigating how
the initial stock of words is identified by infants, and what generalizations might follow. In
principle, tabulating frequencies of occurrence, and relative frequencies of adjacent units, could

be informative about word boundaries. Sequences of units (such as phones or syllables) within



62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

words are expected to co-occur more often than sequences occurring across word boundaries
(Harris, 1955). If infants could track this kind of information, they might be able to pull out
candidate word forms from the speech stream (e.g., Aslin et al., 1998; Saffran et al., 1996).

Many laboratory experiments have confirmed that infants are sensitive to the statistical
cohesiveness of sub-word units. Most of these studies involve familiarizing infants with an
unknown, usually artificial, language, whose words are defined as the consistent phonological
strings that were concatenated to create the listening sequence. Differences in infants’
subsequent listening times to isolated words and nonwords show that infants must have
computed, in some form, the probability differences among phone or syllable transitions between
words and nonwords. The original findings by Saffran et al. (1996) have since been extended to
other language learning populations (e.g., Mersad & Nazzi, 2012) and to infants as young as 5
months (E. K. Johnson & Tyler, 2010). In general, these experimental designs are well equipped
to demonstrate which information sources are theoretically accessible to infants, and to reveal
whether infants’ strategies appear to have been shaped by the characteristics of the language they
are learning.

However, laboratory experiments are not well equipped to show whether a particular cue
is sufficient to support language acquisition given its actual availability in the language
environment. For example, even if co-occurrence frequencies are sufficient to segment the small
artificial languages that are typically used in experiments (though see Pelucchi et al., 2009), it is
not necessarily the case that they can be used to successfully segment spontaneous natural
language (e.g., Gambell & Yang, 2005; Swingley, 2005b; Yang, 2004). As a result, as a

complement to experimental work, computational models can be deployed over language
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corpora to test whether a proposed cognitive ability would be sufficient to account for the
documented behavioral accomplishments of infants (e.g., Ludusan et al., 2022).

Computational models of word segmentation illustrate which word forms could be
learned given different assumptions about the algorithm at work and the language input that the
learner receives. Broadly speaking, a model is provided with a textual representation of speech
without word boundaries, and returns as output the same text with the hypothesized word
boundaries inserted, for example, in places where the transitional probability or conditional
probability of two units (phones or syllables) occurring next to each other is relatively low (e.g.,
Saksida et al., 2017). This segmentation output can then be compared to the actual (gold-
standard) words, to assess the model’s performance. To make these comparisons, previous
modeling work has typically focused on information retrieval metrics that compare the number
of correct and incorrect segmentations, or, less commonly, on how psychologically plausible the
errors seem (e.g., Daland & Pierrehumbert, 2011; Lignos, 2011). Relatively few studies have
examined in detail what sort of language-learning foothold the output of a segmentation
procedure would grant the infant.

Regardless of the particular model in question, most previous studies have made similar
assumptions about the nature of the input to word segmentation. Specifically, the input to the
model has typically been generated by taking an orthographic transcription of speech and
replacing each word with its pronunciation according to a dictionary (e.g., Brent & Cartwright,
1996; see, for example, Borschinger et al., 2013; Elsner et al., 2013 for exceptions). This
procedure tacitly assumes that any given orthographic word is always pronounced in the same
canonical way. In real speech, however, this is not the case. Whole phones and even syllables

can be dropped or added, or changed to incorporate features of nearby sounds (e.g., Ernestus &
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Baayen, 2011; K. Johnson, 2004). It is well known that speech can vary in “non-contrastive”
acoustic and phonetic dimensions (like pitch, amplitude, and creakiness, in English) where
differences are usually not relevant to word identity. Here we highlight a different kind of
variability—in the phones that are present or absent in a word form—which infants cannot
reasonably disregard in trying to learn and recognize words. Providing computational models
with dictionary pronunciations instead of a direct phonological transcription ignores this kind of
variability and thus overestimates the clarity of the language input.

To address this potential limitation, the present study tested several existing models of
word segmentation using two different phonological transcriptions of the same speech: a
“dictionary pronunciations” version, derived using an orthographic transcription and a
pronunciation dictionary, and a more realistic “transcribed pronunciations” version, or direct
phonological transcription of the speech. This served two purposes. First, we wanted to assess
how the performance of existing models would be affected by using more realistic input that
incorporated phonological variation. If the models’ previous successes relied on certain
unrealistic features of dictionary-derived phonological transcriptions, then we would expect to
see a substantial decrease in performance on the transcribed pronunciations version of the
corpus. Similar performance on both versions of the corpus, on the other hand, would suggest
that the models are robust to phonological variation, in line with infants” own learning, which
proceeds despite the phonological variation present in actual speech. (We acknowledge that such
a result would still leave open the question of whether infants’ representation of spoken language
resembles that of hand-transcribed corpora, a point we will return to later.)

Second, in addition to quantifying numerical differences in performance, we wanted to

investigate what concrete effects more realistic input might have on the learner’s developing
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lexicon. Given input in which the same word can be pronounced in multiple ways, what kind of
word knowledge could the learner achieve according to current proposed solutions to word
segmentation? The typical view of word learning supposes that the output of word segmentation
serves as the input to the process by which children map meanings to words (e.g., Graf Estes et
al., 2007), but the present work highlights the fact that even when segmentation is successful, the
resulting word forms can be difficult to link to word types.

We will begin by reviewing several recent models of statistically driven word
segmentation. Next, we describe the corpus that we used as input to test how robust these models
are to phonological variability, and present the performance results. Finally, we explore the
nature of the segmented word forms under conditions of phonologically variable input and its
broader implications for word learning.

1.1 Segmentation Algorithms

Building on experimental work using transitional-probability-based stimuli (Aslin et al.,
1998; Saffran et al., 1996), several authors have implemented transitional-probability-based
computational models of word segmentation (e.g., Gervain & Guevara Erra, 2012; Saksida et al.,
2017; Yang, 2004). These models compute the transitional probability of each pair of units XY,
which can be defined as the probability of XY divided by either the probability of X (forward
probability), the probability of Y (backward probability), or their product (mutual information; in
this case, the resulting fraction is also log-transformed). Then, the models insert word boundaries
either wherever the transitional probability is lower than the transitional probability of the pairs
around it (relative threshold) or wherever the transitional probability is lower than the corpus
average (or some other absolute threshold). Work by Saksida et al. (2017) suggests that different

variations of this transitional probabilities (TP) model may be more effective in different
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languages, although overall performance was relatively high across languages and model
variations.

The diphone-based segmentation model (DiBS) of Daland and Pierrehumbert (2011) also
tracks the co-occurrence frequencies of sub-word units, in order to explicitly estimate the
probability of a word boundary given a particular diphone. The key insight is that infants might
detect through observation that some sounds are unusually common at the beginnings and ends
of utterances (compared to their overall co-occurrence frequency). In the absence of any word
boundary information, infants could use the utterance boundaries instead and treat these sounds
as especially likely beginnings and ends of words. This is what DiBS does in its unsupervised
instantiation. More specifically, DiBS estimates the probability of a word boundary occurring
between two phones using the observed frequencies with which the first phone ends utterances
and the second phone begins utterances, along with their co-occurrence frequency. If the
estimated probability is greater than 0.5, a word boundary is deterministically inserted. Daland
and Pierrehumbert (2011) found that DiBS was somewhat robust to phonological variation,
although their focus was on the relative rates of different types of segmentation errors rather than
absolute performance metrics.

As in the DiBS model, units that occur at the beginning and end of utterances play an
important role in the PUDDLE (Phonotactics from Utterances Determine Distributional Lexical
Elements) model of Monaghan and Christiansen (2010). PUDDLE is a subtractive algorithm that
pulls out known chunks (previous utterances, to start) from new utterances, creating new chunks.
However, this segmentation only occurs if the resulting new chunks start and end with n-grams
(diphones by default) that the model has already learned as legal onsets and offsets. Thus, n-

grams that occur next to utterance boundaries, which always get stored as legal onsets and
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offsets, greatly inform the model’s subsequent decisions. Monaghan and Christiansen (2010)
tested the PUDDLE model on a phonological corpus derived by passing an orthographic corpus
through a speech synthesizer. As they point out, this phonologization process is more realistic
than most pronunciation dictionaries, since the speech synthesizer allows the same orthographic
word to be pronounced differently in different part-of-speech contexts (e.g., “uses” as a verb
versus “uses” as a noun). Still, this model does not incorporate all of the phonological variation
present in actual speech.

These three models of word segmentation, along with a number of other models, continue
to be used to investigate questions about children’s early word learning. While such models are
not necessarily seen as mechanistic explanations of what infants actually do, they are at least
taken to demonstrate what information is potentially available to infants in different kinds of
language input. Recent studies (Cristia et al., 2019; Fibla et al., 2021) highlight that a range of
models can be used in parallel to better identify results that are stable across models. To facilitate
this kind of multiple-model investigation, Bernard et al. (2020) developed the WordSeg software
package, a coordinated collection of several different word segmentation algorithms, including
TP, DiBS, and PUDDLE. So far, the WordSeg implementations have been used to compare the
segmentability of adult-directed and child-directed speech (Cristia et al., 2019), to assess the
segmentability of bilingual language input (Fibla et al., 2021), to test the value of prosodic
breaks (Ludusan et al., 2022), and to measure the effects of morphological complexity on word
segmentation (Loukatou et al., 2022). Given the importance of these and other questions to
which these models can be applied, it seems especially crucial to investigate the consequences of
the assumptions that such modeling efforts usually make about phonological variation.

2 Materials and Methods
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2.1 Corpus

We used the Buckeye corpus (Pitt et al., 2007) because it is a large corpus that already
has both a direct phonological transcription and also a phonological transcription derived via
lookup of orthographic words in a pronunciation dictionary. The Buckeye corpus contains
spontaneous speech from 40 American English-speaking adults living in Columbus, Ohio.
Speech was recorded during one-on-one interviews about a variety of local issues, and then
orthographically and phonologically transcribed. In the present study, we analyzed a subset of
the Buckeye corpus composed of speech from four female talkers under 40 years of age. These
speakers were selected so as to better approximate infant-directed speech, an issue taken up in
more detail in the Discussion. In total, the smaller corpus used in this study included 30,910
words from 1,425 conversational turns. (Our rationale for collapsing across these four speakers

when constructing the corpus can be found in the Supplementary Materials.)

During pre-processing, we removed all non-speech codes (e.g., VOCNOISE for non-
speech vocalizations) and words containing non-speech codes from the corpus. We also replaced
instances of syllabic consonants with a schwa vowel followed by that consonant. Before running
the segmentation algorithms, we modified the corpus to include more frequent utterance
boundary codes. The Buckeye corpus only marks conversational turn boundaries and not other
utterance boundaries, so we probabilistically inserted additional utterance boundaries between
words according to the rate observed in child-directed speech (the Brown (1973) files in the
CHILDES database (MacWhinney, 2000)).

2.2 Syllabification
Some of the segmentation algorithms that we tested use syllables as the basic unit. To

prepare the corpora for these algorithms, we used the program zsy/b2 developed at the National
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Institute of Standards and Technology (Fisher, 1996). This program syllabifies words using
information about which consonant clusters can begin and end words in English, in combination
with the principle of maximal onset (intervocalic consonants are maximally assigned to syllable
onsets).
2.3 Segmentation

We employed three proposed segmentation algorithms, TP, DiBS, and PUDDLE
(described above), on both versions of the corpus using the WordSeg software package (Bernard

& Cristia, 2018). (See the Supplementary Materials for a description of the parameters.) Since

which unit, the phone or the syllable, is more appropriate to consider as the basic unit has been
debated in the literature (e.g., Gambell & Yang, 2005; Swingley, 2005b), we tested both phone-
based and syllable-based versions of each algorithm, with the exception of DiBS, for which we
only tested the unsupervised phone-based version. Note that providing syllable boundaries rather
than phone boundaries is much closer to providing the true word boundaries already, because
English has many monosyllabic words. As a result, it is not meaningful to compare the
performance of the phone-based algorithms to the performance of the syllable-based algorithms.
Instead, their performance can be compared to the performance of two different baseline
algorithms. As the syllable-based baseline, we used the WordSeg (Bernard & Cristia, 2018)
baseline algorithm, which identifies every syllable as a word. As the phone-based baseline, we
coded an implementation of the Possible Word Constraint (Norris et al., 1997), according to
which all segmentations should contain at least one vowel. To achieve this constraint, this
baseline algorithm considers each pair of consecutive vowels in each utterance in the corpus and

inserts a word boundary somewhere between them (with the location chosen at random)

11
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according to the oracle probability of a word boundary occurring between two consecutive
vowels within an utterance, across the corpus.
2.4 Performance Evaluation

To quantitatively evaluate the performance of each algorithm, we computed the standard
information-theoretic measures of (token) precision, recall, and F-score. In the context of word
segmentation, precision measures how many of the segmented words were correctly segmented
(matched the gold text, i.e. [correct segmentations] / [all segmentations]), while recall measures
how many of the words in the gold text were successfully extracted ([correct segmentations] /
[all word tokens in the gold text]). In line with previous work (e.g., Cristia et al., 2019), we focus
on token F-score, which is the harmonic mean of precision and recall. Results of analyses

considering precision and recall separately are provided in the Supplementary Materials.

3 Results

3.1 Model Performance

Fig. 1 shows the relative performance of each algorithm on the dictionary pronunciations
versus the transcribed pronunciations version of the corpus. The error bars represent two
standard deviations across ten different runs of the procedure that probabilistically inserted
additional utterance boundaries into the corpus. These pseudo-confidence intervals provide an
estimate of the within-corpus noise introduced by different utterance boundary randomizations.

Across algorithms, performance on the transcribed pronunciations version of the corpus
was lower than performance on the dictionary pronunciations version (as evidenced by the
downward slope of the lines in Fig. 1), with the exception of the baseline algorithms. The
average decrement in token F-score for the non-baseline algorithms was 12%, ranging from

3.65% to 22.5%. Using transcribed pronunciations also changed how performance varied
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Figure 1. Segmentation performance on dictionary pronunciations versus transcribed pronunciations of the same
speech. Each connected pair of points represents a particular word segmentation algorithm, and error bars show
empirical 95% confidence intervals over different utterance boundary randomizations.

between algorithms, practically eliminating the differences observed on the dictionary
pronunciations version of the corpus (phone-based algorithms) or even reversing the previous
pattern (syllable-based algorithms).

The observed decrease in performance on the transcribed pronunciations can be
explained by the underlying statistics of this version of the corpus. Let us consider the phone-
based algorithms for simplicity. In the dictionary pronunciations version of the corpus, there are
some pairs of phones that are extremely reliable cues to the presence or absence of word
boundary. For example, when /h/ is followed by any other phone, the probability of a word
boundary occurring between them is 0, since /h/ cannot end words in English. Conversely, any
phone followed by /h/ is a fairly reliable cue to the presence of a word boundary (P(word
boundary) = 0.887), since these can only belong to the same word if that word is multisyllabic

2

(e.g., “clubhouse”). However, because /h/ is often deleted in conversational speech (e.g., “im
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instead of “him”), these helpful cues are less frequent in the transcribed pronunciations version
of the corpus (1,358 instead of 1,635 occurrences). As another example, /u/, which never starts
words in the dictionary pronunciations version of the corpus and so always attaches to the phone
before it, occurs 2,622 times in the dictionary pronunciations but less than half that often (1,196
times) in the transcribed pronunciations because of frequent vowel reduction.

In addition to cases like these, some phone pairs that are reliable cues in the dictionary
pronunciations become less reliable in the transcribed pronunciations. For instance, /1/, /¢/, and
/n/ never directly precede word boundaries in the dictionary pronunciations but do so about 10%
of the time in the transcribed pronunciations due to final consonant deletion. On the whole then,
the statistical landmarks that help in the dictionary pronunciations version of the corpus have
been eroded in the transcribed pronunciations, leading to worse segmentation performance across
models.

Despite the decrease we observed moving from dictionary pronunciations to transcribed
pronunciations, the algorithms’ absolute performance on the transcribed pronunciations version
of the corpus was still relatively high in the case of the syllable-based algorithms and well above
the relevant baseline for the phone-based algorithms (Fig. 1). This suggests that at least in terms
of numerical performance, these models of word segmentation are somewhat robust to the
phonological variation present in actual speech, though of course they leave open the question of
how infants identify the phones or locate the syllable boundaries.

3.2 Proto-Lexicon of Word Forms

In addition to calculating the standard performance metrics, we also examined the nature

of the word forms that appeared in the segmentation output when the models were given

phonologically variable input. Since the typical view assumes that the output of word
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segmentation gives rise to a proto-lexicon of word forms whose meanings are discovered during
word learning, we wanted to assess the correspondence between segmented word forms and
orthographic words, using orthographic words as a proxy for word meanings.

To visualize the relationship between correctly segmented phonological word forms and
orthographic words, we can think of phonological word forms and orthographic words as the two
kinds of nodes in a bipartite (or bimodal) network. In this network, an edge exists between two
nodes A and B if that phonological word form A was ever correctly segmented when B was the
speaker’s intended orthographic word. With dictionary pronunciations as input, this network is
guaranteed to consist of one-to-one links, or pairs of nodes that are only connected to each other
(with the exception of homophones, where two phonological word forms would be linked to the
same orthographic word). With phonologically variable input, however, such one-to-one
correspondences are not guaranteed. Instead of one-to-one links where the meaning of each
phonological word form is well defined, we could instead see a complex many-to-many
relationship, where each orthographic word has several different pronunciations and these
pronunciations overlap with the pronunciations of other orthographic words. In this case,
learning which meaning to attach to a phonological word form would pose a problem with no
clear solution.

For example, consider an English-learning child who has isolated [s1d] (“sid”) as a
potential word, based on its statistical cohesiveness. The child might observe that this word’s
contexts of use are compatible with notions conveyed by “sit” and “said.” Given this evidence,
the child might suppose that these two meanings are, in fact, both members of some larger
semantic category than previously hypothesized (e.g., LaTourrette & Waxman, 2020); or might

guess that [s1d] is a homophone. Similarly, a child who has isolated [kol] (“‘call”’) and [ko]
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(“‘caw”) as separate forms whose contexts of use (instances of the intended orthographic word
“call”) seem identical might suppose that “call” has more than one pronunciation, or that the
phonological categories of [kol] and [ko] should actually be collapsed into one. Resolving these
possible errors, even if multiplied over many items in the lexicon, seems tractable. But there are
also many-to-many cases where any solutions would seem to be overwhelmed with ambiguity.
Imagine, for instance, a child who has isolated [kid] as a potential word. While canonically this is
simply the single pronunciation of the word “kid”, in actual speech, “kid” and “could” are both
frequently pronounced as [kid]. Furthermore, “kid” can also be pronounced [ki1], as can “could”,
and other pronunciations of each word overlap with yet more orthographic words (e.g., “kit”,
“good”, “can”, etc.). This scenario is clearly much less tractable, even given perfect knowledge

of each word form’s context of use. (For a visual example of a small, many-to-many mapping,

heel he’ll hill

B A BN

Figure 2. Example many-to-many mapping. Edges between phonological word forms (shaded) and orthographic
words (white) represent attested pronunciations. In this network, the same orthographic word (“he’11”) can have
multiple pronunciations ([hil] and [h1l]), and a single phonological word form can map onto multiple orthographic
words and thus meanings (e.g., [hil] maps onto both “heel” and “he’ll”).

see Fig. 2).

With these possibilities in mind, we turn to our results. We observed a variety of

outcomes, including both unambiguous one-to-one links and larger many-to-many components.
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For simplicity, we focus here on the correct segmentations under the phone-based transitional

probabilities model, but the overall pattern of results was similar using other models (see

Supplementary Materials). As Fig. 3 shows, most of the phonological nodes or postulated word
types (65%; 86% of tokens) ended up in a single giant component of phonological and lexical
overlaps. By contrast, only 21% (7% of tokens) belonged to a one-to-one link.! Many of the one-
to-one links were of extremely low frequency (just two or three occurrences), making it hard to
say how many of these perfect correspondences would persist given a larger corpus.

This network of orthographic words and phonological word forms was very different
from the equivalent network generated under the unrealistic simplifying assumption of no
phonological variation from the dictionary pronunciations. The network generated from
transcribed real pronunciations had a higher density (number of observed edges / total possible
edges given the number of nodes). This increase in density was expected because when the
dictionary pronunciations version of the corpus is used as input, the number of observed edges is
bounded by the number of (correctly segmented) orthographic word types (i.e., each
orthographic word has no more than one pronunciation). This is not true when the transcribed
pronunciations are used. However, in addition to an increase in density, we also observed a giant
component composed of overlaps, including a large number of many-to-many connections, and
encompassing the majority of the postulated word types. In other words, it is not merely the case
that each orthographic word had a few different pronunciations that would need to be grouped
together by the learner. A given phonological word form was also ambiguous as to the intended

orthographic word, indicating much more widespread homophony than is typically assumed.

! These estimates excluded segmentations that occurred only once (5% of the tokens). If these hapax legomena are
included, the analogous proportions are 53% of types (84% of tokens) and 24% of types (6% of tokens).
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Figure 3. Network visualization of the correctly segmented words under the TP model. Each shaded node represents
a segmented word or phonological word form, which is linked to one or more intended orthographic words (white
squares). Node size represents frequency, though any segmentations that occurred only once were excluded. For
simplicity, only a few representative examples are plotted for the smaller components (“intermediate links” and
“one-to-one links”). The bar graph shows the percentage of phonological word forms that ended up in each kind of
component.

360 It is possible that our use of a binary edge condition, in which we ask whether the

361  phonological word form A either was ever, or was never, an instance of the orthographic word B,
362  overestimates the messiness of the input by weighting very infrequent pronunciation variants as
363  strongly as frequent ones. If, for example, 9/10 instances of “rain” were segmented as [1e1n] and
364  1/10 as [4e1] (which could also be “ray”), the child might be in a different position than if the

365  proportions were 5/10 and 5/10. To incorporate frequency information, let us consider a

366  weighted network, where each edge in the network has a weight representing how many times

367  each orthographic word was realized as a particular phonological word form. Then, a
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phonological word form and an orthographic word can be said to be in a close to one-to-one
relationship if the weight of the edge between them is high relative to the weighted degree (total
frequency = sum of weights of direct edges) of either node. Borrowing a measure from
information theory, this is equivalent to saying that the (pointwise) mutual information (PMI) of
the two nodes A and B (i.e., log[freq(A and B) / (freq(A)*freq(B)]) is high, or that the
normalized pointwise mutual information (NPMI = PMI / -log[freq(A and B)]) is close to 1,
where 1 indicates perfect correlation. In Fig. 4, we show what happens to the giant component
from the original network when edges between nodes with NPMI close to 0 (where 0 indicates
statistical independence) and edges with a weight of 1 (correspondences that occurred only once)
have been pruned using oracle knowledge of the intended orthographic word. Taking frequency
information into account in this way resolves some of the ambiguities, creating some one-to-one
links and intermediate-size components where before there was only a single, densely connected

component.
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Figure 4. Giant component after pruning. Edges linking phonological word forms (shaded circles) and intended
orthographic words (white squares) were removed if the two were only weakly informative about each other (NPMI
<0.25) or if the correspondence occurred only once among the correct segmentations. For the components at the top
of the figure, the orthographic nodes are labeled in gray (e.g., “his”), and the phonological nodes in black (e.g., ihz
([1z] in IPA)). For clarity, labels are not presented for the smaller components at the bottom of the figure.

The sparser network formed by pruning links with less tight an evidential connection
shows that if children could identify and ignore infrequent phonological and lexical
correspondences, or simply forget them, this would reduce the number of words involved in
intractable many-to-many overlaps. Nevertheless, even after this pruning, some large connected
components remained. For example, “as”, “has”, “his”, “just”, “is”, “it’s”, “that’s”, “this”,
“was”, and “us” all belonged to the same connected component. Such many-to-many

relationships challenge the assumption that statistically driven word segmentation provides the

learner with a strong lexicon-building foundation. In other words, considering word types and

20



389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

phonological word forms separately reveals a hidden learning challenge that unsupervised
statistics computed over a phonological transcription cannot untangle.

Pruning infrequent edges from the network provides a more nuanced characterization of
the input but is probably unrealistic as a model of the learner, since infants do not have oracle
knowledge of the intended orthographic word. Without this knowledge, the frequency of each
correspondence is unlikely to be available. Thus, taking a more psychologically plausible
approach, we modeled what would happen if phonological word forms below a certain overall
frequency were excluded or forgotten. If we exclude word forms that happened only few times
in the corpus, does this help reduce the number of many-to-many mappings? As Fig. 5 shows,
thresholding by frequency does reduce the absolute number of orthographic words involved in
many-to-many relationships, but their proportion in the proto-lexicon actually increases. In
general, the phonological word forms involved in many-to-many relationships are high in overall
frequency. As a result, excluding low-frequency word forms hurts the ideal, one-to-one links
substantially more than it helps resolve the many-to-many entanglements.

So far, the networks we have considered have assumed that the learner tries to link up

Relationship Type
n=447 n=374 n=288 n=227 n=183 n=141 n=105 n=58 . many—tomman
y-to-many

68 48 25 9 7
158 124 2 one-to-many
“ “ “ . many-to-one

one—to—one

Remaining
Orthographic Words

1 2 4 8 16 32 64 128

Frequency Threshold for Phonological Word Forms

Figure 5. Composition of the proto-lexicon assuming low-frequency word forms are forgotten. For each frequency
threshold, a pie chart shows which orthographic words remain when the phonological word forms at or below that
frequency are excluded. (Note that because the corpus is a sample of the listener’s experience, a frequency of 1 in the
corpus does not necessarily correspond to a frequency of 1 in the listener’s experience.) Including only higher
frequency words forms reduces the absolute number of words involved in many-to-many entanglements (i.e., the
absolute area of the dark red region decreases from left to right), but their proportion increases. By contrast, both the
number (labeled) and the proportion of the ideal, one-to-one words (green, outlined) decrease dramatically as the
frequency threshold increases.
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every (correctly) statistically derived word form with a meaning. Even with perfect access to the
word’s semantic context (implemented here by identifying it with the corpus’ orthographic
transcription), our results demonstrate that this is an extremely hard problem to solve. As an
alternative to this exhaustive processing of the input, infants might instead only consider as
candidate word forms for their initial proto-lexicon those word forms that seem to have concrete
referents. To investigate this possibility, we filtered the network by removing orthographic nodes
with concreteness ratings (Brysbaert et al., 2014) below the median, and also removing any
edges connected to them. Fig. 6 shows the result.? This exclusion of less concrete words
significantly reduced the density of the network (0.0028) compared to removing the same
number of orthographic nodes chosen at random (bootstrap 95% CI =[0.0033, 0.0043]). This
happens because more concrete words tend to be phonologically heavier in their specification in
the lexicon, and also less affected by reduction processes that would alter their transcription.
Therefore, temporarily leaving aside words with less concrete meanings early in the learning
process could make the mapping problem more tractable. This solution does not entirely rescue
the learner, however, because some many-to-many components persisted after filtering, and
because knowledge of the semantic context is not in fact given. In the real world, infants have to
contend with variation both in the referential world and in words’ pronunciations. Although
some word use instances in parent-infant interaction are semantically transparent (Trueswell et
al., 2016) and some demonstrate careful, relatively unambiguous phonetic presentations
(Cychosz et al., 2021), these learning opportunities may not be the same ones (CITE BEECH &

SWINGLEY ’gems’ paper).

2 As a complement to this simulation, we also used regression analyses to describe whether some kinds of words
(e.g., content versus function words) were more likely to end up in one-to-one or close to one-to-one relationships in
the original network. See the Supplementary Materials for details.
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Figure 6. Entire network with less concrete words excluded. Concreteness norms were used to exclude orthographic
words (white squares) of below average concreteness (2.64 out of 5) and any edges connecting them to phonological
word forms (shaded circles). Despite the significant reduction in density compared to random orthographic node
removal, some complex, many-to-many components persisted.

4. Discussion

In this study we investigated the effects of phonological variation on models of
statistically driven word segmentation. We found that using transcribed pronunciations rather
than canonical pronunciations led to consistently lower numerical performance across
algorithms. In addition, we showed that phonological variability poses substantial problems for
lexicon building. Most of the extracted phonological word forms ended up in a dense web of
phonological and lexical overlaps, where phonological identities and differences were not
consistent cues to word identity. This finding could explain why toddlers have sometimes failed

to apply a mature phonological criterion in word learning experiments (Dautriche et al., 2015;
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Stager & Werker, 1997; Swingley & Aslin, 2007). Perhaps they have learned that in real speech,
a small phonological difference often does not imply a difference in meaning.

Traditionally, the fact that infants and toddlers often recognize words less well when the
words are realized with phonologically deviant pronunciations has been interpreted as evidence
that young children do use a phonological criterion for lexical differentiation, in line with
textbook definitions of the function of a formal phonology. For example, two-year-old children
learning Catalan, but not two-year-old children learning Spanish, find words harder to identify if
their vowel /e/ is realized as /E/—phonetically the same change in the two stimulus sets, but
phonologically quite different in the two languages (Ramon-Casas et al., 2009). This is
consistent with the idea that “mispronunciation effects” derive from a mismatch signal triggered
by the deviant phone, which is much stronger for phonological distinctions. Dietrich et al. (2007)
obtained a similar result in a word teaching context, with younger children. But, does this strong
mismatch signal, which we measure in experiments, prevail in children’s interpretation of novel
words? The answer, at least in the laboratory word-learning contexts we have tested, is no.
Swingley and Aslin (2007) tried to teach 19-month-olds novel object labels that were
phonologically distinct from familiar words (like “tog” for “dog”), and children failed again and
again. Children of this age can hear the difference, but it does not make them posit a new lexical
item. Swingley (2016) showed a similar result and eye-tracked the same children. From
children’s own eye movement data, it was clear that they noticed deviant realizations of words,
but they did not interpret those differences as corresponding to novel words for unfamiliar
objects. Why not? Why do children seem so skeptical, when they are confronted with a novel
neighbor? Perhaps because their linguistic experience has been replete with tokens of words that

often stray beyond their own phonological bounds. Children need to learn the canonical forms of
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words, but they also need to learn the phonetic transform that connects reduced forms to one or

more distinct canonical forms.
One limitation of the present work is the use of a corpus of adult-directed rather than

infant-directed speech. Adult-directed and infant-directed speech clearly differ in their content,
and a body of work suggests that infant-directed speech may be tailored to promote learning
(e.g., Eaves et al., 2016; Kuhl et al., 1997; though see Ludusan et al., 2021). However, it is also
clearly not the case that parents speak like dictionaries, producing only canonical forms, when
conversing with their children (e.g., Bard & Anderson, 1983; Buckler et al., 2018; Lahey &
Ernestus, 2014). In addition, infant-directed speech appears to have only a small and inconsistent
advantage in segmentability, at least when the recording contexts for infant-directed and adult-
directed speech are similar (Cristia et al., 2019).

Although this work introduced more realism in one way (by incorporating phonological
variability), it still made simplifying assumptions. For instance, in considering the problem of
attaching meanings to words, the orthographic word served both as the linguistic target and as a
stand-in for the semantic context. Future investigations could model the semantic context
separately, possibly by using a corpus with associated video data.

In addition, we have assumed that the statistical word segmentation algorithms operate
over phonological categories. It is possible that the phonological units that infants use early in
word learning are actually more continuous, in line with automatic speech recognition features
derived directly from the acoustic signal. Although this changes the problem space, other
computational modeling efforts have explored the feasibility of speech-based segmentation
(Dunbar et al., 2020; Résénen, 2011). It could be that some of the complexity we observed here

in mapping variable segmented forms to distinct lexical items would be attenuated by avoiding

25



480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

the imposition of phonological categories in the first place. For example, if the word “tree” were
sometimes realized with an aspirated /t/ ([t"i]), and sometimes realized with frication ([t[i]),
these instances might be phonetically close but transcribed as phonemically distinct. At present,
it is impossible to say whether a more “analog” and less “digital” conceptualization of infant
speech processing would ameliorate the pervasive ambiguity problem we have identified, or
exacerbate it. However, if infants do not adopt a categorical representation of speech one way or
another, they also could not compute the same kinds of statistics that are widely presupposed to
underlie performance in word segmentation experiments. This is a fruitful ground for further
research efforts.

Despite these limitations, this study has important broader implications. Specifically, it
suggests that the exhaustive parsing models that dominate current thinking about very early
language development would, if true, place infants in a difficult position, by leading them to
build extremely complex initial lexicons containing a strong proportion of unhelpful
categorizations. This provides some impetus for thinking about the problem in another way. In
particular, rather than conceptualize infants as trying to fully parse every sentence using
rudimentary statistical segmentation heuristics, we might do better to suppose that infants begin
language learning by attending primarily to salient islands of reliability in phonetic and semantic
space, and building outward from there. If infants initially filter their input, homing in on
moments where words are pronounced more clearly or canonically, or the intended meaning is
more easily available, this could help them sidestep some of the problems that phonological
variability poses for early word learning. Eventually though, young children must contend with
speech on a larger scale. How children make this transition and learn to manage the phonological

variability in speech remains an open question.
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